JPS63241527A - Nonlinear optical element and its preparation - Google Patents
Nonlinear optical element and its preparationInfo
- Publication number
- JPS63241527A JPS63241527A JP7412587A JP7412587A JPS63241527A JP S63241527 A JPS63241527 A JP S63241527A JP 7412587 A JP7412587 A JP 7412587A JP 7412587 A JP7412587 A JP 7412587A JP S63241527 A JPS63241527 A JP S63241527A
- Authority
- JP
- Japan
- Prior art keywords
- nonlinear optical
- optical element
- nonlinear
- glass
- porous glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 48
- 239000000463 material Substances 0.000 claims abstract description 14
- 239000005373 porous glass Substances 0.000 claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 8
- 230000001747 exhibiting effect Effects 0.000 claims description 5
- 239000013081 microcrystal Substances 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052708 sodium Inorganic materials 0.000 abstract description 3
- 239000011734 sodium Substances 0.000 abstract description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 abstract description 2
- 239000002253 acid Substances 0.000 abstract description 2
- 239000005388 borosilicate glass Substances 0.000 abstract description 2
- 239000011148 porous material Substances 0.000 abstract 3
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 11
- 239000011521 glass Substances 0.000 description 9
- 239000013078 crystal Substances 0.000 description 7
- 150000002894 organic compounds Chemical class 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 150000002484 inorganic compounds Chemical class 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 230000005476 size effect Effects 0.000 description 2
- 238000005773 Enders reaction Methods 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/355—Non-linear optics characterised by the materials used
- G02F1/3555—Glasses
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Glass Compositions (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光通信あるいは光情報分野において用いること
のできる非線形光学素子及びその作製方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a nonlinear optical element that can be used in the field of optical communication or optical information, and a method for manufacturing the same.
従来この踵の非線形光学素子として無機化合物あるいは
有機化合物のバルク単結晶を材料とするもの等が一般的
であった。バルク単結晶を材料とする素子Cは良質な結
晶を育成する必要があるため素子を作製するのに非常に
長い時間と複雑な行程を有するという欠点があった。Conventionally, nonlinear optical elements for this heel have generally been made of bulk single crystals of inorganic or organic compounds. Element C, which is made of bulk single crystal, has the disadvantage that it requires a very long time and complicated process to manufacture the element because it is necessary to grow a high-quality crystal.
結晶材料以外のものでは、最近半導体微粒子(0dTe
Be系)がガラス中に分散されたドープガラス(主に市
販の色フイルタ−)で、そのサイズ効用により、そのも
ののバルク結晶より大きな非線形光学効果を示したυ、
スイッチフグ時間が加速される等の現像が見出されてい
る。In materials other than crystalline materials, semiconductor fine particles (0dTe
It is a doped glass (mainly commercially available color filters) in which Be system) is dispersed in the glass, and due to its size effect, it exhibits a larger nonlinear optical effect than its own bulk crystal.
It has been found that the switching time is accelerated.
しかしながら、作製方法が特殊なため、他の材料系にお
いて同様な効果を見出した例がない。However, because the manufacturing method is special, there are no examples of similar effects found in other material systems.
本発明の目的は、前記のような欠点がなく、他の系に適
用可能な非線形光学素子及びその作製方法を提供するこ
とにある。An object of the present invention is to provide a nonlinear optical element that does not have the above-mentioned drawbacks and can be applied to other systems, and a method for manufacturing the same.
本発明を概説すれば、本発明の第1の発明は非線形光学
素子に関する発明であって、大きな非線形光学効果を示
す化合物の微結晶又は微粉体を多孔性ガラスの穴中に分
散させた物質からなることを特徴とする。To summarize the present invention, the first invention of the present invention relates to a nonlinear optical element, which is made of a material in which microcrystals or fine powder of a compound exhibiting a large nonlinear optical effect are dispersed in holes of porous glass. It is characterized by becoming.
そして、本発明の第2の発明は非線形光学素子の作製方
法に関する発明であって、大きな非線形光学効果を示す
化合物の微結晶又は微粉体を、多孔性ガラスの穴中に分
散させる工程を包含することを特徴とする。A second invention of the present invention relates to a method for manufacturing a nonlinear optical element, which includes a step of dispersing microcrystals or fine powder of a compound exhibiting a large nonlinear optical effect into holes of porous glass. It is characterized by
本発明ではこの非線形光学効果におけるサイズ効果を他
の非線形光学材料に適用可能とすることもねらいの1つ
としている。One of the aims of the present invention is to make this size effect in nonlinear optical effects applicable to other nonlinear optical materials.
