JP2004068623A - 内燃機関の排気浄化装置及び排気浄化方法 - Google Patents

内燃機関の排気浄化装置及び排気浄化方法 Download PDF

Info

Publication number
JP2004068623A
JP2004068623A JP2002225219A JP2002225219A JP2004068623A JP 2004068623 A JP2004068623 A JP 2004068623A JP 2002225219 A JP2002225219 A JP 2002225219A JP 2002225219 A JP2002225219 A JP 2002225219A JP 2004068623 A JP2004068623 A JP 2004068623A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
hydrocarbon
amount
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002225219A
Other languages
English (en)
Other versions
JP3896923B2 (ja
Inventor
Nobumoto Ohashi
大橋 伸基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002225219A priority Critical patent/JP3896923B2/ja
Publication of JP2004068623A publication Critical patent/JP2004068623A/ja
Application granted granted Critical
Publication of JP3896923B2 publication Critical patent/JP3896923B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】簡単な構成でもって、NO触媒内に蓄えられているイオウの量を速やかに減少させる。
【解決手段】リーン空燃比のもとで燃焼が継続される内燃機関の排気通路内に、流入する排気ガスの空燃比がリッチのときに流入する排気ガス中の炭化水素から水素を生成する水素生成触媒22を配置し、水素生成触媒22下流の排気通路内にNO触媒23を配置する。NO触媒23内の蓄積NO量を減少させるべきときには、NO触媒23内に流入する排気ガスの空燃比がリッチに切り替えられるように、下流側HC供給ノズル30dから炭化水素を供給する。NO触媒23内の蓄積SO量を減少させるべきときには、水素生成触媒22内に流入する排気ガスの空燃比がリッチに切り替えられるように、上流側HC供給ノズル30uから炭化水素を供給し、それにより、NO触媒23内に流入する排気ガス中に水素Hが含まれるようにする。
【選択図】   図4

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の排気浄化装置及び排気浄化方法に関する。
【0002】
【従来の技術】
燃焼室内で燃焼せしめられる混合気の空燃比がリーンに維持される内燃機関の排気通路内に、流入する排気ガスの空燃比がリーンのときに流入する排気ガス中のNOを蓄え、流入する排気ガスの空燃比が低下したときに排気ガス中に還元剤が含まれていると蓄えているNOを還元して蓄えているNOの量が減少するNO触媒を配置し、NO触媒内に蓄えられているイオウの量を減少させるために、NO触媒に水素Hを供給するようにした内燃機関が公知である(特許第2780596号公報参照)。イオウはNO触媒内に硫酸塩の形で蓄えられるところ、NO触媒内に水素Hを供給すれば炭化水素HCや一酸化炭素COを供給するよりも容易に硫酸塩が分解する。そこでこの内燃機関では、NO触媒に水素Hを供給するようにし、NO触媒内に蓄えられているイオウの量が速やかに減少されるようにしている。
【0003】
【発明が解決しようとする課題】
しかしながら、上述の内燃機関では例えば水の電気分解を行う水素生成装置を必須とし、従って構成が複雑になるばかりかコストも増大する。
【0004】
そこで本発明の目的は、簡単な構成でもって、NO触媒内に蓄えられているイオウの量を速やかに減少させることができる内燃機関の排気浄化装置及び排気浄化方法を提供することにある。
【0005】
【課題を解決するための手段】
前記課題を解決するために1番目の発明によれば、燃焼室内で燃焼せしめられる混合気の空燃比がリーンに維持される内燃機関の排気通路内に、流入する排気ガスの空燃比がリーンのときに流入する排気ガス中のNOを蓄え、流入する排気ガスの空燃比が低下したときに排気ガス中に還元剤が含まれていると蓄えているNOを還元して蓄えているNOの量が減少するNO触媒を配置し、流入する排気ガスの空燃比がリッチのときに流入する排気ガス中の炭化水素から水素を生成する水素生成触媒をNO触媒上流の排気通路内に配置し、NO触媒内に蓄えられているイオウの量を減少させるべきときには、水素生成触媒内に流入する排気ガスの空燃比が一時的にリッチに切り替えられるように、水素生成触媒上流の排気通路内に炭化水素を供給するようにしている。
【0006】
また、2番目の発明によれば1番目の発明において、水素生成触媒上流の排気通路内に炭化水素供給ノズルを配置し、該炭化水素供給ノズルから水素生成触媒上流の排気通路内に炭化水素を供給するようにしている。
【0007】
また、3番目の発明によれば1番目の発明において、水素生成触媒とNO触媒間の排気通路内に炭化水素供給ノズルを配置し、NO触媒内に蓄えられているNOを還元しかつNO触媒内に蓄えられているNOの量を減少させるべきときには、NO触媒内に流入する排気ガスの空燃比が一時的にリッチに切り替えられるように、該炭化水素供給ノズルから水素生成触媒とNO触媒間の排気通路内に炭化水素を供給するようにしている。
【0008】
また、4番目の発明によれば1番目の発明において、前記NO触媒が、流入する排気ガス中の微粒子を捕集するためのパティキュレートフィルタ上に担持されている。
【0009】
また、前記課題を解決するために5番目の発明によれば、燃焼室内で燃焼せしめられる混合気の空燃比がリーンに維持される内燃機関の排気通路内に、流入する排気ガスの空燃比がリーンのときに流入する排気ガス中のNOを蓄え、流入する排気ガスの空燃比が低下したときに排気ガス中に還元剤が含まれていると蓄えているNOを還元して蓄えているNOの量が減少するNO触媒が配置されており、流入する炭化水素から水素を生成する水素生成触媒を用意し、NO触媒内に蓄えられているイオウの量を減少させるべきときには、排気ガス中に炭化水素を供給すると共に、該炭化水素を含む排気ガスを水素生成触媒に接触させた後にNO触媒内に流入せしめ、NO触媒内に蓄えられているNOを還元しかつNO触媒内に蓄えられているNOの量を減少させるべきときには、排気ガス中に炭化水素を供給すると共に、該炭化水素を含む排気ガスを水素生成触媒に接触させることなくNO触媒内に流入せしめる、各段階を備えている。
【0010】
また、前記課題を解決するために6番目の発明によれば、燃焼室内で燃焼せしめられる混合気の空燃比がリーンに維持される内燃機関の排気通路内に、流入する排気ガスの空燃比がリーンのときに流入する排気ガス中のNOを蓄え、流入する排気ガスの空燃比が低下したときに排気ガス中に還元剤が含まれていると蓄えているNOを還元して蓄えているNOの量が減少するNO触媒を配置し、流入する排気ガスの空燃比がリッチのときに流入する排気ガス中の炭化水素から水素を生成する水素生成触媒をNO触媒上流の排気通路内に配置し、水素生成触媒内に流入する排気ガスの空燃比がリッチになるように水素生成触媒上流の排気通路内に炭化水素を供給するための上流側炭化水素供給ノズルと、NO触媒内に流入する排気ガスの空燃比がリッチになるように水素生成触媒とNO触媒間の排気通路内に炭化水素を供給するための下流側炭化水素供給ノズルとを具備し、NO触媒内に蓄えられているイオウの量を減少させるために上流側炭化水素供給ノズル又は下流側炭化水素供給ノズルから炭化水素を供給すると共に、NO触媒内に蓄えられているイオウの量を減少させるために炭化水素を供給する炭化水素供給ノズルをこれら上流側炭化水素供給ノズルと下流側炭化水素供給ノズルとの間で選択的に切り替えるようにしている。
【0011】
また、7番目の発明によれば6番目の発明において、NO触媒内に蓄えられているイオウの量を減少させるために炭化水素を供給する炭化水素供給ノズルをNO触媒の温度に応じて選択的に切り替えるようにしている。
【0012】
また、8番目の発明によれば7番目の発明において、NO触媒の温度が、NO触媒から単位時間当たりに排出される硫化水素の量が許容最大量になる上限温度よりも低いときにはNO触媒内に蓄えられているイオウの量を減少させるために上流側炭化水素供給ノズルから炭化水素を供給し、NO触媒の温度が前記上限温度よりも高いときにはNO触媒内に蓄えられているイオウの量を減少させるために下流側炭化水素供給ノズルから炭化水素を供給するようにしている。
【0013】
なお、本明細書では排気通路の或る位置よりも上流の排気通路、燃焼室、及び吸気通路内に供給された空気と、水素H、炭化水素HC及び一酸化炭素COのような還元剤との比をその位置における排気ガスの空燃比と称している。
【0014】
【発明の実施の形態】
図1は本発明を圧縮着火式内燃機関に適用した場合を示している。なお、本発明は火花点火式内燃機関にも適用することもできる。
【0015】
図1を参照すると、1は機関本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は電気制御式燃料噴射弁、7は吸気弁、8は吸気ポート、9は排気弁、10は排気ポートを夫々示す。吸気ポート8は対応する吸気枝管11を介してサージタンク12に連結され、サージタンク12は吸気ダクト13を介して排気ターボチャージャ14のコンプレッサ15に連結される。吸気ダクト13内にはステップモータ16により駆動されるスロットル弁17が配置され、更に吸気ダクト13周りには吸気ダクト13内を流れる吸入空気を冷却するための冷却装置18が配置される。
【0016】
一方、排気ポート10は排気マニホルド19及び排気管20を介して排気ターボチャージャ14の排気タービン21に連結され、排気タービン21の出口は排気管20aを介してケーシング22aに接続され、ケーシング22aは排気管20bを介してケーシング23aに接続される。ケーシング22a内には後述する水素生成触媒22が収容され、ケーシング23a内には排気ガス中の微粒子を捕集するためのパティキュレートフィルタ23bが収容される。このパティキュレートフィルタ23b上には後述するNO触媒23が担持されている。更に、ケーシング23aには排気管20cが接続される。
【0017】
更に図1を参照すると、排気マニホルド19とサージタンク12とは排気ガス再循環(以下、EGRと称す)通路24を介して互いに連結され、EGR通路24内には電気制御式EGR制御弁25が配置される。また、EGR通路24周りにはEGR通路24内を流れるEGRガスを冷却するための冷却装置26が配置される。
【0018】
一方、各燃料噴射弁6は燃料供給管6aを介して燃料リザーバ、いわゆるコモンレール27に連結される。このコモンレール27内へは電気制御式の吐出量可変な燃料ポンプ28から燃料が供給され、コモンレール27内に供給された燃料は各燃料供給管6aを介して燃料噴射弁6に供給される。コモンレール27にはコモンレール27内の燃料圧を検出するための燃料圧センサ29が取付けられ、燃料圧センサ29の出力信号に基づいてコモンレール27内の燃料圧が目標燃料圧となるように燃料ポンプ28の吐出量が制御される。
【0019】
更に、排気管20aには排気管20a内に炭化水素HCを供給するための上流側HC供給ノズル30uが取り付けられ、排気管20bには排気管20b内にHCを供給するための下流側HC供給ノズル30dが取り付けられる。本発明による実施例において、排気管20a,20b内に供給されるHCは燃料から形成されており、これらHC供給ノズル30u,30dは三方弁31を介して電気制御式の燃料ポンプ32に接続される。この三方弁31は燃料ポンプ32から吐出された燃料を、上流側HC供給ノズル30uと下流側HC供給ノズル30dとのうちいずれか一方に選択的に供給する。
【0020】
電子制御ユニット40はデジタルコンピュータからなり、双方向性バス41によって互いに接続されたROM(リードオンリメモリ)42、RAM(ランダムアクセスメモリ)43、CPU(マイクロプロセッサ)44、入力ポート45及び出力ポート46を具備する。燃料圧センサ29の出力信号は対応するAD変換器47を介して入力ポート45に入力される。NO触媒23下流の排気管20cにはNO触媒23から流出した排気ガスの温度を検出するための温度センサ48が取り付けられ、温度センサ48の出力電圧は対応するAD変換器47を介して入力ポート45に入力される。この排気ガスの温度はNO触媒23の温度を表している。また、アクセルペダル50にはアクセルペダル50の踏み込み量に比例した出力電圧を発生する負荷センサ51が接続され、負荷センサ51の出力電圧は対応するAD変換器47を介して入力ポート45に入力される。更に入力ポート45にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ52が接続される。
【0021】
一方、出力ポート46は対応する駆動回路53を介して燃料噴射弁6、ステップモータ16、EGR制御弁25、燃料ポンプ28,32、及び三方弁31にそれぞれ接続される。
【0022】
水素生成触媒22は例えば酸性質担体又はゼオライト担体上に担持された白金Ptのような貴金属を具備する。この水素生成触媒22は流入する排気ガスの空燃比がリッチのときに流入する排気ガス中のHCから水素Hを生成し、流入する排気ガスの空燃比が理論空燃比又はリーンであると、ほとんどHを生成しない。
【0023】
具体的には、図2に示されるように、水素生成触媒22で単位時間当たり生成されるHの量、即ち生成H量は流入する排気ガスの空燃比がリッチになればなるほど、多くなる。水素生成触媒22内でどのようにしてHが生成されるかは必ずしも明らかにされていないけれども、主として水蒸気改質(HC+HO→CO+H)によるものと考えられている。
【0024】
一方、パティキュレートフィルタ23bの隔壁上即ち例えば隔壁の両側面及び細孔内壁面上には、NO触媒23がそれぞれ担持されている。このNO触媒23は例えばアルミナを担体とし、この担体上に例えばカリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つと、白金Pt、パラジウムPd、ロジウムRh、イリジウムIrのような貴金属とが担持されている。
【0025】
NO触媒は流入する排気ガスの平均空燃比がリーンのときにはNOを蓄え、流入する排気ガスの空燃比が低下したときに排気ガス中に還元剤が含まれていると蓄えているNOを還元して蓄えているNOの量を減少させる蓄積還元作用を行う。
【0026】
NO触媒の蓄積還元作用の詳細なメカニズムについては完全には明らかにされていない。しかしながら、現在考えられているメカニズムを、担体上に白金Pt及びバリウムBaを担持させた場合を例にとって簡単に説明すると次のようになる。
【0027】
即ち、NO触媒に流入する排気ガスの空燃比が理論空燃比よりもかなりリーンになると流入する排気ガス中の酸素濃度が大巾に増大し、酸素OがO 又はO2−の形で白金Ptの表面に付着する。一方、流入する排気ガス中のNOは白金Ptの表面に付着し白金Ptの表面上でO 又はO2−と反応し、NOとなる(NO+O→NO+O、ここでOは活性酸素)。次いで生成されたNOの一部は白金Pt上でさらに酸化されつつNO触媒内に吸収されて酸化バリウムBaOと結合しながら、硝酸イオンNO の形でNO触媒内に拡散する。このようにしてNOがNO触媒内に蓄えられる。
【0028】
これに対し、NO触媒に流入する排気ガスの空燃比がリッチ又は理論空燃比になると、排気ガス中の酸素濃度が低下してNOの生成量が低下し、反応が逆方向(NO →NO+2O)に進み、斯くしてNO触媒内の硝酸イオンNO がNOの形でNO触媒から放出される。この放出されたNOは排気ガス中に還元剤即ちHC,COが含まれているとこれらHC,COと反応して還元せしめられる。このようにして白金Ptの表面上にNOが存在しなくなるとNO触媒から次から次へとNOが放出されて還元され、NO触媒内に蓄えられているNOの量が次第に減少する。
【0029】
なお、硝酸塩を形成することなくNOを蓄え、NOを放出することなくNOを還元することも可能である。また、活性酸素Oに着目すれば、NO触媒はNOの蓄積及び放出に伴って活性酸素Oを生成する活性酸素生成触媒と見ることもできる。
【0030】
図1に示される内燃機関はリーン空燃比のもとでの燃焼が継続して行われており、従って水素生成触媒22内及びNO触媒23内を流通する排気ガスの空燃比はリーンに維持されている。その結果、排気ガス中のNOはNO触媒23内に蓄えられる。
【0031】
時間の経過と共にNO触媒23内の蓄積NO量は次第に増大する。そこで本発明による実施例では、例えばNO触媒23内の蓄積NO量QNが許容量QNUを越えたときにはNO触媒23内に蓄えられているNOを還元しNO触媒23内の蓄積NO量を減少させるために、NO触媒23内に流入する排気ガスの空燃比を一時的にリッチに切り替える蓄積NO量減少制御を行うようにしている。
【0032】
ところで、排気ガス中にはイオウ分がSOの形で含まれており、NO触媒23内にはNOばかりでなくSOも蓄えられる。このSOのNO触媒23内への蓄積メカニズムはNOの蓄積メカニズムと同じであると考えられる。即ち、担体上に白金Pt及びバリウムBaを担持させた場合を例にとって簡単に説明すると、NO触媒23に流入する排気ガスの空燃比がリーンのときには上述したように酸素OがO 又はO2−の形で白金Ptの表面に付着しており、流入する排気ガス中のSOは白金Ptの表面に付着し白金Ptの表面上でO 又はO2−と反応し、SOとなる。次いで生成されたSOは白金Pt上でさらに酸化されつつNO触媒23内に吸収されて酸化バリウムBaOと結合しながら、硫酸イオンSO の形でNO触媒23内に拡散する。この硫酸イオンSO は次いでバリウムイオンBaと結合して硫酸塩BaSOを生成する。
【0033】
この硫酸塩BaSOは分解しにくく、NO触媒23内に流入する排気ガスの空燃比をただ単にリッチにしてもNO触媒23内の硫酸塩BaSOの量は減少しない。このため、時間が経過するにつれてNO触媒23内の硫酸塩BaSOの量が増大し、その結果NO触媒23が蓄えうるNOの量が減少することになる。
【0034】
ところで、排気ガス中にはイオウ分がSOの形で含まれており、NO触媒23内にはNOばかりでなくSOも蓄えられる。このSOのNO触媒23内への蓄積メカニズムはNOの蓄積メカニズムと同じであると考えられる。即ち、担体上に白金Pt及びバリウムBaを担持させた場合を例にとって簡単に説明すると、NO触媒23に流入する排気ガスの空燃比がリーンのときには上述したように酸素OがO 又はO2−の形で白金Ptの表面に付着しており、流入する排気ガス中のSOは白金Ptの表面に付着し白金Ptの表面上でO 又はO2−と反応し、SOとなる。次いで生成されたSOは白金Pt上でさらに酸化されつつNO触媒23内に吸収されて酸化バリウムBaOと結合しながら、硫酸イオンSO の形でNO触媒23内に拡散する。この硫酸イオンSO は次いでバリウムイオンBaと結合して硫酸塩BaSOを生成する。
【0035】
この硫酸塩BaSOは分解しにくく、NO触媒23内に流入する排気ガスの空燃比をただ単にリッチにしてもNO触媒23内の硫酸塩BaSOの量は減少しない。このため、時間が経過するにつれてNO触媒23内の硫酸塩BaSOの量が増大し、その結果NO触媒23が蓄えうるNOの量が減少することになる。
【0036】
ところが、NO触媒23の温度を例えば550℃以上に維持しつつNO触媒23に流入する排気ガスの平均空燃比を理論空燃比又はリッチにすると、NO触媒23内の硫酸塩BaSOが分解する。即ち、NO触媒23内に流入する排気ガス平均空燃比が理論空燃比又はリッチにされたときに、排気ガス中に比較的多量のHが含まれている場合には、主としてHが硫酸塩BaSOの還元剤として作用する。この場合、硫酸塩BaSOはHによって硫化水素HSに分解され、主としてHSの形でNO触媒23から排出される。これに対し、排気ガス中にHがほとんど含まれておらずHC,COが含まれている場合には、硫酸塩BaSOはこれらHC,COによってSOに分解され、この分解されたSOは排気ガス中のHC,COと反応してSOに還元せしめられ、SOの形でNO触媒23から排出される。
【0037】
いずれにしても、NO触媒23内に硫酸塩BaSOの形で蓄えられているSOの量が次第に減少する。
【0038】
そこで本発明による実施例では、例えばNO触媒23内の蓄積SO量が許容量を越えたときには、NO触媒23内の蓄積SO量を減少させるために、NO触媒23の温度を要求温度TS例えば550℃以上に維持する昇温制御を行いつつ、NO触媒23に流入する排気ガスの平均空燃比を理論空燃比又はリッチに維持する蓄積SO量減少制御を行うようにしている。
【0039】
なお、上述した昇温制御を実行するために、例えば内燃機関から排出される排気ガスの温度を上昇させてNO触媒23の温度を上昇させることができる。或いは、例えばNO触媒23の上流端に電気ヒータを配置して電気ヒータによりNO触媒23又はNO触媒23に流入する排気ガスを加熱することもできるし、NO触媒23上流の排気通路内に燃料を二次的に噴射してこの燃料を燃焼させることによりNO触媒23を加熱することもできる。
【0040】
図3はNO触媒23内に流入する排気ガスの平均空燃比が一定のリッチになるように、NO触媒23内に流入する排気ガス中に様々な還元剤を供給した場合の、NO触媒23の蓄積SO量の単位時間当たりの減少分、即ち減少SO量を示す実験結果である。図3において、TEXはNO触媒23内に流入する排気ガスの温度を表している。
【0041】
図3からわかるように、排気ガス中にHを供給すると、一酸化炭素COやプロパンCを用いた場合よりも、減少SO量がかなり多くなり、しかも蓄積SO量が減少し始める温度TEXが低くなる。
【0042】
従って、NO触媒23内に流入する排気ガス中にHが含まれていると、蓄積SO量減少制御を比較的低い温度において、速やかに完了できるということになる。
【0043】
さて、本発明による実施例では、蓄積NO量減少制御を行うべきときには、下流側HC供給ノズル30dから、NO触媒23内に流入する排気ガスの空燃比がリッチになるように、HCが供給される。この場合、図4(A)に示されるように水素生成触媒22内を流通する排気ガスの平均空燃比はリーンに維持されながら、NO触媒23内に流入する排気ガスの平均空燃比がリッチに切り替えられる。従って、NO触媒23内に比較的多量のHCが流入し、このHCによりNO触媒23内のNOが還元され、斯くしてNO触媒23内の蓄積NO量が減少せしめられる。
【0044】
一方、蓄積SO量減少制御を行うべきときには、上流側HC供給ノズル30uから、水素生成触媒22内に流入する排気ガスの平均空燃比がリッチになるように、HCが供給される。その結果、図4(B)に示されるように水素生成触媒22内に多量のHCが流入し、このHCの一部からHが生成される。このHと残りのHCとは次いでNO触媒23内に流入する。このとき、NO触媒23内に流入する排気ガスの平均空燃比はリッチに維持されており、従ってこれらH及びHC、主としてHにより硫酸塩BaSOが分解され、斯くしてNO触媒23内の蓄積SO量が減少せしめられる。
【0045】
このように蓄積SO量減少制御を行うべきときに上流側HC供給ノズル30uからHCを供給するようにすると、NO触媒23内に流入する排気ガス中にHが含まれることになる。流入する排気ガス中にHが含まれていると、図3を参照して説明したように硫酸塩が比較的容易に分解され、従って蓄積SO量減少制御を速やかに完了することができる。また、昇温制御における要求温度を低くすることもできる。なお、図4に示されるHC量及びH量はそれぞれの増減の傾向を表すに過ぎない。
【0046】
ところが、上流側HC供給ノズル30uからHCを供給すると、このHCの一部が水素生成触媒22内で流入する排気ガス中の酸素Oと反応するので、この分だけHCを有効に利用することができない。一方、NO触媒23内に蓄えられているNOはHCでもって比較的容易に還元される。
【0047】
そこで本発明による実施例では、蓄積NO量減少制御を行うべきときには下流側HC供給ノズル30dからHCを供給するようにしている。図4に示される例では、蓄積SO量減少制御において水素生成触媒22内に流入する排気ガスのリッチ度合いの方が、蓄積NO量減少制御においてNO触媒23内に流入する排気ガスのリッチ度合いよりも大きくなっている。
【0048】
従って、一般的に言うと、蓄積SO量減少制御を行うべきときには、排気ガス中にHCを供給すると共に、HCを含む排気ガスを水素生成触媒22に接触させた後にNO触媒23内に流入せしめ、蓄積NO量減少制御を行うべきときには、排気ガス中にHCを供給すると共に、HCを含む排気ガスを水素生成触媒22に接触させることなくNO触媒23内に流入せしめているということになる。
【0049】
一方、上流側HC供給ノズル30uからHCを供給すると、主としてHが還元剤として作用し、下流側HC供給ノズル30dからHCを供給するとHCが還元剤として作用する。そうすると、本発明による実施例のようにHCを供給するのに用いられるHC供給ノズル30u,30dを切り替えるということは、NO触媒23に供給される還元剤の種類を切り替えているという見方もできる。
【0050】
図5は上述したHC供給制御を実行するためのルーチンを示している。このルーチンは予め定められた設定時間毎の割り込みによって実行される。
【0051】
図5を参照すると、まずステップ100ではNO触媒23の蓄積SO量減少制御を行うべきか否かが判別される。本発明による実施例では、NO触媒23内の蓄積SO量が許容量を越えてから、蓄積SO量が下限値例えばほぼゼロになるまで、蓄積SO量減少制御を行うべきと判断される。蓄積SO量減少制御を行うべきでないときには次いでステップ101に進み、NO触媒23の蓄積NO量減少制御を行うべきか否かが判別される。本発明による実施例では、NO触媒23内の蓄積NO量が許容量を越えてから、蓄積NO量が下限値例えばほぼゼロになるまで、蓄積NO量減少制御を行うべきと判断される。蓄積NO量減少制御を行うべきでないときには処理サイクルを終了し、NO触媒23の蓄積NO量減少制御を行うべきときには次いでステップ102に進み、下流側HC供給ノズル30dからHCが供給される。一方、蓄積SO量減少制御を行うべきときにはステップ100からステップ103に進み、上流側HC供給ノズル30uからHCが供給される。
【0052】
次に、本発明による別の実施例を説明する。この別の実施例でも、蓄積SO量減少制御を行うべきときには上流側HC供給ノズル30uからHCが供給される。
【0053】
しかしながら、蓄積SO量減少制御が開始されてから一定時間の間は下流側HC供給ノズル30dからHCが供給され、NO触媒23の温度Tが高いときにも下流側HC供給ノズル30dからHCが供給される。これは次の理由による。
【0054】
上述したように、上流側HC供給ノズル30uからHCを供給しながら蓄積SO量減少制御を行うと、NO触媒23からイオウがHSの形で排出されると考えられている。図6及び図7は、上流側HC供給ノズル30uからHCを供給しながら蓄積SO量減少制御を行ったときに、NO触媒23から単位時間当たり排出されるHSの量、即ち排出HS量を示している。図6はNO触媒23内に流入する排気ガスの平均空燃比をリッチに切り替えてからの排出HS量の経時変化を示しており、図7はNO触媒23の温度Tの変化に対する排出HS量の変化を示している。なお、図6の矢印XはNO触媒23内に流入する排気ガスの平均空燃比がリッチに切り替えられた時期を示している。
【0055】
図6に示されるように、NO触媒23内に流入する排気ガスの平均空燃比がリッチに切り替えられると、即ち蓄積SO量減少制御が開始されると、排出HS量は急激に増大してピークに達し、次いで時間の経過と共に減少していく。この場合、概略的に言うと、排気ガスの平均空燃比がリッチに切り替えられてから時間tSの間は排出HS量が許容最大量ULよりも多くなる。
【0056】
また、図7に示されるように、NO触媒23の温度Tが高くなるにつれて排出HS量が多くなり、NO触媒温度Tが上限温度TUを越えると排出HS量が許容最大量ULよりも多くなる。
【0057】
一方、下流側HC供給ノズル30dからHCを供給したときには、NO触媒23内のSOはSOの形でNO触媒23から排出され、HSの形ではほとんど排出されない。
【0058】
そこで、蓄積SO量減少制御が開始されてから時間tSだけ経過するまでの間、及びNO触媒23の温度Tが上限温度TUよりも高いときには、下流側HC供給ノズル30dからHCを供給するようにしている。
【0059】
従って、一般的に言うと、蓄積SO量減少制御を行うためにHCを供給するHC供給ノズルを、NO触媒23の温度T又は蓄積SO量減少制御が開始されてからの経過時間に応じて、上流側HC供給ノズル30uと下流側HC供給ノズル30dとの間で選択的に切り替えているということになる。
【0060】
その上で、NO触媒23の温度Tが、排出HS量が許容最大量ULになる上限温度TUよりも低いときには蓄積SO量減少制御を行うために上流側HC供給ノズル30uからHCを供給し、NO触媒23の温度Tが上限温度TUよりも高いときには蓄積SO量減少制御を行うために下流側HC供給ノズル30dからHCを供給するようにしているということになる。
【0061】
或いは、蓄積SO量減少制御が開始されてからの経過時間が、排出HS量が許容最大量ULを越える時間tSよりも短いときには蓄積SO量減少制御を行うために下流側HC供給ノズル30dからHCを供給し、蓄積SO量減少制御が開始されてから時間tSだけ経過したときには蓄積SO量減少制御を行うために上流側HC供給ノズル30uからHCを供給するようにしているということになる。
【0062】
図8は上述した別の実施例によるHC供給制御を実行するためのルーチンを示している。このルーチンは予め定められた設定時間毎の割り込みによって実行される。
【0063】
図8を参照すると、まずステップ120ではNO触媒23の蓄積SO量減少制御を行うべきか否かが判別される。蓄積SO量減少制御を行うべきでないときには次いでステップ121に進み、NO触媒23の蓄積NO量減少制御を行うべきか否かが判別される。蓄積NO量減少制御を行うべきでないときには処理サイクルを終了し、蓄積NO量減少制御を行うべきときには次いでステップ122に進み、蓄積NO量減少制御を行うために下流側HC供給ノズル30dからHCが供給される。
【0064】
一方、蓄積SO量減少制御を行うべきときにはステップ120からステップ123に進み、NO触媒23の蓄積SO量減少制御が開始されてから時間tSだけ経過したか否かが判別される。時間tSだけ経過していないときには次いでステップ122に進み、蓄積SO量減少制御を行うために下流側HC供給ノズル30dからHCが供給される。時間tSだけ経過したときには次いでステップ124に進み、NO触媒23の温度Tが上限温度TU以下であるか否かが判別される。T≦TUのときには次いでステップ125に進み、蓄積SO量減少制御を行うために上流側HC供給ノズル30uからHCが供給される。これに対し、T>TUのときには次いでステップ122に進み、蓄積SO量減少制御を行うために下流側HC供給ノズル30dからHCが供給される。
【0065】
これまで述べてきた本発明による各実施例では、蓄積SO量減少制御を行うべきときに、上流側HC供給ノズル30uのみからHCを供給するようにしている。しかしながら、蓄積SO量減少制御を行うべきときに、上流側HC供給ノズル30uと下流側HC供給ノズル30dとの両方からHCを供給することもできる。
【0066】
また、これまで述べてきた本発明による各実施例では、水素生成触媒22内に流入する排気ガスの空燃比をリッチにするために上流側HC供給ノズル30uからHCを供給するようにしている。しかしながら、燃焼室5から排出される排気ガスの空燃比をリッチにすることにより、水素生成触媒22内に流入する排気ガスの空燃比をリッチにするようにしてもよい。この場合、燃焼室5内で燃焼せしめられる混合気の空燃比をリッチにすることもできるし、又は膨張行程又は排気行程に燃料噴射弁6から二次的に燃料を噴射することもできる。
【0067】
【発明の効果】
簡単な構成でもって、NO触媒内に蓄えられているイオウの量を速やかに減少させることができる。
【図面の簡単な説明】
【図1】内燃機関の全体図である。
【図2】水素生成触媒の生成H量を示す線図である。
【図3】NO触媒の減少SO量を示す線図である。
【図4】本発明による実施例を説明するための線図である。
【図5】本発明の実施例によるHC供給制御ルーチンを示すフローチャートである。
【図6】NO触媒の排出HS量を示す線図である。
【図7】NO触媒の排出HS量を示す線図である。
【図8】本発明の別の実施例によるHC供給制御ルーチンを示すフローチャートである。
【符号の説明】
1…機関本体
20a…排気管
22…水素生成触媒
23…NO触媒
30u,30d…HC供給ノズル

Claims (8)

  1. 燃焼室内で燃焼せしめられる混合気の空燃比がリーンに維持される内燃機関の排気通路内に、流入する排気ガスの空燃比がリーンのときに流入する排気ガス中のNOを蓄え、流入する排気ガスの空燃比が低下したときに排気ガス中に還元剤が含まれていると蓄えているNOを還元して蓄えているNOの量が減少するNO触媒を配置し、流入する排気ガスの空燃比がリッチのときに流入する排気ガス中の炭化水素から水素を生成する水素生成触媒をNO触媒上流の排気通路内に配置し、NO触媒内に蓄えられているイオウの量を減少させるべきときには、水素生成触媒内に流入する排気ガスの空燃比が一時的にリッチに切り替えられるように、水素生成触媒上流の排気通路内に炭化水素を供給するようにした内燃機関の排気浄化装置。
  2. 水素生成触媒上流の排気通路内に炭化水素供給ノズルを配置し、該炭化水素供給ノズルから水素生成触媒上流の排気通路内に炭化水素を供給するようにした請求項1に記載の内燃機関の排気浄化装置。
  3. 水素生成触媒とNO触媒間の排気通路内に炭化水素供給ノズルを配置し、NO触媒内に蓄えられているNOを還元しかつNO触媒内に蓄えられているNOの量を減少させるべきときには、NO触媒内に流入する排気ガスの空燃比が一時的にリッチに切り替えられるように、該の炭化水素供給ノズルから水素生成触媒とNO触媒間の排気通路内に炭化水素を供給するようにした請求項1に記載の内燃機関の排気浄化装置。
  4. 前記NO触媒が、流入する排気ガス中の微粒子を捕集するためのパティキュレートフィルタ上に担持されている請求項1に記載の内燃機関の排気浄化装置。
  5. 燃焼室内で燃焼せしめられる混合気の空燃比がリーンに維持される内燃機関の排気通路内に、流入する排気ガスの空燃比がリーンのときに流入する排気ガス中のNOを蓄え、流入する排気ガスの空燃比が低下したときに排気ガス中に還元剤が含まれていると蓄えているNOを還元して蓄えているNOの量が減少するNO触媒が配置されており、流入する炭化水素から水素を生成する水素生成触媒を用意し、NO触媒内に蓄えられているイオウの量を減少させるべきときには、排気ガス中に炭化水素を供給すると共に、該炭化水素を含む排気ガスを水素生成触媒に接触させた後にNO触媒内に流入せしめ、NO触媒内に蓄えられているNOを還元しかつNO触媒内に蓄えられているNOの量を減少させるべきときには、排気ガス中に炭化水素を供給すると共に、該炭化水素を含む排気ガスを水素生成触媒に接触させることなくNO触媒内に流入せしめる、各段階を備えた内燃機関の排気浄化方法。
  6. 燃焼室内で燃焼せしめられる混合気の空燃比がリーンに維持される内燃機関の排気通路内に、流入する排気ガスの空燃比がリーンのときに流入する排気ガス中のNOを蓄え、流入する排気ガスの空燃比が低下したときに排気ガス中に還元剤が含まれていると蓄えているNOを還元して蓄えているNOの量が減少するNO触媒を配置し、流入する排気ガスの空燃比がリッチのときに流入する排気ガス中の炭化水素から水素を生成する水素生成触媒をNO触媒上流の排気通路内に配置し、水素生成触媒内に流入する排気ガスの空燃比がリッチになるように水素生成触媒上流の排気通路内に炭化水素を供給するための上流側炭化水素供給ノズルと、NO触媒内に流入する排気ガスの空燃比がリッチになるように水素生成触媒とNO触媒間の排気通路内に炭化水素を供給するための下流側炭化水素供給ノズルとを具備し、NO触媒内に蓄えられているイオウの量を減少させるために上流側炭化水素供給ノズル又は下流側炭化水素供給ノズルから炭化水素を供給すると共に、NO触媒内に蓄えられているイオウの量を減少させるために炭化水素を供給する炭化水素供給ノズルをこれら上流側炭化水素供給ノズルと下流側炭化水素供給ノズルとの間で選択的に切り替えるようにした内燃機関の排気浄化装置。
  7. NO触媒内に蓄えられているイオウの量を減少させるために炭化水素を供給する炭化水素供給ノズルをNO触媒の温度に応じて選択的に切り替えるようにした請求項6に記載の内燃機関の排気浄化装置。
  8. NO触媒の温度が、NO触媒から単位時間当たりに排出される硫化水素の量が許容最大量になる上限温度よりも低いときにはNO触媒内に蓄えられているイオウの量を減少させるために上流側炭化水素供給ノズルから炭化水素を供給し、NO触媒の温度が前記上限温度よりも高いときにはNO触媒内に蓄えられているイオウの量を減少させるために下流側炭化水素供給ノズルから炭化水素を供給するようにした請求項7に記載の内燃機関の排気浄化装置。
JP2002225219A 2002-08-01 2002-08-01 内燃機関の排気浄化装置及び排気浄化方法 Expired - Fee Related JP3896923B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002225219A JP3896923B2 (ja) 2002-08-01 2002-08-01 内燃機関の排気浄化装置及び排気浄化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002225219A JP3896923B2 (ja) 2002-08-01 2002-08-01 内燃機関の排気浄化装置及び排気浄化方法

Publications (2)

Publication Number Publication Date
JP2004068623A true JP2004068623A (ja) 2004-03-04
JP3896923B2 JP3896923B2 (ja) 2007-03-22

Family

ID=32012951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002225219A Expired - Fee Related JP3896923B2 (ja) 2002-08-01 2002-08-01 内燃機関の排気浄化装置及び排気浄化方法

Country Status (1)

Country Link
JP (1) JP3896923B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103461A1 (ja) * 2004-04-19 2005-11-03 Honda Motor Co., Ltd. 内燃機関の排気浄化装置
JP2006161697A (ja) * 2004-12-08 2006-06-22 Hino Motors Ltd 排気浄化装置
JP2008121575A (ja) * 2006-11-13 2008-05-29 Toyota Motor Corp 内燃機関の排気浄化装置
US7694512B2 (en) 2005-03-04 2010-04-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine
US8434296B2 (en) 2008-01-08 2013-05-07 Honda Motor Co., Ltd. Exhaust emission control device for internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087819A1 (ja) 2008-01-08 2009-07-16 Honda Motor Co., Ltd. 内燃機関の排気浄化装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103461A1 (ja) * 2004-04-19 2005-11-03 Honda Motor Co., Ltd. 内燃機関の排気浄化装置
JP2006161697A (ja) * 2004-12-08 2006-06-22 Hino Motors Ltd 排気浄化装置
US7694512B2 (en) 2005-03-04 2010-04-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine
JP2008121575A (ja) * 2006-11-13 2008-05-29 Toyota Motor Corp 内燃機関の排気浄化装置
JP4710803B2 (ja) * 2006-11-13 2011-06-29 トヨタ自動車株式会社 内燃機関の排気浄化装置
US8434296B2 (en) 2008-01-08 2013-05-07 Honda Motor Co., Ltd. Exhaust emission control device for internal combustion engine

Also Published As

Publication number Publication date
JP3896923B2 (ja) 2007-03-22

Similar Documents

Publication Publication Date Title
RU2480592C1 (ru) Система очистки выхлопных газов двигателя внутреннего сгорания
JP2586738B2 (ja) 内燃機関の排気浄化装置
KR100287050B1 (ko) 엔진의 배기가스를 정화하기 위한 방법 및 장치
JP5304948B1 (ja) 内燃機関の排気浄化装置
CN1386162A (zh) 用于内燃机的废气排放控制装置
JP2004060596A (ja) 内燃機関の排気浄化装置
JPWO2011114501A1 (ja) 内燃機関の排気浄化装置
KR100662315B1 (ko) 내연기관의 배기 정화 방법 및 배기 정화 장치
JP3896923B2 (ja) 内燃機関の排気浄化装置及び排気浄化方法
EP1835137B1 (en) Exhaust emission device
JP3589179B2 (ja) 内燃機関の排気浄化装置
JP2004076682A (ja) 内燃機関の排気浄化装置
JP4155065B2 (ja) 内燃機関の排気浄化装置
JP3414323B2 (ja) 内燃機関の排気浄化装置
JP2003035132A (ja) 内燃機関の排気浄化装置
JP3570318B2 (ja) 内燃機関の排気浄化装置
JP3613660B2 (ja) 内燃機関の排気浄化装置
JP4321117B2 (ja) 内燃機関の排気浄化装置
JP3374759B2 (ja) 内燃機関の排気浄化装置
JP4306204B2 (ja) 内燃機関の排気浄化装置
JP4297762B2 (ja) 内燃機関の排気浄化装置
JP2004060537A (ja) 内燃機関の排気浄化装置及び排気浄化方法
JP2004245182A (ja) 内燃機関の排気浄化装置
JP4645617B2 (ja) 内燃機関の排気浄化装置
JP2013015117A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061211

LAPS Cancellation because of no payment of annual fees