JP3477381B2 - Method of controlling refractive index of optical polymer material by fluorination - Google Patents
Method of controlling refractive index of optical polymer material by fluorinationInfo
- Publication number
- JP3477381B2 JP3477381B2 JP28840898A JP28840898A JP3477381B2 JP 3477381 B2 JP3477381 B2 JP 3477381B2 JP 28840898 A JP28840898 A JP 28840898A JP 28840898 A JP28840898 A JP 28840898A JP 3477381 B2 JP3477381 B2 JP 3477381B2
- Authority
- JP
- Japan
- Prior art keywords
- fluorine
- refractive index
- polyimide
- treatment
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims description 39
- 239000002861 polymer material Substances 0.000 title claims description 30
- 238000000034 method Methods 0.000 title claims description 21
- 238000003682 fluorination reaction Methods 0.000 title description 15
- 229910052731 fluorine Inorganic materials 0.000 claims description 108
- 239000011737 fluorine Substances 0.000 claims description 91
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 89
- 229920001721 polyimide Polymers 0.000 claims description 85
- 239000004642 Polyimide Substances 0.000 claims description 71
- 238000011282 treatment Methods 0.000 description 58
- 239000007789 gas Substances 0.000 description 35
- 239000000463 material Substances 0.000 description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 16
- 125000001153 fluoro group Chemical group F* 0.000 description 13
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000004926 polymethyl methacrylate Substances 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- -1 polyethylene terephthalate Polymers 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000004695 Polyether sulfone Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000011162 core material Substances 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 229920006393 polyether sulfone Polymers 0.000 description 4
- 229920002799 BoPET Polymers 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000288716 Talpa Species 0.000 description 1
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001941 electron spectroscopy Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000013532 laser treatment Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000004441 surface measurement Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は光学用に用いる高分
子材料の屈折率制御方法に関する。TECHNICAL FIELD The present invention relates to a method for controlling a refractive index of a polymer material used for optics.
【0002】[0002]
【従来の技術】光学材料には優れた光透過性に加えて屈
折率の制御性が最も重要な特性として求められている。
特に透明性に優れた高分子としてはポリメタクリル酸メ
チル(PMMA)、ポリカーボネート、ポリスチレン、
エポキシ樹脂、ポリエチレンテレフタレート等が挙げら
れる。これらの高分子は低コスト、柔軟性、軽量といっ
た高分子特有の優れた特徴を有しているため、レンズ、
光学フィルタ、窓等の種々の光学製品に用いられてい
る。また、光通信の分野において、これらの高分子材料
は光ファイバ、光導波路、光フィルタを初めとした種々
の光学部品用材料として用いることが検討されている。2. Description of the Related Art Optical materials are required to have excellent optical transparency and controllability of refractive index as the most important characteristics.
Polymers with particularly excellent transparency include polymethylmethacrylate (PMMA), polycarbonate, polystyrene,
Examples thereof include epoxy resin and polyethylene terephthalate. These polymers have excellent characteristics peculiar to polymers such as low cost, flexibility, and light weight.
It is used in various optical products such as optical filters and windows. Further, in the field of optical communication, the use of these polymer materials as various optical component materials such as optical fibers, optical waveguides, and optical filters has been studied.
【0003】特に光ファイバや光導波路に用いる高分子
材料には光の導波特性を制御するために精密な屈折率制
御性が要求される。光導波路において光をコアに閉じ込
めるためにはクラッドの屈折率をコアの屈折率より小さ
くする必要がある。そのため、クラッド材料は低屈折率
であることが必要である。In particular, polymer materials used for optical fibers and optical waveguides are required to have precise refractive index controllability in order to control the waveguiding characteristics of light. In order to confine light in the core in the optical waveguide, it is necessary to make the refractive index of the clad smaller than that of the core. Therefore, the clad material needs to have a low refractive index.
【0004】埋め込み型のステップインデックス(S
I)型光導波路においては光の導波モードを一定に保つ
ために、コアとクラッドの屈折率差を精密に制御する必
要がある。したがって、光導波路のコア材料とクラッド
材料には精密な屈折率制御性が要求される。An embedded step index (S
In the I) type optical waveguide, in order to keep the waveguide mode of light constant, it is necessary to precisely control the refractive index difference between the core and the cladding. Therefore, precise refractive index controllability is required for the core material and the cladding material of the optical waveguide.
【0005】高密度の光導波路配線を行うには曲率の小
さい曲がり光導波路が必要であり、このためには低屈折
率のクラッド材料が必要である。また光カプラ、スプリ
ッタ、光合分波器等の光学部品は種々の曲率の曲がり導
波路で構成されるので、このような光学部品の材料には
幅広い範囲での屈折率制御性が要求される。また石英系
光ファイバに接続する光学部品用材料は、接続界面での
光の反射を少なくするために石英の屈折率(1.46)
に近いことが必要だが、一般に光学用高分子材料の屈折
率は石英の屈折率より大きいので、これら高分子材料の
屈折率を低減する必要がある。A bent optical waveguide having a small curvature is required for high-density optical waveguide wiring, and a clad material having a low refractive index is required for this purpose. Further, optical components such as optical couplers, splitters, and optical multiplexers / demultiplexers are composed of curved waveguides having various curvatures, so that materials for such optical components are required to have refractive index controllability in a wide range. In addition, the material for optical parts connected to the silica-based optical fiber has a refractive index of silica (1.46) in order to reduce reflection of light at the connection interface.
However, since the refractive index of optical polymer materials is generally higher than that of quartz, it is necessary to reduce the refractive index of these polymer materials.
【0006】高分子材料の屈折率を低減する方法として
は分子構造中にフッ素を導入する方法が一般に用いられ
ている。例えばエポキシ樹脂の屈折率低減は、特開昭6
1−44969号公報に開示されているように、エポキ
シ樹脂の硬化剤に多フッ素置換基を導入することによ
り、これまでのエポキシ樹脂の中で最も低い屈折率を達
成した。また、特許第2640553号公報に開示され
ているように、耐熱性に優れた光学用高分子材料である
含フッ素ポリイミドの屈折率制御は、フッ素含有率の高
いポリイミドとフッ素含有率の低いポリイミドを共重合
することでその屈折率を制御することが可能である。As a method of reducing the refractive index of a polymer material, a method of introducing fluorine into the molecular structure is generally used. For example, the reduction of the refractive index of an epoxy resin is disclosed in JP-A-6-6
As disclosed in Japanese Patent No. 1-44969, by introducing a polyfluorine substituent into a curing agent for an epoxy resin, the lowest refractive index of the epoxy resins to date has been achieved. Further, as disclosed in Japanese Patent No. 2640553, the refractive index control of fluorine-containing polyimide, which is an optical polymer material having excellent heat resistance, is performed by using a polyimide having a high fluorine content and a polyimide having a low fluorine content. It is possible to control the refractive index by copolymerization.