多孔性ガラスとしては穴の大きさが50−2000に程
度の物が利用できる。Porous glass having a hole size of about 50 to 2000 can be used.
このような多孔性ガラスは、ホウケイ酸ソーダガラスを
Ha、O−BIOI組成からなる部分と、810t
組成からなる部分に分相処理し、酸によって溶解しゃす
いN a、O−B、03 部分のみを溶かし出すこと
によって得られる(昭和50年9月30日、朝倉書店発
行、ガラスハンドブック、第1056頁参照)。非線形
性の大きな化合物としては、有効な5次の非線形光学効
果が石英ガラス系の光ファイバで観測されていることを
考えると、石英ガラスの5次の非線形感受率、10−1
468u よシ大きな感受率を持つものなら有効な非線
形光学効果を発現することができる。Such porous glass is made by combining sodium borosilicate glass with a portion consisting of Ha, O-BIOI composition, and 810t.
Obtained by performing phase separation treatment on the parts consisting of the composition and dissolving only the Na, O-B, and 03 parts that dissolve with acid (September 30, 1975, published by Asakura Shoten, Glass Handbook, No. 1056 (see page). As a compound with large nonlinearity, considering that an effective fifth-order nonlinear optical effect has been observed in a silica glass-based optical fiber, the fifth-order nonlinear susceptibility of silica glass is 10-1.
468u If it has a large susceptibility, it can produce an effective nonlinear optical effect.
例えば、有機化合物であるならば、芳香族系、スチルベ
ン系、アセテレ/系等に代表されるπ電子共役鎖の長い
化合物を用いることができる。For example, if the compound is an organic compound, a compound with a long π-electron conjugated chain such as an aromatic type, a stilbene type, an acetele/type, etc. can be used.
無機化合物であるなら(uol等のイオン結晶、LiN
1)O,等の誘電体結晶0dTe8e 等の半導体結
晶が挙げられる゛。If it is an inorganic compound (ionic crystal such as uol, LiN
1) Dielectric crystals such as O, etc.; and semiconductor crystals such as 0dTe8e.
以下、本発明による非線形光学素子及び其の作製方法に
付いて具体的に説明する。Hereinafter, the nonlinear optical element and its manufacturing method according to the present invention will be specifically explained.
分散方法としては蒸着によって多孔質パイコールの穴に
有機化合物の微結晶を堆積する方法のほか有機化合物の
融液中に多孔質パイコールガラスを浸漬させて穴中に結
晶化させる方法、あるいは有機化合物を溶かした溶液中
に多孔質パイコールガラスを浸漬させて穴中に結晶化さ
せる方法もある。Dispersion methods include depositing microcrystals of organic compounds in the holes of porous Pycoll by vapor deposition, methods of immersing porous Pycoll glass in a melt of organic compounds, and crystallizing the organic compounds in the holes. There is also a method of immersing porous Pycoor glass in a solution containing Pycoll and crystallizing it in the holes.
次に本発明において、導波型構造を形成させる方法とし
ては、上記分散工程の後で、得られた物質を、例えばレ
ジストパターン化、ドライエツチング等の手段によシ、
導波型構造を形成させる。Next, in the present invention, as a method for forming a waveguide structure, after the above-mentioned dispersion step, the obtained substance is subjected to resist patterning, dry etching, etc.
A waveguide structure is formed.
そして、この作製方法においては任意の導波路パターン
がマスクパターンを選択することによって得られるため
、方向性結合器による光双安定素子、マツハツエンダ−
型干渉計による光スイツチ素子等の有効な非線形光学素
子を作製することができる。以下の実施例においてはP
TSポリマーを用いた有機化合物の例のみを挙げている
が、このほか半導体、誘電体等の無機化合物についても
同様な方法で本発明の光学素。In this manufacturing method, an arbitrary waveguide pattern can be obtained by selecting a mask pattern, so optical bistable devices using directional couplers, Matsuhatsu Ender
Effective nonlinear optical elements such as optical switch elements can be fabricated using a type interferometer. In the following examples, P
Although only examples of organic compounds using TS polymers are given, inorganic compounds such as semiconductors and dielectrics can also be used in the optical element of the present invention in the same manner.
