JP2004079685A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2004079685A
JP2004079685A JP2002236036A JP2002236036A JP2004079685A JP 2004079685 A JP2004079685 A JP 2004079685A JP 2002236036 A JP2002236036 A JP 2002236036A JP 2002236036 A JP2002236036 A JP 2002236036A JP 2004079685 A JP2004079685 A JP 2004079685A
Authority
JP
Japan
Prior art keywords
metal
chip
wafer
child
chips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002236036A
Other languages
Japanese (ja)
Other versions
JP4009505B2 (en
Inventor
Kazutaka Shibata
柴田 和孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2002236036A priority Critical patent/JP4009505B2/en
Priority to US10/629,904 priority patent/US6835593B2/en
Priority to CNB031525091A priority patent/CN100356530C/en
Publication of JP2004079685A publication Critical patent/JP2004079685A/en
Application granted granted Critical
Publication of JP4009505B2 publication Critical patent/JP4009505B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75251Means for applying energy, e.g. heating means in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81143Passive alignment, i.e. self alignment, e.g. using surface energy, chemical reactions, thermal equilibrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81905Combinations of bonding methods provided for in at least two different groups from H01L2224/818 - H01L2224/81904
    • H01L2224/81907Intermediate bonding, i.e. intermediate bonding step for temporarily bonding the semiconductor or solid-state body, followed by at least a further bonding step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/9205Intermediate bonding steps, i.e. partial connection of the semiconductor or solid-state body during the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device, which is high in productivity and capable of joining a plurality of semiconductor chips together as the semiconductor chips are made to get less out of position. <P>SOLUTION: First, in Figure (a), a wafer W is placed on a mounting pad 11 as its active surface Wa is kept facing upward. Metal projections 4 each having a tin layer on their tips are formed on the active surface Wa of the wafer W, and a flux 22 is applied on each tip of the metal projections 4. The wafer W contains a plurality of unit regions U corresponding to master chips. In succession, a slave chip 2 equipped with metal projections 5 formed on its active surface 2a is placed on the wafer W by a collet as its active surface 2a is kept facing downward. By this setup, in Figure (b), the metal projections 4 and 5 are temporarily fixed together through the flux 22. The same as mentioned above, the slave chips 2 and 3 are temporarily fixed in the whole unit regions U on the wafer W, and then the wafer W and the slave chips 2 and 3 are heated for a prescribed time at temperatures higher than the melting point of tin. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体チップの上に別の半導体チップを接合したチップ・オン・チップ構造を有する半導体装置の製造方法に関する。
【0002】
【従来の技術】
いわゆるマルチ・チップ型半導体装置の一形態として、複数個の半導体チップを重ね合わせたチップ・オン・チップ構造がある。チップ・オン・チップ構造の半導体装置では、外部接続される親チップの表面に、この親チップよりも小さな子チップが接合されている。1つの親チップの表面に複数個の子チップが接合されたものもある。
【0003】
親チップおよび子チップは、それぞれ機能素子や配線が形成された活性面に複数の金属突起(バンプ)を備えている。これらの金属突起は、主として金(Au)などの高融点金属からなり、親チップの金属突起および子チップの金属突起の双方または一方には、先端に錫(Sn)などの低融点金属からなる層が形成されている。
チップ・オン・チップ構造の半導体装置の製造工程において、親チップの活性面と子チップの活性面とが対向させられ、親チップの金属突起と子チップの金属突起とが押しつけられるように、親チップおよび子チップに荷重がかけられる。この状態で、親チップおよび子チップが低融点金属の融点(固相線温度)以上の温度に加熱される。これにより、金属突起の先端に形成された低融点金属からなる層は溶融する。
【0004】
その後、親チップおよび子チップの温度が、低融点金属の融点以下に下げられる。これにより、低融点金属は固化して親チップの金属突起と子チップの金属突起とが、低融点金属を介して電気的および機械的に接合される。親チップの金属突起や子チップの金属突起の表面に酸化膜が形成されている場合でも、親チップの金属突起と子チップの金属突起とが押しつけられることにより、酸化膜が破られて、第1および第2の金属突起は低融点金属により良好に接合される。
