JPS63106705A - Manufacture of plastic light transmitting body - Google Patents

Manufacture of plastic light transmitting body

Info

Publication number
JPS63106705A
JPS63106705A JP61251761A JP25176186A JPS63106705A JP S63106705 A JPS63106705 A JP S63106705A JP 61251761 A JP61251761 A JP 61251761A JP 25176186 A JP25176186 A JP 25176186A JP S63106705 A JPS63106705 A JP S63106705A
Authority
JP
Japan
Prior art keywords
refractive index
monomer
monomers
substrate
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61251761A
Other languages
Japanese (ja)
Inventor
Kuniyuki Eguchi
州志 江口
Seikichi Tanno
丹野 清吉
Noriaki Takeya
竹谷 則明
Hiroshi Terao
寺尾 弘
Yoshiaki Okabe
義昭 岡部
Masato Shimura
正人 志村
Hideki Asano
秀樹 浅野
Tomiya Abe
富也 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP61251761A priority Critical patent/JPS63106705A/en
Publication of JPS63106705A publication Critical patent/JPS63106705A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation

Abstract

PURPOSE:To afford heat resistance and solvent resistance to a light transmitting body by forming a continuous concn. gradient by diffusing and penetrating a monomer for forming a polymer having lower refractive index then the refractive index of a transparent gel from the surface of a rod or substrate comprising the transparent gel to the inside of the rod or substrate. CONSTITUTION:A rod or substrate comprising transparent gel is formed by polymerizing a part of monomers M1 for forming a polymer P1 wherein at least one kind of the monomers comprises an org. carboxylic acid salt. Thereafter, monomers M2 for forming a polymer P2 having a lower refractive index than the refractive index of the transparent gel, are diffused into the inside of the rod or the substrate to provide a concn. gradient continuously, wherein the monomers M2 has the characteristic of forming ionic bonds or coordinate bonds with at least one metal ion. Thus, the polymers. of the monomers M1 and M2 are completed. By this constitution, a plastic light transmitting body having heat resistance, solvent resistance, and possibility for affording novel functionality, is obtained, which is useful as a material for refractive index distributing type focussing optical fiber, optical waveguide, or refractive index distributing type lens, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は屈折率分布を形成した光集束性の光ファイバ、
光導波路、あるいは、屈折率分布型レンズ等の合成樹脂
光伝送体の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a light-focusing optical fiber having a refractive index distribution,
The present invention relates to a method of manufacturing a synthetic resin optical transmission body such as an optical waveguide or a gradient index lens.

〔従来の技術〕[Conventional technology]

近年、良加工性や取り扱い易さの点からガラスの他に合
成樹脂より成る光伝送体が種々開発されており1例えば
、医療機器、デスプレイ装置、光°表示装置の分野のみ
ならず、光通信機器の分野まで用途が広がっている。こ
れらの伝送体には比較的高い屈折率をもつコア部分と比
較的低い屈折率のクラッド層よりなるステップインデッ
クス形のものと周辺部から中心軸に向って連続的に屈折
率が増大する屈折率分布をもつグレーティドインデック
ス形の二種類があり、最近1合成樹脂において後者の構
造をもつ伝送体が開発されるようになってきた。
In recent years, various types of optical transmitters made of synthetic resins in addition to glass have been developed from the viewpoint of good processability and ease of handling1. Applications are expanding to the field of equipment. These transmission bodies include step-index type, which consists of a core part with a relatively high refractive index and a cladding layer with a relatively low refractive index, and a refractive index type, in which the refractive index increases continuously from the periphery toward the central axis. There are two types of grated index type with a distribution, and recently a transmitter with the latter structure has been developed using a synthetic resin.

