JP2004079556A - Method of manufacturing laminated ceramic electronic component - Google Patents

Method of manufacturing laminated ceramic electronic component Download PDF

Info

Publication number
JP2004079556A
JP2004079556A JP2002233424A JP2002233424A JP2004079556A JP 2004079556 A JP2004079556 A JP 2004079556A JP 2002233424 A JP2002233424 A JP 2002233424A JP 2002233424 A JP2002233424 A JP 2002233424A JP 2004079556 A JP2004079556 A JP 2004079556A
Authority
JP
Japan
Prior art keywords
laminate
electronic component
amount
multilayer ceramic
ceramic electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002233424A
Other languages
Japanese (ja)
Other versions
JP4192523B2 (en
Inventor
Tetsuhiko Ota
太田 哲彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002233424A priority Critical patent/JP4192523B2/en
Publication of JP2004079556A publication Critical patent/JP2004079556A/en
Application granted granted Critical
Publication of JP4192523B2 publication Critical patent/JP4192523B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a laminated ceramic electronic component in which not only structural defects, such as delamination etc., hardly occur, but also short circuits hardly occur between internal electrodes, and Ni powder-containing conductive paste is used. <P>SOLUTION: This method of manufacturing the laminated ceramic electronic component includes a step of preparing a laminate 3 in which Ni paste layers 2A for internal electrode lie upon another through unbaked ceramic layers, a step of removing organic matters from the laminate 3 by heating the laminate 3, and a step of baking the laminate 3. This method also includes a step of forming external electrodes on the external surface of the sintered compact. When the mean particle diameter (a) of the Ni powder meets 0.1 μm≤a≤0.3 μm, 0.3 μm<a≤0.6 μm, and 0.6 μm<a≤1.0 μm, the quantity of organic matters left in the laminate after a defatting step is respectively controlled to 1.9-2.2 wt%, 0.7-1.9 wt%, and 0.4-0.7 wt% as the quantity of remaining carbon. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば積層セラミックコンデンサなどの積層セラミック電子部品の製造方法に関し、より詳細には、Ni粉末含有内部電極形成用導電ペーストを用いた積層セラミック電子部品の製造方法に関する。
【0002】
【従来の技術】
積層セラミック電子部品のコストを低減するために、内部電極材料として、ニッケルなどの卑金属を用いた積層セラミック電子部品が種々提案されている。Ni粉末含有導電ペースト(以下、Niペースト)を用いて内部電極を形成した場合、セラミックの焼成に際し、Niが酸化により膨張するという問題があった。このNiの酸化膨張によって、得られたセラミック焼結体において、クラックや、層間剥離すなわちデラミネーションなどの構造欠陥が発生しがちであった。
【0003】
特開平7−106187号公報には、このような問題を解決する製造方法が開示されている。ここでは、Niペーストからなる内部電極層を有する未焼成の積層体が用意される。次に、この積層体が、加熱され、脱脂される。この脱脂工程では、セラミック中の有機バインダーやNiペースト中の有機バインダーなどの有機物が除去される。もっとも、この先行技術に記載の方法では、脱脂工程後の積層体内の残留カーボン量が0.05〜3%となるように脱脂工程が行われる。しかる後、積層体が焼成される。この方法では、脱脂工程後の積層体中の残留カーボン量を0.05〜3%とすることにより、Ni粉末の焼成に際しての酸化が抑制され、酸化膨張に起因するクラックやデラミネーションの発生が抑制されている。
【0004】
他方、特開2001−284161号公報には、積層セラミックコンデンサなどの電子部品の内部電極に用いられるNiペーストが開示されている。ここでは、Niペーストは、平均粒径が1.0μm以下のNi粉末を用いて構成されており、かつ該ペースト中にカーボンが0.02〜15重量%、好ましくは0.05〜10重量%、さらに好ましくは0.07〜10重量%、特に好ましくは0.08〜8重量%含有されている。この先行技術に記載のNiペーストでは、ペースト中に予め上記特定の範囲の量のカーボンが含有されており、それによって、焼成に際してのNiの酸化が抑制される。
【0005】
【発明が解決しようとする課題】
Niペーストを用いて内部電極層が形成されているセラミック積層体を焼成するに際しては、Niを酸化させないために、焼成炉内の酸素分圧をコントロールする必要があった。さもなければ、前述のように、Niの酸化膨張によりクラック等の構造欠陥が生じる。
【0006】
上記特開平7−106187号公報に記載の方法では、このような問題を解決するために、脱脂工程後の積層体に上記特定の範囲の量のカーボンを残存させておくことにより、焼成時におけるNiの酸化が抑制されている。
【0007】
