JPH0756026A - Production of plastic member for light transmission - Google Patents

Production of plastic member for light transmission

Info

Publication number
JPH0756026A
JPH0756026A JP5202176A JP20217693A JPH0756026A JP H0756026 A JPH0756026 A JP H0756026A JP 5202176 A JP5202176 A JP 5202176A JP 20217693 A JP20217693 A JP 20217693A JP H0756026 A JPH0756026 A JP H0756026A
Authority
JP
Japan
Prior art keywords
polymer
compound
refractive index
optical fiber
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5202176A
Other languages
Japanese (ja)
Other versions
JP3291854B2 (en
Inventor
Takehito Kobayashi
勇仁 小林
Toshifumi Hosoya
俊史 細谷
Takeshi Nonaka
毅 野中
Hiroo Matsuda
裕男 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP20217693A priority Critical patent/JP3291854B2/en
Publication of JPH0756026A publication Critical patent/JPH0756026A/en
Application granted granted Critical
Publication of JP3291854B2 publication Critical patent/JP3291854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To provide a process for production of the plastic member for light transmission which has a desired refractive index change, is easily produced and is inexpensive. CONSTITUTION:This plastic member is constituted by molding a circular cylinder 10 consisting of a polymer A having a photoreactive active group and diffusing a compd. C, which is formed by reaction with the polymer A and of which the refractive index (Nb) of the resulted product B thereof is lower than the refractive index (Na) of the polymer A from the outer periphery to the inside of the circular cylinder 10 by using a diffusion soln. 12 of this compd. C to form a concn. distribution in which the concn. of the compd. C decreases gradually from the outer peripheral part of the cylinder toward the center. The circular cylinder is thereafter irradiated with UV light capable of bringing the photoreactive active group of the polymer A into reaction, by which a photoreaction is effected and the product B is fixed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信に用いる光伝送
用プラスチック部材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical transmission plastic member used for optical communication.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】コアも
クラッドも共にプラスチックの光ファイバは、光信号の
送受を行う例えば電子装置間において、その伝送損失が
問題とされない近距離の光伝送路として、ガラスファイ
バと比べて使いやすく低価格なために、多用されてお
り、特にLAN,ISDN等の次世代通信網構想におい
て重要となっている。
2. Description of the Related Art An optical fiber having both a core and a clad made of plastic is used as a short-distance optical transmission line in which transmission loss is not a problem between electronic devices for transmitting and receiving optical signals. Since it is easier to use and cheaper than glass fiber, it is widely used and is particularly important in the concept of next-generation communication networks such as LAN and ISDN.

【0003】従来においては、図3に示すようにこのプ
ラスチック光ファイバ01は、コア02にPMMA(ポ
リメチルメタクリレート樹脂),PC(ポリカーボネー
ト樹脂)又はこれらの共重合樹脂等を用い、クラッド0
3にフッ素樹脂を用いてなる図3(B)に示すような屈
折率分布を有する、ステップインデックス(SI)型光
ファイバが実用化されている。
Conventionally, as shown in FIG. 3, in the plastic optical fiber 01, PMMA (polymethylmethacrylate resin), PC (polycarbonate resin) or a copolymer resin of these is used for the core 02, and the cladding 0
A step index (SI) type optical fiber having a refractive index distribution as shown in FIG.

【0004】また、このSI型光ファイバに対して時間
当りの情報量を多量に送れる、図3(C)に示すような
屈折率分布を有する、グレートインデックス(GI)型
光ファイバは、例えば特公昭52−5857号,特公昭
54−30301号,特開昭61−130904号,特
公昭61−130904号等の各公報等に開示されてい
るが、製造上等の観点から種々の問題があり、未だ所望
のものが得られていない。
Further, a great index (GI) type optical fiber having a refractive index distribution as shown in FIG. 3C, which can send a large amount of information per time to this SI type optical fiber, is, for example, a special one. It is disclosed in various publications such as JP-B-52-5857, JP-B-54-30301, JP-A-61-130904 and JP-B-61-130904, but there are various problems from the viewpoint of manufacturing. , I haven't got what I want.

【0005】一方、本出願人も円筒内に屈折率差の異な
る二種の材料を注入して遠心力作用下で重合積層させる
ことを繰返して屈折率が連続的に変化するプラスチック
光ファイバ用プリフォームの製造方法について先に提案
したが(特開昭60−119509号公報参照)、所望
の設計値通りに屈折率を管理するために手間がかかり、
廉価に製造できないという問題がある。
On the other hand, the applicant of the present invention also has a plastic optical fiber plug whose refractive index changes continuously by repeatedly injecting two kinds of materials having different refractive indexes into a cylinder and polymerizing and laminating the materials under centrifugal force. Although a method for manufacturing a reform has been previously proposed (see Japanese Patent Laid-Open No. 60-119509), it takes time to manage the refractive index according to a desired design value,
There is a problem that it cannot be manufactured at a low price.

【0006】本発明は上記問題に鑑み、所望の屈折率変
化を有し、且つ製造が簡易で廉価となる光伝送用プラス
チック部材の製造方法を提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide a method of manufacturing a plastic member for optical transmission which has a desired change in refractive index and is simple and inexpensive to manufacture.