これまでに提案された合成樹脂光伝送体の製造方法には
合成樹脂の半ゲル化した材料に屈折率の異なる単量体を
内部拡散させて重合させる方法(光学、第10巻第2号
(1981年)第105頁から第110頁)、屈折率の
異なる二種類の単量体を混合して予備重合させ1表面よ
り未重合単量体を選択的に揮発させた後、再び1重合を
行って屈折率を変化させる方法、特開昭50−1511
64号公報)屈折率の異なる二種以上の透明な重合体混
合物より成る合成樹脂体から特定成分を溶剤によって抽
出させる方法、(特開昭47−28059号公報)単量
体の共重合反応性比の違いを利用して光重合によって濃
度分布を形成する方法、(光学、12巻第6号(198
3)第470頁から第475頁)または、合成樹脂体中
の高屈折率金属イオンを脱着させ。
The methods for manufacturing synthetic resin optical transmitters that have been proposed so far include a method in which monomers with different refractive indexes are internally diffused into a semi-gelled synthetic resin material and polymerized (Optics, Vol. 10, No. 2). (1981), pp. 105 to 110), two types of monomers with different refractive indexes are mixed and prepolymerized, the unpolymerized monomers are selectively volatilized from one surface, and then one polymerization is carried out again. A method of changing the refractive index by
No. 64) A method of extracting a specific component from a synthetic resin body consisting of a mixture of two or more transparent polymers having different refractive indexes using a solvent, (Japanese Unexamined Patent Publication No. 47-28059) Copolymerization reactivity of monomers A method of forming concentration distribution by photopolymerization using differences in ratio, (Optics, Vol. 12, No. 6 (198
3) Pages 470 to 475) Alternatively, high refractive index metal ions in the synthetic resin body are desorbed.

金属イオンの濃度分布を形成する方法(特開昭51−4
2545号公報)などがある。
Method for forming concentration distribution of metal ions (Unexamined Japanese Patent Publication No. 51-4
No. 2545).

【発明が解決しようとする問題点〕 しかし、これらの製造方法による光伝送体は屈折率分布
を形成するために特別な単量体の組成を用いているため
、耐熱性、耐溶剤性の点については考慮がされておらず
、長期信頼性の点で問題があった。さらに、光伝送体は
受動的であり、何らかの機能を付与することは困難であ
る。
[Problems to be solved by the invention] However, since the optical transmission bodies produced by these manufacturing methods use a special monomer composition to form a refractive index distribution, they have problems in terms of heat resistance and solvent resistance. No consideration was given to this, and there were problems with long-term reliability. Furthermore, optical transmission bodies are passive, and it is difficult to add any functionality to them.

本発明の目的は耐熱性、耐溶剤性ならびに新機能性付与
の可能性をもつ屈折率分布型の集束性光ファイバ、先導
波路、あるいは、屈折率分布型レンズ等の合成樹脂光伝
送体の製造方法を提供することにある。
The purpose of the present invention is to manufacture synthetic resin optical transmission bodies such as gradient index focusing optical fibers, guiding waveguides, gradient index lenses, etc., which have heat resistance, solvent resistance, and the possibility of imparting new functionality. The purpose is to provide a method.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、耐熱性、耐溶剤性ならびに新機能を付与で
きる可能性のある材料としである特殊な金属を含む透明
合成樹脂に着目し、この樹脂に屈折率分布を形成できる
方法を鋭意研究を重ねた結果、屈折率がNiの重合体P
Iを生成する、少なくとも一種類が有機カルボン酸金属
塩からなる単量体Mzを一部重合させて、透明なゲル状
のロンド。
For the above purpose, we focused on a transparent synthetic resin containing a special metal as a material that has the potential to impart heat resistance, solvent resistance, and new functions, and conducted intensive research into methods that can form a refractive index distribution in this resin. As a result of stacking, a polymer P with a refractive index of Ni
A transparent gel-like Rondo is produced by partially polymerizing monomer Mz, at least one of which is an organic carboxylic acid metal salt, to produce I.

または、基板を形成した後、外部から透明ゲルの屈折率
Nlよりも低い屈折率N2を与える重合体P1を生成す
る一種または二種以上の金属イオンとイオンまたは、配
位結合しうる単量体Mzを内部へ拡散させて濃度勾配を
連続的に形成し、単量体N!およびN2の重合を完結さ
せることにより達成される。
Alternatively, after forming the substrate, an ion or a monomer capable of forming a coordinate bond with one or more metal ions that generate a polymer P1 that gives a refractive index N2 lower than the refractive index Nl of the transparent gel from the outside. Mz is diffused into the interior to continuously form a concentration gradient, and the monomer N! and by completing the polymerization of N2.