【0005】
上記の接合は、親チップを切り出す前のウエハの状態で行われることもある。この場合、半導体ウエハと子チップとの接合後、半導体ウエハが切断されて、チップ・オン・チップ構造を有する半導体チップの個片にされる。
【0006】
【発明が解決しようとする課題】
ところが、半導体ウエハは多数(たとえば、数千個)の親チップに相当する領域を有しており、すべての親チップに相当する領域に、子チップを同時に押しつけて加熱することはできない。このため、吸着コレットにより、半導体ウエハ上の所定の位置に子チップを運び、この子チップに荷重をかけながら昇温および降温するという工程を子チップの数だけ繰り返さねばならず、生産性が悪かった。
【0007】
また、親チップと子チップとの接合を行う際、親チップの金属突起と子チップの金属突起とを正確に位置合わせしなければならないが、昇温および降温に伴う熱履歴により、接合に用いる装置に狂いが生じるため、位置合わせの精度を高くすることができなかった。
さらに、親チップと子チップとの接合時に、たとえば、子チップが帯電している場合、親チップの金属突起と子チップの金属突起との接触時に、親チップに形成された機能素子が、子チップからの放電により静電破壊される。このような事態を回避するため、親チップには、金属突起に接続された保護ダイオードが設けられている。しかし、保護ダイオードは本来不要なものであり、保護ダイオードを設けると他の機能素子を形成する領域が少なくなる。
【0008】
そこで、この発明の目的は、生産性が高い半導体装置の製造方法を提供することである。
この発明の他の目的は、位置ずれを少なくして複数の半導体基板を接合できる半導体装置の製造方法を提供することである。
この発明のさらに他の目的は、複数の半導体基板を接合する際の静電破壊を防止するための保護ダイオードを半導体基板に設ける必要がない半導体装置の製造方法を提供することである。
【0009】
【課題を解決するための手段および発明の効果】
上記の課題を解決するための請求項1記載の発明は、第1の半導体基板の一方表面に形成された第1の金属突起と、第2の半導体基板の一方表面に形成された第2の金属突起とを接合して構成される半導体装置の製造方法であって、上記第1および第2の金属突起のうちの少なくとも一方の先端に低融点金属からなる層を形成する工程と、上記第1および第2の金属突起のうちの少なくとも一方の先端にフラックスを塗布するフラックス塗布工程と、このフラックス塗布工程の後、上記第1の半導体基板の上記一方表面と上記第2の半導体基板の上記一方表面とを対向させ、上記第1の金属突起と上記第2の金属突起とを、上記フラックスで仮固定する仮固定工程と、この仮固定工程の後、上記第1および第2の半導体基板を、上記低融点金属からなる層の固相線温度以上の温度に加熱する加熱工程とを含むことを特徴とする半導体装置の製造方法である。
【0010】
この発明によれば、第1の金属突起と第2の金属突起とは、絶縁体であるフラックスを介して仮固定される。このため、第1および第2の半導体基板の一方が帯電している場合でも、この仮固定時には放電が起こらないから、他方の半導体基板に形成された機能素子が静電破壊されることがない。したがって、第1および第2の半導体基板には、これらの接合時の静電破壊を防止するための保護ダイオードを設ける必要がない。
【0011】
仮固定の後、第1および第2の半導体基板を、低融点金属の固相線温度以上にすることにより、低融点金属の融液が生じる。その後、第1および第2の半導体基板を、低融点金属の固相線温度以下にすることにより、第1の金属突起と第2の金属突起とは、低融点金属の層を介して電気的および機械的に接合される。この際、第1の金属突起や第2の金属突起の表面に酸化膜が形成されている場合でも、フラックスの作用により酸化膜は除去され、低融点金属の融液は第1および第2の金属突起に対して良好な濡れ性を有することができる。したがって、第1および第2の金属突起は、低融点金属の層により良好に接合される。
【0012】
第1および第2の金属突起は、たとえば、金からなるものであってもよく、低融点金属からなる層は、たとえば、錫からなるものであってもよい。
請求項2記載の発明は、上記加熱工程が、上記第1および第2の半導体基板に対して、それらを押し付け合う荷重をかけることのない実質的な無荷重状態で行われることを特徴とする請求項1記載の半導体装置の製造方法である。
この発明によれば、第1および第2の半導体基板は、実質的に無荷重の状態、たとえば、第1および第2の半導体基板のうち一方の半導体基板が水平に置かれ、その上に他方の半導体基板が載置されて加熱される。この状態では、第1および第2の半導体基板は、上方の半導体基板が自重のみで下方の半導体基板に押し付けられており、外部荷重によって互いに強制的に押しつけられていないので、相対的に移動することができる。このため、仮固定工程により、第1の金属突起と第2の金属突起とが、多少ずれて仮固定されていた場合でも、加熱工程により低融点金属の融液が生じると、低融点金属の融液の表面張力により、第1の金属突起と第2の金属突起とは、ずれが少なくなるように移動(セルフアライン)する。これにより、第1の半導体基板と第2の半導体基板とを位置ずれを少なくして接合できる。
【0013】
また、第1および第2の半導体基板に荷重をかける工程を省くことができるので、生産性がよい。
請求項3記載の発明は、上記仮固定工程が、上記第2の半導体基板の上記一方表面上に複数の上記第1の半導体基板を仮固定する工程を含むことを特徴とする請求項1または2記載の半導体装置の製造方法である。
この発明によれば、第2の半導体基板上に複数の第1の半導体基板が仮固定された状態とした後に、第1および第2の半導体基板を一括して加熱することができる。すなわち、子チップの数だけ昇温および降温を繰り返す必要がない。これにより、第2の半導体基板と複数の第1の半導体基板とを、一括して接合することができるので、生産性がよい。
【0014】
第1の半導体基板は、たとえば、半導体チップであってもよく、第2の半導体基板は、たとえば、半導体ウエハであってもよい。これらの場合、接合後、第2の半導体基板を切断して、チップ・オン・チップ構造を有する半導体チップの個片に切り出すことができる。
【0015】
【発明の実施の形態】
以下では、添付図面を参照して、本発明の実施の形態について詳細に説明する。
図1は、本発明の一実施形態に係る製造方法により得られる半導体装置の図解的な断面図である。
この半導体装置は、第1の半導体基板としての子チップ2および子チップ3と、第2の半導体基板としての親チップ1とを、重ね合わせて接合した、いわゆるチップ・オン・チップ(Chip−On−Chip)構造を有している。子チップ2,3は、親チップ1より小さい。
【0016】
親チップ1および子チップ2,3の互いに対向する表面は、それぞれ、機能素子や配線などが形成された活性面1a,2a,3aとなっている。親チップ1の活性面1aには、複数の金属突起(バンプ)4が設けられている。金属突起4は金(Au)からなる。活性面1aの周縁部近傍で、活性面2a,3aが対向していない部分には、外部取出用電極7が設けられている。
子チップ2,3の活性面2a,3aには、金属突起4に対応する位置に金属突起5,6が設けられている。金属突起5,6は金(Au)からなる。金属突起4と金属突起5,6との間には、錫(Sn)からなる薄い層(図示せず。)が存在しており、金属突起4と金属突起5,6とは、この錫の層を介して接合されている。
【0017】
親チップ1および子チップ2,3には、親チップ1と子チップ2,3との接合時に、親チップ1や子チップ2,3に形成された素子を静電破壊から保護するため保護ダイオード(金属突起4,5,6に接続されたダイオード)は形成されていない。このため、親チップ1および子チップ2,3は、このような保護ダイオードが形成された半導体チップと比べて、他の機能素子を多く形成できる。