【0007】[0007]

【課題を解決するための手段】前記目的を達成する本発
明に係る光伝送用プラスチック部材の第1の製造方法
は、光反応性の活性基を有する重合体Aからなる円柱体
又は線状体を成形し、上記重合体Aと反応してなると共
にその生成物Bの屈折率(Nb)が当該重合体Aの屈折
率(Na)より低くなる化合物Cを用い、上記円柱体又
は線状体の外周からその内部にかけて上記化合物Cを拡
散させ、その外周部から中心にかけて当該化合物Cの濃
度が漸次減少した濃度分布を形成し、その後、外部より
重合体Aの光反応性の活性基を反応させ得る光を照射し
て光反応させ、生成物Bを固定することを特徴とする。
A first method for producing a plastic member for optical transmission according to the present invention, which achieves the above object, is a columnar body or a linear body made of a polymer A having a photoreactive active group. A columnar body or a linear body using a compound C which is formed by reacting with the polymer A and has a refractive index (Nb) of the product B lower than that of the polymer A (Na). The compound C is diffused from the outer periphery to the inner part of the polymer to form a concentration distribution in which the concentration of the compound C is gradually reduced from the outer periphery to the center, and then the photoreactive active group of the polymer A is reacted from the outside. It is characterized in that the product B is fixed by irradiating light capable of causing the photoreaction.

【0008】また、第2の製造方法は、光反応性の活性
基を有する重合体Aと、上記重合体Aと反応してなると
共にその生成物Dの屈折率(Nd)が当該重合体Aの屈
折率(Na)より高くなる化合物Eとを用いて、円柱体
又は線状体を成形し、次いで、上記円柱体又は線状体の
外周から上記化合物Eを揮発させ、その外周部から中心
にかけて当該化合物Eの濃度が漸次減少した濃度分布を
形成し、その後、外部より重合体Aの光反応性の活性基
を反応させ得る光を照射して光反応させ、生成物Dを固
定することを特徴とする。
In the second production method, the polymer A having a photoreactive active group is reacted with the polymer A and the product D has a refractive index (Nd) of the polymer A. And a compound E having a refractive index (Na) higher than that of the above, a columnar body or a linear body is molded, and then the compound E is volatilized from the outer periphery of the columnar body or the linear body, and a center is formed from the outer periphery. To form a concentration distribution in which the concentration of the compound E is gradually reduced, and then to externally irradiate light capable of reacting the photoreactive active group of the polymer A to cause a photoreaction to fix the product D. Is characterized by.

【0009】また、第3の製造方法は、光反応性の活性
基を有する重合体Aと、上記重合体Aと反応してなると
共にその生成物Dの屈折率(Nd)が当該重合体Aの屈
折率(Na)より高くなる化合物Eとを用いて、円柱体
又は線状体を成形し、次いで、上記円柱体又は線状体の
外周から上記化合物Eを揮発させ、その外周部から中心
にかけて当該化合物Eの濃度が漸次減少した濃度分布を
形成すると共に、或いはその後に、上記重合体Aと反応
してなると共にその生成物Bの屈折率(Nb)が当該重
合体Aの屈折率(Na)より低くなる化合物Cを用い、
上記円柱体又は線状体の外周からその内部にかけて上記
化合物Cを拡散させ、その後、外部より重合体Aの光反
応性の活性基を反応させ得る光を照射して光反応させ、
生成物を固定することを特徴とする。
In the third production method, the polymer A having a photoreactive active group is reacted with the polymer A, and the product D has a refractive index (Nd) of the polymer A. And a compound E having a refractive index (Na) higher than that of the above, a columnar body or a linear body is molded, and then the compound E is volatilized from the outer periphery of the columnar body or the linear body, and a center is formed from the outer periphery. To form a concentration distribution in which the concentration of the compound E is gradually decreased, or after that, the reaction is performed with the polymer A, and the refractive index (Nb) of the product B is the refractive index of the polymer A ( Using a compound C which is lower than Na),
The compound C is diffused from the outer periphery of the columnar body or the linear body to the inside thereof, and thereafter, light capable of reacting the photoreactive active group of the polymer A is irradiated from the outside to cause a photoreaction,
It is characterized in that the product is fixed.

【0010】また、上記製造において、円柱体がプラス
チック光ファイバ用母材であり、線状体がプラスチック
光ファイバであることを特徴とする。
Further, in the above manufacturing, the cylindrical body is a plastic optical fiber preform, and the linear body is a plastic optical fiber.

【0011】さらに、上記製造において、円柱体がプラ
スチック光ファイバ用母材であり、且つ当該光ファイバ
用母材を加熱溶融して光ファイバに線引した後、化合物
Aの光反応を行うことを特徴とする。
Further, in the above production, the cylindrical body is the preform for the plastic optical fiber, and the preform for the optical fiber is heated and melted and drawn into the optical fiber, and then the photoreaction of the compound A is performed. Characterize.

【0012】以下、本発明の内容を説明する。The contents of the present invention will be described below.

【0013】ここで、本発明で光反応性の活性基を有す
る重合体Aとは、例えば紫外線等の熱エネルギを有する
光を照射することで活性基同志が反応し、化学的に結合
するものであり、側鎖に例えば桂皮酸残基等のα・β−
不飽和カルボニル基を含む重合体又は共重合体をいう。
具体的には桂皮酸残基を含むエチレン−P−ビニル桂皮
酸エチル(屈折率:Na=1.525)を例示できる。
Here, the polymer A having a photoreactive active group in the present invention is a compound in which the active groups react with each other by irradiation with light having heat energy such as ultraviolet rays and chemically bond with each other. And the side chain has, for example, α / β- such as cinnamic acid residue.
A polymer or copolymer containing an unsaturated carbonyl group.
Specifically, ethylene-P-vinyl ethyl cinnamate containing a cinnamic acid residue (refractive index: Na = 1.525) can be exemplified.

