JP2004069092A - Absorption type water cooling/heating machine - Google Patents

Absorption type water cooling/heating machine Download PDF

Info

Publication number
JP2004069092A
JP2004069092A JP2002225489A JP2002225489A JP2004069092A JP 2004069092 A JP2004069092 A JP 2004069092A JP 2002225489 A JP2002225489 A JP 2002225489A JP 2002225489 A JP2002225489 A JP 2002225489A JP 2004069092 A JP2004069092 A JP 2004069092A
Authority
JP
Japan
Prior art keywords
heat exchanger
exhaust gas
temperature
solution
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002225489A
Other languages
Japanese (ja)
Other versions
JP4065741B2 (en
Inventor
Akira Nishioka
西岡 明
Satoshi Miyake
三宅 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industries Co Ltd filed Critical Hitachi Industries Co Ltd
Priority to JP2002225489A priority Critical patent/JP4065741B2/en
Publication of JP2004069092A publication Critical patent/JP2004069092A/en
Application granted granted Critical
Publication of JP4065741B2 publication Critical patent/JP4065741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve energy efficiency of an absorption, type water cooling/heating machine by improving corrosion resistance by preventing stagnation of dew condensation water on a fin. <P>SOLUTION: The absorption type water cooling/heating machine has a heat exchanger for exchanging heat between exhaust gas and solution, a plurality of heat transfer pipes for making the solution flow are arranged horizontally, and the fin on the exhaust side is arranged in the gravity direction. SUS316L or SUS316 is used in the heat transfer pipes, and aluminum material applied with oxide film treatment is used in the fin. Heat is exchanged by counter flow between the solution and the exhaust gas, and the solution is made flow in a cycle in parallel with a high-temperature heat exchanger. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、吸収冷温水機に関するものである。
【0002】
【従来の技術】
従来、吸収剤として例えば臭化リチュウム水溶液を用い、冷媒として水を用いる吸収冷温水機が一般に知られている。吸収冷凍機のサイクルでは冷媒を吸収した溶液を再生するために、加熱減より溶液に熱を加え、冷媒を蒸発させることで濃縮を行う。この加熱源にバーナによる燃焼ガスを用い、さらに暖房運転も行えるようにしたものを直火焚き吸収冷温水機と呼び、広く空調用の熱源機として用いられている。又、吸収冷温水機は種々の熱源の利用が可能であることから、ガスタービンから排出される高温の燃焼排ガスを熱源として駆動することもある。
【0003】
この吸収冷温水機のエネルギ効率を高めるために、高温再生器で熱を与えた後の排ガスから熱回収を行う技術が提案されており、例えば特開平6−257891号公報に提案されたものがある。図5にその構成を示す。図5では、バーナ75から燃料を供給し、高温再生器76で燃焼ガスと溶液を熱交換させることで吸収液を濃縮し、排出される排ガスを低温再生器110に導き、ここでさらに溶液の濃縮を行うことで排ガスから熱回収を行っている。また、溶液は濃縮される際、冷媒蒸気を蒸発させるため、この蒸気が上部に抜けやすいように伝熱管122は地面に対して垂直に配置され、排ガスに接するフィン120は水平に配置されている。
【0004】
その他、排ガスから回収した熱を使用する手段には、低温再生器で溶液を濃縮することに使う他にも、特開2000−304370号公報に記載されているように燃焼用空気を加熱する手段も提案されている。
【0005】
【発明が解決しようとする課題】
上記の吸収冷温水機では、燃焼排ガスの温度が低下するため、排ガス中の水蒸気が結露しやすく、水分にさらされると吸収冷温水機の耐食性が低下するという問題が生じる。水を冷媒に用いる吸収冷温水機は、一般に高度な真空状態を必要とするため、腐食によって穴があくと空気が漏れ込み、真空状態が破壊される。このため、例え小さな穴でも機械に大きなダメージを受ける。排ガスの結露防止には、燃焼排ガスからの熱回収を行い過ぎないようにし、排ガスの温度を下げ過ぎないようにすることが最も効果的である。一般に燃料には水素元素が含まれるため、燃焼に伴なって水が生成されることから、燃焼排ガスにおける水蒸気の割合は空気よりも高く、空気よりも結露しやすい。排ガス中の水分が結露する温度は燃料の種類や条件によって異なるが、50〜100℃程度である。排ガスから熱回収を行うにあたっては、熱を与える相手の温度と流量、熱交換器における伝熱能力で排ガスの最低温度を制御することが可能である。このため、定常運転に関する限りでは排ガスからの熱回収を行いながら排ガスの結露防止を行うことは可能である。しかし、吸収冷温水機の起動時は機械が温まっていないために、排ガスは必ず冷えた機械にさらされることになり、排ガスからの結露が起きる。機械が温まってきて、排ガス温度が十分に上昇すると、結露して溜まっていた水を蒸発させることは可能であるが、水分が乾くまでの時間は腐食環境にさらされることになる。このため、吸収冷温水機においてエネルギ効率を高めるために燃焼排ガスからの熱回収を行うには、結露水に対する耐食性の向上が一番の課題であった。
【0006】
また、排ガスから回収した熱を低温再生器で溶液を濃縮するために用いる場合、冷媒蒸気が抜けやすいように、伝熱管を地面に対して垂直方向になるように配置する必要がある。この場合、伝熱管に直交するフィンの向きは水平方向になる。フィンが水平方向を向いていると、結露水が発生した場合にフィン表面に水が留まりやすく、腐食環境にさらされる時間が長くなるという問題がある。このため、結露水に対する対策を果たしながら、排ガスから回収した熱をいかに利用して吸収冷温水機のエネルギ効率を高めるかが課題であった。
【0007】
