JP2004072895A - 燃料電池車両の制御装置 - Google Patents

燃料電池車両の制御装置 Download PDF

Info

Publication number
JP2004072895A
JP2004072895A JP2002228556A JP2002228556A JP2004072895A JP 2004072895 A JP2004072895 A JP 2004072895A JP 2002228556 A JP2002228556 A JP 2002228556A JP 2002228556 A JP2002228556 A JP 2002228556A JP 2004072895 A JP2004072895 A JP 2004072895A
Authority
JP
Japan
Prior art keywords
fuel cell
state
cell vehicle
vehicle
gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002228556A
Other languages
English (en)
Inventor
Isamu Kazama
風間 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002228556A priority Critical patent/JP2004072895A/ja
Publication of JP2004072895A publication Critical patent/JP2004072895A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】燃料電池車両のロールバック等が発生する場合であっても回生電力を吸収すると共に勾配抵抗を超える駆動力を発生させる。
【解決手段】燃料電池車両が坂道に停車しているときNレンジからDレンジに切り換えられたとき、燃料電池スタックを発電させる補機を制御して、燃料電池スタックにて発電した電力によりモータを駆動して車両走行の駆動トルクを発生させるに際して、燃料電池車両の重力方向に対する勾配状態を検出し、モータの駆動トルクに依らない、勾配状態に応じた燃料電池車両の移動可能性を検出すると、補機にて消費する補機消費電力を大きくする。
【選択図】   図7

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池スタックにより発電した電力をモータに供給し、モータの駆動力により走行する燃料電池車両を制御する燃料電池車両の制御装置に関する。
【0002】
【従来の技術】
従来の燃料電池車両の制御装置では、例えば特開平7−75214号公報に開示されているように、モータ等の駆動ユニットが吸収可能な電力量より大きな電力量を燃料電池スタックにて発電することを防止していた。このとき、燃料電池車両の制御装置では、駆動ユニットに供給する電力量や制御目標値を制御すると共に、燃料電池スタックの発電量を制御している。具体的には、従来の燃料電池車両の制御装置では、燃料電池スタックが発生する出力電圧より大きな出力電圧が駆動ユニットから要求されないように、燃料電池スタックに供給している空気流量に従って駆動ユニットからの出力要求を補正する。
【0003】
【発明が解決しようとする課題】
ところで、坂道に燃料電池車両が停止している状態から坂道を登る方向に発進する場合に、ドライバーがブレーキからアクセルを操作しようとして、ブレーキを離し始めるとブレーキによる制動力が勾配抵抗より小さくなり坂道を下り始めるロールバックが発生する。そして、ドライバーがアクセルを踏み始め、駆動モータが駆動力(坂道を登る方向の駆動力)を出し始め、駆動力がおよそ勾配抵抗を超えると、燃料電池車両の加速度が前進方向となり、車両速度が後退から前進となる。このように、燃料電池車両が坂道を登る場合の駆動モータの回転方向を正方向とし、正トルクを発生させるとした場合、ロールバックする場合には、駆動モータの回転方向が負方向となり、駆動モータが発電して回生電力を発生させる状態となる。
【0004】
しかし、従来の燃料電池車両の制御装置では、燃料電池スタックの出力が増加する場合の燃料電池スタックの出力電圧と駆動ユニットの出力要求との関係については考慮されているが、燃料電池車両にロールバックなどが発生した場合に駆動モータが回生電力を発生することについては考慮されていない。