〔作用〕[Effect]

本発明において、少なくとも一種類が有機カルボン酸金
属塩からなる単量体M1とは少なくとも一般式(1)で
表わされる構造式を含有する透明な単量体であって、 x 暑 (式中R1は水素原子又はメチル基、Mは金属元素、n
はは金属の原子価、Rzは炭素数4以上の基を表わす)
Rzにベンゼン環やフッソ素以外のハロゲンを含む基を
導入すれば高屈折率の透明な単量体を得ることができる
。また、Rtに一部不飽軸結合を導入すれば、イオン架
橋による網状重合体を形成できるため、従来の多官能性
単量体による網状重合体と同様に透明なゲル状基板を容
易に形成することができる。この場合、両者の単量体を
用いてイオン、共有結合両者の架橋による網状重合体も
形成できる。さらに、この単量体を重合して得る合成樹
脂は高分子側鎖にかさ高い分子がイオン結合し、ている
ため、樹脂の結晶化を押えることができ、特開昭51−
42545号公報に記載されているエチレン−メタクリ
ル酸共重合体と金属イオンからなるアイオノマを利用し
た場合と比べると光学透明性が大幅に向上する。この例
には特開昭60−181107号公報の含金属透明単量
体などがある。
In the present invention, the monomer M1, at least one of which is an organic carboxylic acid metal salt, is a transparent monomer containing at least a structural formula represented by general formula (1), is a hydrogen atom or a methyl group, M is a metal element, n
(haha metal valence; Rz represents a group having 4 or more carbon atoms)
A transparent monomer with a high refractive index can be obtained by introducing a benzene ring or a group containing a halogen other than fluorine into Rz. In addition, if a partially unsaturated axial bond is introduced into Rt, a network polymer can be formed by ionic crosslinking, so a transparent gel-like substrate can be easily formed in the same way as a network polymer made of conventional polyfunctional monomers. can do. In this case, a network polymer can also be formed by crosslinking both ionic and covalent bonds using both monomers. Furthermore, since the synthetic resin obtained by polymerizing this monomer has bulky molecules ionically bonded to the polymer side chains, crystallization of the resin can be suppressed.
Optical transparency is significantly improved compared to the case of using an ionomer made of an ethylene-methacrylic acid copolymer and metal ions described in Japanese Patent No. 42545. Examples of this include the metal-containing transparent monomer disclosed in JP-A-60-181107.

この単量体M1は目的とする光伝送体の種類に応じて繊
維状、棒状、板状に既知の方法によってゲル状に成形す
る0例えば、光ファイバの場合、テフロンまたはポリエ
チレンなどの化学的に不活性なチューブに単量体M1を
注入し、予備重合しチューブから連続的に押し出す、単
量体Mzの予備重合は1重合体が流動性を失った透明な
ゲルとなったところで、すなわち、重合不完全の状態で
中止されるような条件を選択する。
This monomer M1 is formed into a gel-like form by a known method into a fiber, rod, or plate shape depending on the type of the intended optical transmission medium.For example, in the case of an optical fiber, a chemical agent such as Teflon or polyethylene The monomer M1 is injected into an inert tube, prepolymerized, and continuously extruded from the tube.The prepolymerization of the monomer Mz is performed when the polymer has lost its fluidity and becomes a transparent gel, that is, Select conditions such that polymerization is terminated in an incomplete state.

次に、これらのゲル状ロンド、または、基板を透明ゲル
の屈折率Nlより低い屈折率N2を与える重合体P2を
生成する一種または二種以上の金属イオンとイオン結合
、または、配位結合しうる単量体M2を内部へ拡散、浸
透させる。この場合、ゲル状物を液状の単量M2に含浸
する方法や単量体M2を気化させて蒸気の形で内部へ拡
散、浸透させる方法のどちらも用いることができる。
Next, these gel-like rondos or substrates are bonded ionicly or coordinately to one or more metal ions that produce a polymer P2 that gives a refractive index N2 lower than the refractive index Nl of the transparent gel. Diffuse and permeate the wet monomer M2 into the interior. In this case, either a method of impregnating the liquid monomer M2 with a gel-like material or a method of vaporizing the monomer M2 and diffusing and permeating the monomer M2 into the interior in the form of vapor can be used.