また、一般に気体の熱伝達率は液体に比べてかなり低いことから、排ガスから充分な熱回収を行うには大きな伝熱面積を必要とする。排ガスと燃焼用空気を熱交換させる場合は、気体同士の熱交換であるため互いの熱伝達が低く、溶液で熱回収する場合よりさらに大きな伝熱面積が必要となる。このため、多大な伝熱面積を有する排ガス熱交換器を安価な材料と手段で構成することも課題であった。
【0008】
そのため、本発明では上記課題を解決して、腐食の発生しにくい排ガス熱交換器を備え、かつエネルギ効率の向上を図った吸収冷温水機を実現することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明では高温熱交換器と並列に排ガス熱交換器を設け、前記排ガス熱交換器の複数のフィンを重力方向に並行な向きに、溶液を流す伝熱管を重力方向に略直角方向に配置した構成とした。さらにまた、溶液を流す伝熱管を排ガスの流路方向に複数本設け、排ガスの流路方向の下流側から上流側に向かって溶液が連続して流れるように接続した構成とした。
【0010】
【発明の実施の形態】
以下本発明の実施の形態を、水を冷媒とし、臭化リチュウム水溶液を吸収剤にした吸収冷温水機を例に挙げて説明する。
【0011】
図1は本発明の第1の実施の形態となる吸収冷温水機の概略的な系統図であり、冷凍サイクルにおける循環を示している。二重効用サイクルを用いた吸収冷温水機は、蒸発器1、吸収器2、凝縮器3、低温再生器4、高温再生器5、低温熱交換器6、高温熱交換器7を主な構成要素としている。蒸発器1には伝熱管を配置し、管内側に冷水を流し、管外側に冷媒を散布する。蒸発器1および吸収器2は同程度の圧力で1/100気圧程度であり、蒸発器では低圧であることから冷媒が蒸発する。この時の蒸発潜熱を冷水から奪うことで冷水は冷やされる。この冷水が空調用の冷熱源として利用される。
【0012】
蒸発器で蒸発した冷媒は吸収器2で吸収される。吸収器2には伝熱管が配置され、伝熱管内側に冷却水を流し、伝熱管外側に溶液を散布する。溶液が冷媒蒸気を吸収する時に生じる凝縮潜熱を冷却水が奪うことにより吸収器2での吸収が進む。冷媒を吸収して濃度が低下した希溶液は、循環ポンプを用いて低温熱交換器6に送られる。低温熱交換器6では、低温再生器および高温再生器側から戻ってくる高濃度の濃溶液と、吸収器2からの希溶液との間で熱交換する。ここで冷やされた濃溶液は吸収器2に送られ、吸収液として利用される。低温熱交換器6を出た希溶液は分岐され、一方は低温再生器4、他方は高温再生器5側に送られる。このように希溶液を分岐して循環させることをパラレルフロート呼ぶ。低温再生器4には伝熱管が配設されており、伝熱管内側に高温再生器5で生じた冷媒蒸気を流し、伝熱管外側に低温熱交換器6からの希溶液を散布する。低温再生器4に送られた希溶液は伝熱管上で加熱されて冷媒蒸気を発生し、伝熱管内側の冷媒蒸気は溶液に熱を与えることで凝縮する。低温再生器4で濃縮した溶液は、高温再生器5で濃縮した溶液と合流させて低温熱交換器6に送られる。低温再生器4で溶液から発生した冷媒蒸気および低温再生器4の管内で凝縮した冷媒は凝縮器3へ送られる。凝縮器3には伝熱管が配置されており、管内側に冷却水を流し、管外側で冷媒蒸気を冷却し、冷媒蒸気を凝縮させる。凝縮器3内で生成された液冷媒は蒸発器1に送られる。
【0013】
低温熱交換器6を出た希溶液は低温再生器4側と高温再生器5側に分岐される。高温再生器5側送られた希溶液は、さらに分岐され、一方は高温熱交換器7に送られ、他方は排ガス熱交換器9に送られる。高温熱交換器7では、高温再生器5から戻ってくる濃溶液と低温熱交換器6からの希溶液との間で熱交換される。排ガス熱交換器9では、高温再生器5から出される排ガスと低温熱交換器6からの希溶液との間で熱交換する。高温熱交換器7と排ガス熱交換器9とを出た希溶液は再び合流されて高温再生器5に送られる。高温再生器5ではバーナ8で生じた燃焼ガスで溶液を加熱・沸騰させ、溶液を濃縮する。高温再生器5の熱源としては、バーナ8による燃焼ガス以外にも、ガスタービン等の高温排ガスを用いることが可能である。吸収冷温水機は、バーナ8で消費する燃料が主要なエネルギ消費となる。このため、高温再生器5に投入するエネルギを低減することがエネルギ効率を高めることになる。排ガス熱交換器9は希溶液を加熱することで、高温再生器5に流入する溶液の温度を高め、高温再生器5で溶液を加熱するために消費するエネルギを低減することができる。
【0014】
高温熱交換器7で熱交換する濃溶液は高温再生器5からの戻り溶液であるため、高温再生器5で冷媒が蒸発する分だけ、高温再生器5に流入する溶液より流量が少ない。このため排ガス熱交換器9を用いない場合、高温熱交換器7で熱交換する溶液の流量は濃溶液の方が希溶液より必ず少なくなる。この場合、熱容量の関係から濃溶液と希溶液が熱交換を行っても、濃溶液の温度が低下する程には希溶液は温度上昇しない。このため、高温熱交換器7はどれだけ伝熱面積を増やしても希溶液の出口温度を濃溶液の入口温度に近づけることに限界がある。高温熱交換器7と並列に希溶液を流す排ガス熱交換器9を配置した場合、高温熱交換器7単独に希溶液を流す場合に比べて、高温熱交換器7に流れる希溶液の流量は減少する。このため、高温熱交換器7の希溶液の出口温度と濃溶液入口温度との差が小さくなり(前述の限界がなくなり)、高温熱交換器7における希溶液の出口温度を高めることにも役立つ。排ガス熱交換器9に対する希溶液の流し方としては、高温熱交換器7と排ガス熱交換器9を直列に配置し、希溶液の全量を流す方法なども提案されている。しかし、排ガスから充分に熱回収を行い、かつ高温再生器5に流入する希溶液の温度を高めるためには、排ガス熱交換器9と高温熱交換器7とを並列に配置し、希溶液を分岐させてそれぞれの熱交換器に流す構成とした方が、直列に配置した場合よりもエネルギ効率を高めることができる。
【0015】
また、パラレルフローを用いる場合、循環する希溶液(低温熱交換器6を出た希溶液)が低温再生器4側と高温再生器5側(高温熱交換器7側)に分岐される。このために、高温熱交換器7を流れる溶液量が、低温熱交換器6に流れる溶液量に比べて半分になる。従って、高温熱交換器7を流れる希溶液が少ないために、高温熱交換器7の希溶液の出口温度と濃溶液の入口温度の差が小さくなる。このため、高温熱交換器7における温度効率の向上を図りやすいという特徴がある。ただし、排ガス熱交換器9を並列に設けていない場合は、前述のように高温熱交換器7を出る希溶液の温度を上げることに限界がある。高温熱交換器7と排ガス熱交換器9とを並列に配置することで、高温熱交換器7に流す希溶液の量がさらに少なくなる。このため、高温熱交換器7の出口側の希溶液の温度を上げることができ、限界を高くすることができる。このように、パラレルフローの吸収冷温水機において、高温熱交換器7と排ガス熱交換器9とを並列に配置した構成とすることで、最もエネルギ効率を高めることができる。
【0016】
なお、暖房サイクルによって吸収冷温水機を暖房運転で使用する場合も、溶液の循環は図1と同じであるため、排ガス熱交換器9は有効に働き、エネルギ効率を高めることができる。
【0017】
図2は本発明に用いる排ガス熱交換器の基本的な構成を説明する図である。高温再生器6から排出される排ガス10と希溶液11は、伝熱管12とフィン13を通じて熱交換される。ここでは例として排ガス10を重力方向に対して直角方向(水平)に流す場合を示しているが、排ガスを重力方向(地面に対して垂直)に流す場合も同様の構成とすることができる。熱交換器の形態としてフィン・アンド・チューブの方式を取ることにより、熱伝達率の悪い排ガス側の伝熱面積を増やし、熱伝達率のよい希溶液側は伝熱面積を減らし、有効な伝熱面積の使い方ができるようになる。
【0018】
