JPH04238304A - Production of optical waveguide - Google Patents

Production of optical waveguide

Info

Publication number
JPH04238304A
JPH04238304A JP3006047A JP604791A JPH04238304A JP H04238304 A JPH04238304 A JP H04238304A JP 3006047 A JP3006047 A JP 3006047A JP 604791 A JP604791 A JP 604791A JP H04238304 A JPH04238304 A JP H04238304A
Authority
JP
Japan
Prior art keywords
waveguide
optical waveguide
organic polymer
optical
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3006047A
Other languages
Japanese (ja)
Other versions
JP2849482B2 (en
Inventor
Hiroshi Yao
八尾 浩史
Toyoji Hayashi
豊治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP3006047A priority Critical patent/JP2849482B2/en
Publication of JPH04238304A publication Critical patent/JPH04238304A/en
Application granted granted Critical
Publication of JP2849482B2 publication Critical patent/JP2849482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide the process for producing the optical waveguide which allows the taking of a large change in refractive index, has a nonlinear optical effect, and has a shape, such as slab shape or channel shape, as an org. polymer waveguide having excellent workability. CONSTITUTION:This process for producing the optical waveguide formed with a waveguide part in the part where group II-IV element compd. semiconductor superfine particles of element period table are dispersed in an org. polymer as the refractive index of this part is higher than the refractive index in the circumference is the process for producing the optical waveguide by forming patterns 2 for forming the waveguides on the precursor org. polymer 1 contg. the group II metal element compd. to be the raw material for the semiconductor superfine particles, then bringing a gaseous group VI element compd. necessary for forming the semiconductor superfine particles into reaction thereby dispersing the semiconductor superfine particles into the selected parts, i.e., the waveguide shapes.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、有機ポリマー中に半導
体超微粒子が選択的部分に分散してなることにより、屈
折率が周囲より大なる光導波部を有することを特徴とす
る光導波路の製造方法に関する。
[Industrial Application Field] The present invention relates to an optical waveguide characterized by having an optical waveguide portion having a refractive index larger than that of the surrounding area due to semiconductor ultrafine particles being selectively dispersed in an organic polymer. Regarding the manufacturing method.

【0002】光導波路は、光ファイバーの分岐・結合を
容易に行なったり、光スイッチなどの非線形光学動作を
行わせるためにきわめて有用である。
Optical waveguides are extremely useful for easily branching and coupling optical fibers and for performing nonlinear optical operations such as optical switches.

【0003】0003

【従来の技術】光通信や光情報処理分野において利用さ
れる光回路の研究は近年、急速な進歩を遂げ、その中で
も光導波路の開発はめざましいものがある。
2. Description of the Related Art Research on optical circuits used in the fields of optical communications and optical information processing has made rapid progress in recent years, and among these, the development of optical waveguides has been remarkable.

【0004】光導波路には、LiNbO3にTiを拡散
させた無機結晶やイオン交換により金属を他金属と交換
したガラスなどの他に有機ポリマー光導波路がある。
[0004] Optical waveguides include organic polymer optical waveguides as well as inorganic crystals made of LiNbO3 with Ti diffused therein and glasses made of metals exchanged with other metals through ion exchange.

【0005】従来の有機ポリマー導波路製造法としては
、リソグラフィーを応用し、光導波路パターンを形成す
る方法、すなわち、モノマーを含む有機ポリマー膜を作
成したのち、パターン用マスクを用いて選択的に紫外線
重合させて、屈折率変化をもたせる方法、あるいはレー
ザースキャンにより高屈折率の導波路を形成する方法等
がある(特開昭63−91604)。
A conventional method for manufacturing an organic polymer waveguide is to apply lithography to form an optical waveguide pattern. In other words, after creating an organic polymer film containing a monomer, selectively irradiating it with ultraviolet rays using a patterning mask. There is a method of polymerizing to change the refractive index, or a method of forming a waveguide with a high refractive index by laser scanning (Japanese Patent Laid-Open No. 63-91604).