しかしながら、近年、積層セラミックコンデンサなどの積層セラミック電子部品では、内部電極間のセラミック層の厚みが薄くなってきており、かつ積層数が増大してきている。すなわち、薄層化及び多層化が進んできている。そのため、特開平7−106187号公報に記載の方法を用いた場合、内部電極間の短絡不良が生じることがあった。これは、脱脂工程後の積層体中において、カーボンが残存しており、特に内部電極間のセラミック層に残存しているカーボンが、本焼成工程において、燃焼・飛散し、ボイドが形成されることによる。すなわち、隣接する内部電極間を繋ぐようにボイドが形成され、このボイド部分において、短絡が生じがちであった。
【0008】
他方、特開2001−284161号公報に記載の方法では、Niペーストとして、平均粒径が1.0μm以下のNi粉末が用いられ、かつペースト中にカーボンが上記特定の範囲の量で予め添加されている。しかしながら、この先行技術に記載の方法では、内部電極中にカーボンを均一に分散させるのが困難であった。そのため、カーボンが凝集している部分に接しているNi粉末が優先的に還元され、Ni粉末同士が集まって玉化しがちであった。その結果、内部電極間のセラミック層の厚みが薄い積層セラミック電子部品に用いた場合、玉化したNi部分が上下の内部電極同士を短絡させるという問題があった。
【0009】
本発明の目的は、上述した従来技術の現状に鑑み、Niペーストを用いて内部電極が形成されている積層セラミック電子部品の製造方法であって、Niの酸化膨張によるクラックやデラミネーションが生じ難いだけでなく、薄層・多層化を進めた場合であっても内部電極間の短絡が生じ難い、信頼性に優れた積層セラミック電子部品の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明に係る積層セラミック電子部品の製造方法は、平均粒径が0.1〜1.0μmのNi粉末を含有する内部電極形成用Niペースト層が未焼成のセラミック層を介して重なり合っている構造を有する積層体を用意する工程と、前記積層体を加熱して積層体中の有機物を除去するための脱脂工程と、前記脱脂工程後に、前記積層体を焼成して焼結体を得る焼成工程と、前記焼結体の外表面に外部電極を形成する工程とを備え、前記Ni粉末の平均粒径aが下記の範囲にあるときに、前記脱脂工程後の積層体中の残留有機物量を残留カーボン量としてそれぞれ下記の範囲とすることを特徴とする。すなわち、0.1μm≦a≦0.3μmのとき、残留カーボン量が1.9〜2.2重量%、0.3μm<a≦0.6μmのとき、残留カーボン量が0.7〜1.9重量%、及び0.6μm<a≦1.0μmのとき、残留カーボン量が0.4〜0.7重量%。
【0011】
なお、本発明において、上記残留有機物とは、カーボンだけでなく、未焼成のセラミック層及びNiペースト層に含まれている他の有機物をも含むものとする。
【0012】
本願発明者は、上述したNiの酸化膨張によるクラックなどの構造欠陥と、上述した短絡不良とが、いずれもNi粉末の粒径と関連することを見出した。すなわち、本発明では、上記のようにNi粉末の平均粒径aの範囲に応じて、脱脂工程後の残留カーボン量が特定の範囲とされ、それによって後述の具体的な実施例から明らかなように、クラックやデラミネーションを抑制し得るだけでなく、内部電極間の短絡を確実に抑制することができる。
【0013】
また、本発明に係る積層セラミック電子部品の製造方法のある特定の局面では、上記脱脂工程において、積層体は230〜300℃の温度に加熱され、それによって、残留カーボン量を所望の範囲に制御することが可能となる。
【0014】
本発明に係る積層セラミック電子部品の製造方法の他の特定の局面では、上記セラミックとして誘電体セラミックが用いられ、積層セラミック電子部品として積層セラミックコンデンサが得られる。従って、クラックやデラミネーションが少なく、かつ短絡不良が生じ難い積層セラミックコンデンサを本発明に従って提供することができる。
【0015】
【発明の実施の形態】
以下、本発明の具体的な実施例を説明することにより、本発明を明らかにする。
【0016】
チタン酸バリウム系セラミック粉末に、バインダーとしてポリビニルブチラール、可塑剤としフタル酸オクチル、及び溶媒としてトルエン/エキネン(エキネンは日本化成品株式会社製商品名)混合溶液を添加し、ボールミルで混練することによりセラミックスラリーを得た。このセラミックスラリーをドクターブレード法によりシート成形し、所定の厚みのセラミックグリーンシートを得た。
【0017】
上記セラミックグリーンシートに、スクリーン印刷法により後述のNiペーストを印刷し、内部電極パターンを形成した。このようにして得られた内部電極パターンが形成されたマザーのセラミックグリーンシートを複数枚積層し、上下に無地のマザーのセラミックグリーンシートを積層し、厚み方向に加圧した。図1(a)は、このようにして得られたマザーの積層体を略図的に示す正面断面図である。
【0018】
積層体1中には、Ni粉末を含有する内部電極形成用Niペースト層2が未焼成のセラミック層を介して重なりあっている。上記マザーの積層体1を厚み方向に切断し、個々の積層セラミックコンデンサ単位の積層体を得た。
【0019】
図1(b)に示すように、個々の積層セラミックのコンデンサ単位の積層体3においては、Niペースト層2が切断されて形成されているNiペースト2Aが未焼成のセラミック層を介して重なりあっている。また、Niペースト層2Aは、厚み方向において、交互に、積層体3の端面3a,3bに引き出されている。
【0020】
上記のようにして用意された積層体を、大気中にて250℃に加熱し、脱脂工程を行った。しかる後、脱脂工程後の積層体中に残留している有機物量を残留カーボン量として抵抗炉加熱燃焼−赤外線吸収法により測定した。
【0021】
抵抗炉加熱燃焼−赤外線吸収法とは、試料を燃料炉にて酸素気流中燃焼させ、発生したCO及びCOガス濃度を赤外線検出器にて定量化することにより試料内部の炭素量を同定する方法である。
【0022】
他方、上記残留カーボン量の測定に使用した積層体以外の積層体3を、密閉型バッチ炉で焼成し、焼結体を得た。炉内の雰囲気は、Hガス、Nガス、COガス及びCOガスの導入量を制御することにより調整した。焼成に際しては、常温から内部電極が急激に収縮する800℃までの温度範囲を1〜2℃/分、800℃から最高温度(1250〜1350℃)までを2〜4℃/分の昇温速度とし、最高温度にて1〜3時間保持した後、3〜4℃/分で常温まで冷却した。
【0023】
上記のようにして得られた焼結体について、顕微鏡を用いて表面にクラックが発生しているか否かを観察した。このクラックの観察は、n=100個のサンプルについて行った。
【0024】
次に、上記のようにして得られた焼結体の両端面に、Agペーストを塗布し、焼付けることにより外部電極を形成した。図2は、このようにして得られた積層セラミックコンデンサ4を略図的に示す正面断面図である。積層セラミックコンデンサ4では、セラミック焼結体5の両端面に外部電極6,7が形成されている。
【0025】
上記のようにして得られた積層セラミックコンデンサ100個あたりの短絡不良発生数を測定した。短絡不良の測定は、定格電圧の10倍の電圧を印加することにより、短絡が生じるか否かを検査することにより行った。
【0026】
使用するNi粉末の平均粒径を種々異ならせ、上記のようにして積層セラミックコンデンサを製造すると共に、上記のように脱脂工程後の積層体中に残留しているカーボン量、焼結体表面のクラック不良並びに短絡不良を評価した。結果を下記の表1〜表3に示す。
【0027】
なお、カーボン量に幅があるのは、脱脂の際、多数の焼結体を一度に処理するため、1点のカーボン量に制御することができないためである。例えば、残留カーボン0.55重量%のものを得ようとした場合、0.4〜0.7重量%の範囲のカーボン量となる。また、この測定においては、温度・雰囲気を同条件で行うため、予めグリーンシートに含まれる有機物の量でカーボン量を制御している。但し、製造工程においては、脱脂温度等でカーボン量を制御している。
【0028】
【表1】