【0005】
このために、駆動モータの回生電力は、燃料電池車両で使われる補機電力を超えることができない。ここで、回生電力が補機電力を超えてしまった場合には、余剰電力となり燃料電池スタックとインバータとの間の電圧が急上昇し、燃料電池スタックやインバータの素子を劣化させる可能性があるという問題があった。
【0006】
これに対し、回生電力が補機電力を越えないようにした場合には、駆動モータが出力する駆動力が勾配抵抗を超えることができず、結果として車両が前進できない可能性があるという問題があった。
【0007】
そこで、本発明は、上述した実情に鑑みて提案されたものであり、燃料電池車両のロールバック等が発生する場合であっても回生電力を吸収すると共に勾配抵抗を超える駆動力を発生させる燃料電池車両の制御装置を提供するものである。
【0008】
【課題を解決するための手段】
本発明は、燃料電池スタックを発電させる補機を制御して、燃料電池スタックにて発電した電力によりモータを駆動して車両走行の駆動トルクを発生させる燃料電池車両の制御装置に適用される。
【0009】
本発明では、移動可能性検出手段によって燃料電池車両の重力方向に対する勾配状態を検出し、上記モータの駆動トルクに依らない、該勾配状態に応じた上記燃料電池車両の移動可能性を検出すると、制御手段によって補機にて消費する補機消費電力を大きくすることで、上述の課題を解決する。
【0010】
【発明の効果】
本発明に係る燃料電池車両の制御装置によれば、坂道などの勾配を有する道路に燃料電池車両が存在する場合、車両運転者の意図に依らない車両移動が発生する可能性を検出すると、補機での消費電力を大きくするので、勾配の大きな坂道発進時においてモータから回生電力が発生した場合に補機にて回生電力を吸収し、勾配抵抗を超える駆動力を発生させることができる。したがって、この燃料電池車両の制御装置によれば、ロールバック等が発生する状況であっても、短時間でストレス無く坂道発進を行わせることができる。
【0011】
【発明の実施の形態】
以下、本発明の第1実施形態及び第2実施形態について図面を参照して説明する。
【0012】
[第1実施形態]
[第1実施形態に係る燃料電池車両の構成]
この燃料電池車両は、車両運転者のアクセル操作によって駆動モータ1に駆動トルクを発生させるに際して、燃料電池スタック2を発電させるように補機3を駆動し、燃料電池スタック2にて発電した電力をインバータ4を介して駆動モータ1に供給する。駆動モータ1が駆動して発生した駆動トルクは、駆動輪5に伝達され、駆動輪5によって燃料電池車両を走行させる。
【0013】
燃料電池スタック2は、水素ガス等の燃料ガスと酸素を有する空気等の酸化剤ガスとを、電解質を介して電気化学的に反応させ、電極間から電力を直接取り出す。
【0014】
このような燃料電池車両では、燃料電池スタック2を発電させるに際して、コントローラ6に駆動モータ1の駆動トルク発生要求が入力される。このコントローラ6は、駆動トルク発生要求に応じて、車両内に設けられた重力センサ7、及び駆動モータ1と駆動輪5との連結部分に設けられた車速センサ8からのセンサ信号を読み込んで、補機3の動作を制御する。
【0015】
補機3は、図2に示すように、燃料電池スタック2の酸素極2aに酸素を供給するためのコンプレッサ11が空気供給配管を介して燃料電池スタック2と挿通し、酸素極2aの空気排出側に空気圧力調整弁12を備えている。また、この補機3は、空気供給配管に空気圧力センサ13を備えている。この空気圧力センサ13により検出した空気圧力は、必要に応じてコントローラ6に読み込まれる。
【0016】
このような補機3は、コントローラ6によりコンプレッサ11の駆動モータが制御されて酸素極2aに供給する空気流量が調整され、空気圧力調整弁12の開度が調整されて空気圧力が調整される。このとき、コントローラ6は、空気圧力センサ13からのセンサ信号及び要求される燃料電池スタック2の発電電力に応じて、コンプレッサ11の駆動量及び空気圧力調整弁12の開度を調整する。
【0017】
また、補機3は、燃料電池スタック2の水素極2bに水素を供給するために、高圧水素ボンベ14に水素を蓄積しておき、水素圧力調整弁15によって圧力調整をして水素極2bに供給する。ここで、水素供給配管には、エゼクタポンプ16を設け、水素極2bにて使用されずに通過した水素を再度水素極2bの水素供給側に循環する。また、水素極2bの水素排出側には、パージ弁17を設け、燃料電池スタック2のパージを行う。
【0018】
このような補機3は、コントローラ6により水素圧力調整弁15の開度が調整される。このとき、コントローラ6は、水素供給配管に設けた水素圧力センサ18により検出した水素圧力及び要求される燃料電池スタック2の発電電力に応じて、水素圧力調整弁15の開度を調整する。また、コントローラ6は、燃料電池スタック2のセル電圧を安定させるために水素のストイキ比(水素供給流量/水素消費流量)の値を1以上にする。更に、コントローラ6は、通常状態ではパージ弁17を閉状態にしておき、燃料電池スタック2の水詰まり等によるセル電圧の低下を検出してパージが必要と判定した場合には、パージ弁17を開状態にして、パージ弁17から水素と共に水分を排出させる。
【0019】
コントローラ6は、駆動モータ1にて発生する駆動トルクを制御するに際して、補機3を制御することにより燃料電池スタック2に供給する空気圧力及び空気流量、水素圧力及び水素流量を制御して、燃料電池スタック2の発電量を制御し、燃料電池スタック2から駆動モータ1に印加する出力電圧を制御する。
【0020】
また、コントローラ6は、補機3を制御して空気圧力及び流量を制御するに際して、目標補機消費電力設定処理をする。このとき、コントローラ6は、レンジスイッチ9からセンサ信号を読み込むことで現在のレンジ状態を識別し、更に重力センサ7からセンサ信号を読み込むことで現在の燃料電池車両に加わっている重力方向及び重力値を勾配状態として識別し、更に車速センサ8からセンサ信号を読み込むことで現在の車両速度を識別する。そして、コントローラ6は、レンジ状態、重力方向及び重力値、車両速度に基づいて、目標とする補機3の消費電力を決定する。なお、この目標補機消費電力設定処理の詳細な内容については後述する。
【0021】
[コントローラ6による補機制御処理]
つぎに、上述した燃料電池車両において、コントローラ6により補機3を制御する補機制御処理の処理手順を図3のフローチャートを参照して説明する。
【0022】
先ず、コントローラ6に外部からの駆動トルク発生要求が入力されると、ステップS1の処理を開始し、重力センサ7からセンサ信号を読み込み、更にステップS2にて車速センサ8からセンサ信号を読み込み、更に、ステップS3にてレンジスイッチ9からセンサ信号を読み込む。これにより、コントローラ6では、燃料電池車両の重力方向(傾き方向)及び重力値、車両速度、レンジ状態を認識する。
【0023】
次のステップS4においては、コントローラ6により、ステップS1〜ステップS3にて認識した重力方向(傾き方向)及び重力値、車両速度、レンジ状態を用いて、目標補機消費電力設定処理をする。このとき、コントローラ6では、例えば図4示すような重力方向及び重力値、レンジ状態に対する目標補機消費電力の値を記述したマップデータを参照する。
【0024】
この目標補機消費電力設定処理では、コントローラ6にて車両重量Mを予め記憶しておき、重力値と車両重量Mとを乗算した値を基本値として目標補機消費電力値とする。そして、図4のマップデータを参照して、レンジ状態が前進レンジであるDレンジ又はLレンジである場合であって燃料電池車両が上り坂に存在する重力方向である場合には車両後退方向にロールバックが発生する可能性(移動可能性)があるので、重力値がG1以上である場合には、重力値が大きいほど目標補機消費電力値を大きくする。また、レンジ状態が後退レンジであるRレンジである場合であって燃料電池車両が下り坂に存在する重力方向である場合には車両前進方向にロールバックが発生する可能性があるので、重力値がG2以上である場合には、重力値が大きいほど目標補機消費電力値を大きくする。すなわち、コントローラ6では、重力値が大きく道路勾配が大きいほど目標補機消費電力値を大きくする。
【0025】
次のステップS5においては、コントローラ6により、目標とする空気圧力及び空気流量を演算する。このとき、コントローラ6では、図5に示すように、ステップS4にて求めた目標補機消費電力値に対する空気圧力及び空気流量を記述したマップデータを参照する。すなわち、コントローラ6では、目標補機消費電力値が大きいほど、空気圧力及び空気流量を大きくする。
【0026】
次のステップS6においては、コントローラ6により、ステップS5にて演算した空気圧力とするように空気圧力調整弁12の開度を制御すると共に、ステップS5にて演算した空気流量となるようにコンプレッサ11の駆動量を制御する。また、コントローラ6では、空気圧力及び空気流量に応じた水素圧力及び水素流量とするように、水素圧力調整弁15の開度を制御する。
【0027】
[燃料電池車両の動作]
つぎに、上述した補機制御処理をすることによる燃料電池車両の動作について説明する。
【0028】
先ず、図6を参照して燃料電池車両が坂道発進するときの燃料電池車両の状態について説明する。図6に示すように道路勾配θの坂道に車両重量Mの燃料電池車両が停止している場合、燃料電池車両には、進行方向とは逆に坂道を下る方向に勾配抵抗が働く。この勾配抵抗は、車両重量M、重力加速度g及びsinθを乗算した値となる。一方、ドライバーがブレーキを踏むことにより、道路と駆動輪5との間の摩擦力が車両進行方向とは逆方向に勾配抵抗と同じ大きさだけ働くと、燃料電池車両が停止する。
【0029】
ここで、坂道に燃料電池車両が停止している状態から坂道を登る方向に発進する場合の燃料電池車両の動作について図7を参照して説明する。
【0030】
先ず、燃料電池車両が坂道道路に停止している第1状態Iでは、図7(a)に示すようにブレーキ操作がなされており、燃料電池車両に発生しているトルクとしては図7(b)に示すように勾配抵抗Mgsinθと同値のブレーキ制動トルクが発生している。これにより、図7(c)に示す車両速度は「0」となっている。
【0031】
このとき、レンジ状態はNレンジ(非走行レンジ)となっており、コントローラ6は、車両速度(=0)、勾配状態及びレンジ状態から、図7(d)に示すように補機消費電力Paux及び燃料電池発電電力Pstackを定常値としている。
【0032】
この状態から、時刻t1にてレンジ状態がNレンジからDレンジ(前進レンジ)に切り換わったことをレンジスイッチ9からのセンサ信号からコントローラ6にて検出すると、コントローラ6は、図4のテーブルデータを参照して、目標補機消費電力を増加させる。そして、コントローラ6は、決定した目標補機消費電力となるように補機3を制御することで補機消費電力Pauxを上昇させると共に、補機消費電力Pauxを賄うべく燃料電池発電電力Pstackを上昇させる。これにより、コントローラ6では、燃料電池発電電力Pstackを補機消費電力Pauxと同じ電力値にして、補機3に対する電力供給と電力消費のバランスを取る。
【0033】
このように燃料電池車両が停止している状態では、図8に示すように、燃料電池発電電力Pstackを、補機3に供給して、補機3にて補機消費電力Pauxを消費している状態となる。
【0034】
次の第2状態IIは、図7(a)に示すように、ドライバーがブレーキからアクセルに踏み変えようとして、ブレーキを離し初めた状態である。このように徐々にブレーキの操作を解除していくと、図7(b)に示すようにブレーキ制動トルクが勾配抵抗Mgsinθより小さくなり、図7(c)に示すように車両速度が車両後退方向となり、燃料電池車両が坂道を下り始める。
【0035】
次の第3状態IIIは、図7(a)に示すようにブレーキ及びアクセルの双方を操作しない状態であり、図7(b)に示すようにブレーキ制動トルクが0となり、図7(c)に示すように燃料電池車両が車両後退方向に加速される。
【0036】
次の第4状態IVは、図7(a)に示すようにドライバーがアクセルを踏みはじめる状態である。このとき、コントローラ6には、駆動トルク発生要求が入力され、インバータ4を制御して燃料電池スタック2から駆動モータ1に電力供給をする。そして、駆動モータ1が車両進行方向の駆動トルク(坂道を登る方向の力)を出し始め、駆動トルクがおよそ勾配抵抗Mgsinθを超えると、燃料電池車両の加速度が前進方向となり、第5領域V以降にて車両速度が後退から前進となる。
【0037】
これにより、図7(d)に示すように燃料電池発電電力Pstackが増加すると共に回生電力Pmgを駆動モータ1にて吸収し始め、燃料電池発電電力Pstackと回生電力Pmgとが同値になると一旦燃料電池発電電力Pstackをさげ、回生電力Pmgを吸収する。それ以降では、燃料電池発電電力Pstackを徐々に増加させ、駆動モータ1が回生状態から電力消費状態に向かう。
【0038】
ここで、第4状態IV及び第5状態Vでは、図7(c)に示すように駆動モータ1により発電する回生状態となる。また、補機消費電力Pauxは変化しないので、駆動モータ1の回生(発電)した電力Pmgと等しい大きさの電力が、燃料電池スタック2から取り出されなくなり、燃料電池スタック2の発電電力Pstackが回生した電力Pmg分だけ減少し、電力の供給と消費のバランスが取れる。
【0039】
このように燃料電池車両がロールバックしている状態では、図9に示すように、駆動モータ1から燃料電池スタック2及び補機3に向かって回生した電力Pmgが供給されている状態となり、回生した電力Pmg分だけ燃料電池発電電力Pstackが少なくなり、回生した電力Pmg及び燃料電池発電電力Pstackが補機消費電力Pauxとなる。
【0040】
次の第6状態VIでは、図7(d)に示すように駆動モータ1の電力Pmgが消費となり、図7(c)の車両速度が進行方向となる。
【0041】
ここで駆動モータから回生した電力Pmgが補機消費電力Pauxを超えることができず、回生した電力Pmgが補機消費電力Pauxを超えてしまった場合には、回生した電力Pmgと補機消費電力Pauxとの差分電力が余剰電力となる。この余剰電力は、燃料電池スタック2とインバータ4との間に印加されることで、燃料電池スタック2とインバータ4との間の電圧が急上昇し、燃料電池スタック2やインバータ4の素子を劣化させる可能性がある。
【0042】
これに対し、図7にて説明したように、第1状態I時に補機消費電力Pauxを増やしておくことにより、第4状態IVにて回生した電力Pmgが最大になった時でも、回生した電力Pmgが補機消費電力Pauxを超えることがない。この結果、駆動モータ1は正トルクを出すことが可能となり、燃料電池車両は良好な坂道発進性能を得る。
【0043】
これに対し、補機消費電力の増加を行わない比較例を図10に示すように、第4状態IVにてアクセル操作がなされた場合であっても(図10(b))、回生した電力Pmgが低下せず、更に補機消費電力Pauxが小さいので(図10(d))、回生した電力Pmgが補機消費電力Pauxを越えないように制限される。その結果、駆動モータ1が出力する駆動トルクが、勾配抵抗Mgsinθを超えることができず、結果として燃料電池車両が前進できない可能性がある。
【0044】
[第1実施形態の効果]
以上詳細に説明したように、第1実施形態に係る燃料電池車両によれば、2次電池などの蓄電手段を持たない場合であっても、道路勾配の大きな坂道発進時においても補機消費電力Pauxを増加することで、回生した電力Pmgを吸収し、勾配抵抗を超える駆動トルクを発生させ、ストレス無く坂道発進を行うことができる。
【0045】
また、この燃料電池車両によれば、重力センサ7からのセンサ信号から燃料電池車両の傾きを検出し、レンジ状態がNレンジからDレンジに変わったときに補機消費電力Pauxの大きさを道路勾配に応じて変化させることで、不要な補機消費電力Pauxの無駄遣いを必要最小限に抑制することができ、燃費悪化を抑制することができる。
【0046】
また、この燃料電池車両によれば、補機消費電力Pauxを大きくして燃料電池スタック2から多くの発電電力を取り出し可能な状態にすることで、駆動モータ1が回生状態から電力消費状態に転じた際に、急激に駆動モータ1に供給する電力が増加する場合であっても、ストレス無く燃料電池スタック2から電力を駆動モータ1へ供給することができる。
【0047】
さらに、この燃料電池車両によれば、補機消費電力Pauxを大きくする場合を、上り坂である場合は前進レンジ(Dレンジ、Lレンジ)とし、下り坂であるときは後退レンジ(Rレンジ)としたので、不要なときに補機消費電力Pauxを大きくすることがなく、不要な補機消費電力Pauxの無駄遣いを必要最小限に抑制することができ、燃費悪化を抑制することができる。
【0048】
[第2実施形態]
つぎに、第2実施形態に係る燃料電池車両について説明する。なお、上述の第1実施形態と同様の部分については同一符号を付することによりその詳細な説明を省略する。
【0049】
先ず、前提として、燃料電池車両は、図2に示したように、水素系に関しては通常閉鎖系になっていることから、水素極2bの水素圧力を一定値に保つために、水素圧力調整弁15から燃料電池スタック2に供給する水素と、燃料電池スタック2にて消費される水素とが同じ量にならなければならない。
【0050】
ここで、駆動モータ1にて消費する電力が下降した時には、瞬時に水素圧力調整弁15の開度を小さくし、必要以上の水素量が燃料電池スタック2に供給されないようにする必要がある。しかし、実際には水素圧力調整弁15の開閉を瞬時に行うことは事実上不可能であり、水素圧力調整弁15が開状態から閉状態となるまでの間は燃料電池スタック2に水素が供給され続け、燃料電池スタック2内での水素圧力が上昇してしまう。
【0051】
このように、燃料電池スタック2の酸素極2aと水素極2bの圧力差が過大となると、高分子膜の機能を低下させる恐れがあるので、水素極2bの急激な圧力変動は好ましくない。
【0052】
これに対し、第2実施形態に係る燃料電池車両では、図11に示す第4状態IV及び第5状態Vにおいて、駆動モータ1から回生した電力Pmgが発生すると、燃料電池発電電力Pstackを減少させる。このとき、コントローラ6では、駆動モータ1の回生状態が発生したことを検出すると、図11(a)に示すようにパージ弁17を開状態にし、燃料電池スタック2にて使用されない余剰水素を排出する。これにより、図11(b)に示すように、水素極2bの圧力上昇を抑制することができる。
【0053】
これに対し、図11(b)に示すように、パージ弁の操作を行わないような比較例では、急激に燃料電池スタック2の水素消費量が減るために、水素極2bの圧力が上昇してしまう。
【0054】
このような制御を行うときのコントローラ6の処理手順を図12に示す。
【0055】
先ず、コントローラ6では、ステップS11において、重力センサ7からのセンサ信号を読み込んで、燃料電池車両がロールバックしているか否かを判定し、ロールバックしていると判定した場合にステップS12に処理を進める。
【0056】
ステップS12においては、コントローラ6により、駆動モータ1が回生状態であるか否かの判定を行う。ここで、コントローラ6では、例えば駆動モータ1とインバータ4との間に配設した電圧センサなどからのセンサ信号を検出することで、駆動モータ1が回生状態であるか否かを判定する。
【0057】
コントローラ6では、ステップS11にて燃料電池車両がロールバックしていると判定し、ステップS12にて駆動モータ1が回生状態であると判定した場合に、ステップS13に処理を進め、パージ弁17を開状態にするように制御して処理を終了する。
【0058】
一方、ステップS11にて燃料電池車両がロールバックしていないと判定した場合、又はステップS12にて駆動モータ1が回生状態でないと判定した場合には、ステップS14に処理を進め、パージ弁17を閉状態にしたままにして処理を終了する。
【0059】
このような処理をするコントローラ6を備えた燃料電池車両によれば、図11に示しめしたように駆動モータ1が回生状態になって燃料電池スタック2での水素消費量が急激に低下した場合であっても、水素極2bの水素圧力が増大することを抑制することができ、酸素極2aでの空気圧力と水素極2bでの水素圧力との差圧が発生することを防止することができる。
【0060】
なお、図12に示した一例では、ロールバックする場合について説明したが、燃料電池車両が下り坂に存在するときにレンジ状態がRレンジである場合であって良い。
【0061】
なお、上述の実施の形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。
【0062】
すなわち、上述の実施形態では、二次電池などの電力貯蔵手段を有しない燃料電池車両について説明したが、これに限らず、電力貯蔵手段を有する燃料電池車両にも適用可能であることは勿論であり、上述と同様の効果を発揮させることができる。二次電池を有する燃料電池車両であっても、特に、二次電池が満充電時など回生電力を吸収することが不可能な状態の時には、上述したような動作を行うことで、同様の効果を得ることができる。
【図面の簡単な説明】
【図1】本発明を適用した燃料電池車両の構成を示すブロック図である。
【図2】本発明を適用した燃料電池車両における補機の構成を示すブロック図である。
【図3】本発明を適用した燃料電池車両において、コントローラにより補機を制御する補機制御処理の処理手順を示すフローチャートである。
【図4】燃料電池車両の重力方向及び重力値、レンジ状態に対する目標補機消費電力の関係を示す図である。
【図5】目標補機消費電力に対する空気流量及び空気圧力の変化を示す図である。
【図6】坂道道路において燃料電池車両がロールバックするときの状況について説明するための図である。
【図7】燃料電池車両が坂道道路を停止した状態から発進するときの燃料電池車両の動作を説明するための図であり、(a)は操作状態、(b)はトルク状態、(c)は車両速度、(d)は電力状態を示す。
【図8】燃料電池車両が停止しているときの燃料電池発電電力Pstack及び補機消費電力Pauxについて説明するためのブロック図である。
【図9】燃料電池車両がロールバックしたときの燃料電池発電電力Pstack及び補機消費電力Pauxについて説明するためのブロック図である。
【図10】燃料電池車両が坂道道路を停止した状態から発進するときの比較例を説明するための図であり、(a)は操作状態、(b)はトルク状態、(c)は車両速度、(d)は電力状態を示す。
【図11】第2実施形態において、燃料電池車両が坂道道路を停止した状態から発進するときの燃料電池車両の動作を説明するための図であり、(a)はパージ弁の開閉状態、(b)は水素圧力状態、(c)は車両速度、(d)は電力状態を示す。
【図12】第2実施形態におけるコントローラの制御処理の処理手順を示すフローチャートである。
【符号の説明】
1 駆動モータ
2 燃料電池スタック
2a 酸素極
2b 水素極
3 補機
4 インバータ
5 駆動輪
6 コントローラ
7 重力センサ
8 車速センサ
9 レンジスイッチ
11 コンプレッサ
12 空気圧力調整弁
13 空気圧力センサ
14 高圧水素ボンベ
15 水素圧力調整弁
16 エゼクタポンプ
17 パージ弁
18 水素圧力センサ

Claims (6)

  1. 燃料電池スタックを発電させる補機を制御して、燃料電池スタックにて発電した電力によりモータを駆動して車両走行の駆動トルクを発生させる燃料電池車両の制御装置であって、
    上記燃料電池車両の重力方向に対する勾配状態を検出し、上記モータの駆動トルクに依らない、上記勾配状態に応じた上記燃料電池車両の移動可能性を検出する移動可能性検出手段と、
    上記移動可能性検出手段にて移動可能性があることを検出したこと応じて、上記補機にて消費する補機消費電力を大きくする制御手段と
    を備えることを特徴とする燃料電池車両の制御装置。
  2. 上記制御手段は、上記移動可能性検出手段にて検出した上記燃料電池車両の重力方向に対する勾配が大きい程、上記補機消費電力を大きくすることを特徴とする請求項1に記載の燃料電池車両の制御装置。
  3. 上記制御手段は、上記燃料電池スタックにて発電して取り出す電力を大きくすることで、上記補機消費電力を大きくすることを特徴とする請求項1に記載の燃料電池車両の制御装置。
  4. 上記移動可能性検出手段は、上記燃料電池車両の走行速度を検出する車速センサを有し、該車速センサにて検出した車両速度から上記燃料電池車両が停止状態又は低速状態であって、上記燃料電池車両が勾配していることを検出した場合に、移動可能性があることを検出することを特徴とする請求項1に記載の燃料電池車両の制御装置。
  5. 上記移動可能性検出手段は、上記燃料電池車両が前進レンジを選択されているか後退レンジを選択されているかのレンジ状態を検出するレンジ状態判定手段を更に有し、上記勾配状態として車両進行方向に対する上り勾配又は下り勾配を検出し、上記勾配状態が上り勾配であって上記レンジ状態が前進レンジである場合、又は、上記勾配状態が下り勾配であって上記レンジ状態が後退レンジである場合に、移動可能性があることを検出することを特徴とする請求項1に記載の燃料電池車両の制御装置。
  6. 上記燃料電池車両は、上記燃料電池スタックの燃料極の燃料ガス排気側流路に配設された開閉弁を有し、
    上記制御手段は、上記燃料電池車両の移動が発生した場合に、上記開閉弁を開状態にすることを特徴とする請求項1〜請求項5の何れかに記載の燃料電池車両の制御装置。
JP2002228556A 2002-08-06 2002-08-06 燃料電池車両の制御装置 Pending JP2004072895A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002228556A JP2004072895A (ja) 2002-08-06 2002-08-06 燃料電池車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002228556A JP2004072895A (ja) 2002-08-06 2002-08-06 燃料電池車両の制御装置

Publications (1)

Publication Number Publication Date
JP2004072895A true JP2004072895A (ja) 2004-03-04

Family

ID=32015205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002228556A Pending JP2004072895A (ja) 2002-08-06 2002-08-06 燃料電池車両の制御装置

Country Status (1)

Country Link
JP (1) JP2004072895A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128029A (ja) * 2004-11-01 2006-05-18 Nissan Motor Co Ltd 燃料電池システム
JP2008193772A (ja) * 2007-02-01 2008-08-21 Toyota Motor Corp 電気自動車の制御装置および制御方法、ならびに電気自動車
JP2015233387A (ja) * 2014-06-10 2015-12-24 本田技研工業株式会社 電動車両の充電制御装置
CN110239356A (zh) * 2018-03-07 2019-09-17 丰田自动车株式会社 搭载于车辆的燃料电池系统及其控制方法
US11884160B2 (en) 2020-08-25 2024-01-30 Transportation Ip Holdings, Llc Vehicle braking system and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128029A (ja) * 2004-11-01 2006-05-18 Nissan Motor Co Ltd 燃料電池システム
JP4556619B2 (ja) * 2004-11-01 2010-10-06 日産自動車株式会社 燃料電池システム
JP2008193772A (ja) * 2007-02-01 2008-08-21 Toyota Motor Corp 電気自動車の制御装置および制御方法、ならびに電気自動車
JP2015233387A (ja) * 2014-06-10 2015-12-24 本田技研工業株式会社 電動車両の充電制御装置
CN110239356A (zh) * 2018-03-07 2019-09-17 丰田自动车株式会社 搭载于车辆的燃料电池系统及其控制方法
US11884160B2 (en) 2020-08-25 2024-01-30 Transportation Ip Holdings, Llc Vehicle braking system and method

Similar Documents

Publication Publication Date Title
JP4353154B2 (ja) 燃料電池自動車
JP4378735B1 (ja) 燃料電池システム
JP4364845B2 (ja) 燃料電池車両の制御装置および燃料電池車両の制御方法
JP4993293B2 (ja) 燃料電池システム及び移動体
JP3596468B2 (ja) 燃料電池車両の制御装置
JP3679070B2 (ja) 燃料電池自動車の制御装置
US8394517B2 (en) Fuel cell system and control method of the system
WO2007072693A1 (ja) 燃料電池システム及び移動体
JP4380676B2 (ja) 移動体
JP4525112B2 (ja) 燃料電池車両の制御装置
JP2009026736A (ja) 燃料電池システム
JP3733879B2 (ja) 燃料電池車両の制御装置
CN111791712B (zh) 燃料电池车辆
JP2004072895A (ja) 燃料電池車両の制御装置
JP3899881B2 (ja) 燃料電池車両の制御装置
JP2005085622A (ja) 燃料電池発電システム
JP2005019033A (ja) 燃料電池システム
JP2006331775A (ja) 燃料電池システム、その制御方法及びそれを搭載した車両
JP4075727B2 (ja) 燃料電池車両の制御装置
JP2006158006A (ja) 燃料電池車両の制御装置
JP2006210253A (ja) 燃料電池システム
JP2006109650A (ja) 車両用制御装置及び車両制御方法
JP2007151346A (ja) 移動体
JP4941641B2 (ja) 燃料電池システム
JP2006025495A (ja) 燃料電池車両の制御装置