【0014】上記重合体Aと反応し、得られる生成物B
の屈折率(Nb)が重合体Aの屈折率(Na)より低い
ものとなる化合物Cとは、上記重合体Aをエチレン−桂
皮酸ビニル共重合体とした場合、桂皮酸トリフルオロエ
チルエステル(屈折率:Nc=1.485)を例示するこ
とができる。
The product B obtained by reacting with the above polymer A
The compound C having a lower refractive index (Nb) than the refractive index (Na) of the polymer A means cinnamic acid trifluoroethyl ester (when the polymer A is an ethylene-vinyl cinnamate copolymer). Refractive index: Nc = 1.485) can be exemplified.

【0015】次に、プラスチック光ファイバ用母材を製
造する一例を図1を参照して説明する。
Next, an example of manufacturing a plastic optical fiber preform will be described with reference to FIG.

【0016】図1は本発明の方法に用いられる塗布装置
の概略図であり、同図中、符号10は円柱体、11は浸
漬タンク、12は拡散溶液を各々図示する。
FIG. 1 is a schematic view of a coating apparatus used in the method of the present invention. In the figure, reference numeral 10 is a cylindrical body, 11 is a dipping tank, and 12 is a diffusion solution.

【0017】本発明の第1の製造方法は、光反応性の活
性基を有する重合体Aを円柱状の円柱体10に整形し、
次いでこの円柱体10を、拡散溶液12としての化合物
Cが入れられている浸漬タンク11内に浸漬する(図1
(A)参照)。所定条件で浸漬させた後、円柱体10を
引き上げ、当該円柱体10を回転させながら、紫外線
(UV)を外部より照射する(図1(B),(C)参
照)。この結果、化合物Cの濃度分布に沿った形で、屈
折率がその中心から外部に向って漸次減少した屈折率分
布を有するプラスチック光ファイバ母材を得る。上述し
た浸漬式の塗布の他に、例えば刷毛を用いた刷毛塗りに
よっても同様に行うことができる。
In the first production method of the present invention, the polymer A having a photoreactive active group is shaped into a cylindrical columnar body 10,
Next, the columnar body 10 is immersed in an immersion tank 11 containing a compound C as a diffusion solution 12 (see FIG. 1).
(See (A)). After soaking under a predetermined condition, the columnar body 10 is pulled up, and while the columnar body 10 is rotated, ultraviolet rays (UV) are irradiated from the outside (see FIGS. 1B and 1C). As a result, a plastic optical fiber preform having a refractive index distribution in which the refractive index gradually decreases from the center to the outside along the concentration distribution of the compound C is obtained. In addition to the above-mentioned dipping-type application, for example, a brush application using a brush may be similarly performed.

【0018】図2(A)は、このようにして得られたプ
ラスチック光ファイバ母材13を示し、図2(B)はそ
のGI型の屈折率分布を示す。
FIG. 2A shows the plastic optical fiber preform 13 thus obtained, and FIG. 2B shows its GI type refractive index profile.

【0019】上述したようにして得られた光ファイバ母
材は、通常の線引き操作、例えば当該光ファイバ母材を
鉛直状態に保持して加熱溶融し、所望のプラスチック光
ファイバを得る。
The optical fiber preform obtained as described above is subjected to a normal drawing operation, for example, holding the optical fiber preform in a vertical state and heating and melting it to obtain a desired plastic optical fiber.

【0020】上述した方法は、所望の光ファイバ母材を
形成した後、線引して光ファイバを作製したものである
が、本発明はこれに限定されず、重合体Aで円柱体の代
りに所定の線状体を形成した後、上述した操作を同様に
して行ってもよい。その際、光反応させるには、線状体
を巻取りつつ紫外線照射を行うようにすればよい。
In the above-mentioned method, an optical fiber is manufactured by forming a desired optical fiber preform and then drawing the optical fiber. However, the present invention is not limited to this, and the polymer A is used instead of the cylindrical body. After forming a predetermined linear body on the above, the above-mentioned operation may be performed in the same manner. At that time, in order to cause a photoreaction, it is sufficient to irradiate the ultraviolet rays while winding the linear body.

【0021】また、上述した第1の製造方法は、重合体
Aからなる円柱体又は線状体に化合物Cを含侵させるよ
うにしたものであるが、このような操作の外に、第2の
製造方法として、上記重合体Aと反応してなると共にそ
の生成物Dが重合体Aの屈折率(Na)より高くなる化
合物Eを用い、先ずこれら重合体Aと化合物Eとから、
円柱体又は線状体を形成する。次いで、化合物Eをその
成形体から揮発させ、化合物Eの濃度がその中心から外
周部にかけて漸次減少した濃度分布とし、その後、外部
から光を照射することで、該濃度分布に沿った形で連続
した屈折率分布を形成し、重合体Aと化合物Eとの反応
による生成物Dを円柱体又は線状体に固定するようにし
てもよい。
In the first production method described above, the compound C is impregnated into the columnar body or linear body made of the polymer A. In addition to such an operation, the second method is used. As a method for producing the above, a compound E which is produced by reacting with the polymer A and the product D of which is higher than the refractive index (Na) of the polymer A is used. First, from the polymer A and the compound E,
Form a cylindrical body or a linear body. Then, the compound E is volatilized from the molded body to obtain a concentration distribution in which the concentration of the compound E is gradually reduced from the center to the outer peripheral portion, and thereafter, by irradiating light from the outside, the compound E is continuously formed in a form along the concentration distribution. The product D formed by the reaction between the polymer A and the compound E may be fixed to a columnar body or a linear body by forming the above refractive index distribution.