本発明において、単量体M2は具体的には水酸基、エポ
キシ基またはオルボキシ基の中から選ばれる少なくとも
一種類の基及び不飽和結合をもつ低屈折率の単量体であ
る。これらの例としてはヒドロキアルキルメタクリレー
ト、ヒドロキシアルキルアクリレート、グリシジルアク
リレート、グリシジジルメタクリレート、アクリル酸、
メタクリル酸などがある。これらは一種類または二種類
以上併用して用いることができる。なお、単量体M2と
してメタクリル酸エステル、アクリル酸エステル、フッ
素化メタクリル酸エステル、フッ素化アクリル酸エステ
ル、酢酸ビニルなどの通常の低屈折率単量体を用いた場
合は、拡散、浸透後、樹脂が若干不透明になる。従来、
含金属単量体からなるゲル状物は通常の単量体と相溶性
が良くない、さらに、これらの単量体は金属イオンとの
相互作用が弱いため、重合を完結した後、含金属のゲル
状物と含浸用の単量体がそれぞれ独立に重合するため、
屈折率の違いから若干、白濁が生じ透明性が劣る。その
ため、単量体M2としては金属イオンと相互作用に強い
単量体が必要不可欠である。ただし、屈折率を調節する
ために、必要であればこれらの単量体にフッ素化メタク
リル酸エステル等の通常の単量体を混合して用いること
は可能である。
In the present invention, the monomer M2 is specifically a low refractive index monomer having at least one type of group selected from a hydroxyl group, an epoxy group, or an orboxy group and an unsaturated bond. Examples of these are hydroxyalkyl methacrylate, hydroxyalkyl acrylate, glycidyl acrylate, glycidyl methacrylate, acrylic acid,
Examples include methacrylic acid. These can be used alone or in combination of two or more. In addition, when a normal low refractive index monomer such as methacrylic acid ester, acrylic acid ester, fluorinated methacrylic acid ester, fluorinated acrylic acid ester, or vinyl acetate is used as the monomer M2, after diffusion and penetration, The resin becomes slightly opaque. Conventionally,
Gel-like substances made of metal-containing monomers are not compatible with ordinary monomers, and furthermore, these monomers have weak interaction with metal ions, so after completing polymerization, the metal-containing monomers are Because the gel and the impregnating monomer polymerize independently,
Due to the difference in refractive index, some cloudiness occurs and transparency is poor. Therefore, as the monomer M2, a monomer that has strong interaction with metal ions is essential. However, in order to adjust the refractive index, if necessary, it is possible to mix and use ordinary monomers such as fluorinated methacrylic acid esters with these monomers.

単量Mzの拡散がゲル状物の中心軸迄到達した時点、ま
たは、その後、しばらく時間が経過した時をもって浸漬
、または、拡散操作を停止し、このゲル状物を単量体M
zが外部へ揮散しないような操作を行い、単量体M2と
ともに重合を完結させる。単量体M2を外部へ揮散させ
ない方法には、拡散操作を処理後、例えば、ゲル状物を
プラスチックフィルムまたは、板で包むかまたは、単量
体Mzの浸漬、または、蒸気下のもとでそのまま重合を
完結させる方法がある0本発明における単量体M2.は
、一般に1重合速度が速いものが多いため、揮散防止に
は特に都合がよい。
The immersion or diffusion operation is stopped when the monomer Mz has diffused to the central axis of the gel-like material, or after some time has elapsed, and the gel-like material is mixed with the monomer M.
An operation is performed to prevent z from volatilizing to the outside, and the polymerization is completed together with monomer M2. Methods to prevent the monomer M2 from being volatilized to the outside include, for example, wrapping the gel-like material in a plastic film or plate after the diffusion operation, or immersing the monomer Mz in it, or under steam. Monomer M2 in the present invention has a method of completing the polymerization as it is. Generally, many of them have a high monopolymerization rate, so they are particularly convenient for preventing volatilization.