【0006】従来、リソグラフィーを応用した光導波路
パターンの形成に於いては、紫外線照射による架橋反応
と競争する樹脂の黄変や、エッチング時の有機ポリマー
の膨潤による材料の変質という問題が指摘されている。 これを克服する方法として、例えば、特開昭64−59
302には露光によるエッチング処理を有機溶剤ではな
く、水を使用しておこなう方法などが開示されている。 しかしながら、このような露光、エッチング処理による
方法は、特に有機ポリマー光導波路の作製に対しては依
然問題点が多いといわれている。
Conventionally, in the formation of optical waveguide patterns using lithography, problems have been pointed out such as yellowing of the resin competing with the crosslinking reaction caused by ultraviolet irradiation, and deterioration of the material due to swelling of the organic polymer during etching. There is. As a way to overcome this, for example, JP-A-64-59
No. 302 discloses a method of performing etching treatment by exposure using water instead of an organic solvent. However, it is said that such a method using exposure and etching processing still has many problems, especially when it comes to producing an organic polymer optical waveguide.

【0007】有機ポリマー非線形動作光導波路としては
、ポーリング(電界配向)処理、即ち、ポリマーの軟化
点温度あるいはガラス転移点付近に於いて、電界を印加
し、含有されている極性低分子の配向を揃えるという処
理をされた有機ポリマー導波路がある。これは下部電極
をリソグラフィーによって設け、バッファ層をその上に
構成し、メチルニトロアニリンなどの非線形光学性化合
物を分散した有機ポリマーをコートする。この上にパタ
ーン化された電極を施し、電極に印加することにより、
電極印加部分に存在するメチルニトロアニリンが分極配
向し、周囲の非配向部分に比較して高屈折率部分が形成
された非線形光学効果を有する導波路である(R.Ly
tel ら、SPIE予稿集第 824号、152 頁
,1987年)。
[0007] For organic polymer nonlinear optical waveguides, poling (electric field orientation) treatment is used, in which an electric field is applied near the softening point temperature or glass transition point of the polymer to change the orientation of the polar low molecules contained therein. There are organic polymer waveguides that have been treated to align. In this method, a lower electrode is provided by lithography, a buffer layer is formed thereon, and an organic polymer in which a nonlinear optical compound such as methylnitroaniline is dispersed is coated. By applying a patterned electrode on top of this and applying voltage to the electrode,
It is a waveguide with a nonlinear optical effect in which the methylnitroaniline present in the electrode application part is polarized and oriented, and a part with a high refractive index is formed compared to the surrounding non-oriented part (R.Ly
tel et al., SPIE Proceedings No. 824, p. 152, 1987).

【0008】しかし、経時変化のために所要屈折率発現
のために不可欠の分子の配向が解消したり、配向を保持
するために電界をかけておく必要があったりする難点が
ある。また、分子の配向分極効果にもとづくために屈折
率差が大きくとりにくいなどの欠点を有する。
[0008] However, there are disadvantages in that the orientation of the molecules, which is essential for developing the required refractive index, may disappear due to changes over time, and that it is necessary to apply an electric field to maintain the orientation. Furthermore, since it is based on the orientational polarization effect of molecules, it has the disadvantage that it is difficult to obtain a large refractive index difference.

【0009】[0009]

【発明が解決しようとする課題】本発明者らは、以上に
述べた従来技術における問題点を一挙に解決するべく研
究を行い、光導波路、就中、非線形光学効果を併せもつ
パターン集積化された有機ポリマー光導波路の新規な製
造方法を見出し、本発明をなすに到った。
[Problems to be Solved by the Invention] The present inventors have conducted research to solve the above-mentioned problems in the prior art all at once, and have developed optical waveguides, especially integrated patterns that have nonlinear optical effects. We have discovered a new method for manufacturing an organic polymer optical waveguide, and have accomplished the present invention.