【0022】ここで、化合物Eとしては、重合体Aが桂
皮酸残基を有するエチレン−桂皮酸ビニル共重合体(屈
折率:Na=1.525)の場合、例えば桂皮酸エチルエ
ステルを例示することができる。
Here, as the compound E, when the polymer A is an ethylene-vinyl cinnamate copolymer having a cinnamic acid residue (refractive index: Na = 1.525), for example, cinnamic acid ethyl ester is exemplified. be able to.

【0023】さらに、第3の製造方法として上述した2
種類の方法を併用する方法、すなわち、第2の方法によ
って化合物Eが中心から外周部にかけての連続した濃度
分布を形成し、同時に、或いはその後に、第1の方法に
よって化合物Cを用いてその内部に拡散させ、次いで外
部より光を照射することにより、反応生成物の濃度分布
を変化させその中心から外周部にかけて漸次屈折率が減
少してなる円柱体又は線状体を得るようにしてもよい。
Further, as the third manufacturing method, the above-mentioned 2
Method in which two kinds of methods are used in combination, that is, the compound E forms a continuous concentration distribution from the center to the outer peripheral portion by the second method, and at the same time or after that, the compound C is formed by using the compound C by the first method. It is also possible to obtain a columnar body or a linear body in which the concentration distribution of the reaction product is changed by gradually diffusing it to the outside and then gradually changing the refractive index from the center to the outer periphery. .

【0024】上述した重合体A及びその具体例,生成物
B,化合物C,生成物D及び化合物Eの化学式を次記
「化1」〜「化6」に各々示す。
The chemical formulas of the above-mentioned polymer A and its specific examples, product B, compound C, product D and compound E are shown in the following "Chemical formula 1" to "Chemical formula 6", respectively.

【0025】[0025]

【化1】 [Chemical 1]

【0026】[0026]

【化2】 [Chemical 2]

【0027】[0027]

【化3】 [Chemical 3]

【0028】[0028]

【化4】 [Chemical 4]

【0029】[0029]

【化5】 [Chemical 5]

【0030】[0030]

【化6】 [Chemical 6]

【0031】[0031]

【実施例】以下、本発明の好適な実施例を説明する。The preferred embodiments of the present invention will be described below.

【0032】(実施例1)前述した図1を参照して実施
例1を説明する。桂皮酸残基1 mol%を含むエチレン−
P−ビニル桂皮酸エチル(重合体A,Na=1.525)
を、100℃に加熱混練し、押出し成形により、直径1
0mm×長さ300mmの円柱体10を得た。該円柱体10
を、拡散溶液12として桂皮酸トリフルオロエチルエス
テル(化合物C;Nc=1.485)70℃の液体中に、
約4時間浸積し、該円柱体10の中央部を除いて該エス
テルを含浸している状態にした(図1(B)参照)。次
に、含浸後の円柱体を回転させつつ、その外周部より、
紫外線ランプ(1kw水銀ランプ)を用いて約20分間紫
外線照射し、該桂皮酸残基と該エステルとを光2量化反
応により化学的に結合させ、プラスチック光ファイバ母
材13を得た(図1(C)参照)。この光ファイバ母材
13を干渉顕微鏡(溝尻社製)により測定したところ、
中心部での屈折率がnD =1.523、周辺部がnD =1.
497であり、その分布はGI型の屈折率分布であった
(図2(A),(B)参照)。
(Embodiment 1) Embodiment 1 will be described with reference to FIG. Ethylene containing 1 mol% of cinnamic acid residue
Ethyl P-vinyl cinnamate (Polymer A, Na = 1.525)
Is kneaded by heating to 100 ° C. and extruded to give a diameter of 1
A cylindrical body 10 having a length of 0 mm and a length of 300 mm was obtained. The cylindrical body 10
As a diffusion solution 12 in a liquid of cinnamic acid trifluoroethyl ester (compound C; Nc = 1.485) at 70 ° C.,
It was immersed for about 4 hours, and was made to be in a state of being impregnated with the ester except for the central portion of the columnar body 10 (see FIG. 1B). Next, while rotating the cylindrical body after impregnation, from the outer peripheral portion,
Ultraviolet irradiation was carried out for about 20 minutes using an ultraviolet lamp (1 kw mercury lamp) to chemically bond the cinnamic acid residue and the ester by a photodimerization reaction to obtain a plastic optical fiber preform 13 (Fig. 1). (See (C)). When the optical fiber preform 13 was measured by an interference microscope (manufactured by Mizojiri Co., Ltd.),
The refractive index in the central part is n D = 1.523, and the refractive index in the peripheral part is n D = 1.
497, and the distribution was a GI type refractive index distribution (see FIGS. 2A and 2B).