以上のような本発明の製造方法によって、各種の形状及
び性能をもつ合成樹脂光伝送体を得ることがわかった。
It has been found that synthetic resin optical transmission bodies having various shapes and performances can be obtained by the manufacturing method of the present invention as described above.

これらの合成樹脂光伝送体は分子中に金属イオン及び金
属イオンと強く相互作用する分子をもつため耐熱性や耐
溶剤性に優れている。耐湿性に関しては1通常の合成樹
脂よりもやや劣ることが考えられるが1本発明の樹脂は
水酸基、カルボキシル基、エポキシ基が金属イオンと強
くイオン、または、配位結合しており、さらに分子中に
疎水性基であるベンゼン環を含むものを製造することが
できるため、大きな影響を受けない、また、耐湿性に優
れる他の合成樹脂板、または、膜で表面を保護すること
も可能である。
These synthetic resin optical transmitters have metal ions and molecules that strongly interact with metal ions in their molecules, so they have excellent heat resistance and solvent resistance. Regarding moisture resistance, 1) it is considered to be slightly inferior to ordinary synthetic resins; 1) the resin of the present invention has hydroxyl groups, carboxyl groups, and epoxy groups strongly ionic or coordinate bonded to metal ions; Since it is possible to manufacture products that contain a benzene ring, which is a hydrophobic group, it is not affected greatly, and it is also possible to protect the surface with other synthetic resin plates or membranes that have excellent moisture resistance. .

次に、これらの具体例のいくつかを図面を用いて説明す
る。
Next, some of these specific examples will be explained using drawings.

第2図は、中心軸から周辺部に向かって連続的に屈折率
が低下している繊維状光伝送体の例であり、伝送体1の
端面より入射した光2は内部を全反射することなしに、
連続的に自己集束しながら進行する。
Figure 2 is an example of a fibrous optical transmission body whose refractive index decreases continuously from the central axis toward the periphery, and light 2 incident from the end face of the transmission body 1 is totally reflected inside. Without,
It progresses in a continuous self-focusing manner.

第1図は、平面内に作成された光導波路の例で合成樹脂
の断面図で示した。合金屑透明単量体から形成されたゲ
ル状基板3に金属、または、有機の薄膜などからなるマ
スクを作成した(a)後、低屈折率単量体5Mgに浸漬
し、拡散、浸透する。
FIG. 1 is an example of an optical waveguide created in a plane, and is shown in a cross-sectional view of a synthetic resin. A mask made of a metal or organic thin film is prepared on the gel-like substrate 3 made of the alloy scrap transparent monomer (a), and then immersed in the low refractive index monomer 5Mg to be diffused and permeated.

その後、ゲル状基状及び単量体M2の重合を完結させ、
光導波路6を製造する。
After that, the polymerization of the gel-like base and monomer M2 is completed,
The optical waveguide 6 is manufactured.

第3@は中心軸から週辺部に向かって連続的に屈折率が
低下している屈折率分布型レンズの例である。
The third @ is an example of a gradient index lens in which the refractive index decreases continuously from the central axis toward the lateral side.

〔実施例〕〔Example〕

以下1本発明を実施例および図により説明する。 The present invention will be explained below with reference to examples and figures.