【0007】このように光学部品用高分子材料におい
て、その材料の屈折率を低減すること、および屈折率を
精密に制御することは極めて重要であり、その具体的な
方法としては高分子材料の分子中にフッ素を導入するこ
とが効果的である。しかし従来の方法では、フッ素試薬
を用いて高分子の分子中にフッ素を導入した原料を合成
し、これを用いて高分子材料を製造しなければならない
ため、原料の価格が高く、また、材料の製造工程が複雑
になるという問題があった。As described above, in the polymer material for optical parts, it is extremely important to reduce the refractive index of the material and to precisely control the refractive index. It is effective to introduce fluorine into the molecule. However, in the conventional method, a raw material in which fluorine is introduced into a molecule of a polymer is synthesized by using a fluorine reagent, and the polymer material must be produced using this, so that the raw material is expensive and the material is expensive. There is a problem that the manufacturing process of is complicated.
【0008】[0008]
【発明が解決しようとする課題】本発明者らは、材料の
屈折率制御のため光学用高分子材料に簡便にフッ素を導
入することができる方法が見出されていなかったことに
着目し、本発明を完成させるに至った。すなわち、本発
明は上記問題点を解決すべくなされたものであり、本発
明の目的は光学用高分子材料に簡便な方法でフッ素の導
入を行い、光学材料の屈折率を低減し、また屈折率を精
密に制御することにある。DISCLOSURE OF THE INVENTION The inventors of the present invention have noticed that a method capable of simply introducing fluorine into an optical polymer material for controlling the refractive index of the material has not been found, The present invention has been completed. That is, the present invention has been made to solve the above problems, and the object of the present invention is to introduce fluorine into an optical polymer material by a simple method to reduce the refractive index of the optical material, and It is to control the rate precisely.
【0009】ところで、フッ素化ポリイミドからなる成
形品の表面は撥水撥油傾向があり、いわゆる「ぬれ」が
悪く、金属表面あるいは金属酸化物表面等との密着性ま
たは他の有機光学材料との密着性に問題があった。密着
性を改良するためフッ素化ポリイミドの表面に、オゾン
処理、プラズマ処理、エキシマレーザー処理等を施すこ
とが行われてきた。また、エキシマレーザー照射下でフ
ッ素化ポリイミドを水と反応させて親水化させることも
知られている(第56回秋季応用物理学会学術講演会、
講演予講集28a−ZT−6,1995年)。しかし、
かかる方法ではフッ素化ポリイミド中の炭素−フッ素結
合(C−F結合)の解離を生じるので、フッ素化ポリイ
ミドの電気的長所または屈折率制御等の光学的長所が失
われてしまう恐れがある。また従来の方法では、設備ま
たはコスト上の問題があり、かつ、処理面積の大きさに
限度がある等の問題もあった。By the way, the surface of a molded article made of fluorinated polyimide tends to be water- and oil-repellent, so-called "wetting" is poor, and adhesion with a metal surface or a metal oxide surface or with other organic optical materials is poor. There was a problem with the adhesion. In order to improve adhesion, the surface of fluorinated polyimide has been subjected to ozone treatment, plasma treatment, excimer laser treatment, or the like. It is also known to make a fluorinated polyimide react with water to make it hydrophilic under irradiation of an excimer laser (The 56th Autumn Meeting of Japan Society of Applied Physics,
Lecture Lecture Collection 28a-ZT-6, 1995). But,
In such a method, the carbon-fluorine bond (C-F bond) in the fluorinated polyimide is dissociated, so that the electrical advantages of the fluorinated polyimide or the optical advantages such as refractive index control may be lost. In addition, the conventional methods have problems in terms of equipment or cost, and there is a limit in the size of the processing area.
【0010】そこで、本発明の他の目的は、フッ素化ポ
リイミドの成形品の表面に簡便な方法でフッ素の導入を
行うことにより、フッ素化ポリイミド中の炭素−フッ素
結合を解離することなく、親水性をフッ素化ポリイミド
の成型品の表面に付与し、接着性を与えることにある。Therefore, another object of the present invention is to introduce fluorine into the surface of a molded article of fluorinated polyimide by a simple method so that the carbon-fluorine bond in the fluorinated polyimide is not dissociated and hydrophilic. To impart adhesiveness to the surface of the molded article of fluorinated polyimide.
【0011】[0011]
【0012】[0012]
【課題を解決するための手段】請求項1の光学用高分子
材料の屈折率制御方法の発明は、高分子材料としてポリ
イミドを用い、これをフッ素ガス雰囲気中に浸漬するこ
とによりポリイミドの屈折率を制御することを特徴とす
る。According to a first aspect of the present invention, there is provided a method for controlling a refractive index of an optical polymer material, wherein a polyimide is used as the polymer material, and the refractive index of the polyimide is obtained by immersing the polyimide in a fluorine gas atmosphere. It is characterized by controlling.
【0013】 請求項2の光学用高分子材料の屈折率制
御方法の発明は、高分子材料としてフッ素化ポリイミド
を用い、これをフッ素ガス雰囲気中に浸漬することによ
り、フッ素化ポリイミドの屈折率を制御することを特徴
とする。According to the invention of a refractive index control method for a polymeric material for optics of claim 2 , fluorinated polyimide is used as the polymeric material, and the refractive index of the fluorinated polyimide is adjusted by immersing the fluorinated polyimide in a fluorine gas atmosphere. It is characterized by controlling.
【0014】 請求項3の光学用高分子材料の屈折率制
御方法の発明は、高分子材料として下記構造式:The invention of the method for controlling the refractive index of an optical polymer material according to claim 3 is the following structural formula as a polymer material:
【0015】[0015]
【化3】 [Chemical 3]
【0016】で表される繰り返し単位からなるフッ素化
ポリイミドをフッ素ガス雰囲気中に浸漬することによ
り、フッ素化ポリイミドの屈折率を制御することを特徴
とする。It is characterized in that the refractive index of the fluorinated polyimide is controlled by immersing the fluorinated polyimide consisting of the repeating unit represented by in a fluorine gas atmosphere.
【0017】[0017]
【0018】[0018]
【0019】[0019]
【0020】[0020]
【0021】[0021]
【発明の実施の形態】本発明においては、光学用高分子
材料をフッ素ガス雰囲気中に浸漬することにより、高分
子材料の屈折率を制御することができる。フッ素ガス雰
囲気中のフッ素ガス濃度、フッ素ガス雰囲気中に浸漬す
る温度や時間を適宜選択することにより、高分子材料の
屈折率を所望の値に精密に制御することができる。BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the refractive index of a polymer material can be controlled by immersing the polymer material for optics in a fluorine gas atmosphere. The refractive index of the polymer material can be precisely controlled to a desired value by appropriately selecting the concentration of fluorine gas in the fluorine gas atmosphere and the temperature and time of immersion in the fluorine gas atmosphere.