排ガスに接するフィン13は排ガス10の流れに平行に配置すると同時に、重力方向(地面に対して垂直)に配置する。これにより、フィン13に直交する伝熱管12は必然的に水平(重力方向に対して直角)に配置される。フィン13が重力方向に配置されているために、一時的に排ガスから結露が生じフィン13に水が付いた場合でも水は流れ落ち、フィン13および伝熱管12が長時間腐食環境にさらされることがなくなる。すなわち、フィン13を重力方向に並行に配置することで防食対策を施している。又伝熱管12を水平にして問題が起きない理由は、溶液を沸騰させないためである。これは、沸騰の起きない条件に構成したためで、特に排ガス熱交換器9を高温熱交換器7と並列に溶液を流す構成とすることで、排ガス熱交換器9の出入口の温度差を大きくして、顕熱により充分熱回収できるようにしたことによって可能になる。伝熱管12は、直線部でフィン13と接して、複数本存在しているが、両端でU字状に接続し、希溶液11を排ガス10の下流側から流入させ、上流側の伝熱管12から取り出すことが可能になり、排ガス10と希溶液11の流れが対向流になる。このように対向流方式にすると、排ガス熱交換器9の出口側の希溶液の温度を排ガス入口側温度まで上げることができ、入口側温度と出口側温度の差を大きくでき、温度効率を向上できる。
【0019】
本発明で、使用する排ガス熱交換器9は排ガス10および希溶液11とも顕熱の交換を行うため、温度効率をもっとも高めることができる対向流で使用するこのとの効果は大きい。温度効率が上がると希溶液11の出口温度が上がるために、少量の希溶液11で排ガス10から充分な熱回収ができるようになり、かつ、伝熱面積も増やさずに済む。少量の希溶液11を流すだけで済むことは、排ガス熱交換器9を高温熱交換器7と並列に配置したことによる利点である。あまり多くの希溶液11を排ガス熱交換器9に流すと、高温熱交換器7で回収できる熱が低下してしまい、吸収冷温水機としてのエネルギ効率が向上しなくなってしまうが、高温熱交換器7に流す量よりも少量の希溶液11を排ガス熱交換器9に流すことで吸収冷温水機のエネルギ効率が充分に向上する。このように、排ガス熱交換器9へ流す流量を制限する方法としては、排ガス熱交換器9の流路抵抗が大きくなるように設計する方法や、オリフィスを設ける等の方法で実現することができる。
【0020】
図2における伝熱管12の材質にはSUS316LもしくはSUS316を使用するのが好適で、フィン13には酸化皮膜処理を行ったアルミ材を使用することが好適である。排ガス熱交換器9における伝熱管12は、外側を排ガス10による結露水による腐食環境下にさらされ、内側を溶液による腐食環境にさらされる。一般に、溶液に用いられる臭化リチウム水溶液は強い腐食性を有することから、吸収冷温水機における排ガス熱交換器9はより厳しい腐食環境にされされる。このため、伝熱管12の材質は耐食性に優れたステンレス材を使用することが考えられる。ただし、吸収冷温水機は気密性の確保が重要であるため、伝熱管12を接続する上では、溶接による完全な気密性の確保を必要とする。このため、伝熱管12の材質にステンレス材を用い、なおかつ、オーステナイト系ステンレスを用いることを考案した。しかし、一方でオーステナイト系ステンレスは応力腐食割れを起こすという危険性を有している。応力腐食割れは、腐食性の液にさらされること、拘束される環境にあること、高い温度環境にさらされることによって発生しやすくなり、排ガス熱交換器9の伝熱管12もこの条件に当てはまる。
【0021】
これらの条件を踏まえて種々の材料を試験した結果、排ガス熱交換器9における伝熱管12には、SUS316LもしくはSUS316を使用することが最も安全であるという結果を得た。フィン13に関しては伝熱面積を多く必要とすることから安価な材料を使用することが最も重要であるが、一方排ガスの結露水からの腐食環境にさらされることから、耐食性の向上も必要とする。このため、フィン13にはアルミ材を使用し、その際、表面に酸化皮膜を形成する処理を施すのが最も効率的であるという結論に達した。
【0022】
図3は本発明で用いる排ガス熱交換器の実用上の構成を説明する図である。図2で示したフィン・アンド・チューブのユニットを排ガス10の流路方向と垂直な方向に複数積層し、それぞれのユニットの伝熱管12の出入口部をヘッダ14に接続している。これにより、希溶液11はヘッダ14で分配され、分配された溶液はそれぞれのユニットの中で排ガスと対向して流れる。図2の構造のままでも熱交換器として成立するが、排ガスの流路断面積を増やすことが可能になり、かつ、排ガス10と希溶液11の対向流を実現して熱交換器としての温度効率を上げるという図2の構造の利点を損なうことがない。このように、ユニット化した排ガス熱交換器を多段に積層する構成とすることで、熱交換器の必要とする容量(排ガスの流量)に応じて簡単に構成を変更することができる。
【0023】
図4は本発明の第2の実施の形態となる吸収冷温水機の概略的な系統図である。図1と異なる点は、低温熱交換器6に並列にドレン熱交換器15を設けた点である。すなわち、吸収器2を出た希溶液を低温熱交換器6に流入させる手前で分岐させ、一方は通常通り低温熱交換器6に流し、もう一方をドレン熱交換器15に流す。そして、ドレン熱交換器15を出た希溶液は低温熱交換器6を出た希溶液と合流させる構成とすることで、ドレン熱交換器15が低温熱交換器6と並列に配置される。ドレン熱交換器15で熱交換するもう一方の流体には、低温再生器4から出てくる液冷媒をあてる。この液冷媒は低温再生器4で溶液に熱を与えることで蒸気から凝縮したものであり、ドレン熱交換器15を出た後は凝縮器3に送られる。凝縮器3の温度と低温再生器4の温度には、温度差があることから熱回収を行うことができる。
【0024】
一方で低温熱交換器6で熱交換する希溶液と濃溶液には、高温熱交換器7の場合と同様に流量に差が有る。すなわち、ドレン熱交換器15がなければ、濃溶液の流量が希溶液より必ず少なくなる。このため、低温熱交換器6はどれだけ伝熱面積を増やしても希溶液の出口温度を濃溶液の入口温度に近づけることに限界が生じる。そのため、高温熱交換器7と排ガス熱交換器9の関係と同様に、低温熱交換器6とドレン熱交換器15を並列に配置することで、希溶液の温度を上げることができ、図1の実施形態に比べて、さらにエネルギ効率を高めることが可能となる。
【0025】
【発明の効果】
以上説明したように本発明によれば、重力方向を向けて配置したフィンで排ガスと接触し、溶液と熱交換させる排ガス熱交換器を備えることで、排ガスの結露水をフィンから落下させることで、結露水に対する耐食性を高めた上で排ガスから熱回収行うことができるようになり、吸収冷温水器のエネルギ効率を向上させることが可能になる。又、排ガスと溶液の対向流による熱交換を実現することで、排ガス熱交換器の温度効率を高めることが可能になり、吸収冷温水機のエネルギ効率を向上させることが可能になる。また、排ガスと溶液が対向流で熱交換するフィン・アンド・チューブのユニットを積層して、排ガス熱交換器を構成することで、対向流の長所を生かしたままで、排ガスの流量に応じた熱交換器を製作することが可能になる。また、排ガス熱交換器の伝熱管にSUS316LもしくはSUS316を使用し、フィンに酸化皮膜処理を施したアルミ材を使用することで、コスト増加を抑え耐食性を向上させることが可能になる。また、吸収冷温水機における溶液の循環方式として、パラレルフローで、高温熱交換器と並列に排ガス熱交換器を配置することで、より高いエネルギ効率を実現することが可能になる。さらに、低温熱交換器と並列にドレン熱交換器を配置することで、排ガス熱交換器の効果に上乗せしたエネルギ効率の向上が図れる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る吸収冷温水機の概略的な系統図である。
【図2】本発明に用いる排ガス熱交換器の基本構成を示す図である。
【図3】本発明に用いる排ガス熱交換器の構成を示す図である。
【図4】本発明の第2の実施形態に係る吸収冷温水機の概略的な系統図である。
【図5】吸収冷温水機において排ガスから熱回収を行う技術の一例を示す図である。
【符号の説明】
1…蒸発器、2…吸収器、3…凝縮器、4…低温再生器、5…高温再生器、6…低温熱交換器、7…高温熱交換器、9…排ガス熱交換器、12…伝熱管、13…フィン、15…ドレン熱交換器。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an absorption chiller / heater.