親チップ1の活性面1aとは反対側の面は、リードフレーム9の支持部(アイランド)9aに接合されている。支持部9aの側方には、支持部9aと間隔をあけて、側方へ延びるリードフレーム9のリード端子部9bが配されている。外部取出用電極7とリード端子部9bとは、ボンディングワイヤ8により接続されている。親チップ1、子チップ2,3、支持部9a、ボンディングワイヤ8、およびボンディングワイヤ8とリード端子部9bとの接続部を含む領域は、封止樹脂10で保護されている。
【0018】
図2は、図1の半導体装置の製造方法を説明するための図解的な断面図であり、図3は、その金属突起4,5近傍の拡大図である。図3(a)は図2(a)に対応しており、図3(b)は図2(b)に対応しており、図3(c)は図2(c)に対応している。
半導体装置の製造に用いる半導体ウエハ(以下、単に「ウエハ」という。)Wは、親チップ1に対応する単位領域Uを多数(たとえば数千個)含んでいる(隣接する単位領域Uの境界を図2(a)(b)に破線で示す。)。ウエハWの活性面Waは、親チップ1の活性面1aに対応している。活性面Waには金属突起4が形成されている。金属突起4の先端はほぼ平坦な面となっており、その面には錫からなる層(錫層)20が予め形成されている(図3(a)参照)。
【0019】
先ず、ウエハWの活性面Waに形成された金属突起4の先端に、ディッピング、転写等によりフラックス22が塗布される。次に、ウエハWが、活性面Waが上方に向けられて、ほぼ水平に載置台11の上に載置される。載置台11の内部にはヒータ12および温度センサ13が設けられており、載置台11の上に載置されたウエハWを、温度センサ13の出力に基づいて所定の温度に加熱可能である。
【0020】
続いて、図2(a)に示すように、子チップ2が吸着コレット14により、活性面2aの反対側の面が吸着され、活性面2aを下方に向けられてほぼ水平な状態でウエハWに対向される。金属突起5の先端は、ほぼ平坦な面になっている。金属突起5の表面には、錫からなる層は形成されていない(図3(a)参照)。吸着コレット14は、たとえば、真空吸着により子チップ2を吸着可能なものとすることができる。
【0021】
この状態で、子チップ2の金属突起5と、対応するウエハWの金属突起4とが位置合わせされ、吸着コレット14が下降される。この際、金属突起4と金属突起5とは、図3(a)に示すように多少位置がずれていてもよい。金属突起4と金属突起5とが、ある程度近接されると、子チップ2の下降速度は小さくされる。
そして、金属突起5の下端が、フラックス22の表面に接した後、錫層20の表面に接触する前に、子チップの下降は停止され(図2(b)および図3(b)参照)、子チップ2は吸着コレット14から離され、ウエハWの上に載置される。これにより、金属突起5は、フラックス22で金属突起4に仮固定された状態となる。
【0022】
このように、吸着コレット14により子チップ4がウエハWに押しつけられないようにし、ウエハWや子チップ2に荷重がかからないようにすることが好ましい。これにより、ウエハWや子チップ2が破損することを回避することができる。ウエハWや子チップ2に多少の荷重がかかっても問題はない
以上の工程において、たとえば、仮固定する前の子チップ2が帯電している場合がある。しかし、仮固定された状態で金属突起4と金属突起5とは、絶縁体であるフラックス22により電気的に絶縁されているので、子チップ2からウエハWへの放電は生じない。したがって、ウエハW(親チップ1)の金属突起4および子チップ2の金属突起5に接続された保護ダイオードが形成されていなくても、ウエハW(親チップ1)に形成された機能素子が静電破壊されることはない。
【0023】
その後、子チップ2と同様にして、子チップ3がウエハWに仮固定される。子チップ3の金属突起6は、子チップ2の金属突起5と同様、先端がほぼ平坦になっており、その表面には錫からなる層は形成されていない。
このようにして、1つの単位領域Uに、子チップ2,3が仮固定されたウエハWが得られる。同様にして、ウエハWのすべての単位領域Uに、子チップ2,3が仮固定される。この状態で、ウエハWには、子チップ2,3の重量による荷重のみがかかっており、ウエハWおよび子チップ2,3は実質的に無荷重である。以上の工程は、常温で行われる。
【0024】
次に、載置台11に設けられたヒータ12により、ウエハWが所定時間錫の融点以上の温度(たとえば、240℃以上)に加熱される。これにより、錫層20は溶融、固化し、すべての子チップ2,3の金属突起5,6は、錫層20を介してウエハWの金属突起4に接合される。この際、金属突起4,5,6の表面などに酸化膜が形成されている場合でも、フラックス22の作用により、酸化膜は除去され、金属突起4,5,6の表面は錫の融液に対する濡れ性が十分高くなり、金属突起4と金属突起5,6とは、錫層20により良好に接合される。
【0025】
さらに、ウエハWおよび子チップ2,3は実質的に無荷重であるので、子チップ2,3はウエハWに対して位置を変えることができる。このため、金属突起4に対して金属突起5,6がずれていた場合、錫の融液の表面張力により、金属突起4と金属突起5,6とは、ずれが少なくなるように移動(セルフアライン)する(図3(c)参照)。すなわち、ウエハW(親チップ1)と子チップ2,3とを位置ずれを少なくして接合できる。
【0026】
この後、ウエハWは洗浄され、フラックス22の残渣が除去される。続いて、図2(c)に示すように、隣接した単位領域Uの境界に沿って、ウエハWがダイシングソー21で切断されることにより、子チップ2,3が接合された親チップ1が、ウエハWから切り出される。さらに、親チップ1の活性面1aとは反対側の面が支持部9aに接合され、外部取出用電極7とリード端子部9bとが、ボンディングワイヤ8により接続された後、親チップ1、子チップ2,3などのまわりに封止樹脂10がモールド成形されて、図1に示す半導体装置が得られる。
【0027】
以上の半導体装置の製造方法において、親チップ1と子チップ2,3との接合は、すべての単位領域Uに子チップ2,3が仮固定されたウエハWが加熱されることにより、一括して行われるので生産性がよい。また、従来の製造方法では、子チップの数だけウエハに対して加重および加熱が繰り返されるので、ウエハ等が破損しやすいが、以上の製造方法ではこのような問題は生じない。
この発明の一実施形態の説明は、以上の通りであるが、この発明は他の形態で実施することもできる。たとえば、ウエハWおよび子チップ2,3を厳密に温度調整する必要がない場合は、温風を吹きつけることによりウエハWおよび子チップ2,3を加熱してもよい。
【0028】
錫層20は、親チップ1の金属突起4に形成されておらず、子チップ2,3の金属突起5,6に形成されていてもよい。また、金属突起4および金属突起5,6の双方に錫層20が形成されていてもよい。フラックス22は、親チップ1の金属突起4に塗布されず、子チップ2,3の金属突起5,6に塗布されてもよい。また、金属突起4および金属突起5,6の双方にフラックス22が塗布されてもよい。
【0029】
フラックス22は、金属突起5の一部および金属突起6の一部に塗布され、かつ、フラックス22が塗布されていない金属突起5,6に対応する金属突起4に塗布されてもよい。
半導体装置は、1つの親チップ1の上に、1つの子チップ2(3)のみが接合されたものであってもよく、3つ以上の子チップが接合されたものであってもよい。さらに、子チップ2(3)の上に別の子チップが接合されたものであってもよい。
【0030】
また、子チップ2,3の接合前にウエハWを切断し、親チップ1に子チップ2,3を接合するようにしてもよい。
錫層20の代わりに、他の低融点金属またはその合金(半田)、たとえば、インジウム(In)や、錫−鉛(Pb)系の合金、錫−銀(Ag)−銅(Cu)系の合金などからなる層が形成されていてもよい。合金の場合は、親チップ1(ウエハW)および子チップ2,3の加熱温度は、その合金の固相線温度以上とすることができる。
【0031】
子チップ2,3の接合の順序は、ウエハWのすべての単位領域Uに子チップ2を接合した後、ウエハWのすべての単位領域Uに子チップ3を接合することとしてもよい。
その他、特許請求の範囲に記載された事項の範囲で種々の変更を施すことが可能である。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る製造方法により得られる半導体装置の図解的な断面図である。