【0022】ここで、フッ素ガス雰囲気とは、フッ素ガ
スを含む気体を意味し、例えば、フッ素ガスと窒素ガス
との混合ガス等が挙げられる。フッ素ガス雰囲気中のフ
ッ素ガスの濃度は、所望の屈折率の材料を得るのに必要
な濃度を適宜選択する。Here, the fluorine gas atmosphere means a gas containing fluorine gas, and examples thereof include a mixed gas of fluorine gas and nitrogen gas. Regarding the concentration of fluorine gas in the fluorine gas atmosphere, the concentration necessary for obtaining a material having a desired refractive index is appropriately selected.
【0023】本発明に用いる高分子材料としては光透過
性に優れたポリイミド、ポリメタクリル酸メチル(PM
MA)、ポリエチレンテレフタレート(PET)、ポリ
エーテルサルフォン等の種々の高分子材料を挙げること
ができるが、耐熱性、化学的安定性等の観点からポリイ
ミド、さらに高光透過性も考慮するとフッ素化ポリイミ
ドが好ましい。As the polymer material used in the present invention, polyimide, polymethylmethacrylate (PM
MA), polyethylene terephthalate (PET), polyether sulfone, and various other polymeric materials can be mentioned, but from the viewpoint of heat resistance, chemical stability, etc., polyimide, and fluorinated polyimide in view of high light transmittance. Is preferred.
【0024】これらの高分子材料を例えば窒素ガス等で
希釈した種々の濃度のフッ素ガス中に、所定温度、所定
時間浸漬することにより、高分子材料の表面から内部に
向かって徐々に分子内でのフッ素の導入が起こり、材料
のフッ素含有率が増加してゆくことになる。材料表面か
らのフッ素の浸透深さ、フッ素処理後の材料中のフッ素
含有率は、フッ素処理中のフッ素ガスの濃度、フッ素処
理温度、フッ素処理時間に依存して変化する。これらの
条件については特に制限はないが、フッ素濃度が高い場
合、処理時間が長い場合、処理温度が高い場合に、フッ
素の浸透深さが深くなり、またフッ素処理後の高分子材
料のフッ素含有率が高くなる。フッ素含有率の増加に伴
ってフッ素化された部分の屈折率が低減するので、フッ
素濃度、処理温度、処理時間を適宜選択すれば、所望の
屈折率の材料を得ることができる。ただし、極端にフッ
素濃度を高くしたり、極端な高温長時間でのフッ素処理
を行うと分子が劣化するため、通常のフッ素処理条件と
してはフッ素濃度が0.1〜30%、処理温度が20〜
150℃、処理時間が5〜250分が好適である。By dipping these polymeric materials in fluorine gas of various concentrations diluted with, for example, nitrogen gas at a predetermined temperature for a predetermined time, the surface of the polymeric material gradually moves toward the inside from the inside of the molecule. The introduction of fluorine will occur, and the fluorine content of the material will increase. The penetration depth of fluorine from the surface of the material and the fluorine content in the material after the fluorine treatment change depending on the concentration of fluorine gas during the fluorine treatment, the fluorine treatment temperature, and the fluorine treatment time. These conditions are not particularly limited, but when the fluorine concentration is high, the treatment time is long, the treatment temperature is high, the penetration depth of fluorine becomes deep, and the fluorine content of the polymer material after the fluorine treatment is increased. The rate is high. Since the refractive index of the fluorinated portion decreases as the fluorine content increases, a material having a desired refractive index can be obtained by appropriately selecting the fluorine concentration, the processing temperature, and the processing time. However, when the fluorine concentration is extremely increased or the fluorine treatment is performed at an extremely high temperature for a long time, the molecule is deteriorated. Therefore, the usual fluorine treatment conditions are a fluorine concentration of 0.1 to 30% and a treatment temperature of 20 ~
A temperature of 150 ° C. and a treatment time of 5 to 250 minutes are suitable.
【0025】本発明においては、フッ素化ポリイミドの
成形品の表面に親水性を付与するためフッ素化処理を行
う。かかるフッ素化処理は、室温下、フッ素濃度0.0
1%〜20%のフッ素ガス雰囲気中で1分〜30分間行
うことが好ましい。この処理を施すことにより、フッ素
化ポリイミドの成形品表面の水接触角を70度以下30
度以上にすることができる。ここで、水接触角とは、フ
ッ素化ポリイミドの成形品の表面に水を滴下したときの
水滴の接触角をいう。また、本発明において成形品と
は、射出成形等による成形品のみならず、例えばフィル
ム、板、ファイバー等、実用に供されている形を成すす
べての物品をいう。具体的には、フッ素化ポリイミドフ
ィルム、フッ素化ポリイミドコーティング膜等も含まれ
る。In the present invention, a fluorination treatment is performed to impart hydrophilicity to the surface of the fluorinated polyimide molded article. Such fluorination treatment is carried out at room temperature at a fluorine concentration of 0.0
It is preferable to perform the treatment in a 1% to 20% fluorine gas atmosphere for 1 minute to 30 minutes. By performing this treatment, the water contact angle of the surface of the fluorinated polyimide molded article is 70 degrees or less 30
Can be more than once. Here, the water contact angle means a contact angle of a water drop when water is dropped on the surface of a molded article of fluorinated polyimide. In the present invention, the term "molded article" means not only a molded article obtained by injection molding or the like, but also any article having a practically used shape such as a film, a plate, or a fiber. Specifically, a fluorinated polyimide film, a fluorinated polyimide coating film and the like are also included.
【0026】このようなフッ素化処理によるフッ素化ポ
リイミド成形品の表面を顕微鏡で観察しても変化はみら
れないことから、成形品の表面のごく薄い上層部分のみ
がフッ素化されていて、表面のごく薄い部分でこみ合っ
て共存するC−F結合が表面エネルギーを上昇させて表
面の親水性を発現していると考えられる。Even if the surface of the fluorinated polyimide molded product by such a fluorination treatment is observed with a microscope, no change is observed. Therefore, only a very thin upper layer portion of the surface of the molded product is fluorinated, It is considered that the C—F bond coexisting with each other in an extremely thin portion raises the surface energy and expresses the hydrophilicity of the surface.
【0027】フッ素化ポリイミドはフッ素処理前にすで
に多数のCF3 基を保有しているので、X線電子分光法
(ESCA)による表面測定におけるFlsスペクトルで
は判断することができない。図1(a),(b)にES
CAのClsスペクトルを示す。図1(a)は、反応前の
フッ素化ポリイミドについてのESCAのClsスペクト
ルを示し、図1(b)は反応後のフッ素化ポリイミドに
ついてのESCAのClsスペクトルを示す。ただし、E
SCAは成形品の表面から約50オングストロームの極
薄い層を測定したものである。Since the fluorinated polyimide already has a large number of CF 3 groups before the fluorination treatment, it cannot be judged by the F ls spectrum in the surface measurement by X-ray electron spectroscopy (ESCA). ES in FIGS. 1 (a) and 1 (b)
3 shows the C ls spectrum of CA. Figure 1 (a) shows the C ls spectrum of ESCA for the previous reaction fluorinated polyimide, FIG. 1 (b) shows the C ls spectrum of ESCA for fluorinated polyimide after the reaction. However, E
SCA is a measurement of an extremely thin layer of about 50 angstroms from the surface of a molded product.
【0028】図1(a),(b)から、C−H結合また
はC−C結合に相当する281.87eVの吸収は反応
前から反応後で大きく減少し、C=O結合またはC−N
結合に相当する284.10eVの吸収変化は反応前か
ら反応後であまり変化しない。また、C−F結合に対応
する285.92eVおよびCF2 結合に対応する28
7.73eVの吸収は反応前後で大きく増加しており、
CF3 結合に対応する290.21eVの吸収はほとん
ど変化していない。From FIGS. 1 (a) and 1 (b), the absorption of 281.87 eV corresponding to C—H bond or C—C bond is greatly reduced before and after the reaction, and C═O bond or C—N bond.
The absorption change of 284.10 eV corresponding to the binding does not change much before and after the reaction. Also, 285.92 eV corresponding to the C—F bond and 28 corresponding to the CF 2 bond.
The absorption of 7.73 eV increased greatly before and after the reaction,
Absorption of 290.21eV corresponding to CF 3 bonds hardly changes.
【0029】図2に、フッ素化処理後のポリイミド成形
品のNMRスペクトルを示した。図2から、フッ素化処
理前のポリイミドには存在しなかったベンゼン環に結合
したFシグナルが−180PPMに出現し、シクロヘキ
サン環のCF2 結合に相当するFシグナルが−70〜−
80PPMに出現したことが分かった。FIG. 2 shows the NMR spectrum of the polyimide molded product after the fluorination treatment. From FIG. 2, an F signal bonded to the benzene ring, which was not present in the polyimide before the fluorination treatment, appeared at −180 PPM, and an F signal corresponding to the CF 2 bond of the cyclohexane ring was −70 to −.
It was found that it appeared at 80 PPM.
【0030】所定条件の下、所定濃度のフッ素ガス雰囲
気下でフッ素化ポリイミドを保持すると、フッ素化ポリ
イミド表面はフッ素親和状態が形成されて、フッ素原子
同士の相互作用によって極めて速やかにフッ素原子が引
きつけられ、そこに選択的に反応して新しいC−F結合
が導入される。イミド結合間の水素結合は強力であるの
で、フッ素化ポリイミドの表面エネルギーは小さくなる
が、表面の極薄い層では新しく形成されたC−F結合に
よって歪みが生じ、規則的な水素結合の一部が切断され
る。このような表面におけるイミド間水素結合の切断に
より表面エネルギーが上昇し、表面張力および接触角を
減少させることとなる。かかるフッ素化処理による接触
角の調節は、フッ素化ポリイミドにおいてのみ実現でき
る。かかる反応に好ましく用いられるフッ素化ポリイミ
ドとしては特に制限はないが、例えば以下の構造式を有
するフッ素化ポリイミドが好ましい。When the fluorinated polyimide is held under a predetermined concentration of fluorine gas atmosphere under a predetermined condition, a fluorine-affinity state is formed on the surface of the fluorinated polyimide, and the interaction between the fluorine atoms causes the fluorine atoms to be attracted very quickly. And selectively react there to introduce a new C—F bond. Since the hydrogen bond between the imide bonds is strong, the surface energy of the fluorinated polyimide is small, but in the ultrathin layer on the surface, distortion is caused by the newly formed C—F bond, and part of the regular hydrogen bond is generated. Is disconnected. The breaking of hydrogen bond between imides on the surface raises the surface energy and reduces the surface tension and the contact angle. The adjustment of the contact angle by the fluorination treatment can be realized only in the fluorinated polyimide. The fluorinated polyimide preferably used in such a reaction is not particularly limited, but for example, a fluorinated polyimide having the following structural formula is preferable.
【0031】[0031]
【化5】 [Chemical 5]
【0032】フッ素化されてない通常のポリイミドから
なる成形品をフッ素化処理した場合には、表面親水化速
度が速すぎて親水化制御ができないので、上述の効果は
得られない。これは、フッ素化されてないポリイミドで
はフッ素結合が存在しないのでフッ素化反応が不規則に
生じ、そのため水素結合が不規則に多様に切断されてフ
ッ素化が進行し、所望の親水性表面を通り越して遊離の
水素結合可能な水溶性表面になってしまうからである。When a molded article made of an ordinary non-fluorinated polyimide is subjected to a fluorination treatment, the above-mentioned effects cannot be obtained because the surface hydrophilization rate is too fast to control the hydrophilization. This is because in the non-fluorinated polyimide, since there are no fluorine bonds, the fluorination reaction occurs irregularly, so that hydrogen bonds are irregularly and diversely cleaved to progress the fluorination and pass through the desired hydrophilic surface. This will result in a water-soluble surface capable of free hydrogen bonding.
【0033】なお、ポリプロピレン等をフッ素で表面親
水化する技術が知られている(特開平8−302039
号公報)が、これはフッ素化処理を施す対象物にフッ素
結合が存在しない場合である。すなわち、表面処理を施
すポリプロピレンとフッ素化ポリイミドとでは全く化学
構造が異なり、表面親水化のメカニズムも全く異なるも
のであり、したがってポリプロピレン等のフッ素化方法
を利用しても、フッ素化ポリイミドの接触角の低下には
限界が生じてしまう。A technique is known in which polypropylene or the like is hydrophilized with fluorine (Japanese Patent Application Laid-Open No. 8-302039).
However, this is the case where there is no fluorine bond in the object to be fluorinated. That is, the polypropylene subjected to the surface treatment and the fluorinated polyimide have completely different chemical structures, and the mechanism of surface hydrophilization is completely different. Therefore, even if a fluorination method such as polypropylene is used, the contact angle of the fluorinated polyimide is There will be a limit to the decrease of.
【0034】[0034]
【実施例】以下に本発明の光学用高分子材料の屈折率制
御方法について実施例を用いて具体的に説明する。ただ
し、以下の実施例は単なる例示であり、本発明はこれら
実施例に限定されるものではない。各実施例において、
高分子材料の分子中へのフッ素の導入の確認はX線光電
子分光法(ESCA)により確認した。また、屈折率は
プリズムカップリングを用い、波長633nm、TEモ
ード(材料のフィルム面と平行方向の光の偏波モード)
およびTMモード(材料のフィルム面と垂直方向の光の
偏波モード)で測定した。EXAMPLES The method of controlling the refractive index of the optical polymer material of the present invention will be specifically described below with reference to examples. However, the following examples are merely examples, and the present invention is not limited to these examples. In each example,
The introduction of fluorine into the molecule of the polymer material was confirmed by X-ray photoelectron spectroscopy (ESCA). In addition, the refractive index uses prism coupling, wavelength 633 nm, TE mode (polarization mode of light parallel to the film surface of the material)
And TM mode (polarization mode of light perpendicular to the film surface of the material).
【0035】対照1 下記の繰り返し単位Control 1 Repeating unit below
【0036】[0036]
【化6】 [Chemical 6]
【0037】からなる分子構造のフッ素化ポリイミドフ
ィルムについてESCA分析を行った。フッ素原子の総
数が高分子構造中に占める比率(以下「全フッ素原子比
率」または「全F比率」という)、およびC−C、C−
N、C=O、C−F、CF2 、CF3 の各結合の数が高
分子構造中に占める比率(以下「各結合比率」という)
を得た。結果を表1に示す。また、上記繰り返し単位か
らなる分子構造のフッ素化ポリイミドフィルムの屈折率
を測定した。結果を表1に示す。ESCA analysis was performed on the fluorinated polyimide film having a molecular structure of. Ratio of the total number of fluorine atoms in the polymer structure (hereinafter referred to as "total fluorine atom ratio" or "total F ratio"), and C-C, C-
N, C = O, CF, CF 2, the ratio number of the binding of CF 3 occupies in the polymer structure (hereinafter referred to as "the coupling ratio")
Got The results are shown in Table 1. Further, the refractive index of the fluorinated polyimide film having a molecular structure composed of the above repeating unit was measured. The results are shown in Table 1.
【0038】実施例1〜6
対照1のフッ素化ポリイミドフィルムを表1に示す処理
条件でフッ素処理を行って、実施例1〜6のフッ素化ポ
リイミドフィルムを得た。得られた実施例1〜6の各フ
ッ素化ポリイミドフィルムについて、フィルム表面のE
SCA分析を行い、全フッ素原子比率、およびC−C、
C−N、C=O、C−F、CF2 、CF3 の各結合比率
を得た。また、このフッ素化ポリイミドフィルムの屈折
率を測定した。これらの結果をまとめて表1に示す。Examples 1 to 6 The fluorinated polyimide film of Control 1 was fluorinated under the treatment conditions shown in Table 1 to obtain fluorinated polyimide films of Examples 1 to 6. For each of the obtained fluorinated polyimide films of Examples 1 to 6, E on the film surface
SCA analysis was performed, and the total fluorine atom ratio and C-C,
C-N, to obtain C = O, CF, each coupling ratio of CF 2, CF 3. Moreover, the refractive index of this fluorinated polyimide film was measured. The results are summarized in Table 1.
【0039】対照2
市販のポリイミドフィルム(東レ・デュポン社製のカプ
トンHフィルム)についてESCA分析を行い、全フッ
素原子比率、およびC−C、C−N、C=O、C−F、
CF2 、CF3 の各結合比率を測定した。結果を表1に
示す。また、このポリイミドフィルムの屈折率を測定し
た。結果を表1に示す。Control 2 ESCA analysis was carried out on a commercially available polyimide film (Kapton H film manufactured by Toray-Dupont Co., Ltd.), and the total fluorine atom ratio and C—C, C—N, C═O, C—F,
The respective bond ratios of CF 2 and CF 3 were measured. The results are shown in Table 1. In addition, the refractive index of this polyimide film was measured. The results are shown in Table 1.
【0040】 実施例7〜11対照
2のポリイミドフィルムを表1に示す処理条件でフ
ッ素処理を行って、実施例7〜11のポリイミドフィル
ムを得た。得られた実施例7〜11の各フィルムについ
てフィルム表面のESCA分析を行い、全フッ素原子比
率、およびC−C、C−N、C=O、C−F、CF2、
CF3の各結合比率を得た。また、このポリイミドフィ
ルムの屈折率を測定した。これらの結果をまとめて表1
に示す。Examples 7 to 11 The polyimide film of Control 2 was treated with fluorine under the treatment conditions shown in Table 1 to obtain the polyimide films of Examples 7 to 11. The obtained underwent ESCA analysis of the film surface of each film of Examples 7 to 11, the total fluorine atom ratio, and C-C, C-N, C = O, CF, CF 2,
Each bond ratio of CF 3 was obtained. In addition, the refractive index of this polyimide film was measured. These results are summarized in Table 1
Shown in.
【0041】対照3
市販のPMMAフィルムについてESCA分析を行い、
全フッ素原子比率、およびC−C、C−N、C=O、C
−F、CF2 、CF3 の各結合比率を得た。結果を表1
に示す。Control 3 ESCA analysis was performed on a commercially available PMMA film,
Total fluorine atom ratio and C-C, C-N, C = O, C
The respective bond ratios of —F, CF 2 and CF 3 were obtained. The results are shown in Table 1.
Shown in.
【0042】実施例12〜15
対照3のPMMAフィルムを表1に示す条件でフッ素処
理を行って、実施例12〜15のPMMAフィルムを得
た。得られた実施例12〜15の各フィルムについて、
フィルム表面のESCA分析を行い、全フッ素原子比
率、およびC−C、C−N、C=O、C−F、CF2 、
CF3 の各結合比率を得た。結果を表1に示す。Examples 12 to 15 The PMMA film of Control 3 was treated with fluorine under the conditions shown in Table 1 to obtain PMMA films of Examples 12 to 15. For each of the obtained films of Examples 12 to 15,
Underwent ESCA analysis of the film surface, the total fluorine atom ratio, and C-C, C-N, C = O, CF, CF 2,
Each bond ratio of CF 3 was obtained. The results are shown in Table 1.
【0043】対照4
市販のポリエーテルサルフォンフィルム(TALPA)
についてESCA分析を行い、全フッ素原子比率、C−
C、C−N、C=O、C−F、CF2 、CF3の各結合
比率を測定した。結果を表1に示す。Control 4 Commercially available polyether sulfone film (TALPA)
ESCA analysis was performed for the total fluorine atom ratio, C-
C, was measured C-N, C = O, CF, each coupling ratio of CF 2, CF 3. The results are shown in Table 1.