[0002]
[Prior art]
Conventionally, an absorption chiller / heater using, for example, an aqueous solution of lithium bromide as an absorbent and water as a refrigerant is generally known. In the cycle of the absorption refrigerator, in order to regenerate the solution in which the refrigerant has been absorbed, heat is applied to the solution by heating and the refrigerant is evaporated to concentrate the solution. A device that uses a combustion gas from a burner as a heating source and that can also perform a heating operation is called a direct-fired absorption chiller / heater, and is widely used as a heat source device for air conditioning. Also, since the absorption chiller / heater can use various heat sources, it may be driven by high-temperature combustion exhaust gas discharged from the gas turbine as a heat source.
[0003]
In order to increase the energy efficiency of the absorption chiller / heater, a technique of recovering heat from exhaust gas after applying heat in a high-temperature regenerator has been proposed. For example, a technique proposed in Japanese Patent Application Laid-Open No. 6-257891 has been proposed. is there. FIG. 5 shows the configuration. In FIG. 5, the fuel is supplied from the burner 75, the absorbent is concentrated by exchanging heat with the combustion gas and the solution in the high-temperature regenerator 76, and the exhaust gas discharged is guided to the low-temperature regenerator 110. Heat is recovered from exhaust gas by concentration. Further, when the solution is concentrated, the refrigerant vapor evaporates, so that the heat transfer tube 122 is arranged vertically with respect to the ground and the fins 120 in contact with the exhaust gas are arranged horizontally so that the vapor easily escapes to the upper part. .
[0004]
Other means for using the heat recovered from the exhaust gas include means for concentrating the solution in a low-temperature regenerator and means for heating the combustion air as described in JP-A-2000-304370. Has also been proposed.
[0005]
[Problems to be solved by the invention]
In the above-mentioned absorption chiller / heater, the temperature of the combustion exhaust gas is reduced, so that the water vapor in the exhaust gas is liable to be condensed, and when exposed to moisture, there is a problem that the corrosion resistance of the absorption chiller / heater decreases. Since an absorption chiller / heater using water as a refrigerant generally requires a high vacuum state, if a hole is formed due to corrosion, air leaks and the vacuum state is broken. For this reason, even a small hole can be seriously damaged by a machine. In order to prevent dew condensation of the exhaust gas, it is most effective to prevent excessive heat recovery from the combustion exhaust gas and not to lower the temperature of the exhaust gas too much. In general, since fuel contains hydrogen element, water is generated during the combustion, so that the ratio of water vapor in the combustion exhaust gas is higher than that of air, and dew condensation occurs more easily than air. The temperature at which moisture in the exhaust gas condenses varies depending on the type and conditions of the fuel, but is about 50 to 100 ° C. In recovering heat from the exhaust gas, it is possible to control the minimum temperature of the exhaust gas by controlling the temperature and flow rate of the partner to which the heat is applied and the heat transfer capacity of the heat exchanger. For this reason, as far as steady operation is concerned, it is possible to prevent condensation of the exhaust gas while recovering heat from the exhaust gas. However, since the machine is not warm when the absorption chiller / heater is started, the exhaust gas is always exposed to the cold machine, and condensation from the exhaust gas occurs. When the temperature of the exhaust gas rises sufficiently as the machine warms up, it is possible to evaporate the water that has accumulated due to condensation, but is exposed to a corrosive environment until the moisture dries. Therefore, in order to recover heat from combustion exhaust gas in order to increase energy efficiency in the absorption chiller / heater, improvement of corrosion resistance against dew water is the most important issue.
[0006]
Further, when the heat recovered from the exhaust gas is used for concentrating the solution in a low-temperature regenerator, it is necessary to arrange the heat transfer tube in a direction perpendicular to the ground so that the refrigerant vapor can easily escape. In this case, the direction of the fin orthogonal to the heat transfer tube is horizontal. When the fins are oriented in the horizontal direction, when dew condensation water is generated, water tends to stay on the fin surfaces, and there is a problem that the time of exposure to a corrosive environment is prolonged. Therefore, there has been a problem how to utilize the heat recovered from the exhaust gas to increase the energy efficiency of the absorption chiller / heater while taking measures against dew condensation water.
[0007]
Further, since the heat transfer coefficient of a gas is generally considerably lower than that of a liquid, a large heat transfer area is required to sufficiently recover heat from exhaust gas. In the case of exchanging heat between the exhaust gas and the combustion air, the heat exchange between the gases is low because of the heat exchange between the gases, so that a larger heat transfer area is required than in the case of recovering heat with a solution. For this reason, it has also been a problem to configure an exhaust gas heat exchanger having a large heat transfer area with inexpensive materials and means.
[0008]
Therefore, it is an object of the present invention to solve the above-mentioned problems and to realize an absorption chiller / heater provided with an exhaust gas heat exchanger that is less likely to cause corrosion and improved energy efficiency.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, an exhaust gas heat exchanger is provided in parallel with a high-temperature heat exchanger, a plurality of fins of the exhaust gas heat exchanger are oriented in parallel with the direction of gravity, and a heat transfer tube through which the solution flows is set in the direction of gravity. And a configuration arranged in a substantially right angle direction. Furthermore, a plurality of heat transfer tubes through which the solution flows are provided in the flow direction of the exhaust gas, and are connected so that the solution flows continuously from the downstream side to the upstream side in the flow direction of the exhaust gas.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to an example of an absorption chiller / heater using water as a refrigerant and an aqueous solution of lithium bromide as an absorbent.
[0011]
FIG. 1 is a schematic system diagram of an absorption chiller / heater according to a first embodiment of the present invention, showing circulation in a refrigeration cycle. The absorption chiller / heater using the double effect cycle mainly includes an evaporator 1, an absorber 2, a condenser 3, a low-temperature regenerator 4, a high-temperature regenerator 5, a low-temperature heat exchanger 6, and a high-temperature heat exchanger 7. Elements. A heat transfer tube is arranged in the evaporator 1, cold water flows inside the tube, and refrigerant is sprayed outside the tube. The pressure in the evaporator 1 and the absorber 2 is about 1/100 atm at the same pressure, and the refrigerant evaporates due to the low pressure in the evaporator. The cold water is cooled by removing the latent heat of evaporation from the cold water. This cold water is used as a cold heat source for air conditioning.
[0012]
The refrigerant evaporated by the evaporator is absorbed by the absorber 2. A heat transfer tube is disposed in the absorber 2, and a cooling water flows inside the heat transfer tube, and a solution is sprayed outside the heat transfer tube. The absorption in the absorber 2 proceeds by the cooling water taking away the latent heat of condensation generated when the solution absorbs the refrigerant vapor. The dilute solution whose concentration has been reduced by absorbing the refrigerant is sent to the low-temperature heat exchanger 6 using a circulation pump. The low-temperature heat exchanger 6 exchanges heat between the high-concentration concentrated solution returned from the low-temperature regenerator and the high-temperature regenerator and the dilute solution from the absorber 2. The concentrated solution cooled here is sent to the absorber 2 and used as an absorbing solution. The dilute solution leaving the low-temperature heat exchanger 6 is branched, and one is sent to the low-temperature regenerator 4 and the other is sent to the high-temperature regenerator 5. Branching and circulating the dilute solution in this manner is called parallel float. The low-temperature regenerator 4 is provided with a heat transfer tube. The refrigerant vapor generated in the high-temperature regenerator 5 flows inside the heat transfer tube, and the dilute solution from the low-temperature heat exchanger 6 is sprayed outside the heat transfer tube. The dilute solution sent to the low-temperature regenerator 4 is heated on the heat transfer tube to generate refrigerant vapor, and the refrigerant vapor inside the heat transfer tube is condensed by applying heat to the solution. The solution concentrated in the low-temperature regenerator 4 is combined with the solution concentrated in the high-temperature regenerator 5 and sent to the low-temperature heat exchanger 6. The refrigerant vapor generated from the solution in the low-temperature regenerator 4 and the refrigerant condensed in the tubes of the low-temperature regenerator 4 are sent to the condenser 3. The condenser 3 is provided with a heat transfer tube, in which cooling water flows inside the tube, cools the refrigerant vapor outside the tube, and condenses the refrigerant vapor. The liquid refrigerant generated in the condenser 3 is sent to the evaporator 1.
[0013]
The dilute solution leaving the low-temperature heat exchanger 6 is branched to the low-temperature regenerator 4 and the high-temperature regenerator 5. The dilute solution sent to the high-temperature regenerator 5 is further branched, and one is sent to the high-temperature heat exchanger 7 and the other is sent to the exhaust gas heat exchanger 9. In the high-temperature heat exchanger 7, heat is exchanged between the concentrated solution returned from the high-temperature regenerator 5 and the dilute solution from the low-temperature heat exchanger 6. In the exhaust gas heat exchanger 9, heat is exchanged between the exhaust gas discharged from the high-temperature regenerator 5 and the dilute solution from the low-temperature heat exchanger 6. The dilute solutions exiting the high-temperature heat exchanger 7 and the exhaust gas heat exchanger 9 are combined again and sent to the high-temperature regenerator 5. In the high-temperature regenerator 5, the solution is heated and boiled by the combustion gas generated in the burner 8, and the solution is concentrated. As a heat source of the high-temperature regenerator 5, a high-temperature exhaust gas from a gas turbine or the like can be used in addition to the combustion gas from the burner 8. In the absorption chiller / heater, the fuel consumed by the burner 8 is the main energy consumption. Therefore, reducing the energy input to the high-temperature regenerator 5 increases the energy efficiency. The exhaust gas heat exchanger 9 heats the dilute solution, thereby increasing the temperature of the solution flowing into the high-temperature regenerator 5 and reducing the energy consumed for heating the solution in the high-temperature regenerator 5.
[0014]
Since the concentrated solution that exchanges heat in the high-temperature heat exchanger 7 is a return solution from the high-temperature regenerator 5, the flow rate of the concentrated solution is smaller than that of the solution flowing into the high-temperature regenerator 5 by the amount of the refrigerant evaporated in the high-temperature regenerator 5. Therefore, when the exhaust gas heat exchanger 9 is not used, the flow rate of the solution to be heat-exchanged in the high-temperature heat exchanger 7 is always smaller in the concentrated solution than in the dilute solution. In this case, even if the concentrated solution and the dilute solution perform heat exchange from the relation of heat capacity, the temperature of the dilute solution does not increase as the temperature of the concentrated solution decreases. Therefore, no matter how much the heat transfer area of the high-temperature heat exchanger 7 is increased, there is a limit in bringing the outlet temperature of the dilute solution closer to the inlet temperature of the concentrated solution. When the exhaust gas heat exchanger 9 for flowing the dilute solution in parallel with the high-temperature heat exchanger 7 is arranged, the flow rate of the dilute solution flowing to the high-temperature heat exchanger 7 is smaller than when the dilute solution is flown for the high-temperature heat exchanger 7 alone. Decrease. For this reason, the difference between the outlet temperature of the dilute solution and the inlet temperature of the concentrated solution of the high-temperature heat exchanger 7 is reduced (the above-mentioned limit is eliminated), and it is also useful to increase the outlet temperature of the dilute solution in the high-temperature heat exchanger 7. . As a method of flowing the dilute solution to the exhaust gas heat exchanger 9, a method of arranging the high-temperature heat exchanger 7 and the exhaust gas heat exchanger 9 in series and flowing the entire amount of the dilute solution has been proposed. However, in order to sufficiently recover heat from the exhaust gas and increase the temperature of the dilute solution flowing into the high-temperature regenerator 5, the exhaust gas heat exchanger 9 and the high-temperature heat exchanger 7 are arranged in parallel, and the dilute solution is removed. The configuration in which the heat is branched and flown to each of the heat exchangers can increase the energy efficiency as compared with the case where they are arranged in series.
[0015]
When the parallel flow is used, the circulating dilute solution (the dilute solution leaving the low-temperature heat exchanger 6) is branched into the low-temperature regenerator 4 and the high-temperature regenerator 5 (high-temperature heat exchanger 7). Therefore, the amount of the solution flowing through the high-temperature heat exchanger 7 is reduced to half the amount of the solution flowing through the low-temperature heat exchanger 6. Accordingly, since the amount of the dilute solution flowing through the high-temperature heat exchanger 7 is small, the difference between the outlet temperature of the dilute solution and the inlet temperature of the concentrated solution of the high-temperature heat exchanger 7 becomes small. Therefore, there is a feature that the temperature efficiency in the high-temperature heat exchanger 7 can be easily improved. However, when the exhaust gas heat exchanger 9 is not provided in parallel, there is a limit to increasing the temperature of the dilute solution exiting the high-temperature heat exchanger 7 as described above. By arranging the high-temperature heat exchanger 7 and the exhaust gas heat exchanger 9 in parallel, the amount of the dilute solution flowing through the high-temperature heat exchanger 7 is further reduced. For this reason, the temperature of the dilute solution on the outlet side of the high-temperature heat exchanger 7 can be increased, and the limit can be increased. As described above, in the parallel flow absorption chiller / heater, the configuration in which the high temperature heat exchanger 7 and the exhaust gas heat exchanger 9 are arranged in parallel can maximize the energy efficiency.
[0016]
When the absorption chiller / heater is used in the heating operation by the heating cycle, the circulation of the solution is the same as that in FIG. 1, so that the exhaust gas heat exchanger 9 works effectively and the energy efficiency can be increased.
[0017]
FIG. 2 is a diagram illustrating a basic configuration of an exhaust gas heat exchanger used in the present invention. The exhaust gas 10 and the dilute solution 11 discharged from the high temperature regenerator 6 exchange heat through the heat transfer tubes 12 and the fins 13. Although the case where the exhaust gas 10 flows in a direction perpendicular to the direction of gravity (horizontal) is shown here as an example, the same configuration can be applied to the case where the exhaust gas flows in the direction of gravity (perpendicular to the ground). By adopting a fin-and-tube method as the form of the heat exchanger, the heat transfer area on the exhaust gas side with a poor heat transfer rate is increased, and the heat transfer area on the dilute solution side with a good heat transfer rate is reduced. You can use the heat area.
[0018]
The fins 13 in contact with the exhaust gas are arranged parallel to the flow of the exhaust gas 10 and at the same time in the direction of gravity (perpendicular to the ground). Thus, the heat transfer tubes 12 orthogonal to the fins 13 are necessarily arranged horizontally (at right angles to the direction of gravity). Since the fins 13 are arranged in the direction of gravity, even if dew condensation occurs temporarily from the exhaust gas and water is attached to the fins 13, the water flows down, and the fins 13 and the heat transfer tubes 12 may be exposed to the corrosive environment for a long time. Disappears. That is, anti-corrosion measures are taken by arranging the fins 13 in parallel with the direction of gravity. The reason why no problem occurs when the heat transfer tube 12 is horizontal is that the solution is not boiled. This is because boiling was not caused. In particular, by making the exhaust gas heat exchanger 9 flow the solution in parallel with the high-temperature heat exchanger 7, the temperature difference between the inlet and the outlet of the exhaust gas heat exchanger 9 was increased. This is made possible by allowing sufficient heat recovery by sensible heat. A plurality of heat transfer tubes 12 are present in contact with the fins 13 at the straight portions, but are connected in a U-shape at both ends to allow the dilute solution 11 to flow from the downstream side of the exhaust gas 10, From the exhaust gas 10 and the flow of the exhaust gas 10 and the flow of the dilute solution 11 become countercurrent. In this way, the temperature of the dilute solution on the outlet side of the exhaust gas heat exchanger 9 can be raised to the exhaust gas inlet side temperature by using the counter flow method, and the difference between the inlet side temperature and the outlet side temperature can be increased, thereby improving the temperature efficiency. it can.
[0019]
In the present invention, the exhaust gas heat exchanger 9 used exchanges sensible heat with both the exhaust gas 10 and the dilute solution 11, so that the effect of using the counter flow in which the temperature efficiency can be maximized is great. When the temperature efficiency increases, the outlet temperature of the dilute solution 11 increases, so that a small amount of the dilute solution 11 can sufficiently recover heat from the exhaust gas 10 and the heat transfer area does not need to be increased. The fact that only a small amount of the dilute solution 11 needs to flow is an advantage of disposing the exhaust gas heat exchanger 9 in parallel with the high-temperature heat exchanger 7. If too much dilute solution 11 flows into the exhaust gas heat exchanger 9, the amount of heat that can be recovered by the high-temperature heat exchanger 7 decreases, and the energy efficiency of the absorption chiller / heater does not improve. By flowing a smaller amount of the dilute solution 11 to the exhaust gas heat exchanger 9 than the amount to be passed to the vessel 7, the energy efficiency of the absorption chiller / heater is sufficiently improved. As described above, the method of limiting the flow rate flowing to the exhaust gas heat exchanger 9 can be realized by a method of designing the flow path resistance of the exhaust gas heat exchanger 9 to be large, a method of providing an orifice, or the like. .
[0020]
It is preferable to use SUS316L or SUS316 as the material of the heat transfer tube 12 in FIG. 2, and it is preferable to use an aluminum material subjected to an oxide film treatment for the fins 13. The outside of the heat transfer tube 12 in the exhaust gas heat exchanger 9 is exposed to a corrosive environment due to dew condensation water caused by the exhaust gas 10, and the inside is exposed to a corrosive environment due to a solution. Generally, since the aqueous solution of lithium bromide used in the solution has a strong corrosive property, the exhaust gas heat exchanger 9 in the absorption chiller / heater is subjected to a more severe corrosive environment. For this reason, it is conceivable to use a stainless steel material excellent in corrosion resistance as the material of the heat transfer tube 12. However, since it is important for the absorption chiller / heater to ensure airtightness, it is necessary to secure complete airtightness by welding when connecting the heat transfer tubes 12. For this reason, it has been devised to use a stainless steel material for the heat transfer tube 12 and to use an austenitic stainless steel. However, on the other hand, austenitic stainless steel has a risk of causing stress corrosion cracking. Stress corrosion cracking is likely to occur when exposed to corrosive liquids, in a restricted environment, or when exposed to a high temperature environment, and the heat transfer tube 12 of the exhaust gas heat exchanger 9 also satisfies this condition.
[0021]
As a result of testing various materials based on these conditions, it was found that it is safest to use SUS316L or SUS316 for the heat transfer tube 12 in the exhaust gas heat exchanger 9. It is most important to use inexpensive materials for the fins 13 because they require a large heat transfer area, but on the other hand, because they are exposed to the corrosive environment from the condensed water of the exhaust gas, they also need to improve the corrosion resistance. . For this reason, it has been concluded that it is most efficient to use an aluminum material for the fins 13 and to perform a treatment for forming an oxide film on the surface.
[0022]
FIG. 3 is a diagram illustrating a practical configuration of the exhaust gas heat exchanger used in the present invention. A plurality of the fin-and-tube units shown in FIG. 2 are stacked in a direction perpendicular to the flow direction of the exhaust gas 10, and the entrance and exit of the heat transfer tube 12 of each unit are connected to the header 14. Thereby, the dilute solution 11 is distributed by the header 14, and the distributed solution flows in each unit so as to face the exhaust gas. Although the structure shown in FIG. 2 can be used as a heat exchanger, the cross-sectional area of the exhaust gas can be increased, and the exhaust gas 10 and the dilute solution 11 can be opposed to each other to achieve a temperature as a heat exchanger. The advantage of the structure of FIG. 2 in increasing the efficiency is not lost. In this way, by adopting a configuration in which unitized exhaust gas heat exchangers are stacked in multiple stages, the configuration can be easily changed according to the capacity (flow rate of exhaust gas) required by the heat exchanger.
[0023]
FIG. 4 is a schematic system diagram of an absorption chiller / heater according to a second embodiment of the present invention. The difference from FIG. 1 is that a drain heat exchanger 15 is provided in parallel with the low-temperature heat exchanger 6. That is, the dilute solution leaving the absorber 2 is branched before flowing into the low-temperature heat exchanger 6, one of which flows into the low-temperature heat exchanger 6 as usual, and the other flows into the drain heat exchanger 15. The dilute solution exiting the drain heat exchanger 15 is combined with the dilute solution exiting the low-temperature heat exchanger 6, so that the drain heat exchanger 15 is arranged in parallel with the low-temperature heat exchanger 6. A liquid refrigerant coming out of the low-temperature regenerator 4 is applied to the other fluid for heat exchange in the drain heat exchanger 15. This liquid refrigerant is condensed from the vapor by applying heat to the solution in the low-temperature regenerator 4, and is sent to the condenser 3 after leaving the drain heat exchanger 15. Since there is a temperature difference between the temperature of the condenser 3 and the temperature of the low-temperature regenerator 4, heat can be recovered.
[0024]
On the other hand, there is a difference in flow rate between the dilute solution and the concentrated solution that exchange heat in the low-temperature heat exchanger 6 as in the case of the high-temperature heat exchanger 7. That is, without the drain heat exchanger 15, the flow rate of the concentrated solution is always smaller than that of the dilute solution. Therefore, no matter how much the heat transfer area of the low-temperature heat exchanger 6 is increased, there is a limit in bringing the outlet temperature of the dilute solution closer to the inlet temperature of the concentrated solution. Therefore, similarly to the relationship between the high-temperature heat exchanger 7 and the exhaust gas heat exchanger 9, the temperature of the dilute solution can be increased by disposing the low-temperature heat exchanger 6 and the drain heat exchanger 15 in parallel. It is possible to further increase the energy efficiency as compared to the embodiment.
[0025]
【The invention's effect】
As described above, according to the present invention, by providing an exhaust gas heat exchanger that contacts exhaust gas with fins arranged in the direction of gravity and exchanges heat with the solution, the dew condensation water of the exhaust gas is dropped from the fin. In addition, heat recovery from exhaust gas can be performed after improving corrosion resistance against dew condensation water, and it becomes possible to improve the energy efficiency of the absorption chiller / heater. Further, by realizing the heat exchange by the counter flow of the exhaust gas and the solution, the temperature efficiency of the exhaust gas heat exchanger can be increased, and the energy efficiency of the absorption chiller / heater can be improved. In addition, by stacking fin-and-tube units that exchange heat between the exhaust gas and the solution in the counterflow, and configuring the exhaust gas heat exchanger, the heat in accordance with the flow rate of the exhaust gas can be maintained while maintaining the advantages of the counterflow. It becomes possible to manufacture an exchanger. Further, by using SUS316L or SUS316 for the heat transfer tube of the exhaust gas heat exchanger and using an aluminum material whose oxide fin has been treated for the fins, it is possible to suppress an increase in cost and improve corrosion resistance. Further, as the solution circulation method in the absorption chiller / heater, by arranging the exhaust gas heat exchanger in parallel with the high temperature heat exchanger in a parallel flow, higher energy efficiency can be realized. Further, by arranging the drain heat exchanger in parallel with the low-temperature heat exchanger, it is possible to improve the energy efficiency in addition to the effect of the exhaust gas heat exchanger.
[Brief description of the drawings]
FIG. 1 is a schematic system diagram of an absorption chiller / heater according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a basic configuration of an exhaust gas heat exchanger used in the present invention.
FIG. 3 is a diagram showing a configuration of an exhaust gas heat exchanger used in the present invention.
FIG. 4 is a schematic system diagram of an absorption chiller / heater according to a second embodiment of the present invention.
FIG. 5 is a diagram showing an example of a technique for recovering heat from exhaust gas in an absorption chiller / heater.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Evaporator, 2 ... Absorber, 3 ... Condenser, 4 ... Low temperature regenerator, 5 ... High temperature regenerator, 6 ... Low temperature heat exchanger, 7 ... High temperature heat exchanger, 9 ... Exhaust gas heat exchanger, 12 ... Heat transfer tubes, 13 fins, 15 drain heat exchangers.

Claims (8)

蒸発器、凝縮器、低温再生器、高温再生器、低温熱交換器、高温熱交換器を備え、溶液を循環させることで吸収冷凍サイクルを構成し、燃焼ガスで高温再生器を加熱する吸収冷温水機において、
高温再生器を出た排ガスと溶液を熱交換させる排ガス熱交換器を備え、前記排ガス熱交換器は、排ガスに接するフィンを重力方向に配置し、溶液を流す伝熱管を重力方向に略直角に配置した構成とすることを特徴とする吸収冷温水機。
Equipped with an evaporator, condenser, low-temperature regenerator, high-temperature regenerator, low-temperature heat exchanger, and high-temperature heat exchanger.The absorption refrigeration cycle is configured by circulating the solution, and the high-temperature regenerator is heated with combustion gas. In the water machine,
An exhaust gas heat exchanger that exchanges heat between the exhaust gas and the solution that has exited the high-temperature regenerator is provided.In the exhaust gas heat exchanger, fins that are in contact with the exhaust gas are arranged in the direction of gravity, and a heat transfer tube that flows the solution is substantially perpendicular to the direction of gravity. An absorption chiller-heater characterized by being arranged.
請求項1に記載の吸収冷温水機において、
前記排ガス熱交換器の伝熱管を、排ガスの流路方向に対して複数本配置し、それら複数本の伝熱管を連続して溶液が流れるように接続し、排ガスの下流側の伝熱管から溶液を流入させ、排ガスの上流側の伝熱管から溶液を流出させることを特徴とする吸収冷温水機。
The absorption chiller / heater according to claim 1,
A plurality of heat transfer tubes of the exhaust gas heat exchanger are arranged in the flow direction of the exhaust gas, and the plurality of heat transfer tubes are connected so that the solution flows continuously. An absorption chiller / heater characterized by flowing water and flowing out a solution from a heat transfer tube on the upstream side of exhaust gas.
請求項2に記載の吸収冷温水機において、
排ガスの流路方向に連なった伝熱管と排ガスに接するフィンをユニットとして、前記ユニットを排ガスの流路方向と垂直な方向に複数配置し、各ユニットに溶液を分配して流すように伝熱管を接続することを特徴とする吸収冷温水機。
The absorption chiller / heater according to claim 2,
As a unit, a heat transfer tube connected to the exhaust gas flow direction and a fin in contact with the exhaust gas are arranged as a unit, a plurality of the units are arranged in a direction perpendicular to the flow direction of the exhaust gas, and the heat transfer tubes are distributed so that the solution is distributed to each unit and flows. An absorption chiller / heater characterized by being connected.