【図2】図1の半導体装置の製造方法を説明するための図解的な断面図である。
【図3】図2の金属突起4,5近傍の拡大図である。
【符号の説明】
1  親チップ
2,3  子チップ
4,5,6  金属突起
12  ヒータ
20  錫層
22  フラックス
W  ウエハ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor device having a chip-on-chip structure in which another semiconductor chip is bonded onto a semiconductor chip.
[0002]
[Prior art]
As one mode of a so-called multi-chip semiconductor device, there is a chip-on-chip structure in which a plurality of semiconductor chips are stacked. In a semiconductor device having a chip-on-chip structure, a child chip smaller than the parent chip is bonded to the surface of the parent chip to be externally connected. In some cases, a plurality of child chips are joined to the surface of one parent chip.
[0003]
Each of the parent chip and the child chip has a plurality of metal protrusions (bumps) on an active surface on which functional elements and wirings are formed. These metal projections are mainly made of a high melting point metal such as gold (Au), and both or one of the metal projections of the parent chip and the child chip are made of a low melting point metal such as tin (Sn) at the tip. A layer is formed.
In the manufacturing process of the semiconductor device having a chip-on-chip structure, the active surface of the parent chip and the active surface of the child chip are opposed to each other so that the metal projection of the parent chip and the metal projection of the child chip are pressed. A load is applied to the tip and the child tip. In this state, the parent chip and the child chip are heated to a temperature equal to or higher than the melting point (solidus temperature) of the low melting point metal. Thereby, the layer made of the low melting point metal formed at the tip of the metal projection is melted.
[0004]
After that, the temperatures of the parent chip and the child chip are lowered to the melting point of the low melting point metal or lower. As a result, the low-melting metal is solidified, and the metal projection of the parent chip and the metal projection of the child chip are electrically and mechanically joined via the low-melting metal. Even when an oxide film is formed on the surface of the metal protrusion of the parent chip or the metal protrusion of the child chip, the oxide film is broken by pressing the metal protrusion of the parent chip and the metal protrusion of the child chip. The first and second metal projections are better joined by the low melting point metal.
[0005]
The bonding may be performed in a state of the wafer before cutting out the parent chip. In this case, after joining the semiconductor wafer and the child chip, the semiconductor wafer is cut into individual semiconductor chips having a chip-on-chip structure.
[0006]
[Problems to be solved by the invention]
However, the semiconductor wafer has a large number (for example, thousands) of regions corresponding to the parent chips, and it is impossible to simultaneously press the sub chips against the regions corresponding to all the parent chips and heat them. For this reason, the process of carrying the child chip to a predetermined position on the semiconductor wafer by the suction collet, and raising and lowering the temperature while applying a load to this child chip must be repeated by the number of the child chips, resulting in poor productivity. Was.
[0007]
Also, when joining the parent chip and the child chip, the metal projection of the parent chip and the metal projection of the child chip must be accurately aligned. Because of the inconsistency of the device, the accuracy of positioning could not be increased.
Furthermore, when the parent chip and the child chip are joined, for example, when the child chip is charged, when the metal projection of the parent chip contacts the metal projection of the child chip, the functional element formed on the parent chip is replaced with the child element. Electrostatic damage is caused by discharge from the chip. To avoid such a situation, the parent chip is provided with a protection diode connected to the metal protrusion. However, the protection diode is essentially unnecessary, and the provision of the protection diode reduces the area for forming other functional elements.
[0008]
Therefore, an object of the present invention is to provide a method for manufacturing a semiconductor device having high productivity.
Another object of the present invention is to provide a method of manufacturing a semiconductor device capable of bonding a plurality of semiconductor substrates with a small displacement.
Still another object of the present invention is to provide a method of manufacturing a semiconductor device which does not need to provide a protection diode on a semiconductor substrate for preventing electrostatic breakdown when a plurality of semiconductor substrates are joined.
[0009]
Means for Solving the Problems and Effects of the Invention
According to a first aspect of the present invention, there is provided a semiconductor device comprising: a first metal projection formed on one surface of a first semiconductor substrate; and a second metal projection formed on one surface of a second semiconductor substrate. A method of manufacturing a semiconductor device formed by bonding a metal projection to a semiconductor device, the method comprising: forming a layer made of a low-melting-point metal on at least one end of the first and second metal projections; A flux application step of applying a flux to at least one end of the first and second metal protrusions; and, after the flux application step, the one surface of the first semiconductor substrate and the flux of the second semiconductor substrate. A temporary fixing step of temporarily fixing the first metal projection and the second metal projection with the flux while facing the one surface, and, after the temporary fixing step, the first and second semiconductor substrates. The above low melting point gold Comprise a heating step of heating the solidus temperature above the temperature of the layer made of a method of manufacturing a semiconductor device according to claim.
[0010]
According to the present invention, the first metal projection and the second metal projection are temporarily fixed via the flux which is an insulator. For this reason, even if one of the first and second semiconductor substrates is charged, no discharge occurs at the time of the temporary fixing, so that the functional element formed on the other semiconductor substrate is not electrostatically damaged. . Therefore, it is not necessary to provide the first and second semiconductor substrates with a protection diode for preventing electrostatic breakdown at the time of joining them.
[0011]
After the temporary fixing, the first and second semiconductor substrates are heated to a solidus temperature or higher of the low melting point metal, whereby a melt of the low melting point metal is generated. Thereafter, the first and second semiconductor substrates are set to a temperature equal to or lower than the solidus temperature of the low melting point metal, so that the first metal protrusion and the second metal protrusion are electrically connected via the low melting point metal layer. And mechanically joined. At this time, even when an oxide film is formed on the surface of the first metal protrusion or the second metal protrusion, the oxide film is removed by the action of the flux, and the low-melting-point metal melt is removed from the first and second metal protrusions. Good wettability with respect to metal projections can be obtained. Therefore, the first and second metal protrusions are better joined to the low melting point metal layer.
[0012]
The first and second metal protrusions may be made of, for example, gold, and the layer made of the low melting point metal may be made of, for example, tin.
The invention according to claim 2 is characterized in that the heating step is performed in a substantially no-load state without applying a load pressing the first and second semiconductor substrates against each other. A method of manufacturing a semiconductor device according to claim 1.
According to the present invention, the first and second semiconductor substrates are substantially in a state of no load, for example, one of the first and second semiconductor substrates is placed horizontally, and the other is placed thereon. Is placed and heated. In this state, the first and second semiconductor substrates move relatively because the upper semiconductor substrate is pressed against the lower semiconductor substrate only by its own weight and is not forcibly pressed against each other by an external load. be able to. For this reason, even if the first metal projection and the second metal projection are temporarily fixed with a slight deviation in the temporary fixing step, if the low-melting-point metal melt is generated in the heating step, the low-melting-point metal is not fixed. Due to the surface tension of the melt, the first metal protrusion and the second metal protrusion move (self-align) so as to reduce the deviation. Thus, the first semiconductor substrate and the second semiconductor substrate can be joined with less displacement.
[0013]
Further, since a step of applying a load to the first and second semiconductor substrates can be omitted, productivity is high.
The invention according to claim 3 is characterized in that the temporary fixing step includes a step of temporarily fixing the plurality of first semiconductor substrates on the one surface of the second semiconductor substrate. 3. A method for manufacturing a semiconductor device according to item 2.
According to this invention, after the plurality of first semiconductor substrates are temporarily fixed on the second semiconductor substrate, the first and second semiconductor substrates can be heated collectively. That is, there is no need to repeat the temperature increase and decrease by the number of child chips. Thus, the second semiconductor substrate and the plurality of first semiconductor substrates can be joined together at a time, so that productivity is high.
[0014]
The first semiconductor substrate may be, for example, a semiconductor chip, and the second semiconductor substrate may be, for example, a semiconductor wafer. In these cases, after bonding, the second semiconductor substrate can be cut and cut into individual semiconductor chips having a chip-on-chip structure.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic sectional view of a semiconductor device obtained by a manufacturing method according to one embodiment of the present invention.
This semiconductor device has a so-called chip-on-chip (Chip-On) in which a child chip 2 and a child chip 3 as a first semiconductor substrate and a parent chip 1 as a second semiconductor substrate are overlapped and joined. -Chip) structure. The child chips 2 and 3 are smaller than the parent chip 1.
[0016]
Opposite surfaces of the parent chip 1 and the child chips 2 and 3 are active surfaces 1a, 2a and 3a on which functional elements and wirings are formed, respectively. A plurality of metal projections (bumps) 4 are provided on the active surface 1 a of the parent chip 1. The metal projection 4 is made of gold (Au). An external extraction electrode 7 is provided in a portion near the periphery of the active surface 1a and where the active surfaces 2a and 3a do not face each other.