Figure 2004079556
【0029】
【表2】
Figure 2004079556
【0030】
【表3】
Figure 2004079556
【0031】
表1から明らかなように、Ni粉末の平均粒径が0.1以上、0.3μm以下の場合には、残留カーボン量を0.7〜2.2重量%とすれば、短絡不良を抑制し得ることがわかる。また、Ni粉末の平均粒径が0.3μmよりも大きく、0.6μm以下の場合には、残留カーボン量を0.4〜1.9重量%とすればよいことがわかる。さらに、平均粒径aが0.6μmよりも大きい場合には、残留カーボン量を0.4〜0.7重量%の範囲とすればよいことがわかる。
【0032】
他方、焼結体における構造欠陥を抑制するには、表2から明らかなように、平均粒径aが0.1μm以上、0.3μm以下の場合には残留カーボン量を1.9〜2.2重量%とすべきことがわかる。また、平均粒径aが0.3μmよりも大きく、0.6μm以下の場合には、残留カーボン量を0.7〜2.2重量%とすればよいことがわかる。さらに、平均粒径aが0.6μmよりも大きく、1.0μm以下では、残留カーボン量を0.4〜2.2重量%の範囲とすればよいことがわかる。
【0033】
従って、表1及び表2の結果をまとめた表3から明らかなように、構造欠陥を防止、かつ短絡不良を抑制するには、平均粒径aが0.1μm以上、0.3μm以下の場合には、残留カーボン量を1.9〜2.2重量%とすればよいことがわかる。
【0034】
また、平均粒径aが0.3μmよりも大きく、0.6μm以下の場合には、残留カーボン量を0.7〜1.9重量%、平均粒径aが0.6μmよりも大きく1.0μm以下の場合には、残留カーボン量を0.4〜0.7重量%とすればよいことがわかる。
【0035】
次に、上記実験例と同様に、但し、脱脂工程における温度を種々変更して、上記と同様に積層セラミックコンデンサを製造した。この場合、Ni粉末としては、粒径0.5μmのものを用いた。このようにして得られた各積層セラミックコンデンサについて上記実験例と同様に、▲1▼短絡不良発生数、▲2▼クラック発生数を評価した。結果を下記の表4に示す。
【0036】
【表4】
Figure 2004079556
【0037】
表4から明らかなように、脱脂工程の温度が230℃未満の場合には、短絡不良となり、300℃を越えるとクラック不良となることがわかる。すなわち、上記Ni粉末の平均粒径aに応じた残留カーボン量範囲とするには、脱脂工程を230〜300℃の温度で行うことが望ましいことがわかる。
【0038】
【発明の効果】
本発明に係る積層セラミック電子部品の製造方法では、Ni粉末を含有する内部電極用Niペースト層を有する積層体を用いて積層セラミック電子部品を製造するにあたり、Ni粉末の平均粒径aが、0.1μm以上、0.3μm以下の場合、脱脂工程後の残留カーボン量が1.8〜2.1重量%、平均粒径aが0.3μmよりも大きく、0.6μm以下の場合、残留カーボン量が0.7〜1.8重量%及び平均粒径aが0.6μmよりも大きく、1.0μm以下の場合に残留カーボン量が0.4〜0.7重量%となるように脱脂工程が行われる。従って、Niの焼成に際しての酸化膨張を抑制してクラックやデラミネーションなどの構造欠陥を確実に抑制し得るだけでなく、内部電極間のセラミック層の厚みが薄くなった場合であっても、内部電極間の短絡が生じ難い、信頼性に優れた積層セラミック電子部品を安定に提供することが可能となる。
【0039】
従って、積層セラミックコンデンサなどの積層セラミック電子部品において、薄層化及び多層化を進めた場合であっても、歩留りを低下させることなく、信頼性に優れた積層セラミック電子部品を提供することができる。
【図面の簡単な説明】
【図1】(a)及び(b)は、本発明の一実施例において用意されるマザーの積層体及び個々の積層セラミックコンデンサ単位の積層体を示す各正面断面図。
【図2】本発明の実施例において、得られる積層セラミック電子部品としての積層セラミックコンデンサを示す正面断面図。
【符号の説明】
1…マザーの積層体
2…Niペーストからなる内部電極ペースト層
2A…Niペーストからなる内部電極ペースト層
3…積層体
4…積層セラミックコンデンサ
5…セラミック焼結体
6,7…外部電極[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a multilayer ceramic electronic component such as a multilayer ceramic capacitor, and more particularly to a method for manufacturing a multilayer ceramic electronic component using a conductive paste for forming an internal electrode containing Ni powder.
[0002]
[Prior art]
In order to reduce the cost of the multilayer ceramic electronic component, various multilayer ceramic electronic components using a base metal such as nickel as an internal electrode material have been proposed. When the internal electrodes are formed using a Ni powder-containing conductive paste (hereinafter, Ni paste), there is a problem that Ni expands due to oxidation during firing of the ceramic. Oxidative expansion of Ni tends to cause structural defects such as cracks, delamination, or delamination in the obtained ceramic sintered body.
[0003]
JP-A-7-106187 discloses a manufacturing method for solving such a problem. Here, an unfired laminate having an internal electrode layer made of a Ni paste is prepared. Next, the laminate is heated and degreased. In this degreasing step, organic substances such as an organic binder in the ceramic and an organic binder in the Ni paste are removed. However, in the method described in this prior art, the degreasing step is performed such that the amount of carbon remaining in the laminate after the degreasing step is 0.05 to 3%. Thereafter, the laminate is fired. In this method, by setting the amount of residual carbon in the laminate after the degreasing step to 0.05 to 3%, oxidation during the firing of the Ni powder is suppressed, and cracks and delamination due to oxidative expansion are prevented. Is suppressed.
[0004]
On the other hand, Japanese Patent Application Laid-Open No. 2001-284161 discloses a Ni paste used for internal electrodes of electronic components such as a multilayer ceramic capacitor. Here, the Ni paste is formed using Ni powder having an average particle diameter of 1.0 μm or less, and carbon is contained in the paste in an amount of 0.02 to 15% by weight, preferably 0.05 to 10% by weight. , More preferably 0.07 to 10% by weight, particularly preferably 0.08 to 8% by weight. In the Ni paste described in this prior art, carbon in the above specific range is contained in the paste in advance, so that oxidation of Ni during firing is suppressed.
[0005]
[Problems to be solved by the invention]
When firing the ceramic laminate on which the internal electrode layers are formed using the Ni paste, it was necessary to control the oxygen partial pressure in the firing furnace in order not to oxidize Ni. Otherwise, as described above, structural defects such as cracks occur due to the oxidative expansion of Ni.
[0006]
In the method described in JP-A-7-106187, in order to solve such a problem, by leaving carbon in the above-described specific range in the laminated body after the degreasing step, the amount of carbon during firing is reduced. The oxidation of Ni is suppressed.
[0007]
