JP2004069526A5 - - Google Patents

Download PDF

Info

Publication number
JP2004069526A5
JP2004069526A5 JP2002229737A JP2002229737A JP2004069526A5 JP 2004069526 A5 JP2004069526 A5 JP 2004069526A5 JP 2002229737 A JP2002229737 A JP 2002229737A JP 2002229737 A JP2002229737 A JP 2002229737A JP 2004069526 A5 JP2004069526 A5 JP 2004069526A5
Authority
JP
Japan
Prior art keywords
flow
measurement
flow rate
flow velocity
pulsation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002229737A
Other languages
English (en)
Other versions
JP3627729B2 (ja
JP2004069526A (ja
Filing date
Publication date
Application filed filed Critical
Priority to JP2002229737A priority Critical patent/JP3627729B2/ja
Priority claimed from JP2002229737A external-priority patent/JP3627729B2/ja
Publication of JP2004069526A publication Critical patent/JP2004069526A/ja
Publication of JP2004069526A5 publication Critical patent/JP2004069526A5/ja
Application granted granted Critical
Publication of JP3627729B2 publication Critical patent/JP3627729B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の名称】流量計測装置
【特許請求の範囲】
【請求項1】被計測流体が流れる計測流路と、前記計測流路内の流速を検出する流速検出手段と、前記流速検出手段を所定の時間間隔で計測動作させる計測制御部と前記計測制御部からの信号を基に流速または流量を算出する流量演算部と前記流速または流量に流量補正係数を加味して流量を算出する流量補正部を有する計測制御手段を備え、前記流量補正部は、脈動のある時と脈動のない時のいずれにおいても同じ流量補正係数を用い、脈動時において前記流速または流量の平均値を求め、前記平均値に前記流量補正係数を加味して流量を算出することを特徴とした流量計測装置。
【請求項2】計測制御手段は、脈動周期を求め、前記脈動周期整数倍の計測時間を設定し、前記流速検出手段を前記計測時間で動作させる計測時間設定部を備えた請求項1に記載の流量計測装置。
【請求項3】計測流路は略矩形断面とし、前記流速検出手段は略矩形断面の短手側である高さ方向の壁面から一定の距離離して設置した請求項1または2に記載の流量計測装置。
【請求項4】一定の距離は、瞬時流速分布の流速平均値を示す計測流路の高さである請求項3記載の流量計測装置。
【請求項5】流速検出手段は計測流路の流れ方向中央に配置した請求項1または2のいずれか1項に記載の流量計測装置。
【請求項6】流速検出手段の上流側および下流側の等距離の位置に流れ安定手段を設けた請求項1〜のいずれか1項に記載の流量計測装置。
【請求項7】流速検出手段の上流側および下流側の等距離の位置に、計測流路の入口である導入部および出口である導出部を設けた請求項1〜のいずれか1項に記載の流量計測装置。
【請求項8】導入部および導出部は断面を同一形状にし、屈曲部を有する流入部を前記計測流路と交差するように前記導入部に接続し、屈曲部を有する流出部を前記計測流路と交差するように前記導出部に接続した請求項7に記載の流量計測装置。
【請求項9】流速検出手段は計測流路の上流側および下流側に超音波送受信器を設け、前記超音波送受信器間で超音波の送受信を行いその送受信信号に基づいて流速を検出する超音波式とした請求項1〜のいずれか1項に記載の流量計測装置。
【請求項10】計測流路の断面の高さは超音波送受信器の送受信面の寸法より大きくした請求項に記載の流量計測装置。
【請求項11】超音波送受信器は、送信した超音波が平面波のままで超音波伝搬路を伝搬する超音波波長、送信面寸法および設置間距離とした請求項あるいは10に記載の流量計測装置。
【請求項12】計測流路の流れを検出する工程と、前記検出した流れに基づいて流量又は流速を算出する工程と、脈動のある時と脈動のない時のいずれにおいても同じ流量補正係数を用い、かつ脈動時には前記流量又は流速の平均値を求め、前記平均値に前記流量補正係数加味して流量を求める工程とを含む流量計測方法。
【発明の詳細な説明】
【0001】
【発明の属する技術分野】
本発明は、気体や液体の流量や流速の計測を行う流量計測装置に関するものである。
【0002】
【従来の技術】
従来この種の流量計測装置として、特開平8−210893号公報などに示す計量膜を備えた膜式ガスメータがある。
【0003】
この種の膜式ガスメータは、図11に示すように被測定流体であるガスが流入する入口1、ガスが流出する出口2、計量膜(図示せず)を備えた一対の計量室(図示せず)を収納する計量部3、および計量部3を通過したガス量を表示する表示部4を有している。
【0004】
このような構成において、膜式ガスメータの計量動作は従来衆知のように、一定容積を持つ一対の計量室の中で計量膜をガス圧で往復動作させ、その動作回数で流量を計測するものである。
【0005】
【発明が解決しようとする課題】
しかしながら従来例では、ガスメータより下流側におけるガス管路あるいはガス器具からのガスの漏洩を検出し報知する保安機能に対して、漏洩の検出にはガスメータに設けた計量室の容積程度のガス量を通過させる必要があり、微少な漏洩(例えば毎時3リットル程度の流量)になるほど漏洩検出まで長時間を要する(例えば計量室の容積3リットルでは1時間)など瞬時計測できないという課題がある。また、圧力脈動などによりガスメータを通過する流体に流速脈動を伴う場合には流量の瞬時値計測は困難なものであった。
【0006】
本発明は上記課題を解決するもので、計測流路を流れる流体が圧力脈動などにより流速脈動を生じている場合でも、瞬時流量計測の実現および計測精度を高めることを目的とする。
【0007】
【課題を解決するための手段】
本発明は上記課題を解決するため、被計測流体が流れる計測流路と、前記計測流路内の流速を検出する流速検出手段と、前記流速検出手段を所定の時間間隔で計測動作させる計測制御部と前記計測制御部からの信号を基に流速または流量を算出する流量演算部と前記流速または流量に流量補正係数を加味して流量を算出する流量補正部を有する計測制御手段を備え、前記流量補正部は、脈動のある時と脈動のない時のいずれにおいても同じ流量補正係数を用い、前記平均値に脈動時において前記流速または流量の平均値を求め、前記平均値に前記流量補正係数を加味して流量を算出することを特徴とした流量計測装置である。
【0008】
上記発明によれば、脈動流れ時は補正係数を脈動の無い定常流れ時と同じとして補正誤差を低減し、脈動流れ時においても精度の高い瞬時流量測定ができ、また検査工数などの低減などにより生産性を向上できる。
【0009】
【発明の実施の形態】
請求項1に記載の発明は、被計測流体が流れる計測流路と、前記計測流路内の流速を検出する流速検出手段と、前記流速検出手段を所定の時間間隔で計測動作させる計測制御部と前記計測制御部からの信号を基に流速または流量を算出する流量演算部と前記流速または流量に流量補正係数を加味して流量を算出する流量補正部を有する計測制御手段を備え、前記流量補正部は、脈動のある時と脈動のない時のいずれにおいても同じ流量補正係数を用い、脈動時において前記流速または流量の平均値を求め、前記流量補正係数を加味して流量を算出することを特徴とした流量計測装置である。これによって、脈動流れ時においても定常流れ時と同様に精度の高い瞬時流量測定ができ、また検査工数などの低減などにより生産性を向上できる。
【0010】
請求項2に記載の発明は、計測制御手段は、脈動周期を求め、前記脈動周期の整数倍の計測時間を設定し、前記流速検出手段を前記計測時間で動作させる計測時間設定部を備えた流量計測装置である。これによって、流れの脈動周期を加味し、脈動の一周期あるいは数周期での平均流速を計測してより一層精度を高め信頼性を高めた流量計測ができる。
【0011】
請求項3に記載の発明は、計測流路は略矩形断面とし、前記流速検出手段は略矩形断面の短手側である高さ方向の壁面から一定の距離離して設置した流量計測装置である。これによって、流速の変化が検出し易く計測精度を向上でき、矩形断面のアスペクト比に関わらず高さ方向の壁面からの距離を規定するため、矩形断面の幅寸法を変えて計測範囲の異なる流路を容易に構成でき、部品の共用化により生産性および低コスト化を向上できる。
【0012】
請求項4に記載の発明は、一定の距離は、瞬時流速分布の流速平均値を示す計測流路の高さである。これによって、脈動流れの瞬時瞬時における計測流路での平均流速値を計測することにより、脈動流れ時の計測精度を向上できる。
【0013】
請求項に記載の発明は、前記流速検出手段は計測流路の流れ方向中央に配置した流量計測装置である。これによって、計測流路の順方向および逆方向と流れが反転する脈動流れにおいて、順方向流れと逆方向流れの対称性を高めて脈動流れ時の計測精度を向上できる。
【0014】
請求項に記載の発明は、流速検出手段の上流側および下流側の等距離の位置に流れ安定手段を設けた流量計測装置である。これによって、順逆いずれの方向の流れに対しても計測流路に流入する流れをより一層安定化でき、計測精度をより一層向上できる。
【0015】
請求項に記載の発明は、流速検出手段の上流側および下流側の等距離の位置に、計測流路の入口である導入部および出口である導出部を設けた流量計測装置である。これによって、順逆いずれの方向の流れに対しても計測流路に流入あるいは流出する上流側および下流側の流動条件を均等化して順方向流れと逆方向流れの対称性を高め、脈動流れ時の計測精度を向上できる。
【0016】
請求項に記載の発明は、導入部および導出部は断面を同一形状にし、屈曲部を有する流入部を前記計測流路と交差するように前記導入部に接続し、屈曲部を有する流出部を前記計測流路と交差するように前記導出部に接続した流量計測装置である。これによって、屈曲部を配置することで装置のより一層の小型化が実現でき、入口側あるいは出口側の形状をほぼ同じにすることにより順逆いずれの方向の流れに対しても計測流路での流れの対称性を高めて計測精度を向上できる。
【0017】
請求項に記載の発明は、流速検出手段は計測流路の上流側および下流側に超音波送受信器を設け、前記超音波送受信器間で超音波の送受信を行いその送受信信号に基づいて流速を検出する超音波式とした流量計測装置である。これによって、超音波が伝搬する広い領域の計測流路部の平均流速を計測するため計測精度の信頼性を向上でき、さらに計測流路の高さ方向に幅を持った領域を計測するため流れにバラツキを生じても脈動時における瞬時の平均流速を計測でき測定精度を向上できる。
【0018】
請求項10に記載の発明は、計測流路の断面の高さは超音波送受信器の送受信面の寸法より大きくした流量計測装置である。これによって、送信した超音波を計測流路内に有効に送り込むことができ、超音波送受信器への駆動入力を低減して低消費入力化できる。また、コンパクトな超音波送受信器として機器の小型化ができる。
【0019】
請求項11に記載の発明は、超音波送受信器は、送信した超音波が平面波のままで超音波伝搬路を伝搬する超音波波長、送信面寸法および設置間距離とした流量計測装置である。これによって、送信された超音波が超音波伝搬路内を広がらずに平面波で伝搬させて計測流路の内壁面による反射波の影響を低減し、直接波による超音波伝搬計測の波形検出精度を高めて計測精度を向上でき、また平面波で超音波を伝搬させることで計測流路の高さ方向の局部的な計測を促進して、脈動時の瞬時平均流速の測定精度を高めて脈動流れの流量計測精度を一層向上できる。
【0020】
請求項12に記載の発明は、計測流路の流れを検出する工程と、前記検出した流れに基づいて流量又は流速を算出する工程と、脈動のある時と脈動のない時のいずれにおいても同じ流量補正係数を用い、かつ脈動時には前記流量又は流速の平均値を求め、前記平均値に前記流量補正係数加味して流量を求める工程とを含む流量計測方法である。
【0021】
【実施例】
以下、本発明の実施例について図面を参照して説明する。
【0022】
(実施例1)
図1は本発明の実施例1を示す流量計測装置の断面図である。図において、5は流路壁6に囲まれた計測流路であり、7は計測流路5に設けた流速検出手段である。この流速検出手段7は計測流路5内の特定の箇所の流速を検出するもので、熱フローセンサなどの小型の検出部を計測流路5内に突出させている。
【0023】
8は流速検出手段7の上流側に設けた流れ安定手段であり、流れ方向を整える格子状の方向規制部8aと流速変動を低減するメッシュなどの網状体で形成した変動抑制部8bを備えている。9は計測流路5の上流側に設け被計測流体の計測流路5への入口となる導入部であり、10は計測流路5の下流側に設け被計測流体の計測流路5からの出口となる導出部である。ここでは、計測流路5は流れ(図中矢印で示す)に直交する断面は矩形あるいは略矩形で構成し、矩形断面の長手方向を幅Wとし、短手方向を高さH(図示せず)としている。
【0024】
11は計測制御手段であり、流速検出手段7に接続され流速検出手段7を所定の時間間隔で計測動作をさせる計測制御部12と、計測制御部12からの信号を基に流速を計算し流量を算出する流量演算部13と、計測した流量値を基に補正係数を加味して計測流路5での実際の流量を算出する流量補正部14を備えている。15は流量演算部13に入る計測制御部12からの流速信号を基に計測流路5を流れる流体の脈動が有るか否かを判定する脈動判定部であり、脈動判定部15で脈動が有ると判定した場合は計測制御部12に信号を送り流速検出手段7による計測間隔を脈動の無い定常流れ時に対して同等以下にする。16は計測時間設定部であり、脈動判定部15で脈動が有ると判定した場合に脈動の周期を求めて脈動周期の整数倍あるいはほぼ整数倍の計測時間を設定し、計測制御部12に対して流速検出手段7を所定の時間間隔で計測動作をさせるだけでなく脈動周期に応じた計測時間にわたり計測動作させるように信号を送る。
【0025】
図2、図3は矩形断面の流路における脈動流れの流速分布を測定した実験結果を示したものである。図2は、流路の高さH=17mm(幅W=17mm)、脈動周波数10Hz、流量25L/h、圧力変動幅±180Paの場合であり、1周期(100ms)の間に流速分布形状が時間経過とともに順次変化することが判る。また、図中「脈動平均」で示した流速分布は脈動する流れの1周期の平均であり、「定常流25L/h」で示した流速分布は脈動の無い定常流れ25L/hでの流速分布であり、この「脈動平均」の流速分布と「定常流25L/h」の流速分布はよく一致していることが判る。図3は、流路の高さH=10mm(幅W=30mm)、脈動周波数10Hz、流量25L/h、圧力変動幅±180Paの場合を同様に示したもので、図2の場合と同様に「脈動平均」の流速分布と「定常流25L/h」の流速分布はよく一致していることが判る。なお、この結果は流量を40、100L/hと増加した場合、脈動周波数を変えた場合、圧力変動幅を変えた場合、いずれの場合においても確認できた。従って、計測流路5を流れる流量を求める時に、脈動流れ時の場合は定常流れ時と同じ流量補正係数を使用できることが判った。
【0026】
次に、図2、図3で示した実験結果をもとにした流量計測装置の動作について説明する。計測流路5の流れを計測制御部12により流速検出手段7を所定の時間間隔で計測動作させ、流量演算部13により計測制御部12からの信号を基に流速(あるいは流量)を算出する。もし、このとき脈動があると脈動判定部15で判定した場合は計測制御部12に信号を送り流速検出手段7による計測間隔を脈動の無い定常流れ時に対して同等以下に短くする。同等以下に短くした計測間隔で計測を継続することで脈動する流れに対しても精度を高めた流速(あるいは流量)計測ができる。さらに、このようにして求めた変化する流速(あるいは流量)に対して平均の流速(あるいは流量)を求めるとともに、流量補正部14で断面形状あるいは測定場所に応じた補正係数を加味して計測流路の流量を算出する。ところが、脈動流れ時と定常流れ時のいずれにおいても同じ流量補正係数を使用できるため、補正値の違いによる誤差がなくなり計測精度が向上するとともに、検査工数などの低減などにより生産性が向上できる。なお、定常流れ時に低消費電力化のために流速検出手段7による計測間隔を長くしている場合は、脈動時には流速検出手段7による計測間隔は明らかに短くなるのは言うまでも無い。
【0027】
また、計測制御手段11に脈動流れを検出すると脈動周期の整数倍あるいはほぼ整数倍の計測時間を設定する計測時間設定部16を加えることで、流速検出手段7を所定の時間間隔で計測動作をさせるだけでなく脈動周期の整数倍の時間長さとした計測時間にわたって計測動作させる。これにより平均流量を算出する基になる時系列流速データの区切りを明確にでき、脈動時の平均流速の計測精度を一層向上できる。
【0028】
このように、流速検出手段7の出力に基づいて脈動流れ時は計測間隔を定常流れ時と同等以下にして流量を算出する流量演算部13と脈動時の流量補正係数は定常流れ時と同じとする流量補正部14とを有する計測制御手段11を備えることにより、脈動流れ時は計測時間間隔を短くするとともに流量補正係数を脈動の無い定常流れ時と同じとして補正誤差を低減し、脈動流れ時においても定常流れ時と同様に精度の高い瞬時流量測定ができ、また検査工数などの低減などにより生産性を向上できる。
【0029】
また、計測制御手段11は脈動流れ時での脈動周期のほぼ整数倍の計測時間を設定する計測時間設定部16を備えることにより、流れの脈動周期を加味し、脈動の一周期あるいは数周期での平均流速を計測してより一層精度を高め信頼性を高めた流量計測ができる。
【0030】
(実施例2)
図4は本発明の実施例2を示す流量計測装置の縦断面図である。図4において、図1の実施例と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。
【0031】
図4において、流速検出手段7は矩形断面とした計測流路5の高さH方向の一方の壁面から一定の距離Lh離して設置している。従って、流速検出手段7は計測流路5の高さH方向の壁面から一定の距離離れた領域の流速を検出し流量を計測する。
【0032】
図5、図6は矩形断面の流路における脈動流れの流速分布の測定結果を示し、瞬時の流速分布(図中「瞬時流速分布」で示す)とこの流速分布での平均流速(図中「瞬時平均流速」で示す)を時間経過とともに示したものである。図5は、流路の高さH=17mm(幅W=17mm)、脈動周波数10Hz、流量25L/h、圧力変動幅±50Paの場合であり、流速が最少状態から最大状態に変化する流速増加時(計測時刻0msから52msで示す)を示す。図5で示すように、壁面のごく近傍は流速変化が大きいことが判り、さらに流速が最少状態から最大状態に時間経過とともに流速分布形状は順次変化するが瞬時流速分布の流速平均値は高さ方向Hの壁面からほぼ一定の距離に在ることが判る。いま、H=0mm側の壁面(図中左側)からの位置で見ると、同じ計測時刻の「瞬時流速分布」と「瞬時平均流速」との交点はH=3〜4mmに存在する。すなわち、計測流路5の高さH方向壁面から3〜4mmの位置に流速検出手段7を配置することで、脈動流れの瞬時瞬時の変化する流速分布に対して正しく断面の瞬時の平均流速を測定でき、このため脈動周期にわたる平均流速が一層正確に測定できて計測精度を向上できる。なお、流速が最大状態から最少状態に変化する流速減少時(図示せず)においても、瞬時の断面の平均流速となる位置はほぼ同様に計測流路5の高さH方向壁面から3〜4mmにある。また、壁面のごく近傍では測定位置のバラツキによる計測誤差が大きくなるため、壁面から一定の距離離して流速検出手段を設置することで流速の変化を検出し易くでき計測精度を向上できる。
【0033】
図6は、流路の高さH=10mm(幅W=30mm)、脈動周波数10Hz、流量25L/h、圧力変動幅±180Paの場合であり、流速が最大状態から最少状態に変化する流速減少時(計測時刻50msから0msで示す)を示す。図5で示したと同じように図6でも瞬時の流速分布は順次変化しているが、瞬時流速分布の流速平均値は高さ方向Hの壁面から1〜3mmとほぼ一定の距離に在ることが判る。なお、流速が最少状態から最大状態に変化する流速増加時(図示せず)においても、瞬時の断面の平均流速となる位置はほぼ同様に計測流路5の高さH方向壁面から1〜3mmにある。
【0034】
さらに、脈動時の流量を40、100L/hと増加させた場合や、脈動の周波数を変えた場合などを含めると、計測流路5の高さが10mm以上では瞬時流速分布の流速平均値は高さ方向Hの壁面から1〜5mmにある。また、計測流路5の高さが8mm程度でも同様のことが期待できる。
【0035】
このように、流速検出手段7は略矩形断面の短手側である高さ方向の壁面から一定の距離離して設置することにより、流速の変化が検出し易く計測精度を向上でき、矩形断面のアスペクト比に関わらず高さ方向の壁面からの距離を規定するため、矩形断面の幅寸法を変えて計測範囲の異なる流路を容易に構成でき、部品の共用化により生産性および低コスト化を向上できる。
【0036】
また、流速検出手段の高さ方向壁面からの設置距離は、被計測流体の脈動時の瞬時の流速分布での平均値を示す計測流路の高さ領域に設定することで、脈動流れの瞬時瞬時における計測流路での平均流速値を計測することにより、脈動流れ時の計測精度を向上できる。
【0037】
また、流速検出手段は計測流路の高さが10mm以上で計測流路の高さを規定する壁面からの設置距離は1〜5mmの位置に配置することで、矩形断面のアスペクト比に関わらず脈動流れの瞬時瞬時における計測流路での平均流速値を計測して脈動流れ時の計測精度を向上できる。
【0038】
なお、流速検出手段はピンポイントでなく高さH方向に数mm程度の幅を持って計測することで脈動する流れの計測精度を向上できる。
【0039】
(実施例3)
本発明の実施例3を図7〜図9に示す。図7は流量計測装置の横断面図であり、図8は流量計測装置の縦断面図であり、図9は流量計測装置の局所縦断面図である。図7〜図9において、図1の実施例と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。
【0040】
図において、流速検出手段7として、互いに対向するように流路壁6に取付けた上流側および下流側の超音波送受信器7a、7bを設けている。上流側の超音波送受信器7aと下流側の超音波送受信器7bは計測流路5の幅W方向を横切るように距離Lを隔てるとともに計測流路5の流体の流動方向に対して角度θ傾けて設置されている。また、超音波送受信器7a、7bの中心軸は計測流路5の高さH方向の壁面から一定の距離Lh離して設置している。なお、この超音波送受信器7a、7bの中心軸は超音波の送受信特性の中心であり、外形上の中心と一致する場合も一致しない場合もある。
【0041】
17、18は超音波送受信器7a、7bを計測流路5に臨ませる上流側および下流側の開口穴である。19は対向する超音波送受信器7aおよび7b間で送信された超音波が直接相手側に伝搬する超音波伝搬路(二点鎖線で領域を示す)である。流れ安定手段8はこの超音波伝搬路19の上流側および下流側に設けている。20は開口穴17、18への流体の流れ込みを低減する流入抑制体である。この流入抑制体20は流路壁6と面一に設けるとともに超音波は通過できる微細な穴を有しているので、計測流路5内の超音波伝搬路19の長さLdは上流側および下流側の流入抑制体20で区切られて寸法が明確になっている。21は計測流路5の導入部9に接続された流入路であり、22は計測流路5の導出部10に接続された流出路である。この流入路21、流出路22は計測流路5に交差させて上流側および下流側の屈曲部23を形成している。なお、流入路21、流出路22は計測流路5の高さH方向に直角に屈曲している図を示したが、屈曲方向は任意の方向が可能なのは言うまでもなく、屈曲角度も任意に設定して小型化することができる。
【0042】
流速検出手段7としての超音波送受信器7a、7bは超音波伝搬路19の中央の位置Pが計測流路5の流れ方向長さMの中央になるように配置している。このため、計測流路5の順方向および逆方向と流れが反転する脈動流れにおいて、順方向流れと逆方向流れの対称性を高めて脈動流れ時の計測精度を向上できる。
【0043】
また上流側および下流側の流れ安定手段8は流速検出手段7としての超音波送受信器7a、7bの中央の位置Pに対して上流側および下流側のほぼ等距離の位置に配置している。このため、順逆いずれの方向の流れに対しても計測流路5に流入する流れをより一層安定化でき、計測精度をより一層向上できる。
【0044】
さらに、流速検出手段7としての超音波送受信器7a、7bの上流側および下流側のほぼ等距離の位置に計測流路5の入口である導入部9および出口である導出部10を設けている。このため、順逆いずれの方向の流れに対しても計測流路5に流入あるいは流出する上流側および下流側の流動条件を均等化して順方向流れと逆方向流れの対称性を高め、脈動流れ時の計測精度を向上できる。
【0045】
また、この導入部9および導出部10は断面を略同一形状とし、計測流路5と交差する流入路21、流出路22によって導入部9および導出部10に屈曲部23を形成しているている。このため、屈曲部23を配置することで装置のより一層の小型化が実現でき、さらに入口側あるいは出口側の形状をほぼ同じにすることにより順逆いずれの方向の流れに対しても計測流路5での流れの対称性を高めて計測精度を向上できる。
【0046】
また、図9のように計測流路5の断面高さHは超音波送受信器7a、7bの送受信面24の外寸Dよりも大きくしている。従って、送信した超音波を計測流路内に有効に送り込むことができ、超音波送受信器への駆動入力を低減して低消費入力化できる。また、計測流路5を形成する流路壁6に設けた開口穴17、18に挿入し防振および気密封止作用のある支持部材25を介して取付けてもコンパクトに構成でき、コンパクトな超音波送受信器として機器の小型化ができる。
【0047】
次に、この超音波流量計測装置の動作について説明する。導入部9から計測流路5に入った流れは、上流側の流れ安定手段8において流れ方向を整える格子状の方向規制部8aと流速変動を低減するメッシュなどの網状体で形成した変動抑制部8bによって流れを安定化させた流速分布を超音波伝搬路19に形成する。圧力脈動などにより流れに脈動が発生し、脈動レベルが増大して流れ方向が反転する順逆反転流れになった場合、逆方向流れ時においても導出部10から計測流路5に入った流れは下流側の流れ安定手段8の作用で安定化した流速分布を超音波伝搬路19に形成する。このように超音波伝搬路19に形成された安定化した流れに対して超音波の送受信による流速の計測を行う。
【0048】
次に超音波による流量計測動作を説明する。計測流路5では、計測制御部12の作用により超音波送受信器7a、7b間で計測流路5の流路断面の幅Wを横切るようにして超音波の送受が行われる。すなわち、上流側の超音波送受信器7aから発せられた超音波が下流側の超音波送受信器7bで受信されるまでの伝搬時間T1を計測する。また一方、下流側の超音波送受信器7bから発せられた超音波が上流側の超音波送受信器7aで受信されるまでの伝搬時間T2を計測する。このようにして測定された伝搬時間T1およびT2を基に、以下の演算式により演算部13で流量が算出される。
【0049】
いま、計測流路5の流動方向の被計測流体の流速Vと超音波伝搬路19とのなす角度をθとし、超音波送受信器7a、7b間の距離をL、被測定流体の音速をCとすると、流速Vは以下の式にて算出される。
【0050】
T1=L/(C+Vcosθ)
T2=L/(C−Vcosθ)
T1の逆数からT2の逆数を引き算する式より音速Cを消去して
V=(L/2cosθ)((1/T1)−(1/T2))
θおよびLは既知なのでT1およびT2の値より流速Vが算出できる。
【0051】
この流速Vと計測流路5の流れ方向に直交する横断面積Sより、流量Qは
Q=KVS
ここで、Kは横断面積Sにおける流速分布を考慮した補正係数であり、流量補正部14において流路形状に適した値で真の断面平均流量を求めることができる。
【0052】
この超音波方式により流速を計測する場合、外寸Dの大きさの送受信面24から送信した超音波は高さ方向に幅を持って伝搬し、超音波が伝搬する広い領域の計測流路部の平均流速を計測することで計測精度の信頼性を向上でき、さらに計測流路の高さ方向に幅を持った領域を計測するため流れにバラツキを生じても脈動時における瞬時の平均流速を計測でき測定精度を向上できる。
【0053】
このように、流速検出手段は計測流路の流れ方向中央に配置したものであり、計測流路の順方向および逆方向と流れが反転する脈動流れにおいて、順方向流れと逆方向流れの対称性を高めて脈動流れ時の計測精度を向上できる。
【0054】
また、流速検出手段の上流側および下流側のほぼ等距離の位置に流れ安定手段を設けたものであり、順逆いずれの方向の流れに対しても計測流路に流入する流れをより一層安定化でき、計測精度をより一層向上できる。
【0055】
また、流速検出手段の上流側および下流側のほぼ等距離の位置に計測流路の入口である導入部および出口である導出部を設けたものであり、順逆いずれの方向の流れに対しても計測流路に流入あるいは流出する上流側および下流側の流動条件を均等化して順方向流れと逆方向流れの対称性を高め、脈動流れ時の計測精度を向上できる。
【0056】
また、導入部および導出部は断面を略同一形状にするとともに、計測流路と交差させた屈曲部を設けたものである。そして、屈曲部を配置することで装置のより一層の小型化が実現でき、入口側あるいは出口側の形状をほぼ同じにすることにより順逆いずれの方向の流れに対しても計測流路での流れの対称性を高めて計測精度を向上できる。
【0057】
また、流速検出手段は計測流路の上流側および下流側に超音波送受信器を設け、前記超音波送受信器間で超音波の送受信を行いその送受信信号に基づいて流速を検出する超音波式としたものである。そして、超音波が伝搬する広い領域の計測流路部の平均流速を計測するため計測精度の信頼性を向上でき、さらに計測流路の高さ方向に幅を持った領域を計測するため流れにバラツキを生じても脈動時における瞬時の平均流速を計測でき測定精度を向上できる。
【0058】
また、計測流路の断面高さは超音波送受信器の送受信面よりも大きくしたものである。そして、送信した超音波を計測流路内に有効に送り込むことができ、超音波送受信器への駆動入力を低減して低消費入力化できる。また、コンパクトな超音波送受信器として機器の小型化ができる。
【0059】
(実施例4)
図10は本発明の実施例4を示す超音波送受信器の超音波伝搬状態図である。
【0060】
図において、超音波送受信器7aまたは7bからの超音波の一般的な伝搬状況を示している。超音波送受信器7aの送信面26から送信された超音波はラストマックス27までの近距離音場では平面波でまっすぐ進み(図中矢印で示す)、ラストマックス27以上の遠距離音場では球面波になって一定の角度で拡がって進行する。このラストマックス27までの距離Xは次式で表される。
【0061】
X=D2/4λ
ここで、Dは超音波送受信器の送信面の直径で、λは超音波の波長を表す。
【0062】
図7で示した実施例において、計測流路5内の超音波伝搬路長さLdをラストマックスまでの距離X以下(Ld≦X)とすることにより、超音波が拡がらず平面波で進行する近距離音場の領域を伝搬時間計測に利用し、計測流路5の内壁面による超音波の反射波の発生を低減して直接波による伝搬時間計測時の超音波伝搬波形の検出精度を高め、流速の計測精度を向上できる。
【0063】
また、平面波で伝搬させることで計測流路5の高さ方向の局部的な計測を促進して、脈動時の瞬時瞬時の平均流速の計測精度を高めて脈動流れの流量計測精度を一層向上できる。
【0064】
また、高さ方向の計測領域を小さくして局所の計測精度を高めるには、送信面の直径Dを小さくする必要があり、送信面の外寸Dを小さくしラストマックスまでの距離Xを確保するには超音波の波長をさらに短くすることが有効であることが判る。
【0065】
このように、超音波送受信器は、送信した超音波が平面波のままで超音波伝搬路を伝搬する超音波波長、送信面寸法および設置間距離としているので、送信された超音波が超音波伝搬路内を広がらずに平面波で伝搬させて計測流路の内壁面による反射波の影響を低減し、直接波による超音波伝搬計測の波形検出精度を高めて計測精度を向上でき、また平面波で超音波を伝搬させることで計測流路の高さ方向の局部的な計測を促進して、脈動時の瞬時平均流速の測定精度を高めて脈動流れの流量計測精度を一層向上できる。
【0066】
【発明の効果】
以上の説明から明らかなように本発明の流量計測装置によれば、計測流路を流れる流体が圧力脈動などにより脈動を生じている場合でも、瞬時流量計測ができ、計測精度を高めることができる。
【図面の簡単な説明】
【図1】本発明の実施例1の流量計測装置の構説明図
【図2】本発明の実施例1の基礎となる脈動流れの流速分布特性図
【図3】本発明の実施例1の基礎となる脈動流れの他の流速分布特性図
【図4】本発明の実施例2の流量計測装置の説明図
【図5】本発明の実施例2の基礎となる脈動流れの流速分布特性図
【図6】本発明の実施例2の基礎となる脈動流れの他の流速分布特性図
【図7】本発明の実施例3の流量計測装置の説明図
【図8】本発明の実施例3の流量計測装置の縦断面図
【図9】本発明の実施例3の流量計測装置の局部断面図
【図10】本発明の実施例4の超音波送受信器の超音波伝搬状態図
【図11】従来の流量計測装置の構成図
【符号の説明】
5 計測流路
7 流速検出手段
7a、7b 超音波送受信器
8 流れ安定手段
9 導入部
10 導出部
11 計測制御手段
13 流量演算部
14 流量補正部
16 計測時間設定部
23 屈曲部
24 送受信面
26 送信面
27 ラストマックス
JP2002229737A 2002-08-07 2002-08-07 流量計測装置 Expired - Fee Related JP3627729B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002229737A JP3627729B2 (ja) 2002-08-07 2002-08-07 流量計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002229737A JP3627729B2 (ja) 2002-08-07 2002-08-07 流量計測装置

Publications (3)

Publication Number Publication Date
JP2004069526A JP2004069526A (ja) 2004-03-04
JP2004069526A5 true JP2004069526A5 (ja) 2004-12-16
JP3627729B2 JP3627729B2 (ja) 2005-03-09

Family

ID=32016023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002229737A Expired - Fee Related JP3627729B2 (ja) 2002-08-07 2002-08-07 流量計測装置

Country Status (1)

Country Link
JP (1) JP3627729B2 (ja)

Similar Documents

Publication Publication Date Title
US7607359B2 (en) Ultrasonic flow rate meter having a pressure sensor
JP2004271496A (ja) 超音波流量測定方法
US7806003B2 (en) Doppler type ultrasonic flow meter
JP3627729B2 (ja) 流量計測装置
JP2004069526A5 (ja)
JP2008014829A (ja) 超音波流量計
JPH11351928A (ja) 流量計および流量計測方法
JP3438713B2 (ja) 超音波流量計測装置
CN111473827A (zh) V形声道零飘消除方法
JP2004251700A (ja) 流体計測装置
JP4561071B2 (ja) 流量計測装置
JP3503578B2 (ja) 流量計測装置
JP2000065613A (ja) 超音波流量計
JP2004085211A (ja) 超音波流量計
JP3438734B1 (ja) 超音波流量計測装置
JP2001208585A (ja) 流量計
JP3436247B2 (ja) 超音波流量計測装置
RU2517996C1 (ru) Датчик ультразвукового расходомера
JP4087648B2 (ja) 超音波流体計測装置
JP3528436B2 (ja) 超音波式流量計及び流速計
JP3217021B2 (ja) 超音波流量計
JP2002267513A (ja) 超音波流量計
JP2853508B2 (ja) ガス流量計
JP3514259B1 (ja) 超音波流量計測装置
JP3438716B2 (ja) 超音波流量計測装置