【0033】(実施例2)桂皮酸残基1 mol%を含むエ
チレン−P−ビニル桂皮酸エチル(重合体A,Na=1.
525)を、100℃に加熱混練し、押出し成形によ
り、直径500μm×長さ300mの線状体を得た。該
線状体を、桂皮酸トリフルオロエチルエステル(化合物
C;Nc=1.485)40℃の液体中に、約5分間浸積
し、該線状体の中央部を除いて該エステルを含浸してい
る状態にした。次に、含浸後の線状体を線速50m/分
にて巻取りつつ、その外周部より、紫外線ランプ(1kw
水銀ランプ)を用いて紫外線照射し、該桂皮酸残基と該
エステルとを光2量化反応により化学的に結合させ、プ
ラスチック光ファイバを得た。この光ファイバを干渉顕
微鏡(溝尻社製)により測定したところ、中心部での屈
折率がnD =1.53、周辺部がnD =1.50であり、そ
の分布はGI型の屈折率分布であった。
(Example 2) Ethyl ethylene-P-vinyl cinnamate containing 1 mol% of cinnamic acid residue (polymer A, Na = 1.
525) was kneaded by heating at 100 ° C. and extruded to obtain a linear body having a diameter of 500 μm and a length of 300 m. The linear body was immersed in a liquid of cinnamic acid trifluoroethyl ester (compound C; Nc = 1.485) at 40 ° C. for about 5 minutes, and the ester was impregnated except the central portion of the linear body. I was in a state of doing. Next, while winding the impregnated linear body at a linear velocity of 50 m / min, an ultraviolet lamp (1 kw
It was irradiated with ultraviolet rays using a mercury lamp) to chemically bond the cinnamic acid residue and the ester by a photodimerization reaction to obtain a plastic optical fiber. When this optical fiber was measured by an interference microscope (manufactured by Mizojiri Co., Ltd.), the refractive index at the central portion was n D = 1.53, and the peripheral portion was n D = 1.50, and its distribution was a GI type refractive index. It was a distribution.

【0034】(実施例3)桂皮酸残基1 mol%を含むエ
チレン−P−ビニル桂皮酸エチル(重合体A,Na=1.
525)85重量部と桂皮酸エチルエステル(化合物
E)15重量部とを、100℃に加熱混練し、押出し成
形により、直径10mm×長さ300mmの円柱体を得た。
該円柱体を、5mmHg減圧下、50℃にて1時間乾燥し、
該円柱体中の桂皮酸エチルエステルを一部揮発させた。
次に、揮発後の円柱体を回転させつつ、その外周部よ
り、紫外線ランプ(1kw水銀ランプ)を用いて約20分
間紫外線照射し、該桂皮酸残基と該エステルとを光2量
化反応により化学的に結合させ、プラスチック光ファイ
バ母材を得た。この光ファイバ母材を干渉顕微鏡(溝尻
社製)により測定したところ、中心部での屈折率がnD
=1.562、周辺部がnD =1.525であり、その分布
はGI型の屈折率分布であった。
Example 3 Ethyl ethylene-P-vinyl cinnamate containing 1 mol% cinnamic acid residue (polymer A, Na = 1.
525) 85 parts by weight and 15 parts by weight of cinnamic acid ethyl ester (compound E) were kneaded by heating at 100 ° C. and extruded to obtain a cylindrical body having a diameter of 10 mm and a length of 300 mm.
The cylinder is dried under reduced pressure of 5 mmHg at 50 ° C. for 1 hour,
The cinnamic acid ethyl ester in the column was partially volatilized.
Next, while the columnar body after volatilization was rotated, ultraviolet rays were irradiated from its outer peripheral portion for about 20 minutes using an ultraviolet lamp (1 kw mercury lamp), and the cinnamic acid residue and the ester were subjected to a photodimerization reaction. It was chemically bonded to obtain a plastic optical fiber preform. When this optical fiber preform was measured with an interference microscope (Mizojiri Co., Ltd.), the refractive index at the center was n D.
= 1.562, the peripheral part had n D = 1.525, and the distribution was a GI type refractive index distribution.

【0035】(実施例4)桂皮酸残基1 mol%を含むエ
チレン−P−ビニル桂皮酸エチル(重合体A,Na=1.
525)85重量部と桂皮酸エチルエステル(化合物
E)15重量部とを、100℃に加熱混練し、押出し成
形により、直径500μm×長さ300mの線状体を得
た。該線状体を、25mmHg減圧下、50℃にて10分間
乾燥し、該線状体中の桂皮酸エチルエステルを一部揮発
させた。次に、揮発後の線状体を線速50m/分にて巻
取りつつ、その外周部より、紫外線ランプ(1kw水銀ラ
ンプ)を用いて紫外線照射し、該桂皮酸残基と該エステ
ルとを光2量化反応により化学的に結合させ、プラスチ
ック光ファイバを得た。この光ファイバを干渉顕微鏡
(溝尻社製)により測定したところ、中心部での屈折率
がnD =1.56、周辺部がnD =1.53であり、その分
布はGI型の屈折率分布であった。
Example 4 Ethyl ethylene-P-vinyl cinnamate containing 1 mol% cinnamic acid residue (polymer A, Na = 1.
525) 85 parts by weight and 15 parts by weight of cinnamic acid ethyl ester (compound E) were kneaded by heating at 100 ° C. and extruded to obtain a linear body having a diameter of 500 μm × a length of 300 m. The linear body was dried under reduced pressure of 25 mmHg at 50 ° C. for 10 minutes to partially volatilize cinnamic acid ethyl ester in the linear body. Next, while winding the volatilized linear body at a linear velocity of 50 m / min, the peripheral portion thereof was irradiated with ultraviolet rays using an ultraviolet lamp (1 kw mercury lamp) to remove the cinnamic acid residue and the ester. A plastic optical fiber was obtained by chemically bonding by a photodimerization reaction. When this optical fiber was measured by an interference microscope (manufactured by Mizojiri Co., Ltd.), the refractive index in the central part was n D = 1.56, and the peripheral part was n D = 1.53, and its distribution was a GI type refractive index. It was a distribution.