【0044】実施例16〜17
対照4のポリエーテルサルフォンフィルムを表1に示す
条件でフッ素処理を行って、実施例16〜17のポリエ
ーテルサルフォンフィルムを得た。得られた実施例16
〜17の各フィルムについてフィルム表面のESCA分
析を行い、全フッ素原子比率、およびC−C、C−N、
C=O、C−F、CF2 、CF3 の各結合比率を得た。
結果を表1に示す。Examples 16 to 17 The polyether sulfone film of Control 4 was treated with fluorine under the conditions shown in Table 1 to obtain the polyether sulfone films of Examples 16 to 17. Example 16 obtained
ESCA analysis of the film surface was performed on each of the films No. 17 to No. 17, and the total fluorine atom ratio and C-C, C-N
C = give O, CF, each coupling ratio of CF 2, CF 3.
The results are shown in Table 1.
【0045】対照5
市販のPETフィルムについてESCA分析を行い、全
フッ素原子比率、およびC−C、C−N、C=O、C−
F、CF2 、CF3 の各結合比率を測定した。結果を表
1に示す。Control 5 ESCA analysis was performed on a commercially available PET film, and the total fluorine atom ratio and C-C, C-N, C = O, C-
The respective bond ratios of F, CF 2 and CF 3 were measured. The results are shown in Table 1.
【0046】実施例18〜22
対照5のPETフィルムを表1に示す処理条件でフッ素
処理を行って、実施例18〜22のPETフィルムを得
た。得られた実施例18〜22の各フィルムについて表
面のESCA分析を行い、全フッ素原子比率、およびC
−C、C−N、C=O、C−F、CF2 、CF3 の各結
合比率を得た。結果を表1に示す。Examples 18 to 22 The PET film of Control 5 was treated with fluorine under the treatment conditions shown in Table 1 to obtain PET films of Examples 18 to 22. The surface of each of the obtained films of Examples 18 to 22 was analyzed by ESCA, and the total fluorine atom ratio and C
-C, give C-N, C = O, CF, each coupling ratio of CF 2, CF 3. The results are shown in Table 1.
【0047】[0047]
【表1】 [Table 1]
【0048】対照1および実施例1〜4で得られたフッ
素ガスへの暴露時間(処理時間)とポリイミドのフッ素
含有率の関係を図3に示した。この結果より処理時間の
増加とともにポリイミドのフッ素含有率が増加し、極め
て短時間でフッ素化反応が飽和状態に達していることが
わかった。また、対照1および実施例1〜4で得られた
フッ素ガスへの処理時間とポリイミドの屈折率の関係を
図4に示した。この結果より処理時間の増加とともにポ
リイミドの屈折率は徐々に低減し、処理時間を変えるこ
とで簡便にポリイミドの屈折率を制御できることが明ら
かとなった。The relationship between the exposure time (treatment time) to the fluorine gas and the fluorine content of the polyimide obtained in Control 1 and Examples 1 to 4 is shown in FIG. From this result, it was found that the fluorine content of the polyimide increased with the increase of the treatment time, and the fluorination reaction reached the saturated state in an extremely short time. Further, FIG. 4 shows the relationship between the treatment time to the fluorine gas and the refractive index of the polyimide obtained in Control 1 and Examples 1 to 4. From this result, it was clarified that the refractive index of the polyimide gradually decreased as the treatment time increased, and that the refractive index of the polyimide could be easily controlled by changing the treatment time.
【0049】次に実施例1、実施例3、実施例5〜6で
得られたフッ素ガスの処理温度とポリイミドのフッ素含
有率の関係を図5に示した。この結果より処理温度が高
くなるとポリイミドのフッ素含有率が増加することがわ
かった。また、実施例1、実施例3、実施例5〜6で得
られたフッ素ガスの処理温度とポリイミドの屈折率の関
係を図6に示した。図6から、フッ素ガスの処理温度が
高くなるとともにポリイミドの屈折率は徐々に減少する
ので、温度を変えることで簡便にポリイミドの屈折率を
制御できることが明らかとなった。なお、図5および図
6からも、上述のごとく処理時間の長い方が、すなわち
処理時間が1分のフィルムより10分のフィルムの方が
フッ素の含有率は大きくなることがわかる。Next, FIG. 5 shows the relationship between the treatment temperature of the fluorine gas obtained in Examples 1, 3 and 5 to 6 and the fluorine content of the polyimide. From this result, it was found that the fluorine content of the polyimide increased as the treatment temperature increased. Further, FIG. 6 shows the relationship between the processing temperature of the fluorine gas and the refractive index of the polyimide obtained in Example 1, Example 3, and Examples 5 to 6. From FIG. 6, it becomes clear that the refractive index of the polyimide gradually decreases as the treatment temperature of the fluorine gas increases, so that the refractive index of the polyimide can be easily controlled by changing the temperature. It should be noted from FIGS. 5 and 6 that the longer the processing time is, that is, the film having a processing time of 1 minute has a higher fluorine content than the film having a processing time of 1 minute as described above.
【0050】また、対照2および実施例7〜13、対照
3および実施例12〜15、対照5および実施例18〜
22からも、処理時間が長くなるにつれて、フッ素含有
率が高くなることがわかる。Further, Control 2 and Examples 7 to 13, Control 3 and Examples 12 to 15, Control 5 and Example 18 to
22 also shows that the fluorine content increases as the treatment time increases.
【0051】これらの結果から、本発明の光学用高分子
材料の屈折率制御方法は高分子材料をフッ素ガス中へ浸
漬するという極めて簡便な操作により、分子中へのフッ
素の導入が可能であり、これによって高分子材料の屈折
率を低減できる方法であることが明らかとなった。さら
にこのフッ素処理条件を変えることにより材料の屈折率
を精密に制御できることが明らかとなった。From these results, the method of controlling the refractive index of the optical polymer material of the present invention makes it possible to introduce fluorine into the molecule by an extremely simple operation of immersing the polymer material in fluorine gas. Therefore, it became clear that this is a method that can reduce the refractive index of the polymer material. Further, it has been clarified that the refractive index of the material can be precisely controlled by changing the fluorine treatment condition.
【0052】実施例23
フッ素化ポリイミド溶液をスピンコート法により製膜し
て、厚さ16μmのフィルムを得た。なお、得られたフ
ィルムについては水接触角を測定しておいた。得られた
フッ素化ポリイミドフィルムをニッケル製の容器内に入
れて容器内を真空にした。次いで、室温条件下で0.4
%F2 /99.6%N2 の混合ガスを容器内に導入し
た。フッ素ガス雰囲気中での処理時間とポリイミドのフ
ッ素含有率の関係は図3と同様の結果が得られ、処理時
間の増加とともにポリイミドのフッ素含有率が増加し、
極めて短時間でフッ素化反応が飽和状態に達していた。
1分、5分、10分または30分の処理時間でフィルム
を取り出してフィルム表面の水接触角を測定した。その
結果を以下に示す。Example 23 A fluorinated polyimide solution was formed by a spin coating method to obtain a film having a thickness of 16 μm. The water contact angle of the obtained film was measured. The obtained fluorinated polyimide film was put in a nickel container and the inside of the container was evacuated. Then 0.4 under room temperature conditions
A mixed gas of% F 2 /99.6% N 2 was introduced into the container. The relationship between the treatment time in the fluorine gas atmosphere and the fluorine content of the polyimide is similar to that shown in FIG. 3, and the fluorine content of the polyimide increases as the treatment time increases.