子を作製することができる。It is possible to create children.
以下、本発明を実施例により更に具体的に説明するが、
本発明はこれら実施例に限定されない。Hereinafter, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to these examples.
実施例1
多孔質パイコールガラス、厚さ1鱈、大きさ20m角の
基板を用意しこの基板に真空蒸着により −−PT
Sモノマーを蒸着する。(PTS−6/マーの構造:
OH,()ElO,OH,−0ミa−cミc−c馬−g
o、@5OHs )この操作によりPTSモノマーは基
板表面にも堆積していたが同時にバイコールガラス中の
細かい穴中にも堆積していた。この基板を次に紫外線照
射することによってPTSを完全に高分子化する。その
後基板表面の17日を除去することによって本発明の素
子に用いる材料を得る。これを第1図に示すファブリペ
ロ−の共振器中に設置することによって本発明の非線形
光学素子を得た。すなわち、第1図は該非線形光単素子
の1例を示す平面図であり、1が7アブリペロー共振器
、2は上述した材料で本発明における非線形光学素子の
非線形光学効果を示す非線形媒体である。5は入力光、
4は出力光である。第2図に示したのはこの素子により
観測することのできた光履歴曲線を入力光強度(横軸)
と出力光強度(縦軸)との関係で示すグラフであり、こ
の図かられかるように本発明の素子が光双安定性を実現
している。入力光としては色素レーザーa 64 pf
nの光を用いており入力パワー1d1mWでめった。ま
たスイッチング速度としては100fs以下であった。Example 1 A substrate made of porous Pycoor glass, 1 piece thick, and 20 m square in size was prepared, and --PT was applied to this substrate by vacuum evaporation.
Deposit S monomer. (Structure of PTS-6/mer:
OH, () ElO, OH, -0 mi a-c mi c-c horse-g
o, @5OHs) Through this operation, the PTS monomer was deposited not only on the substrate surface but also in the fine holes in the Vycor glass. This substrate is then irradiated with ultraviolet rays to completely polymerize the PTS. Thereafter, the material used in the device of the present invention is obtained by removing 17 days from the surface of the substrate. By installing this in a Fabry-Perot resonator shown in FIG. 1, a nonlinear optical element of the present invention was obtained. That is, FIG. 1 is a plan view showing an example of the nonlinear optical single element, in which 1 is a 7-Avry-Perot resonator, and 2 is a nonlinear medium made of the above-mentioned material and exhibiting the nonlinear optical effect of the nonlinear optical element in the present invention. . 5 is input light,
4 is output light. Figure 2 shows the light history curve that could be observed with this device, with input light intensity (horizontal axis).
This is a graph showing the relationship between output light intensity (vertical axis) and output light intensity (vertical axis), and as can be seen from this figure, the element of the present invention achieves optical bistability. The input light is a dye laser a 64 pf
n light was used, and the input power was 1d1mW. Further, the switching speed was 100 fs or less.
実施例2
第5図に示したのは本発明による導波路型非線形光学素
子の作製方法の1例の工程図である。Example 2 FIG. 5 is a process diagram of an example of a method for manufacturing a waveguide type nonlinear optical element according to the present invention.
第S図(alは多孔質パイコールガラス基板にレジスト
を浸み込ませる工程、(至))はこの基板をマスクパタ
ーンごしに露光することによって所望のパターンを基板
上に描く工程、(C1は現像後の基板の状態を示したも
の、(d)は現像後の基板中K。FIG. S (Al is a step of impregnating a porous Pycoll glass substrate with resist, (to)) is a step of drawing a desired pattern on the substrate by exposing this substrate through a mask pattern, (C1 (d) shows the state of the substrate after development, and (d) shows the state of the substrate after development.
非線形光学材料を導入する工程を示したものである。5
は多孔質パイコールにレジストを浸み込ませた基板、6
はレジスト、7は露光後の現像によってできるパターン
化された多孔質部である。次にこの穴中に実施例1に挙
げた工程と同様にしてFTEIポリマーを固定させる。This figure shows the process of introducing a nonlinear optical material. 5
6 is a substrate made of porous Pycor impregnated with resist.
7 is a resist, and 7 is a patterned porous portion formed by development after exposure. Next, the FTEI polymer is fixed into this hole in the same manner as in the process described in Example 1.