On the active surfaces 2a, 3a of the daughter chips 2, 3, metal projections 5, 6 are provided at positions corresponding to the metal projections 4. The metal projections 5 and 6 are made of gold (Au). A thin layer (not shown) made of tin (Sn) exists between the metal protrusion 4 and the metal protrusions 5 and 6, and the metal protrusion 4 and the metal protrusions 5 and 6 They are joined through layers.
[0017]
Protection diodes for protecting the elements formed on the parent chip 1 and the child chips 2 and 3 from electrostatic damage when the parent chip 1 and the child chips 2 and 3 are joined. (Diodes connected to metal protrusions 4, 5, 6) are not formed. For this reason, the parent chip 1 and the child chips 2 and 3 can form more other functional elements than the semiconductor chip on which such a protection diode is formed.
The surface of the parent chip 1 opposite to the active surface 1a is joined to the support (island) 9a of the lead frame 9. A lead terminal portion 9b of the lead frame 9 extending laterally is arranged on the side of the support portion 9a with an interval from the support portion 9a. The external extraction electrode 7 and the lead terminal portion 9b are connected by a bonding wire 8. A region including the parent chip 1, the child chips 2 and 3, the support portion 9a, the bonding wire 8, and the connection portion between the bonding wire 8 and the lead terminal portion 9b is protected by the sealing resin 10.
[0018]
FIG. 2 is an illustrative sectional view for explaining a method of manufacturing the semiconductor device of FIG. 1, and FIG. 3 is an enlarged view of the vicinity of the metal projections 4 and 5. 3 (a) corresponds to FIG. 2 (a), FIG. 3 (b) corresponds to FIG. 2 (b), and FIG. 3 (c) corresponds to FIG. 2 (c). .
A semiconductor wafer (hereinafter, simply referred to as a “wafer”) W used for manufacturing a semiconductor device includes a large number (for example, thousands) of unit regions U corresponding to the parent chip 1 (a boundary between adjacent unit regions U is defined as a boundary). 2 (a) and 2 (b) show by broken lines.) The active surface Wa of the wafer W corresponds to the active surface 1a of the parent chip 1. The metal projection 4 is formed on the active surface Wa. The tip of the metal projection 4 is a substantially flat surface, on which a layer (tin layer) 20 made of tin is formed in advance (see FIG. 3A).
[0019]
First, the flux 22 is applied to the tip of the metal protrusion 4 formed on the active surface Wa of the wafer W by dipping, transfer, or the like. Next, the wafer W is mounted on the mounting table 11 substantially horizontally with the active surface Wa facing upward. A heater 12 and a temperature sensor 13 are provided inside the mounting table 11, and the wafer W mounted on the mounting table 11 can be heated to a predetermined temperature based on an output of the temperature sensor 13.
[0020]
Subsequently, as shown in FIG. 2A, the child chip 2 is sucked by the suction collet 14 on the surface opposite to the active surface 2a, and the active surface 2a is directed downward so that the wafer W is substantially horizontal. Is opposed to. The tip of the metal projection 5 has a substantially flat surface. No layer made of tin is formed on the surface of the metal projection 5 (see FIG. 3A). The suction collet 14 can be made to be capable of sucking the child chip 2 by vacuum suction, for example.
[0021]
In this state, the metal protrusion 5 of the child chip 2 and the corresponding metal protrusion 4 of the wafer W are aligned, and the suction collet 14 is lowered. At this time, the positions of the metal protrusions 4 and the metal protrusions 5 may be slightly shifted as shown in FIG. When the metal protrusions 4 and the metal protrusions 5 are approached to some extent, the descending speed of the child chip 2 is reduced.
Then, after the lower end of the metal projection 5 comes into contact with the surface of the flux 22 and before it comes into contact with the surface of the tin layer 20, the lowering of the child chip is stopped (see FIGS. 2B and 3B). The child chip 2 is separated from the suction collet 14 and placed on the wafer W. As a result, the metal projection 5 is temporarily fixed to the metal projection 4 by the flux 22.
[0022]
As described above, it is preferable that the child chip 4 is not pressed against the wafer W by the suction collet 14 so that no load is applied to the wafer W and the child chip 2. Thereby, it is possible to prevent the wafer W and the sub chip 2 from being damaged. In the above process, there is no problem even if a slight load is applied to the wafer W or the sub chip 2, for example, the sub chip 2 before being temporarily fixed may be charged. However, since the metal protrusions 4 and 5 are electrically insulated by the flux 22 which is an insulator in the temporarily fixed state, no discharge occurs from the daughter chips 2 to the wafer W. Therefore, even if the protection diode connected to the metal projection 4 of the wafer W (parent chip 1) and the metal projection 5 of the child chip 2 is not formed, the functional elements formed on the wafer W (parent chip 1) are static. It is not destroyed by electricity.
[0023]
Thereafter, the child chip 3 is temporarily fixed to the wafer W in the same manner as the child chip 2. Like the metal projections 5 of the child chip 2, the metal projections 6 of the child chip 3 have substantially flat ends, and no tin layer is formed on the surface thereof.
In this way, a wafer W on which the sub chips 2 and 3 are temporarily fixed in one unit area U is obtained. Similarly, child chips 2 and 3 are temporarily fixed to all unit areas U of wafer W. In this state, only the load due to the weight of the child chips 2 and 3 is applied to the wafer W, and the wafer W and the child chips 2 and 3 are substantially unloaded. The above steps are performed at normal temperature.