〈実施例1〉 アクリル酸0.1218モル、ケイ皮酸0.0656モ
ルをベンゼンLoomΩに溶解し、水酸化バリウム1水
和塩(Ba (OH)z・HzO)0.0423モルを
室温中で除々に反応させた。この組成物が50重量部(
以下部と略す)となるように、ビニルトルエン25部、
グリシジルメタクリレート25部を加えた後、反応複生
物である水とベンゼンを減圧留去して含金属透明単量体
を得た。この単量体100部にシミリスチルパーオキシ
ジカーボネート0.2部を溶解し、内径1m、長さ1m
のテフロンチューブに注入し、60℃1.5時間硬化し
た後、繊維状の透明なゲル重合体を取り出した。その後
、このゲル重合体を0.2部のシミリスチルパーオキシ
ジカーボネートを含むグリシジルメタクリレート75部
、2ヒドロキシ工チルメタクリレート25部の溶液に浸
漬し、室温で二時間放置してから、ゲル重合体をとり出
し、両端を固定して含浸用単量体の蒸気雰囲気中で70
m四時間、その後。
<Example 1> 0.1218 mol of acrylic acid and 0.0656 mol of cinnamic acid were dissolved in benzene LoomΩ, and 0.0423 mol of barium hydroxide monohydrate (Ba (OH)z・HzO) was dissolved at room temperature. It reacted gradually. This composition contains 50 parts by weight (
25 parts of vinyltoluene,
After adding 25 parts of glycidyl methacrylate, water and benzene, which were reaction compounds, were distilled off under reduced pressure to obtain a metal-containing transparent monomer. Dissolve 0.2 parts of similistilperoxydicarbonate in 100 parts of this monomer, and prepare a mixture with an inner diameter of 1 m and a length of 1 m.
After curing at 60° C. for 1.5 hours, the fibrous transparent gel polymer was taken out. Thereafter, this gel polymer was immersed in a solution of 75 parts of glycidyl methacrylate and 25 parts of 2-hydroxybutyl methacrylate containing 0.2 parts of cimilistyl peroxydicarbonate, and left at room temperature for 2 hours. Take it out, fix both ends, and heat it for 70 minutes in a vapor atmosphere of monomer for impregnation.
m4 hours, then.

窒素雰囲気中で80m五時間加熱硬化した。It was cured by heating at 80 m for 5 hours in a nitrogen atmosphere.

得られた繊維状の重合体の断面を1mの厚さに切り出し
て、干渉顕微鏡(カールツアイス社製インターフアユ)
で最大屈折率差を測定したところ、0.021であった
。また、端面を中心軸に垂直な平面となるように研磨し
、繊維の一端より光を入射させると、光は棒状内部を全
反射することなしに、自己集束的に進行することが確か
められた。この繊維の光損失を測定したところ、Hs 
−N eレーザ光で0.8dB/mであった。この繊維
を120℃−千時間放置して、再び光損失を測定すると
、0.9dB/kmとなり、その変化は小さかった。
A cross-section of the obtained fibrous polymer was cut out to a thickness of 1 m, and was examined using an interference microscope (Interfayu manufactured by Carl Zeiss).
When the maximum refractive index difference was measured, it was 0.021. It was also confirmed that when the end face is polished to be a plane perpendicular to the central axis and light is incident from one end of the fiber, the light travels in a self-focusing manner without being totally reflected inside the rod. . When the optical loss of this fiber was measured, it was found that Hs
-Ne laser light was 0.8 dB/m. When this fiber was left at 120° C. for 1,000 hours and the optical loss was measured again, it was 0.9 dB/km, and the change was small.

以上のことにより、この繊維は第2図のような構造をも
つ光伝送体として使用できることが確かめられた。
From the above, it was confirmed that this fiber can be used as an optical transmission body having the structure shown in FIG.

〈実施例2〉 実施例1で得られた含金属透明単量体100部にシミリ
スチルパーオキシジカーボネート0.2部を溶解し、シ
リコーン離型したガラス板に注入して、60℃一時間放
置して40X20X2nnの透明ゲル基板を作製した6
次に、このゲル基板の両面に幅l1111、長さ40■
、厚さ0.1mmの金属膜を二本マスクとして密着させ
、0.3部のシミリスチルパーオキシジカーボネートを
含むグリシジルメタクリレート40部、アクリル酸10
部。
<Example 2> 0.2 parts of cimilistyl peroxydicarbonate was dissolved in 100 parts of the metal-containing transparent monomer obtained in Example 1, poured into a silicone-released glass plate, and heated at 60°C for 1 hour. A transparent gel substrate of 40 x 20 x 2 nn was prepared by leaving it as it was 6
Next, on both sides of this gel substrate, a width l1111 and a length 40
, 40 parts of glycidyl methacrylate containing 0.3 parts of cimilistyl peroxydicarbonate and 10 parts of acrylic acid were placed in close contact with each other using two metal films with a thickness of 0.1 mm as a mask.
Department.