【0036】(実施例5)桂皮酸残基1 mol%を含むエ
チレン−P−ビニル桂皮酸エチル(重合体A,Na=1.
525)85重量部と桂皮酸エチルエステル(化合物
E)15重量部とを、100℃に加熱混練し、押出し成
形により、直径10mm×長さ300mmの円柱体を得た。
該円柱体を、桂皮酸トリフルオロエチルエステル(化合
物C;Nc=1.485)70℃の液体中に、約1時間浸
積し、該円柱体形の該エステルを部分的にフルオロエチ
ルエステルと置換した。次に、置換後の円柱体を回転さ
せつつ、その外周部より、紫外線ランプ(1kw水銀ラン
プ)を用いて約20分間紫外線照射し、該桂皮酸残基と
該エステル及び該フルオロエステルとを光2量化反応に
より化学的に結合させ、プラスチック光ファイバ母材を
得た。この光ファイバ母材を干渉顕微鏡(溝尻社製)に
より測定したところ、中心部での屈折率がnD =1.56
3、周辺部がnD =1.499であり、その分布はGI型
の屈折率分布であった。
Example 5 Ethyl ethylene-P-vinyl cinnamate containing 1 mol% cinnamic acid residue (Polymer A, Na = 1.
525) 85 parts by weight and 15 parts by weight of cinnamic acid ethyl ester (compound E) were kneaded by heating at 100 ° C. and extruded to obtain a cylindrical body having a diameter of 10 mm and a length of 300 mm.
The columnar body was immersed in a liquid of cinnamic acid trifluoroethyl ester (Compound C; Nc = 1.485) at 70 ° C. for about 1 hour to partially replace the columnar ester with fluoroethyl ester. did. Next, while rotating the columnar body after the substitution, ultraviolet rays are irradiated from its outer peripheral portion for about 20 minutes using an ultraviolet lamp (1 kw mercury lamp), and the cinnamic acid residue, the ester and the fluoroester are exposed to light. It was chemically bound by a dimerization reaction to obtain a plastic optical fiber preform. When this optical fiber preform was measured with an interference microscope (Mizojiri Co., Ltd.), the refractive index at the center was n D = 1.56.
3, n D = 1.499 in the peripheral portion, and the distribution was a GI type refractive index distribution.

【0037】(実施例6)桂皮酸残基1 mol%を含むエ
チレン−P−ビニル桂皮酸エチル(重合体A,Na=1.
525)85重量部と桂皮酸エチルエステル(化合物
E)15重量部とを、100℃に加熱混練し、押出し成
形により、直径500μm×長さ300mの線状体を得
た。該線状体を、桂皮酸トリフルオロエチルエステル
(化合物C;Nc=1.485)40℃の液体中に、約3
分間浸積し、該線状体の該エステルを部分的にフルオロ
エチルエステルと置換した。次に、置換後の線状体を線
速50m/分にて巻取りつつ、その外周部より、紫外線
ランプ(1kw水銀ランプ)を用いて紫外線照射し、該桂
皮酸残基と該エステル及び該フルオロエステルとを光2
量化反応により化学的に結合させ、プラスチック光ファ
イバを得た。この光ファイバを干渉顕微鏡(溝尻社製)
により測定したところ、中心部での屈折率がnD =1.5
6、周辺部がnD =1.50であり、その分布はGI型の
屈折率分布であった。
Example 6 Ethyl ethylene-P-vinyl cinnamate containing 1 mol% cinnamic acid residue (polymer A, Na = 1.
525) 85 parts by weight and 15 parts by weight of cinnamic acid ethyl ester (compound E) were kneaded by heating at 100 ° C. and extruded to obtain a linear body having a diameter of 500 μm × a length of 300 m. Approximately 3 parts of the linear compound was added to cinnamic acid trifluoroethyl ester (compound C; Nc = 1.485) at 40 ° C.
Dipping for a minute allowed the ester of the linear to partially replace the fluoroethyl ester. Next, while winding the substituted linear body at a linear velocity of 50 m / min, the peripheral portion of the linear body was irradiated with ultraviolet rays using an ultraviolet lamp (1 kw mercury lamp) to obtain the cinnamic acid residue, the ester, and the ester. Fluoroester and light 2
It was chemically bound by a quantification reaction to obtain a plastic optical fiber. This optical fiber is an interference microscope (Mizojiri)
The refractive index in the central part was measured as follows: n D = 1.5
6, n D = 1.50 in the peripheral portion, and its distribution was a GI type refractive index distribution.