【0010】本発明は、有機ポリマー中に半導体超微粒
子が選択的部分に分散してなることにより、屈折率が周
囲より大なる光導波部を有する光導波路の製造方法に関
するもので、半導体超微粒子の原料となる金属元素化合
物を含有した前駆体有機ポリマーに半導体超微粒子生成
に必要な反応性ガスを反応させることにより半導体超微
粒子を選択的部分に分散させて、光導波部を形成する際
し、前駆体有機ポリマーに、樹脂溶液により導波路形成
用パターンをプリントすることを特徴とする該光導波路
の製造方法を提供するものである。
The present invention relates to a method for manufacturing an optical waveguide having an optical waveguide portion having a larger refractive index than the surrounding area by selectively dispersing semiconductor ultrafine particles in an organic polymer. When forming an optical waveguide by dispersing semiconductor ultrafine particles into selective parts by reacting a reactive gas necessary for producing semiconductor ultrafine particles with a precursor organic polymer containing a metal element compound, which is the raw material for the The present invention provides a method for manufacturing an optical waveguide, which comprises printing a pattern for forming a waveguide on a precursor organic polymer using a resin solution.

【0011】本発明方法によると、感光性樹脂を用いた
露光あるいは溶剤を用いたエッチング処理工程が省略さ
れるので、製造工程中における材料の変質化の虞れがな
い。また、光導波路形成のために屈折率の異なる物質を
分散させるので、経時変化による配向分極の解消による
屈折率差の低下を回避できるし、また分極による効果で
はないので充填率の向上により、より大きい屈折率変化
も付与しうる。
According to the method of the present invention, the exposure process using a photosensitive resin or the etching process using a solvent is omitted, so there is no risk of deterioration of the material during the manufacturing process. In addition, since materials with different refractive indexes are dispersed to form an optical waveguide, it is possible to avoid a decrease in the refractive index difference due to the elimination of orientation polarization due to changes over time, and since the effect is not due to polarization, it is possible to improve the filling factor. A large refractive index change can also be imparted.

【0012】さらにまた、半導体超微粒子は空間的に 
100オングストローム程度以下になるとその電子状態
が閉じ込め効果を受け、大きな非線形性能の発現するこ
とが知られており、さらに有用性が高まる。
Furthermore, the semiconductor ultrafine particles are spatially
It is known that when the thickness is less than about 100 angstroms, the electronic state is subject to a confinement effect and a large nonlinear performance is exhibited, further increasing the usefulness.

【0013】[0013]

【課題を解決するための手段】本発明で製造される光導
波路について第1図を用いて説明する。本発明による光
導波路は第1図中d)に示された断面図のように、金属
化合物を含有した有機ポリマー中のパターン化された部
分に選択的に半導体超微粒子が分散して、光導波部とな
った構造をしている。
[Means for Solving the Problems] An optical waveguide manufactured by the present invention will be explained with reference to FIG. As shown in the cross-sectional view d) in FIG. 1, the optical waveguide according to the present invention has semiconductor ultrafine particles selectively dispersed in patterned parts of an organic polymer containing a metal compound to guide the optical waveguide. It has a sectional structure.

【0014】次に、第1図にもとづき、本発明の製造方
法について記述する。まず、半導体超微粒子の原料とな
る金属元素化合物を含有した前駆体有機ポリマーを調製
する。
Next, the manufacturing method of the present invention will be described based on FIG. First, a precursor organic polymer containing a metal element compound that is a raw material for semiconductor ultrafine particles is prepared.

【0015】金属元素化合物としては、元素周期律表第
II−VI族元素化合物半導体超微粒子生成のために、
過塩素酸カドミウム、酢酸亜鉛、硝酸鉛などの第II族
元素化合物を用いる。
As metal element compounds, compounds of Groups II-VI of the Periodic Table of Elements are used for the production of semiconductor ultrafine particles.
Group II element compounds such as cadmium perchlorate, zinc acetate, and lead nitrate are used.

【0016】有機ポリマーとしては、透明性などの光学
的特性に優れた有機ポリマー、たとえばポリメチルメタ
クリレート、ポリアクリロニトリル、ポリカーボネート
、ポリスチレンなど、あるいはこれらのひとつないしは
複数を含有する混合物ないしは共重合体を用いる。
As the organic polymer, an organic polymer having excellent optical properties such as transparency, such as polymethyl methacrylate, polyacrylonitrile, polycarbonate, polystyrene, etc., or a mixture or copolymer containing one or more of these, is used. .