トリフロロエチルメタクリレート50部の溶液に浸漬し
、室温で四時間放置してから、透明基板をとり出し、厚
さ22mのポリジエチレングリコールビスアリルカーボ
ネートの板と、さらに、その外側に厚さ2mのガラス板
を介してバネ式クリップで圧着固定した。そして、この
基板を70m三 ・時間、80m三時間で加熱硬化した
後、ガラス板をとりはずしてサンドウィッチ構造の先導
波路を得た。
After immersing it in a solution of 50 parts of trifluoroethyl methacrylate and leaving it at room temperature for four hours, the transparent substrate was removed, and a 22 m thick polydiethylene glycol bisallyl carbonate plate and a 2 m thick glass plate were placed on the outside. It was crimped and fixed with a spring clip through the plate. After heating and hardening this substrate for 70 m@3 · hours and 80 m@3 · hours, the glass plate was removed to obtain a sandwich-structured leading waveguide.

得られた透明な板7の断面を1m+の厚さに切削、研磨
し、干渉顕微鏡によって屈折分布状態を調べた。二本の
導波路部分は中心軸が最も屈折率が高く、周辺に向かっ
て連続的に低くなっていた。最大屈折率差は0.036
であった。また、透明な板の端面を研磨し、一端より光
を入射させると、光はマスクでおおわれていた部分を全
反射することなしに屈曲しながら進行することが確かめ
られた。
The cross section of the obtained transparent plate 7 was cut and polished to a thickness of 1 m+, and the state of refraction distribution was examined using an interference microscope. The refractive index of the two waveguide sections was highest at the central axis and decreased continuously toward the periphery. The maximum refractive index difference is 0.036
Met. It was also confirmed that when the end face of a transparent plate was polished and light was incident from one end, the light traveled through the area covered by the mask while bending without being totally reflected.

以上のことにより、この透明な板は第2図に示すような
光導波路部分を形成しているのがわかる。
From the above, it can be seen that this transparent plate forms an optical waveguide portion as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、耐熱性、耐溶剤性ならびに新機能性付
与の可能性をもつ屈折率分布型の集束性光ファイバ、光
導波路、あるいは、屈折率分布型レンズ等の合成樹脂光
伝送体の製造方法が得られる。
According to the present invention, a synthetic resin optical transmission body such as a gradient index focusing optical fiber, an optical waveguide, or a gradient index lens, which has heat resistance, solvent resistance, and the possibility of imparting new functionality. A manufacturing method is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の一実施例の平面内部に屈折率の異な
る光導波路部分をもつ光伝送体の説明図、第2図は、中
心軸から周辺に向かって連続的に屈折率を低下した繊維
状光伝送体の特性図、第3図は、中心軸から周辺に向か
って連続的に屈折率の低下した屈折率分布型レンズを各
々示す図である。
Fig. 1 is an explanatory diagram of an optical transmission body having optical waveguide portions with different refractive indexes inside a plane according to an embodiment of the present invention, and Fig. 2 shows a continuous decrease in refractive index from the central axis toward the periphery. FIG. 3 is a characteristic diagram of the fiber-like optical transmission body shown in FIG. 3, which shows a gradient index lens in which the refractive index decreases continuously from the central axis toward the periphery.

Claims (1)