【0038】[0038]

【発明の効果】以上、実施例と共に述べたように本発明
によれば、従来の方法では極めて困難であった屈折率分
布の制御を容易で且つ簡易な方法で、均質なGI型のプ
ラスチック光ファイバ母材を得ることができる。
As described above with reference to the embodiments, according to the present invention, it is possible to control the refractive index distribution, which is extremely difficult by the conventional method, by an easy and simple method, and a uniform GI type plastic optical material. A fiber preform can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の概略図である。FIG. 1 is a schematic diagram of the method of the present invention.

【図2】プラスチック母材とその屈折率分布図である。FIG. 2 is a plastic base material and its refractive index distribution chart.

【図3】(A)はプラスチック母材の概略図であり、
(B)はSI型の屈折率分布図、(C)はGI型の屈折
率分布図である。
FIG. 3A is a schematic view of a plastic base material,
(B) is a SI type refractive index profile and (C) is a GI type refractive index profile.

【符号の説明】[Explanation of symbols]

10 円柱体 11 浸漬タンク 12 溶液 13 光ファイバ母材 10 Cylindrical body 11 Immersion tank 12 Solution 13 Optical fiber base material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松田 裕男 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroo Matsuda 1 Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa Sumitomo Electric Industries, Ltd. Yokohama Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光反応性の活性基を有する重合体Aから
なる円柱体又は線状体を成形し、上記重合体Aと反応し
てなると共にその生成物Bの屈折率(Nb)が当該重合
体Aの屈折率(Na)より低くなる化合物Cを用い、上
記円柱体又は線状体の外周からその内部にかけて上記化
合物Cを拡散させ、その外周部から中心にかけて当該化
合物Cの濃度が漸次減少した濃度分布を形成し、その
後、外部より重合体Aの光反応性の活性基を反応させ得
る光を照射して光反応させ、生成物を固定することを特
徴とする光伝送用プラスチック部材の製造方法。
1. A cylindrical body or a linear body made of a polymer A having a photoreactive active group is molded and reacted with the polymer A, and the product B has a refractive index (Nb) of Using the compound C having a refractive index (Na) lower than that of the polymer A, the compound C is diffused from the outer circumference to the inside of the cylindrical body or the linear body, and the concentration of the compound C gradually increases from the outer circumference to the center. A plastic member for optical transmission, characterized by forming a reduced concentration distribution, and then irradiating light capable of reacting the photoreactive active group of the polymer A from the outside to cause a photoreaction to fix the product. Manufacturing method.
【請求項2】 光反応性の活性基を有する重合体Aと、
上記重合体Aと反応してなると共にその生成物Dの屈折
率(Nd)が当該重合体Aの屈折率(Na)より高くな
る化合物Eとを用いて、円柱体又は線状体を成形し、次
いで、上記円柱体又は線状体の外周から上記化合物Eを
揮発させ、その外周部から中心にかけて当該化合物Eの
濃度が漸次減少した濃度分布を形成し、その後、外部よ
り重合体Aの光反応性の活性基を反応させ得る光を照射
して光反応させ、生成物を固定することを特徴とする光
伝送用プラスチック部材の製造方法。
2. A polymer A having a photoreactive active group,
A columnar body or a linear body is formed by using the compound E which reacts with the polymer A and has a refractive index (Nd) of the product D higher than the refractive index (Na) of the polymer A. Then, the compound E is volatilized from the outer periphery of the columnar body or the linear body to form a concentration distribution in which the concentration of the compound E is gradually reduced from the outer periphery to the center, and then the light of the polymer A is externally applied. A method for producing a plastic member for optical transmission, which comprises irradiating light capable of reacting a reactive active group to cause photoreaction to fix the product.
【請求項3】 光反応性の活性基を有する重合体Aと、
上記重合体Aと反応してなると共にその生成物Dの屈折
率(Nd)が当該重合体Aの屈折率(Na)より高くな
る化合物Eとを用いて、円柱体又は線状体を成形し、次
いで、上記円柱体又は線状体の外周から上記化合物Eを
揮発させ、その外周部から中心にかけて当該化合物Eの
濃度が漸次減少した濃度分布を形成すると共に、或いは
その後に、上記重合体Aと反応してなると共にその生成
物Bの屈折率(Nb)が当該重合体Aの屈折率(Na)
より低くなる化合物Cを用い、上記円柱体又は線状体の
外周からその内部にかけて上記化合物Cを拡散させ、そ
の後、外部より重合体Aの光反応性の活性基を反応させ
得る光を照射して光反応させ、生成物を固定することを
特徴とする光伝送用プラスチック部材の製造方法。
3. A polymer A having a photoreactive active group,
A columnar body or a linear body is formed by using the compound E which reacts with the polymer A and has a refractive index (Nd) of the product D higher than the refractive index (Na) of the polymer A. Then, the compound E is volatilized from the outer periphery of the columnar body or the linear body to form a concentration distribution in which the concentration of the compound E gradually decreases from the outer periphery to the center, or after that, the polymer A And the product B has a refractive index (Nb) of the polymer A.
By using the compound C which becomes lower, the compound C is diffused from the outer periphery of the columnar body or the linear body to the inside thereof, and thereafter, a light capable of reacting the photoreactive active group of the polymer A is irradiated from the outside. A method for producing a plastic member for optical transmission, characterized in that the product is fixed by photoreacting with light.
【請求項4】 請求項1〜3において、円柱体がプラス
チック光ファイバ用母材であり、線状体がプラスチック
光ファイバであることを特徴とする光伝送用プラスチッ
ク部材の製造方法。
4. The method for manufacturing a plastic member for optical transmission according to claim 1, wherein the cylindrical body is a base material for a plastic optical fiber, and the linear body is a plastic optical fiber.
【請求項5】 請求項1〜3において、円柱体がプラス
チック光ファイバ用母材であり、且つ当該光ファイバ用
母材を加熱溶融して光ファイバに線引した後、化合物A
の光反応を行うことを特徴とする光伝送用プラスチック
部材の製造方法。
5. The compound A according to claim 1, wherein the cylindrical body is a plastic optical fiber preform, and the optical fiber preform is heated and melted and drawn into an optical fiber.
A method for producing a plastic member for optical transmission, which comprises performing the photoreaction of
JP20217693A 1993-08-16 1993-08-16 Method of manufacturing plastic member for optical transmission Expired - Fee Related JP3291854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20217693A JP3291854B2 (en) 1993-08-16 1993-08-16 Method of manufacturing plastic member for optical transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20217693A JP3291854B2 (en) 1993-08-16 1993-08-16 Method of manufacturing plastic member for optical transmission