However, in recent years, in a multilayer ceramic electronic component such as a multilayer ceramic capacitor, the thickness of a ceramic layer between internal electrodes has been reduced, and the number of stacked layers has been increasing. That is, thinning and multi-layering are progressing. Therefore, when the method described in JP-A-7-106187 is used, a short circuit between the internal electrodes may occur. This is because carbon remains in the laminated body after the degreasing step, and particularly carbon remaining in the ceramic layer between the internal electrodes is burned and scattered in the main firing step to form voids. by. That is, a void is formed so as to connect between adjacent internal electrodes, and a short circuit tends to occur in this void portion.
[0008]
On the other hand, in the method described in JP-A-2001-284161, a Ni powder having an average particle size of 1.0 μm or less is used as a Ni paste, and carbon is previously added to the paste in an amount in the above specific range. ing. However, in the method described in the prior art, it was difficult to uniformly disperse carbon in the internal electrodes. Therefore, the Ni powder in contact with the portion where the carbon is aggregated is preferentially reduced, and the Ni powders tend to gather and bead up. As a result, when used for a multilayer ceramic electronic component in which the thickness of the ceramic layer between the internal electrodes is small, there has been a problem that the Ni portion that has beaded short-circuits the upper and lower internal electrodes.
[0009]
An object of the present invention is to provide a method for manufacturing a multilayer ceramic electronic component in which an internal electrode is formed using a Ni paste in view of the above-described state of the art, and it is unlikely that cracks and delamination due to oxidative expansion of Ni are generated. In addition, it is an object of the present invention to provide a method for manufacturing a multilayer ceramic electronic component having excellent reliability, in which a short circuit between internal electrodes is less likely to occur even when a thin layer and a multilayer structure are advanced.
[0010]
[Means for Solving the Problems]
The method for manufacturing a multilayer ceramic electronic component according to the present invention has a structure in which a Ni paste layer for forming an internal electrode containing Ni powder having an average particle size of 0.1 to 1.0 μm overlaps with an unfired ceramic layer. A step of preparing a laminate having: a degreasing step of heating the laminate to remove organic matter in the laminate; and a firing step of firing the laminate to obtain a sintered body after the degreasing step. And forming an external electrode on the outer surface of the sintered body, and when the average particle diameter a of the Ni powder is in the following range, the amount of residual organic matter in the laminate after the degreasing step is reduced. It is characterized in that the amount of residual carbon is in the following range. That is, when 0.1 μm ≦ a ≦ 0.3 μm, the residual carbon amount is 1.9 to 2.2% by weight, and when 0.3 μm <a ≦ 0.6 μm, the residual carbon amount is 0.7 to 1. When 9% by weight and 0.6 μm <a ≦ 1.0 μm, the amount of residual carbon is 0.4 to 0.7% by weight.
[0011]
In the present invention, the residual organic matter includes not only carbon but also other organic substances contained in the unfired ceramic layer and the Ni paste layer.
[0012]
The inventor of the present application has found that the above-described structural defects such as cracks due to the oxidative expansion of Ni and the above-mentioned short-circuit failure are all related to the particle size of the Ni powder. That is, in the present invention, the amount of residual carbon after the degreasing step is set to a specific range according to the range of the average particle diameter a of the Ni powder as described above, which is apparent from specific examples described later. In addition, not only cracks and delamination can be suppressed, but also a short circuit between the internal electrodes can be reliably suppressed.
[0013]
In a specific aspect of the method for manufacturing a multilayer ceramic electronic component according to the present invention, in the degreasing step, the laminate is heated to a temperature of 230 to 300 ° C., thereby controlling the amount of residual carbon to a desired range. It is possible to do.
[0014]
In another specific aspect of the method for manufacturing a multilayer ceramic electronic component according to the present invention, a dielectric ceramic is used as the ceramic, and a multilayer ceramic capacitor is obtained as the multilayer ceramic electronic component. Therefore, according to the present invention, it is possible to provide a multilayer ceramic capacitor which has few cracks and delaminations and hardly causes short circuit failure.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be clarified by describing specific examples of the present invention.