【0017】これら金属元素化合物、有機ポリマーを適
当な溶媒に溶解させる。例えば、ジメチルホルムアミド
、アセトニトリル、メタノール、テトラヒドロフランな
どの極性有機溶媒が金属元素ならびに有機ポリマーの溶
解性の観点から好ましく用いられる。
These metal element compounds and organic polymers are dissolved in a suitable solvent. For example, polar organic solvents such as dimethylformamide, acetonitrile, methanol, and tetrahydrofuran are preferably used from the viewpoint of solubility of metal elements and organic polymers.

【0018】このようにして調製された溶液をガラスや
シリコンなどの適当な基板上にキャストあるいはスピン
コートすることにより展開する。含まれている溶媒は風
乾あるいは減圧処理することにより除去処理をおこない
、前駆体有機ポリマーフィルムを形成する。
The solution thus prepared is developed by casting or spin coating onto a suitable substrate such as glass or silicon. The contained solvent is removed by air drying or reduced pressure treatment to form a precursor organic polymer film.

【0019】このようにして得られた前駆体有機ポリマ
ーフィルムに樹脂溶液により導波路形成用パターンをプ
リントする。ここに、樹脂溶液とは、有機ポリマーを溶
解させる能力のある溶剤、例えば、ジメチルホルムアミ
ド、アセトニトリル、メタノール、アセトン、ベンゼン
など、または可塑剤、例えば、フタル酸ジメチル、リン
酸トリブチルなどに樹脂を溶解した溶液であり、樹脂と
してはブチラール樹脂、SBR樹脂、メラミン樹脂、ア
クリル樹脂、天然ゴムあるいはこれらを基体とした組成
物などが用いられる。この樹脂溶液は、前駆体有機ポリ
マーにパターン化されて粘着・固着化されるが、パター
ン化するのにスクリーニング印刷などのプリント手段が
適宜に採用される。
A pattern for forming a waveguide is printed on the precursor organic polymer film thus obtained using a resin solution. Here, the resin solution refers to a resin solution dissolved in a solvent capable of dissolving an organic polymer, such as dimethylformamide, acetonitrile, methanol, acetone, benzene, etc., or a plasticizer, such as dimethyl phthalate, tributyl phosphate, etc. The resin used is butyral resin, SBR resin, melamine resin, acrylic resin, natural rubber, or a composition based on these. This resin solution is patterned onto the precursor organic polymer to make it adhere and adhere, and printing means such as screening printing is appropriately employed for patterning.

【0020】半導体超微粒子生成に必要な反応性ガスと
しては目的に応じ、硫化水素ガス、セレン化水素ガスな
どの第VI族元素化合物ガスあるいはこれらを窒素、ヘ
リウムなどの不活性ガスで希釈したガス、さらにはこれ
らを任意な比率で混合したガスを用いる。反応性ガスは
、プリントされた樹脂溶液パターン部分に選択的に多く
吸収・溶解され、接触している前駆体有機ポリマー中に
拡散する過程で半導体超微粒子を生成し、非パターン化
部分に比較して高屈折率を有した導波路を形成する。
Depending on the purpose, the reactive gas required for the generation of semiconductor ultrafine particles may be a Group VI element compound gas such as hydrogen sulfide gas or hydrogen selenide gas, or a gas obtained by diluting these with an inert gas such as nitrogen or helium. , or a mixture of these gases in an arbitrary ratio. The reactive gas is selectively absorbed and dissolved in large amounts in the printed resin solution pattern area, and in the process of diffusing into the contacting precursor organic polymer, semiconductor ultrafine particles are generated, compared to the non-patterned area. A waveguide with a high refractive index is formed.

【0021】必要に応じ、金属元素化合物濃度、前駆体
有機ポリマー中の溶媒残存量を調節することにより生成
する半導体超微粒子の粒子径あるいは密度を調節するこ
とも可能である。
If necessary, it is also possible to adjust the particle diameter or density of the semiconductor ultrafine particles produced by adjusting the concentration of the metal element compound and the amount of solvent remaining in the precursor organic polymer.

【0022】半導体超微粒子分散体の非線形光学効果は
、光吸収により発生する電子−正孔の空間的閉じ込め効
果を利用するため、粒子径は10から1000オングス
トローム程度に制御されるのが好ましい。
Since the nonlinear optical effect of the semiconductor ultrafine particle dispersion utilizes the spatial confinement effect of electrons and holes generated by light absorption, the particle diameter is preferably controlled to about 10 to 1000 angstroms.