Publications (2)

Publication Number Publication Date
JPH0756026A true JPH0756026A (en) 1995-03-03
JP3291854B2 JP3291854B2 (en) 2002-06-17

Family

ID=16453228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20217693A Expired - Fee Related JP3291854B2 (en) 1993-08-16 1993-08-16 Method of manufacturing plastic member for optical transmission

Country Status (1)

Country Link
JP (1) JP3291854B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787289B2 (en) 2001-12-21 2004-09-07 Jsr Corporation Radiation sensitive refractive index changing composition and refractive index changing method
US6828078B2 (en) 2000-08-29 2004-12-07 Jsr Corporation Composition having refractive index sensitively changeable by radiation and method for forming refractive index pattern
US7071255B2 (en) 2001-02-19 2006-07-04 Jsr Corporation Radiation-sensitive composition capable of having refractive index distribution
US7108954B2 (en) 2000-12-11 2006-09-19 Jsr Corporation Radiation-sensitive composition changing in refractive index and method of changing refractive index
US7125647B2 (en) 2001-03-13 2006-10-24 Jsr Corporation Radiation-sensitive composition changing in refractive index and utilization thereof
US7320854B2 (en) 2003-06-25 2008-01-22 Jsr Corporation Radiation sensitive refractive index changing composition, pattern forming method and optical material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828078B2 (en) 2000-08-29 2004-12-07 Jsr Corporation Composition having refractive index sensitively changeable by radiation and method for forming refractive index pattern
US7108954B2 (en) 2000-12-11 2006-09-19 Jsr Corporation Radiation-sensitive composition changing in refractive index and method of changing refractive index
US7071255B2 (en) 2001-02-19 2006-07-04 Jsr Corporation Radiation-sensitive composition capable of having refractive index distribution
US7125647B2 (en) 2001-03-13 2006-10-24 Jsr Corporation Radiation-sensitive composition changing in refractive index and utilization thereof
US6787289B2 (en) 2001-12-21 2004-09-07 Jsr Corporation Radiation sensitive refractive index changing composition and refractive index changing method
US7320854B2 (en) 2003-06-25 2008-01-22 Jsr Corporation Radiation sensitive refractive index changing composition, pattern forming method and optical material

Also Published As

Publication number Publication date
JP3291854B2 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
JPS603026B2 (en) How to coat optical fiber
JP3291854B2 (en) Method of manufacturing plastic member for optical transmission
JPS58178302A (en) Optical fiber of heat resistant plastic
US4908053A (en) Process for producing chalcogenide glass fiber
JPS63500685A (en) Intermediate workpiece with graded refractive index and its manufacturing method
JPH04108132A (en) Production filament material made of fiber-reinforced thermoset resin
EP0237995B1 (en) Resin-made heat-resistant optical fiber
JPS6145201A (en) Manufacture of plastic optical fiber
Chen et al. Preparation of gradient‐index (GRIN) polymer fibers for imaging applications
JP3477381B2 (en) Method of controlling refractive index of optical polymer material by fluorination
JPH0713029A (en) Method and apparatus for producing plastic optical fiber preform
JPS6057811A (en) Manufacture of plastic optical fiber cord
JPH075329A (en) Production of plastic optical fiber preform and device therefor
JP2000214342A (en) Plastic clad optical fiber and its production
JPH11174242A (en) Plastic optical fiber
JPS63106705A (en) Manufacture of plastic light transmitting body
JP3921900B2 (en) Manufacturing method of polymer optical waveguide
CA1222854A (en) Process and apparatus for production of plastic optical fiber
JPH0378706A (en) Production of plastic optical transmission body
JPH0713030A (en) Method and apparatus for producing plastic optical fiber preform
JP2004076012A (en) Method for hydrophilizing surface of optical polymer material molded product by fluorination
JPH10239534A (en) Manufacture of base material for plastic optical fiber
JPH08106015A (en) Method for drawing plastic optical fiber
JPH1095629A (en) Production of optical fiber
JPS6016837A (en) Optical fiber coated with plastic

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020226

LAPS Cancellation because of no payment of annual fees