The fluorination reaction reached saturation in a very short time.
The film was taken out at a treatment time of 1 minute, 5 minutes, 10 minutes or 30 minutes, and the water contact angle of the film surface was measured. The results are shown below.
【0053】処理時間
水接触角
未処理 84.1度
1分 73.5度
5分 70.3度
10分 70.5度
30分 69.0度
なお、フッ素化ポリイミドの代わりに市販のポリイミド
樹脂膜(カプトン)を実施例23と同様にして処理した
ところ、処理前の水接触角は71度であったが、処理時
間1分で水接触角9.0度となり次第に表面が水に溶け
出していくのが観察できた。さらに1時間フッ素処理を
続けると、わずかではあるが水接触角が増大し、18.
9度となった。 Treatment time Water contact angle Untreated 84.1 degrees 1 minute 73.5 degrees 5 minutes 70.3 degrees 10 minutes 70.5 degrees 30 minutes 69.0 degrees Incidentally, commercially available polyimide resin is used instead of fluorinated polyimide. When the membrane (Kapton) was treated in the same manner as in Example 23, the water contact angle before the treatment was 71 degrees, but the water contact angle became 9.0 degrees in 1 minute of the treatment time, and the surface gradually dissolved into water. I was able to observe it. When the fluorine treatment was continued for another hour, the water contact angle slightly increased, and
It was 9 degrees.
【0054】実施例24
実施例23において、フッ素ガス組成を1.0%F2 /
99.0%N2 に代えた以外は実施例23と同様にし
て、フッ素処理を行った。処理時間1分では、水接触角
が56度に達した。また、処理時間10分では水接触角
が61.9度となった。Example 24 In Example 23, the fluorine gas composition was changed to 1.0% F 2 /
Fluorine treatment was performed in the same manner as in Example 23 except that 99.0% N 2 was used instead. At a treatment time of 1 minute, the water contact angle reached 56 degrees. Further, the water contact angle was 61.9 degrees after the treatment time of 10 minutes.
【0055】実施例25
実施例23において、フッ素ガス組成を8.0%F2 /
92.0%N2 に代えた以外は実施例23と同様にし
て、フッ素処理を行った。処理時間10分では水接触角
が48度となった。Example 25 In Example 23, the fluorine gas composition was adjusted to 8.0% F 2 /
Fluorine treatment was carried out in the same manner as in Example 23 except that 92.0% N 2 was used. When the treatment time was 10 minutes, the water contact angle was 48 degrees.
【0056】実施例26
実施例23において、フッ素ガス組成を0.01%F2
/99.99%N2 に代えた以外は実施例23と同様に
して、フッ素処理を行った。処理時間30分では水接触
角が70.0度となった。Example 26 In Example 23, the fluorine gas composition was changed to 0.01% F 2
Fluorine treatment was carried out in the same manner as in Example 23 except that /99.99% N 2 was replaced. When the treatment time was 30 minutes, the water contact angle was 70.0 degrees.
【0057】実施例27
実施例23において、フッ素ガス組成を20.0%F2
/80.0%N2 に代えた以外は実施例23と同様にし
て、フッ素処理を行った。処理時間1分では、水接触角
が50.0度に達した。また、処理時間5分では水接触
角が40.0度となった。Example 27 In Example 23, the fluorine gas composition was changed to 20.0% F 2
Fluorine treatment was performed in the same manner as in Example 23 except that /80.0% N 2 was used. At the treatment time of 1 minute, the water contact angle reached 50.0 degrees. In addition, the water contact angle was 40.0 degrees after the treatment time of 5 minutes.
【0058】実施例23〜27から明らかなように、有
機光学材料として有用なフッ素化ポリイミドからなる成
形品を、室温条件下、希薄な濃度のフッ素ガス雰囲気中
で短時間処理することにより、C−F結合を切断するこ
となく、かつ、見かけ上物性を変化させずに、極めて容
易に成形品の表面を適度の親水性に制御することができ
た。As is clear from Examples 23 to 27, a molded article made of fluorinated polyimide useful as an organic optical material was treated at room temperature for a short time in a dilute concentration of fluorine gas atmosphere to give C. It was possible to extremely easily control the surface of the molded article to have an appropriate hydrophilicity without breaking the -F bond and without apparently changing the physical properties.
【0059】[0059]
【発明の効果】以上説明したように、本発明の光学用高
分子材料の屈折率制御方法は、従来のフッ素導入による
屈折率制御方法と比較して、光学用高分子材料の屈折率
を簡易にかつ広範囲で制御できるため、光ファイバや光
導波路のクラッド形成等、様々な光部品作製に利用する
ことができる。As described above, the method of controlling the refractive index of the optical polymer material of the present invention is simpler than the conventional method of controlling the refractive index by introducing fluorine. Since it can be controlled over a wide range, it can be used for various optical component manufacturing such as clad formation of optical fibers and optical waveguides.
【0060】また、フッ素化ポリイミドからなる成形品
をフッ素処理することにより、適度の親水性に制御する
ことができる。By subjecting a molded article made of fluorinated polyimide to a fluorine treatment, it is possible to control the hydrophilicity to an appropriate level.
【図1】(a)は反応前のフッ素化ポリイミドについて
のESCAのスペクトルの線図であり、(b)は反応後
のフッ素化ポリイミドについてのESCAのスペクトル
の線図である。FIG. 1A is a diagram of an ESCA spectrum of a fluorinated polyimide before a reaction, and FIG. 1B is a diagram of an ESCA spectrum of a fluorinated polyimide after a reaction.
【図2】フッ素化処理後のポリイミド成形品のNMRス
ペクトルを示す線図である。FIG. 2 is a diagram showing an NMR spectrum of a polyimide molded article after fluorination treatment.
【図3】フッ素ガス雰囲気中の処理時間とポリイミド中
のフッ素含有率との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the treatment time in a fluorine gas atmosphere and the fluorine content in polyimide.
【図4】フッ素ガス雰囲気中の処理時間とポリイミドの
屈折率との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the treatment time in a fluorine gas atmosphere and the refractive index of polyimide.
【図5】フッ素ガス雰囲気中の処理温度とポリイミド中
のフッ素含有率との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the treatment temperature in a fluorine gas atmosphere and the fluorine content in polyimide.
【図6】フッ素ガス雰囲気中の処理温度とポリイミドの
屈折率との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the treatment temperature in a fluorine gas atmosphere and the refractive index of polyimide.
フロントページの続き (72)発明者 門田 隆二 東京都港区芝大門一丁目13番9号 昭和 電工株式会社内 (72)発明者 中村 佳澄 千葉県千葉市緑区大野台1−1−1 昭 和電工株式会社総合研究所内 (72)発明者 井上 長三 千葉県千葉市緑区大野台1−1−1 昭 和電工株式会社総合研究所内 (56)参考文献 特開 平6−51146(JP,A) 特開 平7−330902(JP,A) 特開 平8−290046(JP,A) 特開 平9−59380(JP,A) 特開 平10−85571(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08G 73/00 - 73/26 Front page continued (72) Inventor Ryuji Kadota 1-13-9 Shiba Daimon, Minato-ku, Tokyo Within Showa Denko KK (72) Inventor Kasumi Nakamura 1-1-1 Onodai, Midori-ku, Chiba-shi, Chiba Showa Denko Shares Corporate Research Institute (72) Inventor Chozo Inoue 1-1-1 Onodai, Midori-ku, Chiba-shi, Chiba Wako Denko Co., Ltd. Research Laboratory (56) Reference JP-A-6-51146 (JP, A) JP 7-330902 (JP, A) JP 8-290046 (JP, A) JP 9-59380 (JP, A) JP 10-85571 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) C08G 73/00-73/26
Claims (3)
することにより、前記ポリイミドの屈折率を制御するこ
とを特徴とする光学用高分子材料の屈折率制御方法。1. A method of controlling the refractive index of an optical polymer material, which comprises controlling the refractive index of the polyimide by immersing the polyimide in a fluorine gas atmosphere.
中に浸漬することにより、前記フッ素化ポリイミドの屈
折率を制御することを特徴とする光学用高分子材料の屈
折率制御方法。2. A method of controlling the refractive index of an optical polymer material, which comprises controlling the refractive index of the fluorinated polyimide by immersing the fluorinated polyimide in a fluorine gas atmosphere.
フッ素ガス雰囲気中に浸漬することにより、前記フッ素
化ポリイミドの屈折率を制御することを特徴とする光学
用高分子材料の屈折率制御方法。3. The following structural formula: A method for controlling the refractive index of an optical polymer material, comprising controlling the refractive index of the fluorinated polyimide by immersing the fluorinated polyimide having the repeating unit represented by the above in a fluorine gas atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28840898A JP3477381B2 (en) | 1998-07-21 | 1998-10-09 | Method of controlling refractive index of optical polymer material by fluorination |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-205576 | 1998-07-21 | ||
JP20557698 | 1998-07-21 | ||
JP28840898A JP3477381B2 (en) | 1998-07-21 | 1998-10-09 | Method of controlling refractive index of optical polymer material by fluorination |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003295573A Division JP3737499B2 (en) | 1998-07-21 | 2003-08-19 | Surface hydrophilization method of optical polymer material moldings by fluorination |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000095862A JP2000095862A (en) | 2000-04-04 |
JP3477381B2 true JP3477381B2 (en) | 2003-12-10 |
Family
ID=26515134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28840898A Expired - Fee Related JP3477381B2 (en) | 1998-07-21 | 1998-10-09 | Method of controlling refractive index of optical polymer material by fluorination |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3477381B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4895320B2 (en) * | 2000-07-10 | 2012-03-14 | 日立化成工業株式会社 | Manufacturing method of optical waveguide device |
CN1388904A (en) * | 2000-08-09 | 2003-01-01 | 三井化学株式会社 | Optical members made of polyimide resins |
JP4926379B2 (en) * | 2004-03-23 | 2012-05-09 | 公益財団法人国際科学振興財団 | Method for producing transparent member having fluoride layer on surface and plastic member |
FR2914754B1 (en) * | 2007-04-05 | 2009-07-17 | Commissariat Energie Atomique | PLAN LIGHT CONCENTRATION DEVICE WITH REDUCED THICKNESS |
JP5110947B2 (en) | 2007-04-12 | 2012-12-26 | 富士フイルム株式会社 | Novel fluorine-containing ether compounds |
KR101883813B1 (en) | 2013-10-29 | 2018-07-31 | 스쿨 주리디칼 퍼슨 키타사토 인스티튜트 | Tool for vitrifying cryopreservation of cells or tissue |
-
1998
- 1998-10-09 JP JP28840898A patent/JP3477381B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000095862A (en) | 2000-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ando | Optical properties of fluorinated polyimides and their applications to optical components and waveguide circuits | |
US8277899B2 (en) | Porous films by backfilling with reactive compounds | |
US20030174994A1 (en) | Thermal polymer nanocomposites | |
US20030175004A1 (en) | Optical polymer nanocomposites | |
US20030180029A1 (en) | Optical polymer nanocomposite substrates with surface relief structures | |
WO1987006715A1 (en) | Organic optical waveguides | |
US5045397A (en) | Optical adhesive system having low refractive index | |
US6847773B2 (en) | Optical waveguide and method for manufacturing the same | |
JP3477381B2 (en) | Method of controlling refractive index of optical polymer material by fluorination | |
JP2005510746A (en) | Polymer optical waveguide on polymer substrate | |
US6327415B1 (en) | Optical waveguide made of polymer material and a method of fabricating the same | |
JP3737499B2 (en) | Surface hydrophilization method of optical polymer material moldings by fluorination | |
JP4185409B2 (en) | Manufacturing method of optical waveguide | |
JP2004309683A (en) | Optical waveguide and grating, lens, photonic crystal, and manufacturing method therefor | |
JP2002350664A (en) | Optical waveguide, optical wiring board, electric and optical mixed circuit board, and manufacturing method optical waveguide | |
Kaino | Linear Optical Properties of Organic Solids | |
JP3491043B1 (en) | Optical fiber probe manufacturing method and fine material processing method | |
JPH10239538A (en) | Plastic optical fiber machining method | |
JPH04238304A (en) | Production of optical waveguide | |
JPH03154007A (en) | Organic optical waveguide | |
JP2000081520A (en) | Resin composition for polymeric optical waveguide and polymeric optical waveguide using same | |
EP1778462B1 (en) | Method for manufacturing optical devices | |
JPH0756026A (en) | Production of plastic member for light transmission | |
JP3597056B2 (en) | Polymer material, optical waveguide and method for forming the same | |
DE60008384T2 (en) | WAVE GUIDE COMPONENTS OR STRUCTURES OR PARTS CONTAINING THEM POLYCYANATE COPOLYMERS MADE OF POLYFUNCTIONAL CYANATES AND FLUORINE MONOCYANATES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080926 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080926 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090926 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090926 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100926 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100926 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110926 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120926 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130926 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |