JP2004076012A - Method for hydrophilizing surface of optical polymer material molded product by fluorination - Google Patents

Method for hydrophilizing surface of optical polymer material molded product by fluorination Download PDF

Info

Publication number
JP2004076012A
JP2004076012A JP2003295573A JP2003295573A JP2004076012A JP 2004076012 A JP2004076012 A JP 2004076012A JP 2003295573 A JP2003295573 A JP 2003295573A JP 2003295573 A JP2003295573 A JP 2003295573A JP 2004076012 A JP2004076012 A JP 2004076012A
Authority
JP
Japan
Prior art keywords
fluorine
polyimide
fluorinated polyimide
refractive index
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003295573A
Other languages
Japanese (ja)
Other versions
JP3737499B2 (en
Inventor
Toru Matsuura
松浦 徹
Shigekuni Sasaki
佐々木 重邦
Ryuji Kadota
門田 隆二
Kasumi Nakamura
中村 佳澄
Osami Inoue
井上 長三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Nippon Telegraph and Telephone Corp filed Critical Showa Denko KK
Priority to JP2003295573A priority Critical patent/JP3737499B2/en
Publication of JP2004076012A publication Critical patent/JP2004076012A/en
Application granted granted Critical
Publication of JP3737499B2 publication Critical patent/JP3737499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for imparting hydrophilicity of the surface of fluorinated polyimide molded product. <P>SOLUTION: The method for surface hydrophilization of a fluorinated polyimide molded product comprises exposing the fluorinated polyimide molded product in 1-20% fluorine gas atmosphere for 1-30 min to make the molded product surface aqueous contact angle ≤70°. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は光学用に用いる高分子材料の成形品の表面親水化方法に関する。 The present invention relates to a method for hydrophilizing a surface of a molded article of a polymer material used for optics.

 光学材料には優れた光透過性に加えて屈折率の制御性が最も重要な特性として求められている。特に透明性に優れた高分子としてはポリメタクリル酸メチル(PMMA)、ポリカーボネート、ポリスチレン、エポキシ樹脂、ポリエチレンテレフタレート等が挙げられる。これらの高分子は低コスト、柔軟性、軽量といった高分子特有の優れた特徴を有しているため、レンズ、光学フィルタ、窓等の種々の光学製品に用いられている。また、光通信の分野において、これらの高分子材料は光ファイバ、光導波路、光フィルタを初めとした種々の光学部品用材料として用いることが検討されている。 In addition to excellent light transmittance, controllability of refractive index is required as the most important characteristic of optical materials. Particularly, polymers having excellent transparency include polymethyl methacrylate (PMMA), polycarbonate, polystyrene, epoxy resin, polyethylene terephthalate, and the like. These polymers have excellent characteristics unique to polymers, such as low cost, flexibility, and light weight, and are therefore used in various optical products such as lenses, optical filters, and windows. In addition, in the field of optical communication, use of these polymer materials as materials for various optical components such as optical fibers, optical waveguides, and optical filters is being studied.

 特に光ファイバや光導波路に用いる高分子材料には光の導波特性を制御するために精密な屈折率制御性が要求される。光導波路において光をコアに閉じ込めるためにはクラッドの屈折率をコアの屈折率より小さくする必要がある。そのため、クラッド材料は低屈折率であることが必要である。 In particular, polymer materials used for optical fibers and optical waveguides require precise refractive index controllability in order to control the optical waveguide characteristics. In order to confine light in the core in the optical waveguide, the refractive index of the clad needs to be smaller than the refractive index of the core. Therefore, the cladding material needs to have a low refractive index.

 埋め込み型のステップインデックス(SI)型光導波路においては光の導波モードを一定に保つために、コアとクラッドの屈折率差を精密に制御する必要がある。したがって、光導波路のコア材料とクラッド材料には精密な屈折率制御性が要求される。 In a buried type step index (SI) type optical waveguide, it is necessary to precisely control the refractive index difference between the core and the clad in order to keep the waveguide mode of light constant. Therefore, precise refractive index controllability is required for the core material and the cladding material of the optical waveguide.

 高密度の光導波路配線を行うには曲率の小さい曲がり光導波路が必要であり、このためには低屈折率のクラッド材料が必要である。また光カプラ、スプリッタ、光合分波器等の光学部品は種々の曲率の曲がり導波路で構成されるので、このような光学部品の材料には幅広い範囲での屈折率制御性が要求される。また石英系光ファイバに接続する光学部品用材料は、接続界面での光の反射を少なくするために石英の屈折率(1.46)に近いことが必要だが、一般に光学用高分子材料の屈折率は石英の屈折率より大きいので、これら高分子材料の屈折率を低減する必要がある。 (4) A high-density optical waveguide wiring requires a bent optical waveguide having a small curvature, and for this purpose, a clad material having a low refractive index is required. Further, optical components such as optical couplers, splitters, optical multiplexers / demultiplexers, and the like are composed of curved waveguides having various curvatures, and thus materials for such optical components are required to have refractive index controllability in a wide range. In addition, the material for the optical component to be connected to the silica-based optical fiber needs to be close to the refractive index (1.46) of quartz in order to reduce the reflection of light at the connection interface. Since the refractive index is higher than that of quartz, it is necessary to reduce the refractive index of these polymer materials.

 高分子材料の屈折率を低減する方法としては分子構造中にフッ素を導入する方法が一般に用いられている。例えばエポキシ樹脂の屈折率低減は、特許文献1に開示されているように、エポキシ樹脂の硬化剤に多フッ素置換基を導入することにより、これまでのエポキシ樹脂の中で最も低い屈折率を達成した。また、特許文献2に開示されているように、耐熱性に優れた光学用高分子材料である含フッ素ポリイミドの屈折率制御は、フッ素含有率の高いポリイミドとフッ素含有率の低いポリイミドを共重合することでその屈折率を制御することが可能である。 (4) As a method of reducing the refractive index of a polymer material, a method of introducing fluorine into a molecular structure is generally used. For example, to reduce the refractive index of an epoxy resin, as disclosed in Patent Document 1, by introducing a polyfluorinated substituent into a curing agent of the epoxy resin, the lowest refractive index among epoxy resins so far is achieved. did. Further, as disclosed in Patent Document 2, the refractive index control of a fluorine-containing polyimide which is an optical polymer material having excellent heat resistance is achieved by copolymerizing a polyimide having a high fluorine content and a polyimide having a low fluorine content. By doing so, it is possible to control the refractive index.

 このように光学部品用高分子材料において、その材料の屈折率を低減すること、および屈折率を精密に制御することは極めて重要であり、その具体的な方法としては高分子材料の分子中にフッ素を導入することが効果的である。しかし従来の方法では、フッ素試薬を用いて高分子の分子中にフッ素を導入した原料を合成し、これを用いて高分子材料を製造しなければならないため、原料の価格が高く、また、材料の製造工程が複雑になるという問題があった。 As described above, in a polymer material for an optical component, it is extremely important to reduce the refractive index of the material and to precisely control the refractive index. It is effective to introduce fluorine. However, in the conventional method, a raw material in which fluorine is introduced into a polymer molecule using a fluorine reagent has to be synthesized, and a polymer material must be manufactured using the raw material. There is a problem that the manufacturing process becomes complicated.

特開昭61−44969号公報JP-A-61-44969 特許第2640553号公報Japanese Patent No. 2640553 特開平8−302039号公報JP-A-8-302039 第56回秋季応用物理学会学術講演会、講演予講集28a−ZT−6,1995年56th Fall Meeting of the Japan Society of Applied Physics, Preliminary Lectures 28a-ZT-6, 1995

 本発明者らは、材料の屈折率制御のため光学用高分子材料に簡便にフッ素を導入することができる方法が見出されていなかったことに着目し、本発明を完成させるに至った。すなわち、本発明は上記問題点を解決すべくなされたものであり、本発明の目的は光学用高分子材料に簡便な方法でフッ素の導入を行い、光学材料の屈折率を低減し、また屈折率を精密に制御することにある。 The present inventors have noticed that a method capable of easily introducing fluorine into an optical polymer material for controlling the refractive index of the material has not been found, and have completed the present invention. That is, the present invention has been made to solve the above problems, and an object of the present invention is to introduce fluorine into an optical polymer material by a simple method to reduce the refractive index of the optical material and to reduce the refractive index. The purpose is to precisely control the rate.

 ところで、フッ素化ポリイミドからなる成形品の表面は撥水撥油傾向があり、いわゆる「ぬれ」が悪く、金属表面あるいは金属酸化物表面等との密着性または他の有機光学材料との密着性に問題があった。密着性を改良するためフッ素化ポリイミドの表面に、オゾン処理、プラズマ処理、エキシマレーザー処理等を施すことが行われてきた。また、エキシマレーザー照射下でフッ素化ポリイミドを水と反応させて親水化させることも知られている(非特許文献1参照)。しかし、かかる方法ではフッ素化ポリイミド中の炭素−フッ素結合(C−F結合)の解離を生じるので、フッ素化ポリイミドの電気的長所または屈折率制御等の光学的長所が失われてしまう恐れがある。また従来の方法では、設備またはコスト上の問題があり、かつ、処理面積の大きさに限度がある等の問題もあった。 By the way, the surface of a molded article made of a fluorinated polyimide has a tendency to water and oil repellency, so-called "wetting" is poor, and the adhesion with a metal surface or a metal oxide surface or the like with other organic optical materials. There was a problem. Ozone treatment, plasma treatment, excimer laser treatment, and the like have been performed on the surface of fluorinated polyimide in order to improve adhesion. It is also known that a fluorinated polyimide is made hydrophilic by reacting it with water under excimer laser irradiation (see Non-Patent Document 1). However, in such a method, the carbon-fluorine bond (CF bond) in the fluorinated polyimide is dissociated, so that the electrical advantage of the fluorinated polyimide or the optical advantage such as refractive index control may be lost. . Further, the conventional method has a problem in terms of equipment or cost, and also has a problem in that the size of the processing area is limited.

 そこで、本発明の他の目的は、フッ素化ポリイミドの成形品の表面に簡便な方法でフッ素の導入を行うことにより、フッ素化ポリイミド中の炭素−フッ素結合を解離することなく、親水性をフッ素化ポリイミドの成型品の表面に付与し、接着性を与えることにある。 Therefore, another object of the present invention is to introduce a fluorine into the surface of a molded article of a fluorinated polyimide by a simple method, without dissociating the carbon-fluorine bond in the fluorinated polyimide, to increase the hydrophilicity of the fluorinated polyimide. The purpose is to provide adhesiveness to the surface of a molded polyimide molded article.

 請求項1のフッ素化ポリイミド成形品の表面親水化方法の発明は、フッ素化ポリイミドからなる成形品をフッ素濃度が0.01%から20%のフッ素ガス雰囲気中に1分〜30分浸積することにより、該フッ素化ポリイミドからなる成形品の表面の水接触角を70度以下にすることを特徴とする。 The invention of the method for hydrophilizing the surface of a fluorinated polyimide molded article according to claim 1 is to immerse the molded article made of fluorinated polyimide in a fluorine gas atmosphere having a fluorine concentration of 0.01% to 20% for 1 minute to 30 minutes. Thereby, the water contact angle of the surface of the molded article made of the fluorinated polyimide is set to 70 ° or less.

 ここで、前記フッ素化ポリイミドは下記構造式: Here, the fluorinated polyimide has the following structural formula:

Figure 2004076012
Figure 2004076012

で表される繰り返し単位からなるフッ素化ポリイミドであることができる。 Can be a fluorinated polyimide comprising a repeating unit represented by the formula:

 本発明の光学用高分子材料の屈折率制御方法は、従来のフッ素導入による屈折率制御方法と比較して、光学用高分子材料の屈折率を簡易にかつ広範囲で制御できるため、光ファイバや光導波路のクラッド形成等、様々な光部品の作製に利用することができる。 The refractive index control method of the optical polymer material of the present invention can easily and widely control the refractive index of the optical polymer material as compared with the conventional refractive index control method by introducing fluorine, so that the optical fiber or It can be used for manufacturing various optical components such as formation of cladding of an optical waveguide.

 また、フッ素化ポリイミドからなる成形品をフッ素処理することにより、適度の親水性に制御することができる。 Furthermore, by subjecting a molded article made of fluorinated polyimide to fluorination treatment, it is possible to control the hydrophilicity to an appropriate level.

 本発明においては、光学用高分子材料をフッ素ガス雰囲気中に浸漬することにより、高分子材料の屈折率を制御することができる。フッ素ガス雰囲気中のフッ素ガス濃度、フッ素ガス雰囲気中に浸漬する温度や時間を適宜選択することにより、高分子材料の屈折率を所望の値に精密に制御することができる。 In the present invention, the refractive index of the polymer material can be controlled by immersing the polymer material for optical use in a fluorine gas atmosphere. The refractive index of the polymer material can be precisely controlled to a desired value by appropriately selecting the fluorine gas concentration in the fluorine gas atmosphere, the temperature and the time of immersion in the fluorine gas atmosphere.

 ここで、フッ素ガス雰囲気とは、フッ素ガスを含む気体を意味し、例えば、フッ素ガスと窒素ガスとの混合ガス等が挙げられる。フッ素ガス雰囲気中のフッ素ガスの濃度は、所望の屈折率の材料を得るのに必要な濃度を適宜選択する。 Here, the fluorine gas atmosphere means a gas containing a fluorine gas, for example, a mixed gas of a fluorine gas and a nitrogen gas. As the concentration of the fluorine gas in the fluorine gas atmosphere, a concentration necessary for obtaining a material having a desired refractive index is appropriately selected.

 本発明に用いる高分子材料としては光透過性に優れたポリイミド、ポリメタクリル酸メチル(PMMA)、ポリエチレンテレフタレート(PET)、ポリエーテルサルフォン等の種々の高分子材料を挙げることができるが、耐熱性、化学的安定性等の観点からポリイミド、さらに高光透過性も考慮するとフッ素化ポリイミドが好ましい。 Examples of the polymer material used in the present invention include various polymer materials such as polyimide, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polyether sulfone which have excellent light transmittance. Polyimide is preferred from the viewpoints of properties and chemical stability, and fluorinated polyimide is preferred in view of high light transmittance.

 これらの高分子材料を例えば窒素ガス等で希釈した種々の濃度のフッ素ガス中に、所定温度、所定時間浸漬することにより、高分子材料の表面から内部に向かって徐々に分子内でのフッ素の導入が起こり、材料のフッ素含有率が増加してゆくことになる。材料表面からのフッ素の浸透深さ、フッ素処理後の材料中のフッ素含有率は、フッ素処理中のフッ素ガスの濃度、フッ素処理温度、フッ素処理時間に依存して変化する。これらの条件については特に制限はないが、フッ素濃度が高い場合、処理時間が長い場合、処理温度が高い場合に、フッ素の浸透深さが深くなり、またフッ素処理後の高分子材料のフッ素含有率が高くなる。フッ素含有率の増加に伴ってフッ素化された部分の屈折率が低減するので、フッ素濃度、処理温度、処理時間を適宜選択すれば、所望の屈折率の材料を得ることができる。ただし、極端にフッ素濃度を高くしたり、極端な高温長時間でのフッ素処理を行うと分子が劣化するため、通常のフッ素処理条件としてはフッ素濃度が0.1〜30%、処理温度が20〜150℃、処理時間が5〜250分が好適である。 For example, by immersing these polymer materials in various concentrations of fluorine gas diluted with nitrogen gas or the like at a predetermined temperature for a predetermined time, fluorine in the molecules is gradually increased from the surface of the polymer material toward the inside. The introduction takes place and the fluorine content of the material will increase. The depth of penetration of fluorine from the material surface and the fluorine content in the material after the fluorine treatment change depending on the concentration of the fluorine gas during the fluorine treatment, the fluorine treatment temperature, and the fluorine treatment time. There are no particular restrictions on these conditions, but when the fluorine concentration is high, when the treatment time is long, when the treatment temperature is high, the penetration depth of fluorine becomes deep, and the fluorine content of the polymer material after the fluorine treatment is increased. Rate is higher. Since the refractive index of the fluorinated portion decreases with an increase in the fluorine content, a material having a desired refractive index can be obtained by appropriately selecting the fluorine concentration, the processing temperature, and the processing time. However, if the fluorine concentration is extremely increased, or if the fluorine treatment is performed at an extremely high temperature for a long time, the molecules are degraded. Therefore, the usual fluorine treatment conditions include a fluorine concentration of 0.1 to 30% and a treatment temperature of 20%. ~ 150 ° C and a treatment time of 5-250 minutes are preferred.

 本発明においては、フッ素化ポリイミドの成形品の表面に親水性を付与するためフッ素化処理を行う。かかるフッ素化処理は、室温下、フッ素濃度0.01%〜20%のフッ素ガス雰囲気中で1分〜30分間行うことが好ましい。この処理を施すことにより、フッ素化ポリイミドの成形品表面の水接触角を70度以下30度以上にすることができる。ここで、水接触角とは、フッ素化ポリイミドの成形品の表面に水を滴下したときの水滴の接触角をいう。また、本発明において成形品とは、射出成形等による成形品のみならず、例えばフィルム、板、ファイバー等、実用に供されている形を成すすべての物品をいう。具体的には、フッ素化ポリイミドフィルム、フッ素化ポリイミドコーティング膜等も含まれる。 に お い て In the present invention, fluorination treatment is performed to impart hydrophilicity to the surface of the fluorinated polyimide molded article. The fluorination treatment is preferably performed at room temperature in a fluorine gas atmosphere having a fluorine concentration of 0.01% to 20% for 1 minute to 30 minutes. By performing this treatment, the water contact angle on the surface of the fluorinated polyimide molded article can be reduced to 70 degrees or less and 30 degrees or more. Here, the water contact angle refers to the contact angle of a water drop when water is dropped on the surface of a fluorinated polyimide molded article. Further, in the present invention, the molded article means not only a molded article obtained by injection molding or the like but also all articles having a practically used shape such as a film, a plate, and a fiber. Specifically, a fluorinated polyimide film, a fluorinated polyimide coating film and the like are also included.

 このようなフッ素化処理によるフッ素化ポリイミド成形品の表面を顕微鏡で観察しても変化はみられないことから、成形品の表面のごく薄い上層部分のみがフッ素化されていて、表面のごく薄い部分でこみ合って共存するC−F結合が表面エネルギーを上昇させて表面の親水性を発現していると考えられる。 Since no change is observed even when the surface of the fluorinated polyimide molded article by such fluorination treatment is observed with a microscope, only the very thin upper layer portion of the molded article surface is fluorinated, and the surface is extremely thin. It is considered that C-F bonds coexisting coexisting in the part increase the surface energy and express the surface hydrophilicity.

 フッ素化ポリイミドはフッ素処理前にすでに多数のCF3基を保有しているので、X線電子分光法(ESCA)による表面測定におけるFlsスペクトルでは判断することができない。図1(a),(b)にESCAのClsスペクトルを示す。図1(a)は、反応前のフッ素化ポリイミドについてのESCAのClsスペクトルを示し、図1(b)は反応後のフッ素化ポリイミドについてのESCAのClsスペクトルを示す。ただし、ESCAは成形品の表面から約50オングストロームの極薄い層を測定したものである。 Since the fluorinated polyimide already has many CF3 groups before the fluorination treatment, it cannot be determined from the Fls spectrum in the surface measurement by X-ray electron spectroscopy (ESCA). 1A and 1B show Cls spectra of ESCA. FIG. 1A shows the Cls spectrum of ESCA for the fluorinated polyimide before the reaction, and FIG. 1B shows the Cls spectrum of ESCA for the fluorinated polyimide after the reaction. However, ESCA is a measurement of an extremely thin layer of about 50 angstroms from the surface of the molded article.

 図1(a),(b)から、C−H結合またはC−C結合に相当する281.87eVの吸収は反応前から反応後で大きく減少し、C=O結合またはC−N結合に相当する284.10eVの吸収変化は反応前から反応後であまり変化しない。また、C−F結合に対応する285.92eVおよびCF2結合に対応する287.73eVの吸収は反応前後で大きく増加しており、CF3結合に対応する290.21eVの吸収はほとんど変化していない。 From FIGS. 1 (a) and 1 (b), the absorption at 281.87 eV corresponding to a C—H bond or a C—C bond is greatly reduced before and after the reaction, and corresponds to a C = O bond or a C—N bond. The change in absorption at 284.10 eV does not change much before and after the reaction. Further, the absorption at 285.92 eV corresponding to the CF bond and 287.73 eV corresponding to the CF2 bond greatly increased before and after the reaction, and the absorption at 290.21 eV corresponding to the CF3 bond hardly changed.

 図2に、フッ素化処理後のポリイミド成形品のNMRスペクトルを示した。図2から、フッ素化処理前のポリイミドには存在しなかったベンゼン環に結合したFシグナルが−180PPMに出現し、シクロヘキサン環のCF2結合に相当するFシグナルが−70〜−80PPMに出現したことがわかった。 FIG. 2 shows the NMR spectrum of the polyimide molded article after the fluorination treatment. From FIG. 2, the F signal bonded to the benzene ring, which was not present in the polyimide before the fluorination treatment, appeared at -180 PPM, and the F signal corresponding to the CF2 bond of the cyclohexane ring appeared at -70 to -80 PPM. I understood.

 所定条件の下、所定濃度のフッ素ガス雰囲気下でフッ素化ポリイミドを保持すると、フッ素化ポリイミド表面はフッ素親和状態が形成されて、フッ素原子同士の相互作用によって極めて速やかにフッ素原子が引きつけられ、そこに選択的に反応して新しいC−F結合が導入される。イミド結合間の水素結合は強力であるので、フッ素化ポリイミドの表面エネルギーは小さくなるが、表面の極薄い層では新しく形成されたC−F結合によって歪みが生じ、規則的な水素結合の一部が切断される。このような表面におけるイミド間水素結合の切断により表面エネルギーが上昇し、表面張力および接触角を減少させることとなる。かかるフッ素化処理による接触角の調節は、フッ素化ポリイミドにおいてのみ実現できる。かかる反応に好ましく用いられるフッ素化ポリイミドとしては特に制限はないが、例えば以下の構造式を有するフッ素化ポリイミドが好ましい。 When fluorinated polyimide is held under a predetermined concentration of fluorine gas atmosphere under predetermined conditions, a fluorine affinity state is formed on the surface of the fluorinated polyimide, and the fluorine atoms are attracted very quickly by the interaction between the fluorine atoms. And a new CF bond is introduced. Since the hydrogen bond between the imide bonds is strong, the surface energy of the fluorinated polyimide is small. However, in an extremely thin layer on the surface, distortion is caused by the newly formed CF bond, and a part of the regular hydrogen bond is formed. Is disconnected. Breakage of hydrogen bonds between imides on such a surface increases the surface energy and decreases the surface tension and the contact angle. The adjustment of the contact angle by the fluorination treatment can be realized only in the fluorinated polyimide. The fluorinated polyimide preferably used in such a reaction is not particularly limited. For example, a fluorinated polyimide having the following structural formula is preferable.

Figure 2004076012
Figure 2004076012

 フッ素化されてない通常のポリイミドからなる成形品をフッ素化処理した場合には、表面親水化速度が速すぎて親水化制御ができないので、上述の効果は得られない。これは、フッ素化されてないポリイミドではフッ素結合が存在しないのでフッ素化反応が不規則に生じ、そのため水素結合が不規則に多様に切断されてフッ素化が進行し、所望の親水性表面を通り越して遊離の水素結合可能な水溶性表面になってしまうからである。 (4) When a molded article made of ordinary polyimide that has not been fluorinated is subjected to a fluorination treatment, the above-mentioned effect cannot be obtained because the surface hydrophilicity is too high to control the hydrophilicity. This is because in non-fluorinated polyimides, there are no fluorine bonds, so the fluorination reaction occurs irregularly, so that the hydrogen bonds are broken in various ways, and the fluorination proceeds, crossing the desired hydrophilic surface. This results in a water-soluble surface capable of free hydrogen bonding.

 なお、ポリプロピレン等をフッ素で表面親水化する技術が知られている(特許文献3参照)が、これはフッ素化処理を施す対象物にフッ素結合が存在しない場合である。すなわち、表面処理を施すポリプロピレンとフッ素化ポリイミドとでは全く化学構造が異なり、表面親水化のメカニズムも全く異なるものであり、したがってポリプロピレン等のフッ素化方法を利用しても、フッ素化ポリイミドの接触角の低下には限界が生じてしまう。 A technique of hydrophilizing polypropylene or the like with fluorine is known (see Patent Literature 3), but this is the case where there is no fluorine bond in the object to be fluorinated. That is, the chemical structure of the surface-treated polypropylene and the fluorinated polyimide are completely different from each other, and the mechanism of surface hydrophilicity is completely different. Is limited.

 以下に本発明の光学用高分子材料の屈折率制御方法について実施例を用いて具体的に説明する。ただし、以下の実施例は単なる例示であり、本発明はこれら実施例に限定されるものではない。各実施例において、高分子材料の分子中へのフッ素の導入の確認はX線光電子分光法(ESCA)により確認した。また、屈折率はプリズムカップリングを用い、波長633nm、TEモード(材料のフィルム面と平行方向の光の偏波モード)およびTMモード(材料のフィルム面と垂直方向の光の偏波モード)で測定した。 (4) The method for controlling the refractive index of the optical polymer material of the present invention will be specifically described below with reference to examples. However, the following embodiments are merely examples, and the present invention is not limited to these embodiments. In each example, the introduction of fluorine into the molecules of the polymer material was confirmed by X-ray photoelectron spectroscopy (ESCA). The refractive index is measured using a prism coupling, at a wavelength of 633 nm, in a TE mode (polarization mode of light parallel to the film surface of the material) and in a TM mode (polarization mode of light perpendicular to the film surface of the material). It was measured.

対照1
 下記の繰り返し単位
Control 1
The following repeating unit

Figure 2004076012
Figure 2004076012

からなる分子構造のフッ素化ポリイミドフィルムについてESCA分析を行った。フッ素原子の総数が高分子構造中に占める比率(以下「全フッ素原子比率」または「全F比率」という)、およびC−C、C−N、C=O、C−F、CF2、CF3の各結合の数が高分子構造中に占める比率(以下「各結合比率」という)を得た。結果を表1に示す。また、上記繰り返し単位からなる分子構造のフッ素化ポリイミドフィルムの屈折率を測定した。結果を表1に示す。 ESCA analysis was performed on a fluorinated polyimide film having a molecular structure of The ratio of the total number of fluorine atoms in the polymer structure (hereinafter, referred to as “total fluorine atom ratio” or “total F ratio”), and C—C, C—N, C = O, C—F, CF 2, and CF 3 The ratio of the number of each bond in the polymer structure (hereinafter referred to as “each bond ratio”) was obtained. Table 1 shows the results. Further, the refractive index of the fluorinated polyimide film having a molecular structure composed of the above repeating units was measured. Table 1 shows the results.

実施例1〜6
 対照1のフッ素化ポリイミドフィルムを表1に示す処理条件でフッ素処理を行って、実施例1〜6のフッ素化ポリイミドフィルムを得た。得られた実施例1〜6の各フッ素化ポリイミドフィルムについて、フィルム表面のESCA分析を行い、全フッ素原子比率、およびC−C、C−N、C=O、C−F、CF2、CF3の各結合比率を得た。また、このフッ素化ポリイミドフィルムの屈折率を測定した。これらの結果をまとめて表1に示す。
Examples 1 to 6
The fluorinated polyimide film of Control 1 was subjected to fluorination under the treatment conditions shown in Table 1 to obtain fluorinated polyimide films of Examples 1 to 6. For each of the obtained fluorinated polyimide films of Examples 1 to 6, ESCA analysis of the film surface was performed, and the total fluorine atom ratio, and the CC, CN, C = O, CF, CF2, CF3 Each binding ratio was obtained. Further, the refractive index of the fluorinated polyimide film was measured. Table 1 summarizes these results.

対照2
 市販のポリイミドフィルム(東レ・デュポン社製のカプトンHフィルム)についてESCA分析を行い、全フッ素原子比率、およびC−C、C−N、C=O、C−F、CF2、CF3の各結合比率を測定した。結果を表1に示す。また、このポリイミドフィルムの屈折率を測定した。結果を表1に示す。
Control 2
ESCA analysis was performed on a commercially available polyimide film (Kapton H film manufactured by Du Pont-Toray Co., Ltd.), and the total fluorine atom ratio and the bond ratios of CC, CN, C = O, CF, CF2, and CF3 were determined. Was measured. Table 1 shows the results. Further, the refractive index of this polyimide film was measured. Table 1 shows the results.

実施例7〜11
 対照2のポリイミドフィルムを表1に示す処理条件でフッ素処理を行って、実施例7〜11のポリイミドフィルムを得た。得られた実施例7〜11の各フィルムについてフィルム表面のESCA分析を行い、全フッ素原子比率、およびC−C、C−N、C=O、C−F、CF2、CF3の各結合比率を得た。また、このポリイミドフィルムの屈折率を測定した。これらの結果をまとめて表1に示す。
Examples 7 to 11
The polyimide film of Control 2 was subjected to a fluorine treatment under the processing conditions shown in Table 1 to obtain polyimide films of Examples 7 to 11. ESCA analysis of the film surface of each of the obtained films of Examples 7 to 11 was performed, and the total fluorine atom ratio and the bonding ratios of CC, CN, C = O, CF, CF2, and CF3 were determined. Obtained. Further, the refractive index of this polyimide film was measured. Table 1 summarizes these results.

対照3
 市販のPMMAフィルムについてESCA分析を行い、全フッ素原子比率、およびC−C、C−N、C=O、C−F、CF2、CF3の各結合比率を得た。結果を表1に示す。
Control 3
ESCA analysis was performed on a commercially available PMMA film to obtain a total fluorine atom ratio and bond ratios of CC, CN, C = O, CF, CF2, and CF3. Table 1 shows the results.

実施例12〜15
 対照3のPMMAフィルムを表1に示す条件でフッ素処理を行って、実施例12〜15のPMMAフィルムを得た。得られた実施例12〜15の各フィルムについて、フィルム表面のESCA分析を行い、全フッ素原子比率、およびC−C、C−N、C=O、C−F、CF2、CF3の各結合比率を得た。結果を表1に示す。
Examples 12 to 15
Fluorine treatment was performed on the PMMA film of Control 3 under the conditions shown in Table 1 to obtain PMMA films of Examples 12 to 15. For each of the obtained films of Examples 12 to 15, ESCA analysis of the film surface was performed, and the total fluorine atom ratio and the bond ratios of CC, CN, C = O, CF, CF2, and CF3 were determined. Got. Table 1 shows the results.

対照4
 市販のポリエーテルサルフォンフィルム(TALPA)についてESCA分析を行い、全フッ素原子比率、C−C、C−N、C=O、C−F、CF2、CF3の各結合比率を測定した。結果を表1に示す。
Control 4
ESCA analysis was performed on a commercially available polyethersulfone film (TALPA), and the total fluorine atom ratio, and the bond ratios of CC, CN, C = O, CF, CF2, and CF3 were measured. Table 1 shows the results.

実施例16〜17
 対照4のポリエーテルサルフォンフィルムを表1に示す条件でフッ素処理を行って、実施例16〜17のポリエーテルサルフォンフィルムを得た。得られた実施例16〜17の各フィルムについてフィルム表面のESCA分析を行い、全フッ素原子比率、およびC−C、C−N、C=O、C−F、CF2、CF3の各結合比率を得た。結果を表1に示す。
Examples 16 to 17
The polyethersulfone film of Control 4 was subjected to fluorine treatment under the conditions shown in Table 1 to obtain the polyethersulfone films of Examples 16 to 17. ESCA analysis of the film surface of each of the obtained films of Examples 16 to 17 was performed, and the total fluorine atom ratio and the bonding ratios of CC, CN, C = O, CF, CF2, and CF3 were determined. Obtained. Table 1 shows the results.

対照5
 市販のPETフィルムについてESCA分析を行い、全フッ素原子比率、およびC−C、C−N、C=O、C−F、CF2、CF3の各結合比率を測定した。結果を表1に示す。
Control 5
ESCA analysis was performed on a commercially available PET film, and the total fluorine atom ratio and the bond ratios of CC, CN, C = O, CF, CF2, and CF3 were measured. Table 1 shows the results.

実施例18〜22
 対照5のPETフィルムを表1に示す処理条件でフッ素処理を行って、実施例18〜22のPETフィルムを得た。得られた実施例18〜22の各フィルムについて表面のESCA分析を行い、全フッ素原子比率、およびC−C、C−N、C=O、C−F、CF2、CF3の各結合比率を得た。結果を表1に示す。
Examples 18 to 22
The PET film of Control 5 was treated with fluorine under the treatment conditions shown in Table 1 to obtain PET films of Examples 18 to 22. ESCA analysis of the surface of each of the obtained films of Examples 18 to 22 was performed to obtain the total fluorine atom ratio and the bond ratios of CC, CN, C = O, CF, CF2, and CF3. Was. Table 1 shows the results.

Figure 2004076012
Figure 2004076012

 対照1および実施例1〜4で得られたフッ素ガスへの暴露時間(処理時間)とポリイミドのフッ素含有率の関係を図3に示した。この結果より処理時間の増加とともにポリイミドのフッ素含有率が増加し、極めて短時間でフッ素化反応が飽和状態に達していることがわかった。また、対照1および実施例1〜4で得られたフッ素ガスへの処理時間とポリイミドの屈折率の関係を図4に示した。この結果より処理時間の増加とともにポリイミドの屈折率は徐々に低減し、処理時間を変えることで簡便にポリイミドの屈折率を制御できることが明らかとなった。 関係 FIG. 3 shows the relationship between the exposure time (treatment time) to the fluorine gas and the fluorine content of the polyimide obtained in Control 1 and Examples 1-4. From this result, it was found that the fluorine content of the polyimide increased as the treatment time increased, and the fluorination reaction reached a saturated state in a very short time. FIG. 4 shows the relationship between the processing time for the fluorine gas obtained in Control 1 and Examples 1 to 4 and the refractive index of the polyimide. From this result, it became clear that the refractive index of the polyimide gradually decreased as the processing time increased, and the refractive index of the polyimide could be easily controlled by changing the processing time.

 次に実施例1、実施例3、実施例5〜6で得られたフッ素ガスの処理温度とポリイミドのフッ素含有率の関係を図5に示した。この結果より処理温度が高くなるとポリイミドのフッ素含有率が増加することがわかった。また、実施例1、実施例3、実施例5〜6で得られたフッ素ガスの処理温度とポリイミドの屈折率の関係を図6に示した。図6から、フッ素ガスの処理温度が高くなるとともにポリイミドの屈折率は徐々に減少するので、温度を変えることで簡便にポリイミドの屈折率を制御できることが明らかとなった。なお、図5および図6からも、上述のごとく処理時間の長い方が、すなわち処理時間が1分のフィルムより10分のフィルムの方がフッ素の含有率は大きくなることがわかる。 (5) Next, FIG. 5 shows the relationship between the processing temperature of the fluorine gas obtained in Examples 1, 3 and Examples 5 to 6 and the fluorine content of the polyimide. From this result, it was found that when the treatment temperature was increased, the fluorine content of the polyimide was increased. FIG. 6 shows the relationship between the processing temperature of the fluorine gas obtained in Example 1, Example 3, and Examples 5 to 6 and the refractive index of polyimide. From FIG. 6, it has become clear that the refractive index of polyimide can be easily controlled by changing the temperature since the refractive index of polyimide gradually decreases as the processing temperature of fluorine gas increases. 5 and 6 that the longer the processing time is, as described above, that is, the film containing 10 minutes has a higher fluorine content than the film having a processing time of 1 minute.

 また、対照2および実施例7〜13、対照3および実施例12〜15、対照5および実施例18〜22からも、処理時間が長くなるにつれて、フッ素含有率が高くなることがわかる。 In addition, it can be seen from Control 2 and Examples 7 to 13, Control 3 and Examples 12 to 15, Control 5 and Examples 18 to 22 that the longer the treatment time, the higher the fluorine content.

 これらの結果から、本発明の光学用高分子材料の屈折率制御方法は高分子材料をフッ素ガス中へ浸漬するという極めて簡便な操作により、分子中へのフッ素の導入が可能であり、これによって高分子材料の屈折率を低減できる方法であることが明らかとなった。さらにこのフッ素処理条件を変えることにより材料の屈折率を精密に制御できることが明らかとなった。 From these results, the method for controlling the refractive index of the optical polymer material of the present invention allows the introduction of fluorine into the molecule by a very simple operation of immersing the polymer material in fluorine gas. It became clear that this method can reduce the refractive index of the polymer material. Further, it has been clarified that the refractive index of the material can be precisely controlled by changing the fluorine treatment conditions.

実施例23
 フッ素化ポリイミド溶液をスピンコート法により製膜して、厚さ16μmのフィルムを得た。なお、得られたフィルムについては水接触角を測定しておいた。得られたフッ素化ポリイミドフィルムをニッケル製の容器内に入れて容器内を真空にした。次いで、室温条件下で0.4%F2/99.6%N2の混合ガスを容器内に導入した。フッ素ガス雰囲気中での処理時間とポリイミドのフッ素含有率の関係は図3と同様の結果が得られ、処理時間の増加とともにポリイミドのフッ素含有率が増加し、極めて短時間でフッ素化反応が飽和状態に達していた。1分、5分、10分または30分の処理時間でフィルムを取り出してフィルム表面の水接触角を測定した。その結果を以下に示す。
Example 23
A fluorinated polyimide solution was formed into a film by spin coating to obtain a film having a thickness of 16 μm. The water contact angle of the obtained film was measured. The obtained fluorinated polyimide film was placed in a nickel container, and the inside of the container was evacuated. Next, a mixed gas of 0.4% F2 / 99.6% N2 was introduced into the container at room temperature. The relationship between the processing time in a fluorine gas atmosphere and the fluorine content of the polyimide is similar to that shown in FIG. 3, and the fluorine content of the polyimide increases as the processing time increases, and the fluorination reaction is saturated in a very short time. State had been reached. The film was taken out for a processing time of 1, 5, 10, or 30 minutes, and the water contact angle on the film surface was measured. The results are shown below.

   処理時間         水接触角
   未処理          84.1度
   1分           73.5度
   5分           70.3度
   10分          70.5度
   30分          69.0度
Treatment time Untreated water contact angle 84.1 degrees 1 minute 73.5 degrees 5 minutes 70.3 degrees 10 minutes 70.5 degrees 30 minutes 69.0 degrees

 なお、フッ素化ポリイミドの代わりに市販のポリイミド樹脂膜(カプトン)を実施例23と同様にして処理したところ、処理前の水接触角は71度であったが、処理時間1分で水接触角9.0度となり次第に表面が水に溶け出していくのが観察できた。さらに1時間フッ素処理を続けると、わずかではあるが水接触角が増大し、18.9度となった。 When a commercially available polyimide resin film (Kapton) was treated in the same manner as in Example 23 instead of the fluorinated polyimide, the water contact angle before the treatment was 71 °, but the water contact angle was 1 minute after the treatment time. It was observed that the surface gradually dissolved in water at 9.0 degrees. When the fluorine treatment was further continued for 1 hour, the water contact angle increased, albeit slightly, to 18.9 degrees.

実施例24
 実施例23において、フッ素ガス組成を1.0%F2/99.0%N2に代えた以外は実施例23と同様にして、フッ素処理を行った。処理時間1分では、水接触角が56度に達した。また、処理時間10分では水接触角が61.9度となった。
Example 24
Fluorine treatment was performed in the same manner as in Example 23 except that the fluorine gas composition was changed to 1.0% F2 / 99.0% N2. At a treatment time of 1 minute, the water contact angle reached 56 degrees. In addition, the water contact angle was 61.9 degrees when the treatment time was 10 minutes.

実施例25
 実施例23において、フッ素ガス組成を8.0%F2/92.0%N2に代えた以外は実施例23と同様にして、フッ素処理を行った。処理時間10分では水接触角が48度となった。
Example 25
Fluorine treatment was performed in the same manner as in Example 23 except that the fluorine gas composition was changed to 8.0% F2 / 92.0% N2. At a treatment time of 10 minutes, the water contact angle was 48 degrees.

実施例26
 実施例23において、フッ素ガス組成を0.01%F2/99.99%N2に代えた以外は実施例23と同様にして、フッ素処理を行った。処理時間30分では水接触角が70.0度となった。
Example 26
Fluorine treatment was performed in the same manner as in Example 23 except that the fluorine gas composition was changed to 0.01% F2 / 99.99% N2. At a treatment time of 30 minutes, the water contact angle was 70.0 degrees.

実施例27
 実施例23において、フッ素ガス組成を20.0%F2/80.0%N2に代えた以外は実施例23と同様にして、フッ素処理を行った。処理時間1分では、水接触角が50.0度に達した。また、処理時間5分では水接触角が40.0度となった。
Example 27
In Example 23, a fluorine treatment was performed in the same manner as in Example 23 except that the fluorine gas composition was changed to 20.0% F2 / 80.0% N2. At a treatment time of 1 minute, the water contact angle reached 50.0 degrees. In addition, the water contact angle was 40.0 degrees when the treatment time was 5 minutes.

 実施例23〜27から明らかなように、有機光学材料として有用なフッ素化ポリイミドからなる成形品を、室温条件下、希薄な濃度のフッ素ガス雰囲気中で短時間処理することにより、C−F結合を切断することなく、かつ、見かけ上物性を変化させずに、極めて容易に成形品の表面を適度の親水性に制御することができた。 As is apparent from Examples 23 to 27, a molded article made of a fluorinated polyimide useful as an organic optical material was treated for a short time in a dilute fluorine gas atmosphere at room temperature to obtain a CF bond. It was possible to control the surface of the molded article to an appropriate degree of hydrophilicity extremely easily without cutting and without apparently changing the physical properties.

(a)は反応前のフッ素化ポリイミドについてのESCAのスペクトルの線図であり、(b)は反応後のフッ素化ポリイミドについてのESCAのスペクトルの線図である。(A) is a diagram of the ESCA spectrum of the fluorinated polyimide before the reaction, and (b) is a diagram of the ESCA spectrum of the fluorinated polyimide after the reaction. フッ素化処理後のポリイミド成形品のNMRスペクトルを示す線図である。It is a diagram which shows the NMR spectrum of the polyimide molded article after a fluorination process. フッ素ガス雰囲気中の処理時間とポリイミド中のフッ素含有率との関係を示すグラフである。4 is a graph showing the relationship between the processing time in a fluorine gas atmosphere and the fluorine content in polyimide. フッ素ガス雰囲気中の処理時間とポリイミドの屈折率との関係を示すグラフである。5 is a graph showing the relationship between the processing time in a fluorine gas atmosphere and the refractive index of polyimide. フッ素ガス雰囲気中の処理温度とポリイミド中のフッ素含有率との関係を示すグラフである。4 is a graph showing the relationship between the processing temperature in a fluorine gas atmosphere and the fluorine content in polyimide. フッ素ガス雰囲気中の処理温度とポリイミドの屈折率との関係を示すグラフである。4 is a graph showing the relationship between the processing temperature in a fluorine gas atmosphere and the refractive index of polyimide.

Claims (2)

 フッ素化ポリイミドからなる成形品をフッ素濃度が0.01%から20%のフッ素ガス雰囲気中に1分〜30分浸積することにより、該フッ素化ポリイミドからなる成形品の表面の水接触角を70度以下にすることを特徴とするフッ素化ポリイミド成形品の表面親水化方法。 By immersing the fluorinated polyimide molded article in a fluorine gas atmosphere having a fluorine concentration of 0.01% to 20% for 1 minute to 30 minutes, the water contact angle of the surface of the fluorinated polyimide molded article can be reduced. A method for hydrophilizing a surface of a fluorinated polyimide molded product, wherein the surface is made 70 ° or less.  前記フッ素化ポリイミドが下記構造式:
Figure 2004076012
で表される繰り返し単位からなるフッ素化ポリイミドであることを特徴とする請求項1に記載のフッ素化ポリイミド成形品の表面親水化方法。
The fluorinated polyimide has the following structural formula:
Figure 2004076012
2. The method for hydrophilizing the surface of a fluorinated polyimide molded article according to claim 1, wherein the fluorinated polyimide is a fluorinated polyimide comprising a repeating unit represented by the formula:
JP2003295573A 1998-07-21 2003-08-19 Surface hydrophilization method of optical polymer material moldings by fluorination Expired - Fee Related JP3737499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003295573A JP3737499B2 (en) 1998-07-21 2003-08-19 Surface hydrophilization method of optical polymer material moldings by fluorination

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20557698 1998-07-21
JP2003295573A JP3737499B2 (en) 1998-07-21 2003-08-19 Surface hydrophilization method of optical polymer material moldings by fluorination

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP28840898A Division JP3477381B2 (en) 1998-07-21 1998-10-09 Method of controlling refractive index of optical polymer material by fluorination

Publications (2)

Publication Number Publication Date
JP2004076012A true JP2004076012A (en) 2004-03-11
JP3737499B2 JP3737499B2 (en) 2006-01-18

Family

ID=32031977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003295573A Expired - Fee Related JP3737499B2 (en) 1998-07-21 2003-08-19 Surface hydrophilization method of optical polymer material moldings by fluorination

Country Status (1)

Country Link
JP (1) JP3737499B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021533402A (en) * 2018-07-27 2021-12-02 ショット アクチエンゲゼルシャフトSchott AG Optical / electrical conductor assembly with optical waveguide and electrical conductor layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021533402A (en) * 2018-07-27 2021-12-02 ショット アクチエンゲゼルシャフトSchott AG Optical / electrical conductor assembly with optical waveguide and electrical conductor layer
US11899257B2 (en) 2018-07-27 2024-02-13 Schott Ag Optical-electrical conductor assembly comprising an optical waveguide and an electrically conductive layer

Also Published As

Publication number Publication date
JP3737499B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
Ando Optical properties of fluorinated polyimides and their applications to optical components and waveguide circuits
EP1153964A2 (en) Surface-treated article of plastics material and method of surface treatment
US5045397A (en) Optical adhesive system having low refractive index
US6847773B2 (en) Optical waveguide and method for manufacturing the same
JPH049807A (en) Polyimide optical waveguide
JP3477381B2 (en) Method of controlling refractive index of optical polymer material by fluorination
US6327415B1 (en) Optical waveguide made of polymer material and a method of fabricating the same
JP2003131058A (en) Optical waveguide and method for manufacturing the same
JP2004309683A (en) Optical waveguide and grating, lens, photonic crystal, and manufacturing method therefor
JP3737499B2 (en) Surface hydrophilization method of optical polymer material moldings by fluorination
JPH04328504A (en) Optical waveguide made of polyimide
JP2002350664A (en) Optical waveguide, optical wiring board, electric and optical mixed circuit board, and manufacturing method optical waveguide
JPH06172533A (en) Polymer for forming optical waveguide and production of polysiloxane-based optical waveguide
JP4185409B2 (en) Manufacturing method of optical waveguide
Kaino Linear Optical Properties of Organic Solids
JP3530630B2 (en) Method of manufacturing refractive index distribution type optical fiber and base material thereof
JPH04238304A (en) Production of optical waveguide
JPH03154007A (en) Organic optical waveguide
JPH0756026A (en) Production of plastic member for light transmission
JP2000081520A (en) Resin composition for polymeric optical waveguide and polymeric optical waveguide using same
Sarkisov et al. Formation of a graded-index waveguide in UV exposed polyimide
Marushima et al. Direct fabrication for multimode/single-mode polymer optical waveguides on printed circuit board using the mosquito method
JPS60188906A (en) Plastic optical transmission body and its production
DE60008384T2 (en) WAVE GUIDE COMPONENTS OR STRUCTURES OR PARTS CONTAINING THEM POLYCYANATE COPOLYMERS MADE OF POLYFUNCTIONAL CYANATES AND FLUORINE MONOCYANATES
EP1778462B1 (en) Method for manufacturing optical devices

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees