JP2004340424A - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
JP2004340424A
JP2004340424A JP2003135360A JP2003135360A JP2004340424A JP 2004340424 A JP2004340424 A JP 2004340424A JP 2003135360 A JP2003135360 A JP 2003135360A JP 2003135360 A JP2003135360 A JP 2003135360A JP 2004340424 A JP2004340424 A JP 2004340424A
Authority
JP
Japan
Prior art keywords
absorption refrigerator
solution
heat exchanger
absorber
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003135360A
Other languages
Japanese (ja)
Inventor
Atsushi Aoyama
淳 青山
Jun Murata
純 村田
Norio Arai
憲雄 荒井
Toshio Matsubara
利男 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Ebara Refrigeration Equipment and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Refrigeration Equipment and Systems Co Ltd filed Critical Ebara Refrigeration Equipment and Systems Co Ltd
Priority to JP2003135360A priority Critical patent/JP2004340424A/en
Publication of JP2004340424A publication Critical patent/JP2004340424A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absorption refrigerator using a simple method for effectively collecting heat from an internal cycle. <P>SOLUTION: The absorption refrigerator comprises an evaporator E, an absorber A, a condenser C, a regenerator GL, a solution heat exchanger, a solution pump, and an absorbed solution passage and a refrigerant solution passage connecting these together. Herein, a collection heat exchanger SC is provided in the C for heat exchange between diluted solution discharged from the A and refrigerant vapor flowing into the GL and the C in sequence. The SC can be arranged adjacent to the heat conduction part of the C, stored in a GL/C container 2 and preferably formed with a plate heat exchanger or a snaking pipe. In the SC, a means V1 can be provided for controlling the flow amount of the diluted solution to be supplied. Furthermore, the absorption refrigerator can be constructed in multiple stages to operate the E and the A in a plurality of pressure stages and formed with multiple utility cycles or single or double utility cycles. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、吸収冷凍機に係り、特に内部サイクルからの熱回収を効果的かつ、簡便な方法で行うことのできる高効率な吸収冷凍機に関する。
【0002】
【従来の技術】
【特許文献1】特公昭56−1537号公報
吸収冷凍機の効率を高める手法としては、外部加熱源からの熱回収を行う方法と内部サイクルからの熱回収を行う方法に大別される。
例えば、外部加熱源からの熱回収としては、高温再生器で溶液を加熱・濃縮した後の蒸気ドレーンと吸収溶液とを熱交換するためのドレーン熱交換器を設けることが知られている。
また、内部サイクルからの熱回収としては、低温再生器で吸収溶液を加熱・濃縮した後の冷媒凝縮液と吸収器からの希溶液とを熱交換し、希溶液の温度を上昇させることによりサイクル効率を上昇させる方法が知られている。(特公昭56−1537号公報)
【0003】
あるいは、吸収器に流入する比較的高温の濃溶液と吸収器を出る比較的低温の希溶液との熱交換を行い、希溶液の温度を上昇させることによりサイクル効率を上昇させる方法も知られている。
これらの方法は、顕熱の回収であり、各媒体の温度変化があるために、熱交換効率が悪いという問題があった。
近年は、地球温暖化防止の気運が高まる中で、更なる高効率化が求められている。
再生器から凝縮器に流入する冷媒蒸気の潜熱を、吸収溶液で熱回収する効果的な手法については、まだ開示されていない。
【0004】
【発明が解決しようとする課題】
本発明は、内部サイクルの熱を効果的に回収できる安価な吸収冷凍機を提供することを課題としたものである。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明では、蒸発器、吸収器、凝縮器、再生器、溶液熱交換器、溶液ポンプ及びこれらの機器を連結する吸収溶液経路、冷媒経路を備えた吸収冷凍機において、前記吸収器を出た希溶液と再生器から凝縮器に流入する冷媒蒸気との間で熱交換する回収熱交換器を設けたことを特徴とする吸収冷凍機としたものである。
前記吸収冷凍機において、回収熱交換器は、凝縮器の伝熱部と隣接配置されると共に、再生器及び凝縮器容器の内部に収納することができ、該回収熱交換器は、プレート熱交換器又は蛇行管で構成するのがよく、また、該回収熱交換器に、供給する希溶液の流量を制御する手段を備えることができる。
また、本発明の吸収冷凍機は、蒸発器及び吸収器を複数の圧力段階で作動するように多段で構成することができ、該吸収冷凍機は、多重効用サイクル又は一二重効用サイクルで形成することもできる。
【0006】
【発明の実施の形態】
本発明は、再生器から凝縮器に流入する冷媒蒸気の潜熱を吸収器を出る希溶液で熱回収することにより、温度差の比較的小さい媒体間での熱回収を効果的に行うことができるようにしたものである。
すなわち、再生器から凝縮器に流入する冷媒蒸気の潜熱の回収においては、冷媒蒸気の温度が一定に維持されたままで熱交換を行うことができるので、熱交換する媒体間の温度差を有効に活用できる。
次に、本発明を図面に従って詳細に説明する。
図において、GHは高温再生器、GLは低温再生器、LXは低温溶液熱交換器、HXは高温溶液熱交換器、SCは回収熱交換器、DXはドレーン熱交換器、Aは吸収器、Eは蒸発器、AHは高圧吸収器、ALは低圧吸収器、EHは高圧蒸発器、ELは低圧蒸発器、RPは冷媒ポンプ、SPは溶液ポンプ、V1は制御弁、20〜27は吸収溶液経路、30〜33は冷媒経路、50、51は冷水経路、52〜54は冷却水経路、60、61は熱源経路、70は温度センサーである。
【0007】
図1では、蒸発器Eからの冷媒蒸気を吸収した希溶液は、吸収器Aから溶液ポンプSPにより溶液経路20Aを経由し、回収熱交換器SCに供給される。SCの伝熱部の内部を流れる希溶液は、低温再生器GLで発生した冷媒蒸気と熱交換し、冷媒蒸気の持っている潜熱の一部を回収する。SCで加熱された希溶液は、溶液経路20Bを通って、低温溶液熱交換器LXに導入される。LX以降は、従来の吸収冷凍機と同様の循環経路をたどることになる。
図1では、希溶液の循環経路の制御弁V1を設けている。これは回収熱交換器SCに供給される希溶液の流量を適切に制御するものである。例えば、溶液経路20Bに設けた温度センサー70により制御弁V1の開閉を行うことにより、負荷状態に応じて最適な熱回収を行ったり、あるいは、SCにおける圧カ損失を調整するために利用することもできる。
【0008】
勿論、この制御弁を設けることなく、溶液ポンプSPからの希溶液を全量SCに供給するようにしても良い。
また、図1では、SCは凝縮器Cの上部に設置されているが、これに限定されるものではなく、凝縮器の側部や下部に設置してもよい。低温再生器GLからの冷媒蒸気を優先的にSCに導くようにすると共に、低温再生器及び凝縮器容器2の内部にSCを収納することにより、コンパクトに構成することが可能となっている。
図1は、所謂分岐フローで記述されているが、このサイクルに特定されるものではなく、シリーズフロー、リバースフロー等の他のサイクルにも適用できることは言うまでもない。
【0009】
以下、他の例について簡単に説明する。
図2は、本発明の他の例を示すフロー構成図であり、吸収器A及び蒸発器Eが複数段で構成された場合の例であり、図2では、吸収器A、蒸発器Eが2段で構成されているが、2段に特定されるものではない。
空調負荷から戻った比較的高温の冷水は、高圧蒸発器EHに流入後冷却され、次に低圧蒸発器ELでさらに冷却されて、空調機側に供給される。このような構成の場合は、高圧蒸発器EH、低圧蒸発器ELは、例えば、8℃、5℃等の蒸発温度で作動し、それらの蒸発器と組み合わされて作動する高圧吸収器AH、低圧吸収器ALにより、吸収器を出る希溶液濃度を大幅に低下させることができる。
この結果、溶液循環量を少なくし、希溶液と濃溶液の濃度差を大きく設定することができるので、吸収冷凍機の効率を更に高めることが可能となる。
【0010】
この方法では、冷水の温度差を通常の5℃よりも大きく、例えば8℃程度の温度差として設計することにより、吸収器Aを出る希溶液濃度をさらに低下させることが可能となる。
図2においては、冷却水の流れ方向を、高圧吸収器AH、低圧吸収器AL、凝縮器Cの順に流すように図示されているが、これに特定されるものではない。例えば、高圧吸収器AHと低圧吸収器ALに冷却水を並列に流してもよいし、凝縮器Cから吸収器A側に流すことも可能であり、任意の流し方を構成することができるが、高圧吸収器AHと低圧吸収器ALに冷却水を並列に流すことにより、吸収器Aをでる希溶液の温度を低下させることができるので、SCにおける熱回収を更に有効に行うことが可能となる。
【0011】
図3は、回収熱交換器SCを蛇行管で構成した場合の断面構成図を示す(図1のX矢視を示す)。
低温再生器及び凝縮器容器2の側板75に、希溶液経路20A、20Bの流入口と流出口を設け、溶液経路20Aから導入された希溶液は、SCを構成する蛇行管内部を流れ、蛇行管外部に導入された冷媒蒸気と熱交換後、経路20Bから流出する。このような構成により、多数の直管を使用する場合に比べて、管板に多数の孔加工をすることなく、簡便、安価に構成することが可能となる。
更には、標準機に対し、簡便な変更を追加するのみで、本発明を実施できる利点をも有する。
また、図3では、蛇行管は1本で図示されているが、勿論複数の蛇行管を用いてもよい。
【0012】
図4は、回収熱交換器SCをプレート熱交換器で構成した場合の断面構成図を示す(図2のX矢視を示す)。
低温再生器及び凝縮器容器2の側板75に希溶液経路20A、20Bの流入口と流出口を設け、溶液経路20Aから導入された希溶液は、SCを構成するプレート熱交換器の各プレート80の内部を流れ、プレート外部に導入された冷媒蒸気と熱交換後、経路20Bから流出する。
作用効果は、図3の例とほぼ同等であるが、プレート熱交換器による更なるコンパクト化が期待できる。
上記発明の例は、二重効用サイクルで記載されているが、勿論これに特定されるものでは無く、単効用、三重効用などの多量効用及び一重二重効用にも適用されるものである。また、図1、図2は、蒸気式の吸収冷凍機を示しているが、直焚式の吸収冷凍機、吸収冷温水機にも適用されるものである。
【0013】
【発明の効果】
本発明によれば、上記の構成としたことにより、内部サイクルの熱を効果的に回収できる安価で簡便な方法による、高効率吸収冷凍機を提供することが可能となった。
【図面の簡単な説明】
【図1】本発明の吸収冷凍機の1例を示すフロー構成図。
【図2】本発明の吸収冷凍機の他の例を示すフロー構成図。
【図3】本発明の回収熱交換器の1例を示す断面構成図。
【図4】本発明の回収熱交換器の他の例を示す断面構成図。
【符号の説明】
GH:高温再生器、GL:低温再生器、SC:回収熱交換器、DX:ドレーン熱交換器、LX:低温溶液熱交換器、HX:高温溶液熱交換器、A:吸収器、E:蒸発器、AH:高圧吸収器、AL:低圧吸収器、EH:高圧蒸発器、EL:低圧蒸発器、RP:冷媒ポンプ、SP:溶液ポンプ、V1:制御弁、20〜27:吸収溶液経路、30〜33:冷媒経路、70:温度センサー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an absorption refrigerator, and more particularly to a high-efficiency absorption refrigerator capable of recovering heat from an internal cycle in an effective and simple manner.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent Publication No. 56-1537 discloses a method of improving the efficiency of an absorption refrigerator, which is roughly classified into a method of recovering heat from an external heating source and a method of recovering heat from an internal cycle.
For example, as heat recovery from an external heating source, it is known to provide a drain heat exchanger for exchanging heat between a vapor drain and an absorbing solution after heating and concentrating a solution in a high-temperature regenerator.
In addition, heat recovery from the internal cycle is performed by exchanging heat between the refrigerant condensate after heating and concentrating the absorption solution in the low-temperature regenerator and the dilute solution from the absorber, and raising the temperature of the dilute solution. Methods for increasing efficiency are known. (Japanese Patent Publication No. 56-1537)
[0003]
Alternatively, a method is known in which heat exchange is performed between a relatively hot concentrated solution flowing into the absorber and a relatively low-temperature dilute solution exiting the absorber, and the cycle efficiency is increased by raising the temperature of the dilute solution. I have.
These methods involve the recovery of sensible heat, and have the problem that the heat exchange efficiency is poor due to the temperature change of each medium.
In recent years, with the increasing trend to prevent global warming, higher efficiency has been demanded.
An effective method of recovering the latent heat of the refrigerant vapor flowing from the regenerator into the condenser with an absorbing solution has not yet been disclosed.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide an inexpensive absorption refrigerator capable of effectively recovering heat of an internal cycle.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides an absorption refrigerator having an evaporator, an absorber, a condenser, a regenerator, a solution heat exchanger, a solution pump, an absorption solution path connecting these devices, and a refrigerant path. Wherein a recovery heat exchanger for exchanging heat between the dilute solution exiting the absorber and the refrigerant vapor flowing from the regenerator to the condenser is provided.
In the absorption refrigerator, the recovery heat exchanger is disposed adjacent to the heat transfer section of the condenser and can be housed inside the regenerator and the condenser container. The recovery heat exchanger may be provided with a means for controlling the flow rate of the dilute solution to be supplied.
Further, the absorption refrigerator of the present invention can be configured in multiple stages so that the evaporator and the absorber operate at a plurality of pressure stages, and the absorption refrigerator is formed in a multiple effect cycle or a single effect cycle. You can also.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the present invention, the latent heat of the refrigerant vapor flowing into the condenser from the regenerator is recovered by the dilute solution exiting the absorber, so that the heat recovery between the media having a relatively small temperature difference can be effectively performed. It is like that.
That is, in the recovery of the latent heat of the refrigerant vapor flowing into the condenser from the regenerator, heat exchange can be performed while the temperature of the refrigerant vapor is kept constant, so that the temperature difference between the heat exchange media is effectively reduced. Can be used.
Next, the present invention will be described in detail with reference to the drawings.
In the figure, GH is a high temperature regenerator, GL is a low temperature regenerator, LX is a low temperature solution heat exchanger, HX is a high temperature solution heat exchanger, SC is a recovery heat exchanger, DX is a drain heat exchanger, A is an absorber, E is an evaporator, AH is a high-pressure absorber, AL is a low-pressure absorber, EH is a high-pressure evaporator, EL is a low-pressure evaporator, RP is a refrigerant pump, SP is a solution pump, V1 is a control valve, and 20 to 27 are absorption solutions. A path, 30 to 33 are refrigerant paths, 50 and 51 are chilled water paths, 52 to 54 are cooling water paths, 60 and 61 are heat source paths, and 70 is a temperature sensor.
[0007]
In FIG. 1, the dilute solution that has absorbed the refrigerant vapor from the evaporator E is supplied from the absorber A to the recovery heat exchanger SC via the solution path 20A by the solution pump SP. The dilute solution flowing inside the heat transfer section of the SC exchanges heat with the refrigerant vapor generated in the low-temperature regenerator GL, and recovers a part of the latent heat of the refrigerant vapor. The dilute solution heated by the SC passes through the solution path 20B and is introduced into the low-temperature solution heat exchanger LX. After LX, it follows the same circulation path as the conventional absorption refrigerator.
In FIG. 1, a control valve V1 for the circulation path of the dilute solution is provided. This appropriately controls the flow rate of the dilute solution supplied to the recovery heat exchanger SC. For example, by opening and closing the control valve V1 by the temperature sensor 70 provided in the solution path 20B, it is possible to perform optimal heat recovery according to the load state or to use the SC to adjust the pressure loss in the SC. You can also.
[0008]
Of course, without providing this control valve, the dilute solution from the solution pump SP may be supplied to the whole amount SC.
Further, in FIG. 1, the SC is installed at the upper part of the condenser C, but is not limited to this, and may be installed at a side part or a lower part of the condenser C. The refrigerant vapor from the low-temperature regenerator GL is preferentially guided to the SC, and the SC is housed inside the low-temperature regenerator and the condenser container 2, so that a compact configuration can be achieved.
Although FIG. 1 is described in a so-called branch flow, it is needless to say that the present invention is not limited to this cycle and can be applied to other cycles such as a series flow and a reverse flow.
[0009]
Hereinafter, other examples will be briefly described.
FIG. 2 is a flow configuration diagram showing another example of the present invention, in which the absorber A and the evaporator E are configured in a plurality of stages. In FIG. Although it is composed of two stages, it is not specified in two stages.
The relatively high-temperature cold water returned from the air-conditioning load flows into the high-pressure evaporator EH, is cooled, is further cooled by the low-pressure evaporator EL, and is supplied to the air conditioner. In the case of such a configuration, the high-pressure evaporator EH and the low-pressure evaporator EL operate at an evaporation temperature of, for example, 8 ° C., 5 ° C., etc., and operate in combination with the evaporator. Absorber AL allows the dilute solution concentration exiting the absorber to be significantly reduced.
As a result, the solution circulation amount can be reduced and the concentration difference between the dilute solution and the concentrated solution can be set large, so that the efficiency of the absorption refrigerator can be further increased.
[0010]
In this method, it is possible to further reduce the concentration of the dilute solution exiting the absorber A by designing the temperature difference of the cold water to be larger than the normal 5 ° C., for example, about 8 ° C.
In FIG. 2, the flow direction of the cooling water is shown to flow in the order of the high-pressure absorber AH, the low-pressure absorber AL, and the condenser C, but the flow is not limited to this. For example, the cooling water may be flown in parallel to the high-pressure absorber AH and the low-pressure absorber AL, or it may be flown from the condenser C to the absorber A side. By flowing the cooling water in parallel to the high-pressure absorber AH and the low-pressure absorber AL, the temperature of the dilute solution flowing out of the absorber A can be reduced, so that the heat recovery in the SC can be performed more effectively. Become.
[0011]
FIG. 3 shows a cross-sectional configuration diagram when the recovery heat exchanger SC is formed of a meandering tube (indicated by an arrow X in FIG. 1).
An inlet and an outlet for the dilute solution paths 20A and 20B are provided on the side plate 75 of the low-temperature regenerator and the condenser vessel 2, and the dilute solution introduced from the solution path 20A flows inside the meandering pipe constituting the SC, and After the heat exchange with the refrigerant vapor introduced into the outside of the pipe, the refrigerant flows out from the path 20B. With such a configuration, it is possible to simply and inexpensively configure the tube sheet without performing a large number of holes in the tube sheet as compared with the case where a large number of straight pipes are used.
Further, there is an advantage that the present invention can be implemented only by adding a simple change to the standard machine.
Further, in FIG. 3, only one meandering tube is shown, but a plurality of meandering tubes may be used.
[0012]
FIG. 4 is a cross-sectional configuration diagram when the recovery heat exchanger SC is configured by a plate heat exchanger (indicated by the arrow X in FIG. 2).
The inlet and outlet of the dilute solution paths 20A and 20B are provided on the side plate 75 of the low-temperature regenerator and condenser vessel 2, and the dilute solution introduced from the solution path 20A is supplied to each plate 80 of the plate heat exchanger constituting the SC. Flows through the inside of the plate and exchanges heat with the refrigerant vapor introduced outside the plate, and then flows out of the path 20B.
The function and effect are almost the same as those in the example of FIG. 3, but further downsizing by the plate heat exchanger can be expected.
Although the examples of the invention described above are described in the double-effect cycle, they are, of course, not limited thereto, and may be applied to a single-effect, a triple-effect, etc., and a single-double effect. Although FIGS. 1 and 2 show a steam type absorption refrigerator, the invention is also applied to a direct-fired absorption refrigerator and an absorption chiller / heater.
[0013]
【The invention's effect】
According to the present invention, by adopting the above configuration, it has become possible to provide a high-efficiency absorption refrigerator by an inexpensive and simple method capable of effectively recovering the heat of the internal cycle.
[Brief description of the drawings]
FIG. 1 is a flow configuration diagram showing an example of an absorption refrigerator of the present invention.
FIG. 2 is a flow configuration diagram showing another example of the absorption refrigerator of the present invention.
FIG. 3 is a cross-sectional configuration diagram showing one example of a recovery heat exchanger of the present invention.
FIG. 4 is a sectional view showing another example of the recovery heat exchanger of the present invention.
[Explanation of symbols]
GH: high temperature regenerator, GL: low temperature regenerator, SC: recovery heat exchanger, DX: drain heat exchanger, LX: low temperature solution heat exchanger, HX: high temperature solution heat exchanger, A: absorber, E: evaporation AH: High pressure absorber, AL: Low pressure absorber, EH: High pressure evaporator, EL: Low pressure evaporator, RP: Refrigerant pump, SP: Solution pump, V1: Control valve, 20-27: Absorption solution path, 30 33: refrigerant path, 70: temperature sensor

Claims (6)

蒸発器、吸収器、凝縮器、再生器、溶液熱交換器、溶液ポンプ及びこれらの機器を連結する吸収溶液経路、冷媒経路を備えた吸収冷凍機において、前記吸収器を出た希溶液と再生器から凝縮器に流入する冷媒蒸気との間で熱交換する回収熱交換器を設けたことを特徴とする吸収冷凍機。In an absorption refrigerator having an evaporator, an absorber, a condenser, a regenerator, a solution heat exchanger, a solution pump, an absorption solution path connecting these devices, and a refrigerant path, the dilute solution exiting the absorber is regenerated. An absorption refrigerator comprising a recovery heat exchanger for exchanging heat with refrigerant vapor flowing into a condenser from a condenser. 前記回収熱交換器が、凝縮器の伝熱部と隣接配置されると共に、再生器及び凝縮器容器の内部に収納されたことを特徴とする請求項1記載の吸収冷凍機。2. The absorption refrigerator according to claim 1, wherein the recovery heat exchanger is disposed adjacent to a heat transfer section of the condenser, and is housed inside the regenerator and the condenser container. 前記回収熱交換器が、プレート熱交換器又は蛇行管で構成されたことを特徴とする請求項1又は2記載の吸収冷凍機。3. The absorption refrigerator according to claim 1, wherein the recovery heat exchanger comprises a plate heat exchanger or a meandering tube. 前記吸収冷凍機には、前記回収熱交換器に供給される希溶液の流量を制御する手段を備えたことを特徴とする請求項1、2又は3記載の吸収冷凍機。The absorption refrigerator according to claim 1, 2, or 3, wherein the absorption refrigerator includes a unit that controls a flow rate of the dilute solution supplied to the recovery heat exchanger. 前記蒸発器及び吸収器が、複数の圧力段階で作動するように多段で構成されたことを特徴とする請求項1〜4のいずれか1項に記載の吸収冷凍機。The absorption refrigerator according to any one of claims 1 to 4, wherein the evaporator and the absorber are configured in multiple stages to operate at a plurality of pressure stages. 前記吸収冷凍機が、多重効用サイクル又は一二重効用サイクルで形成されたことを特徴とする請求項1〜5のいずれか1項に記載の吸収冷凍機。The absorption refrigerator according to any one of claims 1 to 5, wherein the absorption refrigerator is formed in a multiple effect cycle or a single effect cycle.
JP2003135360A 2003-05-14 2003-05-14 Absorption refrigerator Pending JP2004340424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003135360A JP2004340424A (en) 2003-05-14 2003-05-14 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003135360A JP2004340424A (en) 2003-05-14 2003-05-14 Absorption refrigerator

Publications (1)

Publication Number Publication Date
JP2004340424A true JP2004340424A (en) 2004-12-02

Family

ID=33525640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003135360A Pending JP2004340424A (en) 2003-05-14 2003-05-14 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP2004340424A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287804A (en) * 2008-05-28 2009-12-10 Ebara Refrigeration Equipment & Systems Co Ltd Absorption refrigerator
EP3667201A1 (en) * 2018-12-13 2020-06-17 Commissariat à l'Energie Atomique et aux Energies Alternatives System for producing cold comprising a compression machine, an absorption machine and a thermal storage system for coupling them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287804A (en) * 2008-05-28 2009-12-10 Ebara Refrigeration Equipment & Systems Co Ltd Absorption refrigerator
EP3667201A1 (en) * 2018-12-13 2020-06-17 Commissariat à l'Energie Atomique et aux Energies Alternatives System for producing cold comprising a compression machine, an absorption machine and a thermal storage system for coupling them

Similar Documents

Publication Publication Date Title
CN103591721B (en) A kind of air-conditioning system
JPS5913670B2 (en) Dual effect absorption refrigeration equipment
JP5390426B2 (en) Absorption heat pump device
KR100827570B1 (en) Heatpump for waste heat recycle of adsorption type refrigerator
JPH11304274A (en) Waste heat utilized absorption type water cooling/ heating machine refrigerating machine
JP2004340423A (en) Absorption refrigerator
JP2012202589A (en) Absorption heat pump apparatus
KR100543484B1 (en) Single-and Double-Effect Absorption Refrigerator
JP2004340424A (en) Absorption refrigerator
JP2004239558A (en) Absorption type cooling and heating machine
JP2000205691A (en) Absorption refrigerating machine
WO2002018850A1 (en) Absorption refrigerating machine
KR20080094985A (en) Hot-water using absorption chiller
JP3297720B2 (en) Absorption refrigerator
JP2000274860A (en) Heat pump cycle type absorption refrigerating and heating simultaneously taking-out machine and method
JP4288799B2 (en) Waste heat input type absorption refrigeration system
JP2003121021A (en) Double effect absorption refrigerating machine
JPH04268170A (en) Absorption type heat pump device
JP2005300047A (en) Heat exchanger system and absorption refrigerating machine using the same
JP3811632B2 (en) Waste heat input type absorption refrigerator
JP2001133070A (en) Absorption refrigerating machine
JPS6135900Y2 (en)
JP3948548B2 (en) Exhaust gas driven absorption chiller / heater
JP4064199B2 (en) Triple effect absorption refrigerator
JP2004011928A (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081027