【特許請求の範囲】 1、(a)屈折率がNiの重合体P_1を生成する少な
くとも一種類が有機カルボン酸金属塩からなる単量体M
_1を一部重合させて、透明なゲル状のロッドまたは基
板を形成する工程。 (b)前記透明ゲル状のロッドまたは基板の表面から前
記透明ゲルの屈折率Niより低い屈折率N_2を与える
重合体P_2を生成する一種または二種以上の金属イオ
ンとイオンまたま配位結合しうる単量体M_2を内部へ
拡散、浸透させ濃度勾配を連続的に形成させる工程。 (c)前記単量体M_1および前記単量体M_2の重合
を完結させる工程からなることを特徴とする合成樹脂光
伝送体の製造方法。 2、前記単量体M_2が水酸基のエポキシ基またはカル
ボキシル基の中から選ばれる少なくとも一種類の基及び
不飽和結合をもつ単量体であることを特徴とする特許請
求の範囲第1項記載の合成樹脂光伝送体の製造方法。
[Claims] 1. (a) Monomer M, at least one of which is an organic carboxylic acid metal salt, which forms a polymer P_1 having a refractive index of Ni.
A process of partially polymerizing _1 to form a transparent gel-like rod or substrate. (b) Ionically or coordinately bonding from the surface of the transparent gel-like rod or substrate with one or more metal ions that produce a polymer P_2 that gives a refractive index N_2 lower than the refractive index Ni of the transparent gel. A process of continuously forming a concentration gradient by diffusing and penetrating the liquid monomer M_2 into the interior. (c) A method for producing a synthetic resin optical transmission body, comprising the step of completing the polymerization of the monomer M_1 and the monomer M_2. 2. The monomer M_2 is a monomer having an unsaturated bond and at least one group selected from a hydroxyl group, an epoxy group, or a carboxyl group. A method for manufacturing a synthetic resin optical transmission body.
JP61251761A 1986-10-24 1986-10-24 Manufacture of plastic light transmitting body Pending JPS63106705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61251761A JPS63106705A (en) 1986-10-24 1986-10-24 Manufacture of plastic light transmitting body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61251761A JPS63106705A (en) 1986-10-24 1986-10-24 Manufacture of plastic light transmitting body

Publications (1)

Publication Number Publication Date
JPS63106705A true JPS63106705A (en) 1988-05-11

Family

ID=17227528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61251761A Pending JPS63106705A (en) 1986-10-24 1986-10-24 Manufacture of plastic light transmitting body

Country Status (1)

Country Link
JP (1) JPS63106705A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0496893A1 (en) * 1990-08-16 1992-08-05 Nippon Petrochemicals Co., Ltd. Method of manufacturing optical transmission medium from synthetic resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0496893A1 (en) * 1990-08-16 1992-08-05 Nippon Petrochemicals Co., Ltd. Method of manufacturing optical transmission medium from synthetic resin

Similar Documents

Publication Publication Date Title
US5716556A (en) Method for producing a polymeric optical waveguide
KR20140137351A (en) Optical waveguide, optical wiring component, optical waveguide module and electronic device
JPH085848A (en) Graded index type optical resin material and its production
US4863236A (en) Optical waveguide with an essentially fluorine-free polymer core and a fluorine-containing polymer jacket
US6106745A (en) Method of making graded index polymeric optical fibers
JPWO2004104059A1 (en) Curable resin composition, optical component and optical waveguide
JPS63106705A (en) Manufacture of plastic light transmitting body
CA1219413A (en) Image-transmitting synthetic resin rod and process for producing the same
CA1286899C (en) Resin-made heat-resistant optical fiber
JP3477381B2 (en) Method of controlling refractive index of optical polymer material by fluorination
JP2534994B2 (en) Polymer optical waveguide and method for manufacturing the same
JPS60188906A (en) Plastic optical transmission body and its production
EP0864109B1 (en) Method of making graded index polymeric optical fibres
JPH0727928A (en) Production of plastic optical transmission body
JPS59204519A (en) Preparation of synthetic resin plane lens
JP2505447B2 (en) Optical element manufacturing method
JP4087207B2 (en) Optical transmission line forming material, optical transmission line and optical transmission line manufacturing method
JPWO2005103774A1 (en) Manufacturing method of graded index type optical transmission body
JP2651584B2 (en) Plastic optical transmission body and method of manufacturing the same
JP3489764B2 (en) Refractive index distribution type optical resin material
JPS6113201B2 (en)
KR0170480B1 (en) Preparation process of polymeric rod and gradient-index rod lens using free radical bulk polymerization with temperature gradient
CN104671676A (en) An improved low-refractive index coating for optical fiber, a method for manufacturing the same and a product comprising the same
JPH0364706A (en) Plastic optical transmission body
JP3921900B2 (en) Manufacturing method of polymer optical waveguide