[0016]
To a barium titanate-based ceramic powder, polyvinyl butyral as a binder, octyl phthalate as a plasticizer, and a mixed solution of toluene / echinene (echinene is a product name of Nippon Kasei Chemicals Co., Ltd.) as a solvent are added and kneaded with a ball mill. A ceramic slurry was obtained. The ceramic slurry was formed into a sheet by a doctor blade method to obtain a ceramic green sheet having a predetermined thickness.
[0017]
An Ni electrode described later was printed on the ceramic green sheet by a screen printing method to form an internal electrode pattern. A plurality of the mother ceramic green sheets on which the internal electrode patterns thus obtained were formed were laminated, and a plain mother ceramic green sheet was laminated on top and bottom, and pressed in the thickness direction. FIG. 1A is a front sectional view schematically showing a mother laminate obtained in this manner.
[0018]
In the laminated body 1, a Ni paste layer 2 for forming an internal electrode containing a Ni powder is overlapped via an unfired ceramic layer. The mother laminate 1 was cut in the thickness direction to obtain a laminate of individual multilayer ceramic capacitors.
[0019]
As shown in FIG. 1B, in the multilayer body 3 of individual multilayer ceramic capacitors, the Ni paste 2A formed by cutting the Ni paste layer 2 overlaps via the unfired ceramic layer. ing. The Ni paste layers 2A are alternately drawn to the end faces 3a and 3b of the multilayer body 3 in the thickness direction.
[0020]
The laminate prepared as described above was heated to 250 ° C. in the air to perform a degreasing step. Thereafter, the amount of organic substances remaining in the laminate after the degreasing step was measured as the amount of residual carbon by a resistance furnace heating combustion-infrared absorption method.
[0021]
Resistance furnace heating combustion-The infrared absorption method is to identify the amount of carbon inside the sample by burning the sample in an oxygen stream in a fuel furnace and quantifying the generated CO and CO 2 gas concentrations with an infrared detector Is the way.
[0022]
On the other hand, the laminate 3 other than the laminate used for the measurement of the residual carbon amount was fired in a closed batch furnace to obtain a sintered body. The atmosphere in the furnace was adjusted by controlling the amount of H 2 gas, N 2 gas, CO gas, and CO 2 gas introduced. During firing, the temperature range is from 1 to 2 ° C./min from room temperature to 800 ° C. at which the internal electrode rapidly shrinks, and from 2 to 4 ° C./min from 800 ° C. to the maximum temperature (1250 to 1350 ° C.). After maintaining at the highest temperature for 1 to 3 hours, it was cooled to room temperature at 3 to 4 ° C./min.
[0023]
With respect to the sintered body obtained as described above, it was observed using a microscope whether or not cracks occurred on the surface. This crack was observed for n = 100 samples.
[0024]
Next, an external electrode was formed by applying and baking an Ag paste to both end surfaces of the sintered body obtained as described above. FIG. 2 is a front sectional view schematically showing the multilayer ceramic capacitor 4 thus obtained. In the multilayer ceramic capacitor 4, external electrodes 6 and 7 are formed on both end surfaces of the ceramic sintered body 5.
[0025]
The number of occurrences of short-circuit defects per 100 multilayer ceramic capacitors obtained as described above was measured. The measurement of short-circuit failure was performed by applying a voltage 10 times the rated voltage to check whether a short-circuit occurred.
[0026]
The average particle size of the Ni powder to be used is variously varied, and the multilayer ceramic capacitor is manufactured as described above, and the amount of carbon remaining in the multilayer body after the degreasing step as described above, Crack failure and short circuit failure were evaluated. The results are shown in Tables 1 to 3 below.
[0027]
In addition, the reason why there is a range in the amount of carbon is that it is not possible to control the amount of carbon at one point because a large number of sintered bodies are processed at once during degreasing. For example, when it is desired to obtain 0.55% by weight of residual carbon, the amount of carbon is in the range of 0.4 to 0.7% by weight. In addition, in this measurement, since the temperature and the atmosphere are performed under the same conditions, the amount of carbon is controlled in advance by the amount of the organic substance contained in the green sheet. However, in the manufacturing process, the amount of carbon is controlled by the degreasing temperature and the like.
[0028]
[Table 1]
Figure 2004079556
[0029]
[Table 2]
Figure 2004079556
[0030]
[Table 3]
Figure 2004079556
[0031]
As is clear from Table 1, when the average particle size of the Ni powder is 0.1 or more and 0.3 μm or less, short circuit failure is suppressed by setting the residual carbon amount to 0.7 to 2.2% by weight. It can be understood that it can be done. In addition, when the average particle size of the Ni powder is larger than 0.3 μm and 0.6 μm or less, the residual carbon amount may be set to 0.4 to 1.9% by weight. Furthermore, when the average particle diameter a is larger than 0.6 μm, it can be seen that the residual carbon amount should be in the range of 0.4 to 0.7% by weight.
[0032]
On the other hand, in order to suppress structural defects in the sintered body, as is apparent from Table 2, when the average particle diameter a is 0.1 μm or more and 0.3 μm or less, the amount of residual carbon is set to 1.9 to 2. It can be seen that it should be 2% by weight. In addition, when the average particle diameter a is larger than 0.3 μm and 0.6 μm or less, it can be seen that the residual carbon amount may be set to 0.7 to 2.2% by weight. Further, it can be seen that when the average particle diameter a is larger than 0.6 μm and not more than 1.0 μm, the residual carbon amount may be set in the range of 0.4 to 2.2% by weight.
[0033]
Therefore, as is apparent from Table 3 which summarizes the results of Tables 1 and 2, in order to prevent structural defects and suppress short circuit failure, the average particle diameter a is 0.1 μm or more and 0.3 μm or less. It can be seen that the residual carbon amount should be 1.9 to 2.2% by weight.
[0034]
When the average particle diameter a is larger than 0.3 μm and 0.6 μm or less, the amount of residual carbon is 0.7 to 1.9% by weight, and the average particle diameter a is larger than 0.6 μm. It can be seen that when the thickness is 0 μm or less, the residual carbon amount may be set to 0.4 to 0.7% by weight.
[0035]
Next, a multilayer ceramic capacitor was manufactured in the same manner as in the above experimental example except that the temperature in the degreasing step was variously changed. In this case, Ni powder having a particle size of 0.5 μm was used. For each of the multilayer ceramic capacitors thus obtained, (1) the number of occurrences of short-circuit failure and (2) the number of occurrences of cracks were evaluated in the same manner as in the above-mentioned experimental example. The results are shown in Table 4 below.
[0036]
[Table 4]
Figure 2004079556
[0037]
As is clear from Table 4, when the temperature of the degreasing step is lower than 230 ° C., a short circuit occurs, and when the temperature exceeds 300 ° C., a crack occurs. That is, it is understood that it is desirable to perform the degreasing step at a temperature of 230 to 300 ° C. in order to set the residual carbon amount range according to the average particle diameter a of the Ni powder.
[0038]
【The invention's effect】
In the manufacturing method of the multilayer ceramic electronic component according to the present invention, when manufacturing the multilayer ceramic electronic component using the multilayer body having the Ni paste layer for the internal electrode containing the Ni powder, the average particle diameter a of the Ni powder is 0. In the case of 0.1 μm or more and 0.3 μm or less, the amount of residual carbon after the degreasing step is 1.8 to 2.1% by weight, the average particle diameter a is larger than 0.3 μm, and in the case of 0.6 μm or less, the residual carbon Degreasing step so that when the amount is 0.7 to 1.8% by weight and the average particle diameter a is larger than 0.6 μm and the average particle size a is 1.0 μm or less, the residual carbon amount becomes 0.4 to 0.7% by weight. Is performed. Therefore, not only can the oxidative expansion during firing of Ni be suppressed to reliably suppress structural defects such as cracks and delaminations, but even if the thickness of the ceramic layer between the internal electrodes is reduced, the internal It is possible to stably provide a multilayer ceramic electronic component which is unlikely to cause a short circuit between electrodes and has excellent reliability.
[0039]
Therefore, even in the case where a multilayer ceramic electronic component such as a multilayer ceramic capacitor is thinned and multilayered, a multilayer ceramic electronic component having excellent reliability can be provided without lowering the yield. .
[Brief description of the drawings]
FIGS. 1A and 1B are front cross-sectional views showing a mother laminate and a laminate of individual multilayer ceramic capacitors prepared in one embodiment of the present invention.
FIG. 2 is a front sectional view showing a multilayer ceramic capacitor as a multilayer ceramic electronic component obtained in an example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Mother laminated body 2 ... Internal electrode paste layer 2A made of Ni paste 2A ... Internal electrode paste layer 3 made of Ni paste 3 ... Laminated body 4 ... Laminated ceramic capacitor 5 ... Ceramic sintered body 6, 7 ... External electrode

Claims (3)

平均粒径が0.1〜1.0μmのNi粉末を含有する内部電極形成用Niペースト層が未焼成のセラミック層を介して重なり合っている構造を有する積層体を用意する工程と、
前記積層体を加熱して積層体中の有機物を除去するための脱脂工程と、
前記脱脂工程後に、前記積層体を焼成して焼結体を得る焼成工程と、
前記焼結体の外表面に外部電極を形成する工程とを備え、
前記Ni粉末の平均粒径aが下記の範囲にあるときに、前記脱脂工程後の積層体中の残留有機物量を残留カーボン量としてそれぞれ下記の範囲とすることを特徴とする、積層セラミック電子部品の製造方法。
0.1μm≦a≦0.3μmのとき、残留カーボン量が1.9〜2.2重量%、
0.3μm<a≦0.6μmのとき、残留カーボン量が0.7〜1.9重量%、及び
0.6μm<a≦1.0μmのとき、残留カーボン量が0.4〜0.7重量%。
A step of preparing a laminate having a structure in which an internal electrode forming Ni paste layer containing Ni powder having an average particle size of 0.1 to 1.0 μm is overlapped with an unfired ceramic layer interposed therebetween;
A degreasing step for heating the laminate to remove organic matter in the laminate,
After the degreasing step, a firing step of firing the laminate to obtain a sintered body,
Forming an external electrode on the outer surface of the sintered body,
When the average particle diameter a of the Ni powder is in the following range, the amount of residual organic matter in the laminate after the degreasing step is set as the amount of residual carbon in the following range, respectively, wherein the multilayer ceramic electronic component is provided. Manufacturing method.
When 0.1 μm ≦ a ≦ 0.3 μm, the residual carbon amount is 1.9 to 2.2% by weight,
When 0.3 μm <a ≦ 0.6 μm, the residual carbon amount is 0.7 to 1.9% by weight, and when 0.6 μm <a ≦ 1.0 μm, the residual carbon amount is 0.4 to 0.7%. weight%.
前記脱脂工程において、前記積層体が230〜300℃の温度に加熱される、請求項1に記載の積層セラミック電子部品の製造方法。The method for manufacturing a multilayer ceramic electronic component according to claim 1, wherein in the degreasing step, the multilayer body is heated to a temperature of 230 to 300 ° C. 3. 前記セラミックとして誘電体セラミックが用いられ、積層セラミックコンデンサが得られる、請求項1に記載の積層セラミック電子部品の製造方法。The method for manufacturing a multilayer ceramic electronic component according to claim 1, wherein a dielectric ceramic is used as the ceramic to obtain a multilayer ceramic capacitor.
JP2002233424A 2002-08-09 2002-08-09 Manufacturing method of multilayer ceramic electronic component Expired - Lifetime JP4192523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002233424A JP4192523B2 (en) 2002-08-09 2002-08-09 Manufacturing method of multilayer ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002233424A JP4192523B2 (en) 2002-08-09 2002-08-09 Manufacturing method of multilayer ceramic electronic component

Publications (2)

Publication Number Publication Date
JP2004079556A true JP2004079556A (en) 2004-03-11
JP4192523B2 JP4192523B2 (en) 2008-12-10

Family

ID=32018556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002233424A Expired - Lifetime JP4192523B2 (en) 2002-08-09 2002-08-09 Manufacturing method of multilayer ceramic electronic component

Country Status (1)

Country Link
JP (1) JP4192523B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151149A (en) * 2010-01-20 2011-08-04 Tdk Corp Method for manufacturing laminated electronic component
JP2011151148A (en) * 2010-01-20 2011-08-04 Tdk Corp Method for manufacturing laminated electronic component
CN103247442A (en) * 2012-02-07 2013-08-14 株式会社村田制作所 Method for manufacturing laminated ceramic electronic components

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151149A (en) * 2010-01-20 2011-08-04 Tdk Corp Method for manufacturing laminated electronic component
JP2011151148A (en) * 2010-01-20 2011-08-04 Tdk Corp Method for manufacturing laminated electronic component
CN103247442A (en) * 2012-02-07 2013-08-14 株式会社村田制作所 Method for manufacturing laminated ceramic electronic components

Also Published As

Publication number Publication date
JP4192523B2 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
US6704191B2 (en) Multilayer ceramic electronic components and methods for manufacturing the same
JP5423977B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2005039068A (en) Laminated ceramic electronic part and method of manufacturing the same
JP4998222B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JPH10172855A (en) Laminated layer chip parts and conductive paste used for the parts
JP2004096010A (en) Laminated ceramic electronic component fabricating process
JP2007039755A (en) Composite metal powder, manufacturing method therefor, electroconductive paste, method for manufacturing electronic parts, and electronic parts
JP2004079556A (en) Method of manufacturing laminated ceramic electronic component
JP2004179349A (en) Laminated electronic component and its manufacturing method
JP2003115416A (en) Conductive paste, method of manufacturing laminated ceramic electronic component, and laminated ceramic electronic component
JP2004289090A (en) Method for manufacturing laminated ceramic electronic component
JP4702972B2 (en) Multilayer electronic component and manufacturing method thereof
JPH0650703B2 (en) Paste composition and method for manufacturing laminated ceramic capacitor
JP3744427B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2002298643A (en) Conductive paste for outer electrode and laminated ceramic capacitor
JP2001101926A (en) Conductive paste, and laminated ceramic capacitor and method for manufacturing it
JP4088428B2 (en) Manufacturing method of multilayer electronic component
JP2004014634A (en) Manufacturing method of laminated ceramic electronic component
JP3780798B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH07106187A (en) Manufacture of laminated ceramic electronic component
JPH11340082A (en) Multilayer chip component and its manufacture
JP2003249416A (en) Manufacturing method of laminated ceramic capacitor and laminated ceramic capacitor
JP2004071493A (en) Conductive paste and electronic part
JP3873928B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2007284297A (en) Green sheet, multilayer substrate using the same and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

R150 Certificate of patent or registration of utility model

Ref document number: 4192523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

EXPY Cancellation because of completion of term