8はそのPT8ポリマーが分散している部分である。8 is the part where the PT8 polymer is dispersed.
多孔質パイコールガラスとしては厚さ1−120震角の
物を用いレジスト材料としては屈折率が1.5程度のポ
リエステル系の材料を用いている。The porous Pycoor glass has a thickness of 1 to 120 seismic angles, and the resist material is a polyester material with a refractive index of about 1.5.
パターン幅としては5μ儀、深さも5P惰である。The pattern width is 5μ and the depth is 5P.
なお、このパターンにおける深さの制御については露光
工程の時間により制御が可能であった。Note that the depth of this pattern could be controlled by changing the exposure process time.
以上の工程によりPT8ポリマーが分散している部分、
すなわち幅5μ惰、深さ5μ情の部分はレジスト材料が
分散している部分の屈折率よりα5チ程度高くなり導波
路構造を形成していた。以上の工程により作製される導
波路の典型的な形状を第4図に示した。9が導波路のコ
ア部分でPT8ポリマーが分散している。10は導波路
のクラッドにあたる部分であり多孔質ガラスにレジスト
が含浸している。この導波路にラマンセルを用いた1、
6μ慣のレーザー光を入射したところ第3高調波の発生
が観測された(波長:α55μS)。The part where PT8 polymer is dispersed by the above process,
That is, the portion having a width of 5 μm and a depth of 5 μm had a refractive index higher than the refractive index of the portion where the resist material was dispersed by about α5, forming a waveguide structure. FIG. 4 shows a typical shape of the waveguide produced by the above steps. 9 is the core portion of the waveguide in which PT8 polymer is dispersed. Reference numeral 10 indicates a portion corresponding to the cladding of the waveguide, in which porous glass is impregnated with resist. Using a Raman cell for this waveguide 1,
When a laser beam of 6μ habitus was applied, generation of the third harmonic was observed (wavelength: α55μS).
以上説明したように、本発明の非線形光学素子及びその
作製方法は、高効率でしかも高速応答性を示す素子を簡
単なプロセスによって作製することができる利点を有し
ている。また、本発明方法によれば、導波型の非線形光
学素子も簡単に作製することができるので非線形光学効
果を低入力パワーで発現し利用する光通信、あるいは光
情報処理分野におけるデバイスを簡単なプロセスで作製
することができるという顕著な効果が奏せられる。As explained above, the nonlinear optical element and the method for manufacturing the same according to the present invention have the advantage that an element that is highly efficient and exhibits high-speed response can be manufactured by a simple process. In addition, according to the method of the present invention, waveguide type nonlinear optical elements can be easily manufactured, so devices in the field of optical communication or optical information processing, where nonlinear optical effects are expressed and utilized at low input power, can be easily manufactured. A remarkable effect can be achieved in that it can be manufactured by a process.
第1図は本発明による非線形光学素子の1例を示す平面
図、第2図は本発明による非線形光学素子の示す光履歴
曲、線を示すグラフ、第5図は本発明による導波型非線
形光学素子の作製方法の1例を示す工程図、第4図は本
発明によシ作製した非線形光学素子用の光導波路の斜視
図である。FIG. 1 is a plan view showing an example of the nonlinear optical element according to the present invention, FIG. 2 is a graph showing the optical history curve and line of the nonlinear optical element according to the present invention, and FIG. 5 is a waveguide type nonlinear according to the present invention. FIG. 4 is a process diagram showing one example of a method for manufacturing an optical element, and is a perspective view of an optical waveguide for a nonlinear optical element manufactured according to the present invention.