【0023】本発明の方法によると平面導波路、チャン
ネル導波路、導波路複合構造のものを得ることが可能で
ある。
According to the method of the present invention, it is possible to obtain planar waveguides, channel waveguides, and waveguide composite structures.

【0024】[0024]

【実施例】以下、実施例により本発明をさらに詳細に説
明する。 実施例1 過塩素酸カドミウムCd(ClO4)2 ・6H2Oを
1.0x10−4モル、アクリロニトリル/スチレン共
重合樹脂 0.5gを均一に溶解させたジメチルホルム
アミド溶液 3.5mlを直径70mmのガラスシャー
レに展開する。これを真空デシケーターにいれ、1To
rrの減圧下、室温で一日放置することにより、溶媒を
除去し、前駆体有機ポリマーフィルムを得る。このフィ
ルムの膜厚は90μmであった。この前駆体有機ポリマ
ーフィルムにジメチルホルムアミドにブチラール樹脂を
溶解した溶液を樹脂溶液として用い、塗布により直線状
にパターンを形成した。これを硫化水素雰囲気中で2時
間放置し、チャンネル形導波路を得た。生成した硫化カ
ドミウム半導体超微粒子による可視・紫外吸収スペクト
ルならびに電子顕微鏡観察写真により、パターン部分へ
の半導体超微粒子の選択的分散化が達成されていること
を確認した。導波路による進行光の閉じ込め効果は、ヘ
リウム−ネオンレーザーを用い、フィルム面内で導波路
直線方向に対して約10度の傾斜を持たせた入射光線が
導波路内に閉じ込められ、伝播されることが確かめられ
、これにより光導波路の形成を確認した。
[Examples] The present invention will be explained in more detail with reference to Examples below. Example 1 3.5 ml of a dimethylformamide solution in which 1.0 x 10 -4 mol of cadmium perchlorate Cd(ClO4)2 .6H2O and 0.5 g of acrylonitrile/styrene copolymer resin were uniformly dissolved was placed in a glass Petri dish with a diameter of 70 mm. expand. Put this in a vacuum desiccator, 1To
The solvent is removed by leaving it at room temperature for one day under reduced pressure of rr to obtain a precursor organic polymer film. The thickness of this film was 90 μm. A linear pattern was formed on this precursor organic polymer film by coating using a solution of butyral resin dissolved in dimethylformamide as a resin solution. This was left for 2 hours in a hydrogen sulfide atmosphere to obtain a channel waveguide. Visible and ultraviolet absorption spectra and electron microscopy photographs of the produced cadmium sulfide semiconductor ultrafine particles confirmed that selective dispersion of the semiconductor ultrafine particles into the patterned areas had been achieved. The confinement effect of traveling light by a waveguide is achieved by using a helium-neon laser, and an incident light beam having an inclination of approximately 10 degrees with respect to the linear direction of the waveguide within the film plane is confined within the waveguide and propagated. This confirmed the formation of an optical waveguide.

【0025】比較例1 ジメチルホルムアミド含有ブチラール樹脂によるパター
ン形成を行わないという点以外は、実施例1と同様に実
施したところ、半導体超微粒子の生成は可視・紫外吸収
スペクトルならびに電子顕微鏡写真で確認されたが、入
射レーザー光が特定方向に導波するという効果は観察さ
れなかった。
Comparative Example 1 The same procedure as in Example 1 was carried out except that pattern formation using dimethylformamide-containing butyral resin was not performed, and the formation of semiconductor ultrafine particles was confirmed by visible/ultraviolet absorption spectra and electron micrographs. However, no effect of guiding the incident laser light in a specific direction was observed.

