JP2004069195A - ヒートポンプ給湯装置 - Google Patents

ヒートポンプ給湯装置 Download PDF

Info

Publication number
JP2004069195A
JP2004069195A JP2002229748A JP2002229748A JP2004069195A JP 2004069195 A JP2004069195 A JP 2004069195A JP 2002229748 A JP2002229748 A JP 2002229748A JP 2002229748 A JP2002229748 A JP 2002229748A JP 2004069195 A JP2004069195 A JP 2004069195A
Authority
JP
Japan
Prior art keywords
water
temperature
water supply
heat pump
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002229748A
Other languages
English (en)
Inventor
Koji Oka
岡 浩二
Takeji Watanabe
渡辺 竹司
Keijiro Kunimoto
國本 啓次郎
Satoshi Matsumoto
松本 聡
Ryuta Kondo
近藤 龍太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002229748A priority Critical patent/JP2004069195A/ja
Publication of JP2004069195A publication Critical patent/JP2004069195A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

【課題】応答性が良く温度制御精度も良い給湯ができる瞬間湯沸し型のヒートポンプ給湯装置を提供する。
【解決手段】瞬間湯沸し型のヒートポンプ給湯装置であって、ヒートポンプサイクル7の放熱器3の冷媒流路8と熱交換を行う水流路9を備えた熱交換器10と、前記水流路9に水道水を供給する給水管11と、前記水流路9からシャワー16や蛇口17等の給湯端末12へと通水するように接続する給湯回路13を備え、前記給湯回路13に水道水を混合する混合手段20を有するもので、混合手段が動作して熱交換器で加熱された湯に水を混合して湯温を下げて温度制御を行うため、加熱能力の高い状態でヒートポンプサイクルが稼働していても、急激な目標温度変化に素早くかつ精度良く対応することができる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートポンプを用いた給湯装置に関するものである。
【0002】
【従来の技術】
給湯装置としては、従来よりガスや石油の燃焼を用いた給湯機が使用されてきたが、これらは排ガスによる大気汚染や、直接燃焼させることへの不安感、燃焼音など避けられない課題を抱えていた。これに対し、貯湯タンクに湯を貯えて給湯するヒートポンプ給湯機があり、こちらは燃焼による給湯機の問題を解消し、しかもヒートポンプにより熱効率がよいものであった。しかし、貯湯タンクが大きく、重量や設置スペースなど施工上に問題があった。このヒートポンプによる瞬間湯沸しの発想は従来よりあったが、ヒートポンプの場合は燃焼給湯機と違い、気温や湿度や水温などの自然条件によって給湯能力が変動する。しかも、給湯流量が変化する条件下で幅広い給湯能力をカバーし、素早く一定の出湯温度を維持することが難しかった。
【0003】
こうした問題を解決する瞬間湯沸し型のヒートポンプ給湯装置として特開平2−223767号公報に記載されているような給湯装置が提案されていた。このヒートポンプ給湯装置は図5に示すように、閉回路に構成される冷媒回路1で圧縮機2、放熱器3、減圧手段4、吸熱器5が接続されたヒートポンプサイクル7と、放熱器3の冷媒流路8と熱交換を行う水流路9を備えた熱交換器10と、この水流路9に水道水を供給する給水管11と、前記水流路9とシャワーや蛇口等の給湯端末12とを接続する給湯回路13と、給湯回路13に設け給湯温度を検知する温度センサ14と、圧縮機2の回転数を制御するインバータ15を備え、圧縮機2を温度センサ14の検知温度と目標温度との差に応じてインバータ15の出力周波数を変換するようにしていた。すなわち従来の給湯装置では目標温度に対して給湯温度が低い場合は圧縮機2の回転数を上げ、給湯温度が高い場合は回転数を下げるように制御するようにしていた。
【0004】
瞬間湯沸し型では給湯時における給湯負荷が一定ではない。特に流量は使用者が給湯目的によってさまざまに変化させるために給湯負荷は大きく変わってしまう。例えば家庭用の給湯の場合、シャワーや風呂への湯張りに給湯する場合は10〜20L/minの大流量となるが、台所で食器を洗う場合や洗面への給湯では3〜5L/minと少流量である。また、季節による給水温度の変化によっても給湯負荷は大きく変わる。
【0005】
こうした流量や水温の変化により大きく変わる給湯負荷を、従来のヒートポンプ給湯装置のように給湯温度と目標温度の差だけで圧縮機の回転数を変えて給湯熱量を制御しようとした場合に制御の応答性と安定性に不都合が生じてくる。例えば制御の安定性を良くするために給湯温度と目標温度との温度差と圧縮機の回転数の係数である制御ゲインを低くすると、温度差の変化量に対する回転数の変化量が少なくなるので給湯温度変化が緩やかになり、目標温度に達するのに時間がかかったり、オフセットにより流量や水温の違いによって給湯温度の安定値が目標温度にならず変化したりする。逆に制御ゲインを上げると給湯負荷の大きな大流量では、圧縮機の回転数の変化に対する給湯温度の変化が少ないので安定に制御できても、圧縮機の回転数の変化に対する給湯温度の変化が急峻になる小流量での給湯では、圧縮機の回転数の制御の変化が急峻になり給湯温度が安定しないばかりか、給湯温度と回転数の変化の位相のずれによりハンチングを起こして制御が発散する可能性もあった。
【0006】
また、瞬間湯沸し型のヒートポンプ給湯装置は給湯の開始時にヒートポンプサイクル全体の圧力や温度の立上がりに時間を要するため、ガス給湯機などに比べ熱交換器の水流路からの出湯に遅れが生じる。この給湯開始時に給湯温度と目標温度の差だけで圧縮機の回転数を設定すると、大流量であっても少流量であっても給湯開始時のように給湯温度が低い状態では圧縮機の回転数は一様に高いレベルに設定されてしまう。したがって従来の制御方法では、少流量の場合に熱交換器からの出湯温度が急上昇してオーバーシュートして目標温度より高温の湯が出たり、放熱器温度の上昇によって圧縮機出口の圧力が異常に高くなるなどの不都合が発生したりした。特に、流量や温度など湯の使用状態が急に変化した場合などは、ヒートポンプサイクルの制御だけでは変化に追いつけず、素早い対応ができなかった。
【0007】
以上のように従来のヒートポンプ給湯装置では給湯負荷の大小に関わりなく一律に加熱制御を行うために幅広い給湯負荷への対応が困難であったり、制御の応答性と安定性を両立させることができなかったり、効率が悪化するなどの問題があった。
【0008】
【発明が解決しようとする課題】
本発明は、上記従来の課題を解決するもので、広い能力幅を有し、給湯端末での湯の使用状態が急激に変化しても対応できる、温度制御の応答性が良く制御精度も良い、効率の良い給湯ができる瞬間湯沸し型のヒートポンプ給湯装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明のヒートポンプ給湯装置は、ヒートポンプサイクルの放熱器の冷媒流路と熱交換を行う水流路を備えた熱交換器と、前記水流路に水道水を供給する給水管と、前記水流路からシャワーや蛇口等の給湯端末へと通水するように接続する給湯回路を備え、前記給湯回路に水道水を混合する混合手段を有するものである。
【0010】
上記発明によれば、混合手段が動作して熱交換器で加熱された湯に水を混合して湯温を下げるため、加熱温度の高い状態でヒートポンプサイクルが稼働していても、急激な目標温度の変化や給湯端末での湯の使用状態の変化に素早くかつ精度良く対応することができる。
【0011】
【発明の実施の形態】
請求項1に記載の発明は、閉回路に構成される冷媒回路で圧縮機、放熱器、減圧手段、吸熱器が接続されたヒートポンプサイクルと、前記放熱器の冷媒流路と熱交換を行う水流路を備えた熱交換器と、前記水流路に水道水を供給する給水管と、前記水流路からシャワーや蛇口等の給湯端末へと通水するように接続する給湯回路を備え、前記給湯回路に水を混合する混合手段を有しているため、加熱温度の高い状態でヒートポンプサイクルが稼働していても、混合手段が動作して熱交換器で加熱された湯に水を混合して湯温を下げるため、急激な目標温度の変化や給湯端末での湯の使用状態の変化に素早くかつ精度良く対応することができる。
【0012】
請求項2に記載の発明は、特に請求項1に記載の混合手段が、給湯回路の湯に水を混合するか否かを選択可能とするもので、高温出湯の際には水を混合せずに加熱された給湯のみで出湯することが可能となり、効率のよい出湯ができる。
【0013】
請求項3に記載の発明は、特に、混合手段により混合される混合水の目標温度を設定するための設定手段を備え、水流路から出湯される湯温が目標温度と同じかまたはこれより高くなるようヒートポンプサイクルが制御されるもので、目標温度よりも高い水流路出湯水に水を混合するため、応答性が良く精度も良い温度制御が可能となる。また、最終的に混合手段により温度制御行うため、ヒートポンプサイクルによる温度制御の精度が粗くても問題はなく、ヒートポンプサイクルの制御が比較的容易に行える。
【0014】
請求項4に記載の発明は、特に、圧縮機の吐出温度が水流路から出湯される湯温より高くなるようヒートポンプサイクルが制御されるもので、目標温度よりも高い温度の水流路出湯水に水を混合するため、精度が良く応答性も高い温度制御が可能となる。また、最終的に混合手段により温度制御行うため、ヒートポンプサイクルによる温度制御の精度が粗くても問題はなく、ヒートポンプサイクルの制御が比較的容易に行える。
【0015】
請求項5に記載の発明は、特に、混合手段により混合された混合水の温度を検知する混合水温度検知手段と、前記混合水の目標温度を設定するための設定手段を備え、前記混合水の温度と前記目標温度の偏差によって混合手段を制御するもので、フィードバック制御を実施することでより精度の高い温度制御を行うことが可能となる。
【0016】
請求項6に記載の発明は、特に、給水管内の水道水の流量を検知する給水流量検知手段と、給湯回路内の水の流量を検知するための給湯流量検知手段と、給湯回路に混合する水の流量を検知するための流量検知手段のうち少なくとも1つを備え、その検知値によって混合手段を制御するもので、例えばシャワー室と台所とでお湯を使用している状態から、台所のみで使用するように流量が急に変化した場合でも、混合手段を制御することで素早い対応が可能となる。
【0017】
請求項7に記載の発明は、特に、給水管内の水道水の流量を検知する給水流量検知手段と、給湯回路内の水の流量を検知するための給湯流量検知手段と、給湯回路に混合する水の流量を検知するための流量検知手段のうち少なくとも1つを備え、その検知値によってヒートポンプサイクルを制御するもので、例えばシャワー室と台所とでお湯を使用している状態から、台所のみで使用するように流量が急に変化した場合でも、ヒートポンプサイクルの加熱能力を制御して温度変化に対して素早い対応が可能となる。
【0018】
請求項8に記載の発明は、特に、給水管内の水道水の温度を検知するための給水温度検知手段と、給湯回路内の水の温度を検知するための給湯温度検知手段と、給湯回路に混合する水の温度を検知するための水温検知手段と、気温を検知する気温検知手段のうち少なくとも1つを備え、その検知値によって混合手段を制御するもので、水道水温や水温それに気温によって予め混合手段を制御し最適な混合比で温度を制御したり、給湯回路内の湯水や水道水、それに水の温度変化に応じて混合比を変化させて最適な温度制御を行うことができる。
【0019】
請求項9に記載の発明は、特に、水流路から出湯される湯温を検知する水流路出湯温度検知手段と、混合手段により混合された混合水の温度を検知する混合水温度検知手段を備え、前記水流路出湯温度検知手段と前記混合水温度検知手段の検知値によってヒートポンプサイクルまたは混合手段が制御されるもので、混合手段とヒートポンプサイクルの両者によって湯温を制御するため、より応答性が良く精度も良い温度制御を行うことが可能となる。
【0020】
請求項10に記載の発明は、特に、気温を検知する気温検知手段を備え、ヒートポンプサイクルの制御は気温に応じて圧縮機の回転数、減圧手段の減圧度、吸熱器に備えた吸熱用ファンの回転数のうち少なくとも1つを制御することによってヒートポンプサイクルの運転状態を変更するので、予め圧縮機の回転数、減圧手段の冷媒流路抵抗、吸熱用ファンの風量のそれぞれと熱交換器での加熱量の関係を定め、気温に応じて設定された所要加熱量になるように圧縮機の回転数、減圧手段の減圧度、吸熱用ファンの回転数を制御するもので、短時間で所要加熱量が得られる。
【0021】
請求項11に記載の発明は、特に、給水管内の水道水の温度を検知する給水温度検知手段を備え、ヒートポンプサイクルの制御は給水温度検知手段の検知値に応じて圧縮機の回転数、減圧手段の減圧度、吸熱器に備えた吸熱用ファンの回転数のうち少なくとも1つを制御することによってヒートポンプサイクルの運転状態を変更するので、予め圧縮機の回転数、減圧手段の冷媒流路抵抗、吸熱用ファンの風量のそれぞれと熱交換器での加熱量の関係を定め、水道水温に応じて設定された所要加熱量になるように圧縮機の回転数、減圧手段の減圧度、吸熱用ファンの回転数を制御するもので、短時間で所要加熱量が得られる。
【0022】
請求項12に記載の発明は、特に、冷媒を二酸化炭素とするので、ヒートポンプサイクルは冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、前記臨界圧力以上に昇圧された冷媒により熱交換器の水流路の流水を加熱する構成である。
【0023】
そして、熱交換器の冷媒流路を流れる冷媒は、圧縮機で臨界圧力以上に加圧されているので、熱交換器の水流路の流水により熱を奪われて温度低下しても凝縮することがない。したがって熱交換器全域で冷媒流路と水流路とに温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くできる。
【0024】
【実施例】
以下、本発明の実施例について図1〜図4を参照しながら説明する。なお、従来例および各実施例において、同じ構成、同じ動作をする部分については同一符号を付与し、詳細な説明を省略する。
【0025】
(実施例1)
図1は本発明の実施例1におけるヒートポンプ式給湯装置の構成図である。同図において、7はヒートポンプサイクルで、圧縮機2、放熱器3、減圧手段4、吸熱器5が冷媒回路1により閉回路に接続されている。このヒートポンプサイクル7は、例えば炭酸ガスを冷媒として使用し、高圧側の冷媒圧力が冷媒の臨界圧以上となる超臨界ヒートポンプサイクルを使用している。そして圧縮機2は、内蔵する電動モータ(図示せず)によって駆動され、吸引した冷媒を臨界圧力まで圧縮して吐出する。また、10は放熱器3の冷媒流路8と熱交換を行う水流路9を備えた熱交換器である。この水流路9には、水道水を直接供給する給水管11と、水流路9から出湯される湯をシャワー16や蛇口17等より成る給湯端末12に通水させるための給湯回路13が接続されている。そして給湯回路13には、混合弁18とこの混合弁18を制御する弁制御手段19から成る混合手段20が設けられ、混合弁18には給水管11から分岐したバイパス路21が接続されており、この混合手段20の混合弁18において水流路9から出湯した水流路出湯水と水道水とが混合される。
【0026】
給水管11には、流量を検知する給水流量検知手段22と、熱交換器10への給水温度を検知する給水温度検知手段23が、また給湯回路13には水流路9から出湯した水流路出湯水の温度を検知する水流路出湯温度検知手段24と、混合手段18で混合された混合水の温度を検知する混合水温度検知手段25が、さらにバイパス路21にはバイパス路21を流れる水道水の流量を検知する流量検知手段26が、そして冷媒回路1には圧縮機2から吐出された高圧冷媒温度を検知する吐出温度検知手段27がそれぞれ設けられている。28はの混合水の目標温度を設定する設定手段で、使用者が任意に温度を設定する。なお目標温度は、使用者が、給湯端末12から出湯される給湯の湯温として設定する場合もあるが、混合水温度に対する目標温度であっても、給湯端末12から出湯される給湯の温度に対する目標温度であっても、差異はない。
【0027】
ここで熱交換器10は、冷媒流路8の流れ方向と水流路9の流れ方向を対向流とし、各流路間を熱移動が容易になるように密着して構成している。この構成により冷媒流路8と水流路9の伝熱が均一化し、熱交換効率がよくなる。また、高温の出湯も可能になる。
【0028】
29は気温を検知する気温検知手段で、30は吸熱器5に備えた吸熱用ファンである。31は気温検知手段29および給水温度検知手段23の各検知値から、圧縮機2の回転数、および減圧手段4の減圧度、および吸熱器5に備えた吸熱用ファン30のファンモータ回転数を制御する制御値を算出するための演算部aである。32は設定手段28によって設定される目標温度および、吐出温度検知手段27、水流路出湯温度検知手段24、混合水温度検知手段25の各検知値を入力して、ヒートポンプサイクル7を制御するために必要な演算を行い、これを演算部a31に出力する演算部bである。また、33は設定手段28によって設定される目標温度および、気温検知手段29、給水温度検知手段23、給水流量検知手段22、水流路出湯温度検知手段24、流量検知手段26、混合水温度検知手段25の各検知値を入力して、混合弁18を制御するために必要な演算を行い、これを弁制御手段19に出力する演算部cである。
【0029】
なお、減圧手段4の具体的構成としては絞り弁(図示せず)が挙げられ、この場合絞り弁を駆動するステッピングモータ(図示せず)により弁開度が制御され、冷媒流路抵抗を変更することができる。
【0030】
以上の構成において、次にその動作、作用について説明する。給湯端末12のシャワー16または蛇口17の栓が使用者によって開かれると給水管11に水道水が流入する。これを給水流量検知手段22が検知し、演算部a31にその情報が送られ、設定手段28で設定された目標温度から所要加熱量が算定された後、この算定値に基づいて圧縮機2の回転数が制御される。そして、圧縮機2から吐出される高温高圧の冷媒ガスは放熱器3へ流入し、水流路9を流れる水を加熱する。そして、加熱された水は給湯回路13を通る間に混合手段20によって水道水と混合されて適温となった後、給湯端末12から出湯する。一方、放熱器3で冷却された冷媒は減圧手段4で減圧されて吸熱器5に流入し、ここで大気熱、太陽熱など自然エネルギーを吸熱して蒸発ガス化し、圧縮機2に戻る。
【0031】
水流路9を流れる水は、圧縮機2の回転数によって加熱量が制御されるだけでなく、減圧手段4の冷媒流路抵抗や、吸熱器5の吸熱量によっても加熱量が制御できる。つまり減圧手段4の絞り弁の開度を変え、冷媒流路抵抗を変えることで加熱量が制御でき、また、吸熱器5の吸熱量は、吸熱用ファン30のモータの回転数を変更して、吸熱器5への送風量を変更することにより制御できて、吸熱量を変えることで加熱温度が制御できる。高温の出湯が必要であったり、外気温度が低いなどで加熱量が不足した場合などには、冷媒流路抵抗を大きくすることで熱交換器の加熱量は所要加熱量を確保するように作用する。
【0032】
なお、通常の給湯使用状態において、冷媒流路8と水流路9との温度差が小さくなるほどヒートポンプサイクル7の効率が良くなるので、給水温度検知手段23の検知する給水温度に応じて、熱交換器10での所要加熱量を確保して、冷媒流路8と水流路9との温度差が最も小さくなるように減圧手段4の冷媒流路抵抗を制御すると、効率の良いい運転が可能となる。
【0033】
そして、給湯負荷が極端に小さく熱交換器10の所要加熱量が小さすぎて圧縮機2の回転数制御などでは絞りきれない場合などには、吸熱用ファン30の風量を減少させることにより熱交換器10の加熱量を減少させて所要加熱量に制御することが可能である。また、圧縮機2が最大回転数でも加熱量が不足する場合には、吸熱用ファン30の風量を上げて熱交換器10の加熱量を増加させて所要加熱量に制御することも可能である。このように、圧縮機2の回転数や減圧手段4の減圧度、吸熱器5に備えた吸熱用ファン30のモータ回転数によって、ヒートポンプサイクル7の加熱量が制御でき、水流路9を流れる水を所定の温度に加熱することができる。
【0034】
そこで、演算部a31が予め気温や水温と、熱交換器10を加熱するのに必要な加熱量の関係とを把握して、その熱量を得るのに最適な圧縮機2の回転数および減圧手段4の減圧度、吸熱器5に備えた吸熱用ファン30回転数の関係を記憶しておき、気温検知手段29が検知値する気温や給水温度検知手段23が検知する水道水温に応じて設定された所要加熱量と熱交換器10の加熱量が一致するように圧縮機2の回転数や減圧手段4の減圧度、吸熱器5に備えた吸熱用ファン30回転数を制御すれば、立ち上がりの早いヒートポンプサイクル7の運転が可能となる。また、このように気温や水温に応じた制御を行うことによって、気温や水温が急に変動した場合でも応答性が早く、精度の良い給湯制御が可能となる。
【0035】
ヒートポンプサイクル7を制御して加熱温度を制御する方法としては、この他に次のようなものがある。目標温度と混合水温度検知手段25による検知値との偏差を演算部b32が算出し、この偏差を相殺するように加熱量を制御したり、また、予め目標温度から目標吐出温度を算出し、この目標吐出温度と吐出温度検知手段27による検知値との偏差を演算部b32が算出して、この偏差を相殺するように加熱量を制御したり、また、予め目標温度から目標水流路出湯温度が算出し、この目標水流路出湯温度と水流路出湯温度検知手段24による検知値との偏差を演算部b32が算出して、この偏差を相殺するように制御するものである。
【0036】
以上のようなヒートポンプサイクル7による加熱温度の制御に対し、混合手段20を用いて温度制御を行うと、より即応性の高い出湯端末給湯温制御が可能となる。具体的な制御方法について説明する。
【0037】
目標温度と混合水温度検知手段25による検知値との偏差を演算部c33が算出し、この偏差を相殺するように混合弁18を制御すると、混合水温度によるフィードバック制御となり、応答性が良く、精度も良い温度制御が可能となる。また、給水温度検知手段23により検知される水道水温度と、気温検知手段29により検知される気温によって、運転前に予め混合弁18の開度を調節するようにすると、例えば気温や水温が大きく変化するために夏と冬とで大きく異なる水道水の混合割合を、気温、水温に応じて予め想定した値をもとに最適な混合量として設定するので、運転開始時から精度の良い温度制御が可能となる。
【0038】
また、給水流量検知手段22の検知値と、水流路出湯温度検知手段24の検知値から給湯回路13を流れる湯の熱量を算出し、同様に流量検知手段26の検知値と給水温度検知手段23の検知値からバイパス路21を流れる水道水の熱量を算出して、これらの計算結果から目標温度が得られるよ混合水の混合割合を混合弁の開度を用いて制御すれば、精度の良い温度制御が可能となる。
【0039】
また、給水流量検知手段22により給水流量が検知され、流量検知手段26によりバイパス流量が検知されるため、これらより出湯端末12から出湯する湯水の流量変化が検知できるので、この流量変化に応じて混合弁18を制御すると、急激な状況変化への対応が可能となる。つまり、例えばシャワ−16と台所の蛇口17とを併用している場合に、急にシャワー16の使用を停止した場合など出湯流量が急激に変化した場合などは、加熱状況が同じで流量が減るために、本来ならば蛇口17の出湯温度が高くなるところが、給水流量検知手段22や流量検知手段26が、流量の減ったことを検知して水道水を混合する量を増やすように混合弁18を制御して対応することができ、急な状態変化に対しても比較的安定した温度制御が実現できる。
【0040】
ここで出湯端末13の湯温は、混合手段20で水流路出湯水に水道水を混合して水温を下げて温度制御がなされるため、水流路出湯温度は目標温度よりも高くなるように、水流路出湯温度検知手段24の検知値や目標温度などによってヒートポンプサイクル7が制御される。また、熱交換器10の熱交換効率は100%以下なので、吐出温度は水流路出湯温度よりも高くなるように、吐出温度検知手段27や目標温度などによってヒートポンプサイクル7が制御される。
【0041】
混合手段20による混合水の湯温制御と、ヒートポンプサイクル7による加熱温度制御は、互いに組み合わせることでより性能の良い温度制御が可能となる。そしてこの場合、最終的な出湯端末12の温度制御は混合手段20によって制御されるため、その前段となるヒートポンプサイクル7での加熱温度制御は目標値に対して偏差が多少残っても良く、それ故に複雑なヒートポンプサイクル7による温度制御は比較的容易なものとなる。
【0042】
なお、高温の出湯を行う場合など、水道水を混合して出湯温度を制御する必要のない場合は、混合手段の機能を停止することも可能であり、この場合、給湯の効率を落とさずに出湯することができる。また、給水流量検知手段22は、図1のように熱交換器10の給水管11側にあっても、図2のように給湯流量検知手段34として給湯回路13側にあってもどちらでも構わない。後者の場合、混合手段20を制御するために演算部c33は、給湯流量検知手段34による検知値を利用することがある。また図1のようにバイパス路21は給水管11から分岐させても、また、図3のように熱交換器10の水流路9中央部から分岐させても同様の効果が得られる。
【0043】
さらに、実施例1ではヒートポンプサイクルを、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルとしたが、もちろん一般の臨界圧力以下のヒートポンプサイクルでもよい。冷媒として利用される炭酸ガスには代表的なものとして分子量の小さい二酸化炭素が挙げられる。
【0044】
(実施例2)
基本的な構成は実施例1と同様なので省略するとし、実施例1と異なる部分のみ記載する。図4は本発明第2の実施例におけるヒートポンプ給湯装置の構成図である。
【0045】
35は他から水を供給するための混合用給水路で、36は混合用給水路に流入する水の温度を検知する水温検知手段、26は混合用給水路35内の水の流量を検知する流量検知手段である。このように、混合水を水道水でなく他の水を利用しても実施例1と同様の効果が得られる。但しこの場合、混合手段20を制御するためのに演算部c33は、水温度検知手段36による検知値を利用することがある。
【0046】
【発明の効果】
以上のように、本発明によれば、広い能力幅を有し、給湯端末での湯の使用状態が急激に変化しても対応できる、温度制御の応答性が良く、制御精度も良い効率のよい給湯ができる瞬間湯沸し型のヒートポンプ給湯装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例1におけるヒートポンプ給湯装置の構成図
【図2】本発明の実施例1におけるヒートポンプ給湯装置の他の構成図
【図3】本発明の実施例1におけるヒートポンプ給湯装置の他の構成図
【図4】本発明の実施例2におけるヒートポンプ給湯装置の構成図
【図5】従来のヒートポンプ給湯装置の構成図
【符号の説明】
1 冷媒回路
2 圧縮機
3 放熱器
4 減圧手段
5 吸熱器
7 ヒートポンプサイクル
8 冷媒流路
9 水流路
10 熱交換器
11 給水管
12 給湯端末
13 給湯回路
16 シャワー
17 蛇口
18 混合弁
19 弁制御手段
20 混合手段
22 給水流量検知手段
23 給水温度検知手段
24 水流路出湯温度検知手段
25 混合水温度検知手段
26 水温度検知手段
27 吐出温度検知手段
28 設定手段
29 気温検知手段
30 吸熱用ファン
34 給湯用流量検知手段
36 水温検知手段

Claims (12)

  1. 圧縮機、放熱器、減圧手段、吸熱器が接続されたヒートポンプサイクルと、前記放熱器の冷媒流路と熱交換を行う水流路を備えた熱交換器と、前記水流路に水道水を供給する給水管と、前記水流路から給湯端末へと通水するように接続する給湯回路とを備え、前記給湯回路に水を混合する混合手段を有するヒートポンプ給湯装置。
  2. 混合手段は、給湯回路の湯に水を混合するか否かを選択可能とする請求項1に記載のヒートポンプ給湯装置。
  3. 混合手段により混合される混合水の目標温度を設定するための設定手段を備え、水流路から出湯される湯温が前記目標温度と同じかまたはこれより高くなるようヒートポンプサイクルが制御される請求項1または2に記載のヒートポンプ給湯装置。
  4. 圧縮機の吐出温度が、水流路から出湯される湯温より高くなるようヒートポンプサイクルが制御される請求項1〜3のいずれか1項に記載のヒートポンプ給湯装置。
  5. 混合手段により混合された混合水の温度を検知する混合水温度検知手段と、前記混合水のの目標温度を設定するための設定手段を備え、前記混合水の温度と前記目標温度の偏差によって混合手段を制御する請求項1〜4のいずれか1項に記載のヒートポンプ給湯装置。
  6. 給水管内の水道水の流量を検知する給水流量検知手段と、給湯回路内の水の流量を検知するための給湯流量検知手段と、給湯回路に混合する水の流量を検知するための流量検知手段のうち少なくとも1つを備え、その検知値によって混合手段を制御する請求項1〜5のいずれか1項に記載のヒートポンプ給湯装置。
  7. 給水管内の水道水の流量を検知する給水流量検知手段と、給湯回路内の水の流量を検知するための給湯流量検知手段と、給湯回路に混合する水の流量を検知するための流量検知手段のうち少なくとも1つを備え、その検知値にヒートポンプサイクルを制御する請求項1〜6のいずれか1項に記載のヒートポンプ給湯装置。
  8. 給水管内の水道水の温度を検知するための給水温度検知手段と、給湯回路内の水の温度を検知するための給湯温度検知手段と、給湯回路に混合する水の温度を検知するための水温検知手段と、気温を検知する気温検知手段のうち少なくとも1つを備え、その検知値によって混合手段を制御する請求項1〜7のいずれか1項に記載のヒートポンプ給湯装置。
  9. 水流路から出湯される湯温を検知する水流路出湯温度検知手段と、混合手段により混合された混合水の温度を検知する混合水温度検知手段を備え、前記水流路出湯温度検知手段と前記混合水温度検知手段の検知値によってヒートポンプサイクルまたは混合手段が制御される請求項1〜8のいずれか1項に記載のヒートポンプ給湯装置。
  10. 気温を検知する気温検知手段を備え、ヒートポンプサイクルの制御は、前記気温検知手段の検知値に応じて圧縮機の回転数、減圧手段の減圧度、吸熱器に備えた吸熱用ファンの回転数のうち少なくとも1つを制御することによってヒートポンプサイクルの運転状態を変更する請求項1〜9のいずれか1項に記載のヒートポンプ給湯装置。
  11. 給水管内の水道水の温度を検知する給水温度検知手段を備え、ヒートポンプサイクルの制御は、前記給水温度検知手段の検知値に応じて圧縮機の回転数、減圧手段の減圧度、吸熱器に備えた吸熱用ファン回転数のうち少なくとも1つを制御することによってヒートポンプサイクルの運転状態を変更する請求項1〜10のいずれか1項に記載のヒートポンプ給湯装置。
  12. 冷媒は二酸化炭素とする請求項1〜11のいずれか1項に記載のヒートポンプ給湯装置。
JP2002229748A 2002-08-07 2002-08-07 ヒートポンプ給湯装置 Pending JP2004069195A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002229748A JP2004069195A (ja) 2002-08-07 2002-08-07 ヒートポンプ給湯装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002229748A JP2004069195A (ja) 2002-08-07 2002-08-07 ヒートポンプ給湯装置