請求項1に記載の吸収冷温水機において、
前記排ガス熱交換器の伝熱管を材質がSUS316LもしくはSUS316で形成し、フィンに酸化皮膜処理を行ったアルミ材を用いることを特徴とする吸収冷温水機。
The absorption chiller / heater according to claim 1,
The heat transfer tube of the exhaust gas heat exchanger is made of SUS316L or SUS316, and the fin is made of an aluminum material having an oxide film treated.
蒸発器、凝縮器、低温再生器、高温再生器、低温熱交換器、高温熱交換器を備え、溶液を循環させることで吸収冷凍サイクルを構成し、燃焼ガスで高温再生器を加熱する吸収冷温水機において、
前記吸収器を出た希溶液を低温熱交換器に流し、前記低温熱交換器を出た希溶液を分岐し、一方を低温再生器に流し、もう一方をさらに分岐し、その一方を高温熱交換器に流し、もう一方を排ガス熱交換器に流し、前記高温熱交換器と前記排ガス熱交換器とから出た希溶液を合流させて高温再生器に流す構成としたことを特徴とする吸収冷温水機。
Equipped with an evaporator, condenser, low-temperature regenerator, high-temperature regenerator, low-temperature heat exchanger, and high-temperature heat exchanger.The absorption refrigeration cycle is configured by circulating the solution, and the high-temperature regenerator is heated with combustion gas. In the water machine,
The dilute solution leaving the absorber flows into a low-temperature heat exchanger, the dilute solution leaving the low-temperature heat exchanger branches, one flows into a low-temperature regenerator, the other further branches, and one of the high-temperature heat Flowing into the heat exchanger and the other into the exhaust gas heat exchanger, and combining the dilute solutions from the high-temperature heat exchanger and the exhaust gas heat exchanger into a high-temperature regenerator. Hot and cold water machine.
請求項5に記載の吸収冷温水機において、
前記高温再生器を出た排ガスと溶液を熱交換させる排ガス熱交換器を備え、前記排ガス熱交換器は、排ガスに接するフィンを重力方向に配置し、溶液を流す伝熱管を重力方向に略直角に配置した構成とすることを特徴とする吸収冷温水機。
The absorption chiller / heater according to claim 5,
An exhaust gas heat exchanger for exchanging heat between the exhaust gas and the solution that has exited the high-temperature regenerator is provided.The exhaust gas heat exchanger includes fins that are in contact with the exhaust gas in the direction of gravity, and heat transfer tubes through which the solution flows are substantially perpendicular to the direction of gravity. An absorption chiller / heater, wherein:
請求項6に記載の吸収冷温水機において、
前記排ガス熱交換器の伝熱管を、排ガスの流路方向に対して複数本配置し、それら複数本の伝熱管を連続して溶液が流れるように接続し、排ガスの下流側の伝熱管から溶液を流入させ、排ガスの上流側の伝熱管から溶液を流出させることを特徴とする吸収冷温水機。
The absorption chiller / heater according to claim 6,
A plurality of heat transfer tubes of the exhaust gas heat exchanger are arranged in the flow direction of the exhaust gas, and the plurality of heat transfer tubes are connected so that the solution flows continuously. An absorption chiller / heater characterized by flowing water and flowing out a solution from a heat transfer tube on the upstream side of exhaust gas.
請求項5に記載の吸収冷温水機において、
前記吸収器を出た希溶液を分岐し、一方を低温熱交換器に流し、もう一方を低温再生器を出た冷媒と熱交換するドレン熱交換器に流し、前記低温熱交換器と前記ドレン熱交換器とから出た希溶液を合流させる構成としたことを特徴とする吸収冷温水機。
The absorption chiller / heater according to claim 5,
The dilute solution exiting the absorber is branched, one is passed to a low-temperature heat exchanger, and the other is passed to a drain heat exchanger that exchanges heat with the refrigerant exiting the low-temperature regenerator, and the low-temperature heat exchanger and the drain are drained. An absorption chiller / heater, wherein the dilute solution discharged from the heat exchanger is combined.
JP2002225489A 2002-08-02 2002-08-02 Absorption chiller / heater Expired - Lifetime JP4065741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002225489A JP4065741B2 (en) 2002-08-02 2002-08-02 Absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002225489A JP4065741B2 (en) 2002-08-02 2002-08-02 Absorption chiller / heater

Publications (2)

Publication Number Publication Date
JP2004069092A true JP2004069092A (en) 2004-03-04
JP4065741B2 JP4065741B2 (en) 2008-03-26

Family

ID=32013099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002225489A Expired - Lifetime JP4065741B2 (en) 2002-08-02 2002-08-02 Absorption chiller / heater

Country Status (1)

Country Link
JP (1) JP4065741B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014134748A1 (en) * 2013-03-04 2014-09-12 Li Huayu Cogeneration type ii absorption heat pump
JP2016176603A (en) * 2015-03-18 2016-10-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Absorption chiller heater, heat exchanger, control method for absorption chiller heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014134748A1 (en) * 2013-03-04 2014-09-12 Li Huayu Cogeneration type ii absorption heat pump
JP2016176603A (en) * 2015-03-18 2016-10-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Absorption chiller heater, heat exchanger, control method for absorption chiller heater

Also Published As

Publication number Publication date
JP4065741B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
WO2009089694A1 (en) A falling-film evaporation-cooling absorption refrigeration unit
JP2002147885A (en) Absorption refrigerating machine
CN201535592U (en) Lithium bromide absorption water chilling unit adopting falling film generator
JP4065741B2 (en) Absorption chiller / heater
KR20150007131A (en) Absoption chiller
CN107388617A (en) Fume hot-water compound type lithium bromide absorption type refrigeration unit
JP2858908B2 (en) Absorption air conditioner
JP4315854B2 (en) Absorption refrigerator
JP4090262B2 (en) Absorption refrigerator
JP3851204B2 (en) Absorption refrigerator
JP4334319B2 (en) Operation method of absorption refrigerator
JP4562323B2 (en) Absorption refrigerator
JP4322997B2 (en) Absorption refrigerator
JP6320958B2 (en) Absorption chiller / heater, heat exchanger, absorption chiller / heater control method
JPH06235558A (en) Absorption type heat pump
JP3723372B2 (en) Waste heat input type absorption chiller / heater
JP3593052B2 (en) Absorption refrigerator
JP2004340424A (en) Absorption refrigerator
JPS6148064B2 (en)
JP2007120811A (en) Absorption heat pump
JP2000257978A (en) Exhaust heat utilizing absorption heater chillear
JP2000018753A (en) Absorption refrigerating machine
CN107477906A (en) Fume hot-water single-double effect compound type lithium bromide absorption type refrigeration unit
JP2003247762A (en) Absorption water cooling-heating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040604

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4065741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term