【0026】[0026]

【発明の効果】有機ポリマー光導波路は、加工性がよい
ことや取扱易さの点から汎用性が高いことが期待されて
いるが、本発明は新規な方法でありながら、きわめて簡
便かつ有効な導波路製造方法を提供するものである。本
発明の方法で作製された光導波路は、単に導波路として
の役割だけではなく、非線形光学性能を有する場合は、
光スイッチなどにその有用性はさらに高いものになる。 また、ポーリングポリマー導波路のように経時変化に伴
う分極の解消による導波路の消失という難点も克服され
るという効果がある。さらに、本発明はパターン形成に
塗布やスクリーニング印刷などのプリント手法を用いる
ので、光導波回路形成の多様性が著しく拡大するという
効果が得られる。本発明は光回路の特性改善等に大きく
貢献するもであり、産業上重大な意義を有する。
[Effects of the Invention] Organic polymer optical waveguides are expected to be highly versatile due to their good processability and ease of handling.Although the present invention is a novel method, it is extremely simple and effective. A method for manufacturing a waveguide is provided. The optical waveguide produced by the method of the present invention not only functions as a waveguide, but also has nonlinear optical performance.
Its usefulness will be even higher in optical switches and the like. In addition, it has the effect of overcoming the problem of the waveguide disappearing due to the cancellation of polarization that occurs over time, as in the case of a poling polymer waveguide. Furthermore, since the present invention uses a printing method such as coating or screening printing for pattern formation, it has the effect of significantly expanding the variety of optical waveguide circuit formation. The present invention greatly contributes to improving the characteristics of optical circuits and has great industrial significance.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】第1図は本発明による光導波路の製造方法を説
明する図である。 a)は前駆体有機ポリマー b)はパターン化した前駆体有機ポリマーc)はパター
ン化した前駆体有機ポリマーと反応性ガスd)は製造さ
れた光導波路を示す断面図である。
FIG. 1 is a diagram illustrating a method for manufacturing an optical waveguide according to the present invention. a) is a precursor organic polymer; b) is a patterned precursor organic polymer; c) is a patterned precursor organic polymer; and d) is a cross-sectional view of a manufactured optical waveguide.

【符号の説明】[Explanation of symbols]

1‥‥前駆体有機ポリマー、2‥‥樹脂溶液による導波
路形成用パターン、3‥‥反応性ガス、4‥‥半導体超
微粒子分散部分:光導波部(高屈折率部分)5‥‥低屈
折率部分。
1. Precursor organic polymer, 2. Pattern for waveguide formation using resin solution, 3. Reactive gas, 4. Semiconductor ultrafine particle dispersion portion: Optical waveguide portion (high refractive index portion) 5.. Low refraction. rate part.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  有機ポリマー中に半導体超微粒子が選
択的部分に分散し、その部分の屈折率が周囲より大なる
ことにより光導波部を形成する光導波路において、半導
体超微粒子の原料となる金属元素化合物を含有した前駆
体有機ポリマーに半導体超微粒子生成に必要な反応性ガ
スを反応させることにより半導体超微粒子を光導波部と
なる選択的部分に分散させるに際し、前駆体有機ポリマ
ーに樹脂溶液により導波路形成用パターンをプリントす
ることを特徴とする該光導波路の製造方法。
Claim 1: In an optical waveguide in which semiconductor ultrafine particles are dispersed in selective parts in an organic polymer, and the refractive index of the part is higher than that of the surrounding area to form an optical waveguide, a metal serving as a raw material for semiconductor ultrafine particles is used. When dispersing semiconductor ultrafine particles into selective parts that will become optical waveguides by reacting a precursor organic polymer containing an elemental compound with a reactive gas necessary for producing semiconductor ultrafine particles, the precursor organic polymer is mixed with a resin solution. A method for manufacturing an optical waveguide, comprising printing a pattern for forming a waveguide.
JP3006047A 1991-01-23 1991-01-23 Manufacturing method of optical waveguide Expired - Lifetime JP2849482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3006047A JP2849482B2 (en) 1991-01-23 1991-01-23 Manufacturing method of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3006047A JP2849482B2 (en) 1991-01-23 1991-01-23 Manufacturing method of optical waveguide

Publications (2)

Publication Number Publication Date
JPH04238304A true JPH04238304A (en) 1992-08-26
JP2849482B2 JP2849482B2 (en) 1999-01-20

Family

ID=11627710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3006047A Expired - Lifetime JP2849482B2 (en) 1991-01-23 1991-01-23 Manufacturing method of optical waveguide