Publications (1)

Publication Number Publication Date
JP2004069195A true JP2004069195A (ja) 2004-03-04

Family

ID=32016032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002229748A Pending JP2004069195A (ja) 2002-08-07 2002-08-07 ヒートポンプ給湯装置

Country Status (1)

Country Link
JP (1) JP2004069195A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187366A (ja) * 2006-01-12 2007-07-26 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
JP2008202826A (ja) * 2007-02-19 2008-09-04 Matsushita Electric Ind Co Ltd ヒートポンプ式給湯機
CN102213486A (zh) * 2011-04-11 2011-10-12 陈建平 一种流水洗涤排水的废热利用方法及设备
CN103528188A (zh) * 2013-11-04 2014-01-22 Tcl空调器(中山)有限公司 空气源热水机系统及其控制方法
JP2014524766A (ja) * 2011-06-01 2014-09-25 フレセニウス メディカル ケア ホールディングス インコーポレーテッド 透析装置入口管路の集中熱殺菌のための入口温度監視の方法およびシステム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187366A (ja) * 2006-01-12 2007-07-26 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
JP2008202826A (ja) * 2007-02-19 2008-09-04 Matsushita Electric Ind Co Ltd ヒートポンプ式給湯機
CN102213486A (zh) * 2011-04-11 2011-10-12 陈建平 一种流水洗涤排水的废热利用方法及设备
JP2014524766A (ja) * 2011-06-01 2014-09-25 フレセニウス メディカル ケア ホールディングス インコーポレーテッド 透析装置入口管路の集中熱殺菌のための入口温度監視の方法およびシステム
CN103528188A (zh) * 2013-11-04 2014-01-22 Tcl空调器(中山)有限公司 空气源热水机系统及其控制方法
CN103528188B (zh) * 2013-11-04 2016-09-21 Tcl空调器(中山)有限公司 空气源热水机系统及其控制方法

Similar Documents

Publication Publication Date Title
KR100567491B1 (ko) 히트 펌프 급탕 장치
JP4059616B2 (ja) ヒートポンプ式温水器
JP2010261665A (ja) ヒートポンプ式給湯機
JP2005134070A (ja) ヒートポンプ給湯機
JP2009121794A (ja) ヒートポンプ式給湯装置
JP2006200888A (ja) ヒートポンプ給湯装置
JP3855695B2 (ja) ヒートポンプ給湯機
JP5176474B2 (ja) ヒートポンプ給湯装置
JP3778102B2 (ja) ヒートポンプ給湯装置
JP2004069195A (ja) ヒートポンプ給湯装置
JP3800497B2 (ja) 給湯器
JP2004340535A (ja) ヒートポンプ給湯装置
JP3915767B2 (ja) ヒートポンプ給湯装置
JP3864981B2 (ja) ヒートポンプ給湯装置
JP2005098530A (ja) ヒートポンプ給湯装置
JP3945361B2 (ja) ヒ−トポンプ給湯装置
JP3906857B2 (ja) ヒートポンプ給湯装置
JP2005188879A (ja) ヒートポンプ式給湯装置
JP3815341B2 (ja) ヒートポンプ給湯装置
JP2005003212A (ja) ヒートポンプ給湯装置
JP3975874B2 (ja) ヒ−トポンプ給湯装置
JP2004232912A (ja) ヒートポンプ給湯装置
JP4631365B2 (ja) ヒートポンプ加熱装置
JP2003194347A (ja) 多機能給湯装置
JP3843978B2 (ja) ヒートポンプ給湯装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050418

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051129