Claims (1)
粉体を多孔性ガラスの穴中に分散させた物質からなるこ
とを特徴とする非線形光学素子。 2、該化合物が、3次の非線形感受率x^(^3^)が
少なくとも10^−^1^4esuより大きい化合物で
ある特許請求の範囲第1項記載の非線形光学素子。 3、大きな非線形光学効果を示す化合物の微結晶又は微
粉体を、多孔性ガラスの穴中に分散させる工程を包含す
ることを特徴とする非線形光学素子の作製方法。 4、該作製方法が、該分散させる工程と、得られた物質
から導波型構造を形成させる工程とを包含するものであ
る特許請求の範囲第3項記載の非線形光学素子の作製方
法。[Scope of Claims] 1. A nonlinear optical element comprising a material in which microcrystals or fine powder of a compound exhibiting a large nonlinear optical effect are dispersed in holes of porous glass. 2. The nonlinear optical element according to claim 1, wherein the compound has a third-order nonlinear susceptibility x^(^3^) greater than at least 10^-^1^4esu. 3. A method for producing a nonlinear optical element, which comprises the step of dispersing microcrystals or fine powder of a compound exhibiting a large nonlinear optical effect into holes of porous glass. 4. The manufacturing method of a nonlinear optical element according to claim 3, wherein the manufacturing method includes the step of dispersing the material and the step of forming a waveguide structure from the obtained substance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7412587A JPS63241527A (en) | 1987-03-30 | 1987-03-30 | Nonlinear optical element and its preparation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7412587A JPS63241527A (en) | 1987-03-30 | 1987-03-30 | Nonlinear optical element and its preparation |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63241527A true JPS63241527A (en) | 1988-10-06 |
Family
ID=13538165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7412587A Pending JPS63241527A (en) | 1987-03-30 | 1987-03-30 | Nonlinear optical element and its preparation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63241527A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63282721A (en) * | 1987-04-17 | 1988-11-18 | ヘキスト・セラニーズ・コーポレーション | Inorganic-organic composite material giving non-linear optical response |
JPH02275733A (en) * | 1989-04-17 | 1990-11-09 | Masayuki Nogami | Semiconductor-containing glass and its production |
US5348687A (en) * | 1993-11-26 | 1994-09-20 | Mobil Oil Corp. | M41S materials having nonlinear optical properties |
-
1987
- 1987-03-30 JP JP7412587A patent/JPS63241527A/en active Pending
Non-Patent Citations (1)
Title |
---|
THE JOURNAL OF PHYSICAL CHEMISTRY=1985 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63282721A (en) * | 1987-04-17 | 1988-11-18 | ヘキスト・セラニーズ・コーポレーション | Inorganic-organic composite material giving non-linear optical response |
JPH02275733A (en) * | 1989-04-17 | 1990-11-09 | Masayuki Nogami | Semiconductor-containing glass and its production |
JP2768442B2 (en) * | 1989-04-17 | 1998-06-25 | 正行 野上 | Manufacturing method of semiconductor-containing glass |
US5348687A (en) * | 1993-11-26 | 1994-09-20 | Mobil Oil Corp. | M41S materials having nonlinear optical properties |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4514053A (en) | Integral photosensitive optical device and method | |
US20060042322A1 (en) | Integrated optic devices and processes for the fabrication of integrated optic devices | |
JPH04234005A (en) | Manufacture of lightguide tube by ion exchange method | |
DE69109423T2 (en) | Method of manufacturing a quartz optical waveguide. | |
JPS63241527A (en) | Nonlinear optical element and its preparation | |
JPS6066203A (en) | Polarizing element | |
JP2849478B2 (en) | Optical waveguide and manufacturing method thereof | |
JP2849482B2 (en) | Manufacturing method of optical waveguide | |
JP2742683B2 (en) | Manufacturing method of transmission diffraction grating | |
JPH05246727A (en) | Production of glass waveguide | |
JP3129855B2 (en) | Method for manufacturing rare earth ion / alkali metal added glass substrate and method for manufacturing rare earth ion / alkali metal added glass waveguide | |
WO1999046632A1 (en) | Method of fabricating optical nonlinear thin film waveguide and optical nonlinear thin film waveguide | |
JP2718476B2 (en) | Method for producing glass thin film for optical waveguide | |
JPH09222525A (en) | Production of optical waveguide | |
JP2849483B2 (en) | Manufacturing method of optical waveguide | |
JP3031066B2 (en) | Method for manufacturing oxide film and method for manufacturing optical waveguide | |
JPH0843654A (en) | Silica glass waveguide and its production | |
JPH01172936A (en) | Manufacture of optical wavelength converting element | |
JP2570822B2 (en) | Manufacturing method of optical waveguide | |
JPH0727941A (en) | Production of waveguide | |
JP3078255B2 (en) | Manufacturing method of nonlinear optical thin film | |
JPH02198402A (en) | Manufacture of non-linear optical waveguide | |
JPH08101414A (en) | Optical element | |
JPH02203305A (en) | Production of nonlinear light guide | |
JPS62293207A (en) | Production of optical waveguide |