Country Status (1)

Country Link
JP (1) JP2849482B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955528A (en) * 1996-07-04 1999-09-21 Fuji Xerox Co., Ltd. Polymeric composite material and process for manufacturing the same
JP2016510420A (en) * 2012-12-20 2016-04-07 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Optical composition
US9680054B2 (en) 2007-07-23 2017-06-13 Samsung Electronics Co., Ltd. Quantum dot light enhancement substrate and lighting device including same
US9874674B2 (en) 2006-03-07 2018-01-23 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US9929325B2 (en) 2012-06-05 2018-03-27 Samsung Electronics Co., Ltd. Lighting device including quantum dots
US9946004B2 (en) 2008-05-06 2018-04-17 Samsung Electronics Co., Ltd. Lighting systems and devices including same
US9951438B2 (en) 2006-03-07 2018-04-24 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955528A (en) * 1996-07-04 1999-09-21 Fuji Xerox Co., Ltd. Polymeric composite material and process for manufacturing the same
US9874674B2 (en) 2006-03-07 2018-01-23 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US9951438B2 (en) 2006-03-07 2018-04-24 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US9680054B2 (en) 2007-07-23 2017-06-13 Samsung Electronics Co., Ltd. Quantum dot light enhancement substrate and lighting device including same
US10096744B2 (en) 2007-07-23 2018-10-09 Samsung Electronics Co., Ltd. Quantum dot light enhancement substrate and lighting device including same
US9946004B2 (en) 2008-05-06 2018-04-17 Samsung Electronics Co., Ltd. Lighting systems and devices including same
US10627561B2 (en) 2008-05-06 2020-04-21 Samsung Electronics Co., Ltd. Lighting systems and devices including same
US9929325B2 (en) 2012-06-05 2018-03-27 Samsung Electronics Co., Ltd. Lighting device including quantum dots
JP2016510420A (en) * 2012-12-20 2016-04-07 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Optical composition

Also Published As

Publication number Publication date
JP2849482B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
KR100930966B1 (en) Nanostructures of block copolymers formed on surface patterns of shapes inconsistent with the nanostructures of block copolymers and methods for manufacturing the same
WO1991010149A1 (en) Method for forming optically active waveguides
US4921321A (en) Silicon network polymers
KR100764826B1 (en) Pixellated photonic crystal films for the applications of reflective mode display and photonic waveguide and fabrication method thereof
Baker et al. Fabrication of waveguide structures from soluble polydiacetylenes
JPH04238304A (en) Production of optical waveguide
JP2849478B2 (en) Optical waveguide and manufacturing method thereof
JPH0534699A (en) Liquid crystal display element
US20040262402A1 (en) Alignment layer comprising a first and a second sublayer
EP0372645A2 (en) Process for the production of an SIC mask support for radiation lithography masks
US6327415B1 (en) Optical waveguide made of polymer material and a method of fabricating the same
JP2849483B2 (en) Manufacturing method of optical waveguide
JP2006030357A (en) Manufacturing method of optical waveguide and the optical waveguide
US20050069637A1 (en) Method for manufacturing planar optical waveguide
JP2000095862A (en) Refractive index control of optical polymer material by fluorination and surface hydrophilification of molded product thereof
JPS61294433A (en) High resolution photosensitive resin composition and manufacture of submicron pattern using the same
KR100501247B1 (en) Etching mask using azobenzene compounds
KR100426959B1 (en) Menufacturing Method for Planar Optical Waveguide
JP3363544B2 (en) Method for crosslinking semiconductor ultrafine particles and semiconductor ultrafine particle crosslinked material
JP4930685B2 (en) One-dimensional Mott insulator, one-dimensional Mott insulator thin film and manufacturing method thereof
RU2429256C1 (en) Gold-containing polymerisable acrylic composition, spatial-mesh polymer material for recording information and production method thereof
JP2001249370A (en) Nonlinear optical element and method of manufacture
US20030052081A1 (en) Method for producing active or passive components on a polymer basis for integrated optical devices
JPS63241527A (en) Nonlinear optical element and its preparation
SU959024A1 (en) Method of recording data to photothermoplastic material