[0024]
Next, the wafer W is heated to a temperature equal to or higher than the melting point of tin (for example, 240 ° C. or higher) for a predetermined time by the heater 12 provided on the mounting table 11. As a result, the tin layer 20 is melted and solidified, and the metal projections 5 and 6 of all the sub chips 2 and 3 are joined to the metal projections 4 of the wafer W via the tin layer 20. At this time, even when an oxide film is formed on the surface of the metal projections 4, 5, 6, etc., the oxide film is removed by the action of the flux 22, and the surface of the metal projections 4, 5, 6 is melted with tin. The metal projections 4 and the metal projections 5 and 6 are sufficiently bonded to the tin layer 20.
[0025]
Further, since the wafer W and the sub chips 2 and 3 are substantially free from a load, the sub chips 2 and 3 can change positions with respect to the wafer W. For this reason, when the metal projections 5 and 6 are shifted from the metal projection 4, the metal projections 4 and the metal projections 5 and 6 move so as to reduce the shift (self-alignment) due to the surface tension of the tin melt. (See FIG. 3C). That is, the wafer W (parent chip 1) and the child chips 2 and 3 can be joined with less displacement.
[0026]
Thereafter, the wafer W is cleaned, and the residue of the flux 22 is removed. Subsequently, as shown in FIG. 2C, the wafer W is cut by the dicing saw 21 along the boundary of the adjacent unit area U, so that the parent chip 1 to which the child chips 2 and 3 are joined is formed. , From the wafer W. Further, the surface of the parent chip 1 opposite to the active surface 1a is joined to the support portion 9a, and after the external extraction electrode 7 and the lead terminal portion 9b are connected by the bonding wire 8, the parent chip 1 and the child The sealing resin 10 is molded around the chips 2, 3 and the like to obtain the semiconductor device shown in FIG.
[0027]
In the above-described method for manufacturing a semiconductor device, the bonding of the parent chip 1 and the child chips 2 and 3 is performed by heating the wafer W on which the child chips 2 and 3 are temporarily fixed in all the unit areas U. The productivity is good. In addition, in the conventional manufacturing method, the weight and the heating are repeated on the wafer by the number of the child chips, so that the wafer or the like is easily damaged. However, such a problem does not occur in the above manufacturing method.
Although the embodiment of the present invention has been described above, the present invention can be embodied in other forms. For example, when it is not necessary to strictly control the temperature of the wafer W and the child chips 2 and 3, the wafer W and the child chips 2 and 3 may be heated by blowing hot air.
[0028]
The tin layer 20 may not be formed on the metal projections 4 of the parent chip 1 but may be formed on the metal projections 5 and 6 of the child chips 2 and 3. Further, the tin layer 20 may be formed on both the metal protrusion 4 and the metal protrusions 5 and 6. The flux 22 may not be applied to the metal projections 4 of the parent chip 1 but may be applied to the metal projections 5 and 6 of the child chips 2 and 3. Further, the flux 22 may be applied to both the metal protrusions 4 and the metal protrusions 5 and 6.
[0029]
The flux 22 may be applied to a part of the metal projection 5 and a part of the metal projection 6, and may be applied to the metal projection 4 corresponding to the metal projection 5, 6 to which the flux 22 is not applied.
The semiconductor device may be one in which only one child chip 2 (3) is joined on one parent chip 1, or one in which three or more child chips are joined. Further, another child chip may be joined to the child chip 2 (3).
[0030]
Further, the wafer W may be cut before the child chips 2 and 3 are joined, and the child chips 2 and 3 may be joined to the parent chip 1.
Instead of the tin layer 20, another low melting point metal or its alloy (solder), for example, indium (In), tin-lead (Pb) -based alloy, tin-silver (Ag) -copper (Cu) -based A layer made of an alloy or the like may be formed. In the case of an alloy, the heating temperature of the parent chip 1 (wafer W) and the child chips 2 and 3 can be equal to or higher than the solidus temperature of the alloy.
[0031]
The bonding order of the child chips 2 and 3 may be such that after bonding the child chips 2 to all the unit regions U of the wafer W, the child chips 3 are bonded to all the unit regions U of the wafer W.
In addition, various changes can be made within the scope of the matters described in the claims.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a semiconductor device obtained by a manufacturing method according to an embodiment of the present invention.
FIG. 2 is an illustrative sectional view for explaining the method for manufacturing the semiconductor device in FIG. 1;
FIG. 3 is an enlarged view of the vicinity of metal protrusions 4 and 5 in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Parent chip 2, 3 Child chip 4, 5, 6 Metal protrusion 12 Heater 20 Tin layer 22 Flux W wafer

Claims (3)

第1の半導体基板の一方表面に形成された第1の金属突起と、第2の半導体基板の一方表面に形成された第2の金属突起とを接合して構成される半導体装置の製造方法であって、
上記第1および第2の金属突起のうちの少なくとも一方の先端に低融点金属からなる層を形成する工程と、
上記第1および第2の金属突起のうちの少なくとも一方の先端にフラックスを塗布するフラックス塗布工程と、
このフラックス塗布工程の後、上記第1の半導体基板の上記一方表面と上記第2の半導体基板の上記一方表面とを対向させ、上記第1の金属突起と上記第2の金属突起とを、上記フラックスで仮固定する仮固定工程と、
この仮固定工程の後、上記第1および第2の半導体基板を、上記低融点金属からなる層の固相線温度以上の温度に加熱する加熱工程とを含むことを特徴とする半導体装置の製造方法。
A method for manufacturing a semiconductor device configured by joining a first metal protrusion formed on one surface of a first semiconductor substrate and a second metal protrusion formed on one surface of a second semiconductor substrate. So,
Forming a layer made of a low melting point metal on at least one end of the first and second metal protrusions;
A flux applying step of applying a flux to at least one end of the first and second metal protrusions;
After this flux application step, the one surface of the first semiconductor substrate and the one surface of the second semiconductor substrate are opposed to each other, and the first metal protrusion and the second metal protrusion are A temporary fixing step of temporarily fixing with a flux,
Heating the first and second semiconductor substrates to a temperature equal to or higher than the solidus temperature of the layer made of the low-melting-point metal after the temporary fixing step. Method.
上記加熱工程が、上記第1および第2の半導体基板に対して、それらを押し付け合う荷重をかけることのない実質的な無荷重状態で行われることを特徴とする請求項1記載の半導体装置の製造方法。2. The semiconductor device according to claim 1, wherein the heating step is performed with substantially no load applied to the first and second semiconductor substrates without applying a load for pressing them. Production method. 上記仮固定工程が、上記第2の半導体基板の上記一方表面上に複数の上記第1の半導体基板を仮固定する工程を含むことを特徴とする請求項1または2記載の半導体装置の製造方法。3. The method of manufacturing a semiconductor device according to claim 1, wherein said temporarily fixing step includes a step of temporarily fixing a plurality of said first semiconductor substrates on said one surface of said second semiconductor substrate. .
JP2002236036A 2002-08-01 2002-08-13 Manufacturing method of semiconductor device Expired - Lifetime JP4009505B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002236036A JP4009505B2 (en) 2002-08-13 2002-08-13 Manufacturing method of semiconductor device
US10/629,904 US6835593B2 (en) 2002-08-01 2003-07-30 Method for manufacturing semiconductor device
CNB031525091A CN100356530C (en) 2002-08-01 2003-08-01 Mfg. method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002236036A JP4009505B2 (en) 2002-08-13 2002-08-13 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2004079685A true JP2004079685A (en) 2004-03-11
JP4009505B2 JP4009505B2 (en) 2007-11-14

Family

ID=32020351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002236036A Expired - Lifetime JP4009505B2 (en) 2002-08-01 2002-08-13 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4009505B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016449A1 (en) * 2004-08-11 2006-02-16 Rohm Co., Ltd. Electronic device, semiconductor device using same, and method for manufacturing semiconductor device
US7772032B2 (en) 2007-11-28 2010-08-10 Nec Electronics Corporation Manufacturing method for electronic devices
US7951699B2 (en) 2005-12-15 2011-05-31 Renesas Electronics Corporation Method of manufacturing semiconductor device
US8981574B2 (en) 2012-12-20 2015-03-17 Samsung Electronics Co., Ltd. Semiconductor package

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016449A1 (en) * 2004-08-11 2006-02-16 Rohm Co., Ltd. Electronic device, semiconductor device using same, and method for manufacturing semiconductor device
JP2006054311A (en) * 2004-08-11 2006-02-23 Rohm Co Ltd Electronic device, semiconductor device using the same, and method for manufacturing the semiconductor device
US7612456B2 (en) 2004-08-11 2009-11-03 Rohm Co., Ltd. Electronic device, semiconductor device using same, and method for manufacturing semiconductor device
KR101140481B1 (en) 2004-08-11 2012-04-30 로무 가부시키가이샤 Electronic device, semiconductor device using same, and method for manufacturing semiconductor device
US7951699B2 (en) 2005-12-15 2011-05-31 Renesas Electronics Corporation Method of manufacturing semiconductor device
US7772032B2 (en) 2007-11-28 2010-08-10 Nec Electronics Corporation Manufacturing method for electronic devices
US7977158B2 (en) 2007-11-28 2011-07-12 Renesas Electronics Corporation Manufacturing method for electronic devices
US8278143B2 (en) 2007-11-28 2012-10-02 Renesas Electronics Corporation Manufacturing method for electronic devices
US8981574B2 (en) 2012-12-20 2015-03-17 Samsung Electronics Co., Ltd. Semiconductor package
US9633973B2 (en) 2012-12-20 2017-04-25 Samsung Electronics Co., Ltd. Semiconductor package

Also Published As

Publication number Publication date
JP4009505B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
JP3376203B2 (en) Semiconductor device, method of manufacturing the same, mounting structure using the semiconductor device, and method of manufacturing the same
US6720206B2 (en) Method for manufacturing digital micro-mirror device (DMD) packages
US7855443B2 (en) Stack structure of semiconductor packages and method for fabricating the stack structure
US9953958B2 (en) Electronic component device
JP3726579B2 (en) Semiconductor device and manufacturing method thereof
JPH10242383A (en) Semiconductor device
JP2007067175A (en) Method of manufacturing semiconductor device
CN100356530C (en) Mfg. method for semiconductor device
JP4009505B2 (en) Manufacturing method of semiconductor device
JP2003124262A5 (en)
JP3092585B2 (en) Semiconductor chip suction tool and semiconductor device manufacturing method using the tool
JP3850352B2 (en) Manufacturing method of semiconductor device
CN108074824B (en) Manufacturing method of semiconductor device
JP3976964B2 (en) Assembling method of semiconductor device
JP2000332052A (en) Manufacture of semiconductor device, and the semiconductor device
JP2008091650A (en) Flip-chip packaging method and semiconductor package
JP4723312B2 (en) Semiconductor chip and semiconductor device
JP3415501B2 (en) Method for manufacturing semiconductor device
JP4952527B2 (en) Semiconductor device manufacturing method and semiconductor device
JP2800806B2 (en) Semiconductor device and manufacturing method thereof
KR100401017B1 (en) Heat block and manufacturing method of semiconductor package using the same
JP2001015550A (en) Semiconductor device and its manufacture
TWI290350B (en) Device and method of bonding an image sensor chip to a glass substrate
TWI249823B (en) Semiconductor package and method for fabricating the same
JP2002232016A (en) Method of mounting semiconductor light emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4009505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term