JP2004067401A - Aluminum nitride ceramic member having roughened surface, and method of manufacturing the same - Google Patents

Aluminum nitride ceramic member having roughened surface, and method of manufacturing the same Download PDF

Info

Publication number
JP2004067401A
JP2004067401A JP2002224871A JP2002224871A JP2004067401A JP 2004067401 A JP2004067401 A JP 2004067401A JP 2002224871 A JP2002224871 A JP 2002224871A JP 2002224871 A JP2002224871 A JP 2002224871A JP 2004067401 A JP2004067401 A JP 2004067401A
Authority
JP
Japan
Prior art keywords
ceramic member
aln
aln ceramic
aluminum nitride
rough surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002224871A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Fujita
藤田 光広
Masato Takahashi
高橋 真人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2002224871A priority Critical patent/JP2004067401A/en
Publication of JP2004067401A publication Critical patent/JP2004067401A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum nitride (AlN) ceramic member having roughened surface, with which the production of particles can be drastically reduced in the case of being used as a chamber inner member of a semiconductor manufacturing apparatus. <P>SOLUTION: A part of crystalline particles in the surface of a base material composed of the dense AlN ceramic member is dissolved and/or falls off by chemical etching. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造装置のチャンバ内部材等として使用される粗表面を有するAlN(窒化アルミニウム)セラミックス部材及びその製造方法に関する。
【0002】
【従来の技術】
半導体製造装置のチャンバ内で使用されるセラミックス部材としては、熱伝導率、耐プラズマ性に優れたAlNセラミックスからなるものが多用されているが、このセラミックス部材の表面には、プロセス中に反応物や析出物が付着、堆積し、これが脱落して半導体ウェーハ上に付着することによる不良発生が問題となっている。
このようなセラミックス部材表面からの付着、堆積物の脱落を低減させるため、セラミックス部材表面に一定の表面粗さを有するよう加工することが望まれている。
従来、粗表面を有するセラミックス部材としては、特開2000−191370号公報記載の耐プラズマ部材が知られている。
この耐プラズマ部材は、プラズマエッチング装置の処理室内壁面等を構成するものであって、Al(アルミナ)やYAG(イットリウムアルミニウムガーネット)等の緻密質セラミックスからなる基材の表面を、珪砂等によるサンドブラストにより表面粗さRa(中心線平均粗さ)1μmを超える粗表面としたものであり、この粗表面のアンカー効果(投錨効果)によって、付着、堆積物との物理的な結合を高め、パーティクルの発生を防止するというものである。
【0003】
【発明が解決しようとする課題】
しかし、従来の粗表面を有するセラミックス部材では、その表面の凹凸が、サンドブラスト処理によって形成されているので、ブラストの衝撃によって表層部にマイクロクラックが発生し、チャンバ内部材として使用した場合、マイクロクラックに起因するパーティクルが部材自体から発生する不具合がある。
【0004】
そこで、本発明は、半導体製造装置のチャンバ内部材として使用する場合に、パーティクルの発生を大幅に低減し得るAlNセラミックス部材及びその製造方法を提供することを課題とする。
【0005】
【課題を解決するための手段】
前記課題を解決するため、本発明の粗表面を有するAlNセラミックス部材は、緻密なAlNセラミックスからなる基材の表面における一部の結晶粒子がケミカルエッチングにより溶解及び/又は脱落されていることを特徴とする。
【0006】
前記基材の表面は、焼結面及び/又は加工面であることが好ましい。
又、前記ケミカルエッチングされた表面は、表面粗さRa0.5〜3μmであることが好ましい。
【0007】
一方、粗表面を有するAlNセラミックス部材の製造方法は、緻密なAlNセラミックスからなる基材をpH値8〜14の塩基性溶液に浸漬することを特徴とする。
【0008】
前記基材の表面は、焼結面及び/又は加工面であることが好ましい。
【0009】
【作用】
本発明の粗表面を有するAlNセラミックス部材においては、表層部にマイクロクラックが存在せず、又、表面の凹凸が結晶粒子の結晶面の露出によって形成される。
【0010】
ケミカルエッチングされた表面、すなわち、AlNセラミックス部材の表面の表面粗さRaが、0.5μm未満であると、アンカー効果が不十分となる。一方、3μmを超えるような表面粗さを与えるためには、極めて長時間のケミカルエッチングが必要とるが、得られるアンカー効果は、Raが3μmの場合と大差がない。又、半導体ウェーハと直に接触するような部材の場合、3μmを超えるような表面粗さRaを有すると、半導体ウェーハに傷を与え、ここから発生するパーティクルが問題となる。
ケミカルエッチングされた表面の表面粗さRaは、1〜2μmがより好ましい。
【0011】
一方、粗表面を有するAlNセラミックス部材の製造方法においては、基材の表面における一部の結晶粒子が塩基性溶液により結晶方位に応じた速度で溶解されると共に、一部の粒界が塩基性溶液により溶解されて結晶粒子が脱落する。
【0012】
塩基性溶液のpH値(水素イオン指数)が、8未満であると、AlNセラミックスのエッチング速度が非常に遅くなる。又、AlNセラミックスは、長時間水中に浸漬すると酸化反応を生じるため、所望の表面形態を得ることができなくなる。
塩基性溶液のpH値は、9〜12がより好ましい。
塩基性溶液としては、NaOH(水酸化ナトリウム)水溶液、KOH(水酸化カリウム)水溶液、NaCO(炭酸ナトリウム)水溶液等が挙げられる。
又、塩基性溶液の温度を変えることにより、ケミカルエッチング速度をコントロールすることができるが、この温度は、所望の表面状態、溶液のpH値により任意に定めて差し支えない。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について具体的な実施例、比較例を参照して説明する。
【0014】
実施例1〜5、比較例1〜3
先ず、平均粒径0.8μm、純度99.9%のAlN粉末に、焼結助剤として平均粒径1μmのY(酸化イットリウム)粉末1wt%、バインダ(結合剤)としてPVB(ポリビニルブチラール)3wt%、及び適量のメタノールを添加してスラリーとし、これをスプレードライヤによって造粒し、平均二次粒子径50μmの造粒粉を得た。
次に、造粒粉を一軸金型プレスにより30MPaの圧力で成形し、更に、100MPaの圧力でCIP(冷間静水圧プレス)処理して複数の成形体(直径300mm、厚さ12mm)を得、これらの成形体を大気中において600℃の温度で加熱して脱脂した後、脱脂体を窒素ガス雰囲気において1850℃の温度で焼成して複数のAlNセラミックス(AlN焼結体)を作製した。
得られた各AlNセラミックスを切断し、断面を研磨した後にSEM(走査型電子顕微鏡)で断面を観察したところ、何れも表層部にマイクロクラックは観察されなかった。
【0015】
次いで、各AlNセラミックスを直径220mm、厚さ2mmの円板状に加工してAlNセラミックスからなる基材とし、各基材を表1に示す室温の塩基性溶液にそれぞれ5時間浸漬したところ、得られた円板状の各AlNセラミックス部材の表面粗さRaは、それぞれ表1に示すようになった(但し、比較例1は、塩基性溶液に浸漬しておらず、その表面粗さは、加工によるものである。)。
【0016】
【表1】

Figure 2004067401
【0017】
又、実施例1〜5と同様のA1Nセラミックスからなる基材を、pH値12、温度80℃の水酸化ナトリウム水溶液に5時間浸漬した表面粗さRa2.2μmのAlNセラミックス部材の表面には、図1に示すように、AlNセラミックスからなる基材の表面における一部の結晶粒子がケミカルエッチングにより溶解及び/又は脱落されて凹凸が形成され、かつ、表層部には、マイクロクラックが存在しなかった。
【0018】
そして、得られた円板状の各AlNセラミックス部材を、ICP(誘導結合プラズマ)処理装置に装入し、C(六フッ化炭素)ガスを用いたフッ素プラズマ中に曝して厚さ0.5μmのAlF(フッ化アルミニウム)膜を堆積させて、AlF 膜を有するAlNセラミックス部材とした後、これらの上に8インチのシリコンウェーハをそれぞれ載置し、20mTorr、800WのAr(アルゴン)ガスプラズマ中において1分間のプラズマ曝露を実施した。
その後、各シリコンウェーハを回収し、パーティクルカウンタによってシリコンウェーハ上の直径0.2μm以上のパーティクル数を測定したところ、表1に示すようになった。
表1から分るように、緻密なAlNセラミックスからなる基材をpH値8〜14の塩基性溶液に浸漬することにより、表層部にマイクロクラックを生じることなく、結晶粒子の結晶面の露出によって凹凸が形成され、表面粗さRa0.5〜3μmの粗表面を有するAlNセラミックス部材が得られ、これを半導体製造装置のチャンバ内部材として使用することにより、パーティクルの発生を従来の半分以下にできる。
【0019】
【発明の効果】
以上説明したように、本発明の粗表面を有するAlNセラミックス部材によれば、表層部にマイクロクラックが存在しないので、半導体製造装置のチャンバ内部材として使用する場合、従来のものと比べてパーティクルの発生を大幅に低減することができる。
又、表面の凹凸が結晶粒子の結晶面の露出によって形成されるので、半導体製造装置のチャンバ内部材として使用する場合、従来の物理的な加工による表面に比べて安定なため、ハロゲンプラズマに侵され難いものとすることができる。
【0020】
一方、粗表面を有するAlNセラミックス部材の製造方法によれば、基材の表面における一部の結晶粒子が塩基性溶液により結晶方位に応じた速度で溶解されると共に、一部の粒界が塩基性溶液により溶解されて結晶粒子が脱落するので、表層部にマイクロクラックが発生することがなく、かつ、加工により表層部にマイクロクラックが生じていても除去され、結局、表層部にマイクロクラックを存在させないものとすることができ、又、表面の凹凸を結晶粒子の結晶面によって形成することができる。
【図面の簡単な説明】
【図1】本発明に係る粗表面を有するAlNセラミックス部材の表面の粒子構造を示す電子顕微鏡写真である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an AlN (aluminum nitride) ceramic member having a rough surface and used as a member in a chamber of a semiconductor manufacturing apparatus and a method for manufacturing the same.
[0002]
[Prior art]
As a ceramic member used in a chamber of a semiconductor manufacturing apparatus, a member made of AlN ceramics having excellent thermal conductivity and plasma resistance is often used. And deposits adhere to and accumulate on the semiconductor wafer.
In order to reduce such adhesion from the ceramic member surface and falling off of the deposits, it is desired to process the ceramic member surface so as to have a constant surface roughness.
Conventionally, as a ceramic member having a rough surface, a plasma-resistant member described in JP-A-2000-191370 is known.
This plasma-resistant member constitutes a wall surface of a processing chamber of a plasma etching apparatus, and the surface of a substrate made of a dense ceramic such as Al 2 O 3 (alumina) or YAG (yttrium aluminum garnet) is coated with silica sand. The surface roughness Ra (center line average roughness) is made to be a rough surface exceeding 1 μm by sand blasting, etc., and the anchor effect (anchoring effect) of this rough surface enhances the adhesion and physical bonding with the sediment. That is, the generation of particles is prevented.
[0003]
[Problems to be solved by the invention]
However, in a conventional ceramic member having a rough surface, the surface irregularities are formed by sandblasting, so that microcracks occur on the surface layer due to the impact of the blast. There is a problem that particles due to the above are generated from the member itself.
[0004]
Accordingly, it is an object of the present invention to provide an AlN ceramic member which can significantly reduce the generation of particles when used as a member in a chamber of a semiconductor manufacturing apparatus, and a method for manufacturing the same.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the AlN ceramic member having a rough surface according to the present invention is characterized in that some crystal grains on the surface of a substrate made of dense AlN ceramics are dissolved and / or dropped by chemical etching. And
[0006]
The surface of the base material is preferably a sintered surface and / or a processed surface.
Further, it is preferable that the surface subjected to the chemical etching has a surface roughness Ra of 0.5 to 3 μm.
[0007]
On the other hand, the method for producing an AlN ceramic member having a rough surface is characterized by immersing a substrate made of dense AlN ceramics in a basic solution having a pH value of 8 to 14.
[0008]
The surface of the base material is preferably a sintered surface and / or a processed surface.
[0009]
[Action]
In the AlN ceramic member having a rough surface according to the present invention, microcracks do not exist in the surface layer portion, and irregularities on the surface are formed by exposing the crystal faces of the crystal grains.
[0010]
When the surface roughness Ra of the chemically etched surface, that is, the surface of the AlN ceramic member is less than 0.5 μm, the anchor effect becomes insufficient. On the other hand, in order to provide a surface roughness exceeding 3 μm, an extremely long chemical etching is required, but the obtained anchor effect is not much different from the case where Ra is 3 μm. Further, in the case of a member which comes into direct contact with the semiconductor wafer, if the member has a surface roughness Ra exceeding 3 μm, the semiconductor wafer is damaged and particles generated therefrom become a problem.
The surface roughness Ra of the chemically etched surface is more preferably 1 to 2 μm.
[0011]
On the other hand, in the method of manufacturing an AlN ceramic member having a rough surface, some crystal grains on the surface of the base material are dissolved by a basic solution at a speed corresponding to the crystal orientation, and some grain boundaries are basic. The crystal particles are dropped by being dissolved by the solution.
[0012]
When the pH value (hydrogen ion index) of the basic solution is less than 8, the etching rate of the AlN ceramic becomes extremely slow. In addition, since AlN ceramics undergo an oxidation reaction when immersed in water for a long time, a desired surface morphology cannot be obtained.
The pH value of the basic solution is more preferably 9 to 12.
Examples of the basic solution include an aqueous solution of NaOH (sodium hydroxide), an aqueous solution of KOH (potassium hydroxide), and an aqueous solution of Na 2 CO 3 (sodium carbonate).
The chemical etching rate can be controlled by changing the temperature of the basic solution, but this temperature may be arbitrarily determined depending on the desired surface condition and the pH value of the solution.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to specific examples and comparative examples.
[0014]
Examples 1 to 5, Comparative Examples 1 to 3
First, an AlN powder having an average particle diameter of 0.8 μm and a purity of 99.9%, a Y 2 O 3 (yttrium oxide) powder having an average particle diameter of 1 μm as a sintering aid, and 1 wt% of PVB (polyvinyl) as a binder (binder). Butyral) of 3 wt% and an appropriate amount of methanol were added to form a slurry, which was granulated by a spray dryer to obtain a granulated powder having an average secondary particle diameter of 50 μm.
Next, the granulated powder is formed by a uniaxial die press at a pressure of 30 MPa, and further subjected to a CIP (cold isostatic press) treatment at a pressure of 100 MPa to obtain a plurality of formed bodies (diameter 300 mm, thickness 12 mm). After heating these compacts in the air at a temperature of 600 ° C. to degrease them, the degreased bodies were fired at a temperature of 1850 ° C. in a nitrogen gas atmosphere to produce a plurality of AlN ceramics (AlN sintered bodies).
Each of the obtained AlN ceramics was cut, the cross section was polished, and then the cross section was observed with an SEM (scanning electron microscope). As a result, no microcracks were observed in the surface layer in any case.
[0015]
Next, each AlN ceramic was processed into a disk shape having a diameter of 220 mm and a thickness of 2 mm to obtain base materials made of AlN ceramics. Each base material was immersed in a basic solution at room temperature shown in Table 1 for 5 hours. The surface roughness Ra of each of the obtained disk-shaped AlN ceramic members was as shown in Table 1 (however, Comparative Example 1 was not immersed in a basic solution, and the surface roughness was It is due to processing.)
[0016]
[Table 1]
Figure 2004067401
[0017]
A substrate made of the same A1N ceramics as in Examples 1 to 5 was immersed in an aqueous sodium hydroxide solution having a pH value of 12 and a temperature of 80 ° C. for 5 hours. As shown in FIG. 1, some crystal grains on the surface of the substrate made of AlN ceramics are dissolved and / or dropped by chemical etching to form irregularities, and no microcracks are present on the surface layer portion. Was.
[0018]
Then, each of the obtained disk-shaped AlN ceramic members is charged into an ICP (inductively coupled plasma) processing apparatus, and is exposed to a fluorine plasma using C 2 F 6 (carbon hexafluoride) gas to have a thickness. After depositing a 0.5 μm AlF 3 (aluminum fluoride) film to form an AlN ceramic member having an AlF 3 film, an 8-inch silicon wafer is placed on each of them, and 20 mTorr, 800 W Ar ( A 1 minute plasma exposure was performed in an (argon) gas plasma.
Thereafter, each silicon wafer was collected, and the number of particles having a diameter of 0.2 μm or more on the silicon wafer was measured by a particle counter. The results are as shown in Table 1.
As can be seen from Table 1, by immersing the substrate made of dense AlN ceramics in a basic solution having a pH value of 8 to 14 without causing microcracks on the surface layer portion, and exposing the crystal faces of the crystal particles. An AlN ceramics member having irregularities and having a rough surface with a surface roughness Ra of 0.5 to 3 μm is obtained. By using this as a member in a chamber of a semiconductor manufacturing apparatus, the generation of particles can be reduced to less than half of the conventional one. .
[0019]
【The invention's effect】
As described above, according to the AlN ceramic member having a rough surface according to the present invention, since microcracks do not exist in the surface layer portion, when used as a member in a chamber of a semiconductor manufacturing apparatus, particles are more likely to be generated as compared with conventional ones. Generation can be greatly reduced.
Also, since the surface irregularities are formed by exposing the crystal faces of the crystal grains, when used as a member in a chamber of a semiconductor manufacturing apparatus, the surface is more stable than a surface formed by conventional physical processing, and thus is exposed to halogen plasma. It can be difficult to be done.
[0020]
On the other hand, according to the method for manufacturing an AlN ceramic member having a rough surface, some of the crystal grains on the surface of the base material are dissolved by the basic solution at a speed corresponding to the crystal orientation, and some of the grain boundaries are formed by the base. Since the crystal particles are dropped by being dissolved by the neutral solution, no microcracks are generated on the surface layer, and even if microcracks are generated on the surface layer by processing, the microcracks are removed. It can be absent, and the surface irregularities can be formed by the crystal faces of the crystal grains.
[Brief description of the drawings]
FIG. 1 is an electron micrograph showing the particle structure of the surface of an AlN ceramic member having a rough surface according to the present invention.

Claims (5)

緻密なAlNセラミックスからなる基材の表面における一部の結晶粒子がケミカルエッチングにより溶解及び/又は脱落されていることを特徴とする粗表面を有するAlNセラミックス部材。An AlN ceramic member having a rough surface, characterized in that some crystal grains on the surface of a substrate made of dense AlN ceramic have been dissolved and / or dropped by chemical etching. 前記基材の表面が焼結面及び/又は加工面であることを特徴とする請求項1記載の粗表面を有するAlNセラミックス部材。The AlN ceramic member having a rough surface according to claim 1, wherein the surface of the substrate is a sintered surface and / or a processed surface. 前記ケミカルエッチングされた表面が表面粗さRa0.5〜3μmであることを特徴とする請求項1又は2記載の粗表面を有するAlNセラミックス部材。3. The AlN ceramic member having a rough surface according to claim 1, wherein the chemically etched surface has a surface roughness Ra of 0.5 to 3 [mu] m. 緻密なAlNセラミックスからなる基材をpH値8〜14の塩基性溶液に浸漬することを特徴とする粗表面を有するAlNセラミックス部材の製造方法。A method for producing an AlN ceramic member having a rough surface, comprising immersing a substrate made of dense AlN ceramics in a basic solution having a pH value of 8 to 14. 前記基材の表面が焼結面及び/又は加工面であることを特徴とする請求項4記載の粗表面を有するAlNセラミックス部材の製造方法。The method for producing an AlN ceramic member having a rough surface according to claim 4, wherein the surface of the substrate is a sintered surface and / or a processed surface.
JP2002224871A 2002-08-01 2002-08-01 Aluminum nitride ceramic member having roughened surface, and method of manufacturing the same Pending JP2004067401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224871A JP2004067401A (en) 2002-08-01 2002-08-01 Aluminum nitride ceramic member having roughened surface, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224871A JP2004067401A (en) 2002-08-01 2002-08-01 Aluminum nitride ceramic member having roughened surface, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2004067401A true JP2004067401A (en) 2004-03-04

Family

ID=32012715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224871A Pending JP2004067401A (en) 2002-08-01 2002-08-01 Aluminum nitride ceramic member having roughened surface, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2004067401A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102517892A (en) * 2011-12-02 2012-06-27 山东鲁阳股份有限公司 Method for producing non-combustible aluminum silicate ceramic fiber cloth and bands through chemical solution method
CN112979322A (en) * 2021-02-20 2021-06-18 北京北方华创微电子装备有限公司 Ceramic part and manufacturing method thereof
CN114560705A (en) * 2022-01-19 2022-05-31 福建华清电子材料科技有限公司 Preparation method of non-grinding aluminum nitride ceramic substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102517892A (en) * 2011-12-02 2012-06-27 山东鲁阳股份有限公司 Method for producing non-combustible aluminum silicate ceramic fiber cloth and bands through chemical solution method
CN112979322A (en) * 2021-02-20 2021-06-18 北京北方华创微电子装备有限公司 Ceramic part and manufacturing method thereof
CN112979322B (en) * 2021-02-20 2023-09-08 北京北方华创微电子装备有限公司 Ceramic part and manufacturing method thereof
CN114560705A (en) * 2022-01-19 2022-05-31 福建华清电子材料科技有限公司 Preparation method of non-grinding aluminum nitride ceramic substrate
CN114560705B (en) * 2022-01-19 2023-01-24 福建华清电子材料科技有限公司 Preparation method of non-grinding aluminum nitride ceramic substrate

Similar Documents

Publication Publication Date Title
JP4277973B2 (en) Yttria-alumina composite oxide film production method, yttria-alumina composite oxide film, and corrosion-resistant member
JP2003146751A (en) Plasma-resistant member and method of producing the same
KR100712715B1 (en) Ceramics member of which fine projections are formed in the surface and method for producing it
TW202311202A (en) Y2o3-zro2erosion resistant material for chamber components in plasma environments
JPH1045461A (en) Corrosion resistant member
JPH10236871A (en) Plasma resistant member
JP3967093B2 (en) Ceramic member and manufacturing method thereof
JP3164559B2 (en) Processing container material
JP2005158933A (en) Member of manufacturing apparatus of semiconductor or liquid crystal, and manufacturing method thereof
JPH11214365A (en) Member for semiconductor element manufacturing device
JP3618048B2 (en) Components for semiconductor manufacturing equipment
JP2002037683A (en) Plasma resistant element and its manufacturing method
JP2004067401A (en) Aluminum nitride ceramic member having roughened surface, and method of manufacturing the same
KR20090101245A (en) Ceramic member and corrosion-resistant member
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP2002293630A (en) Plasma resistant member and method of producing the same
JP2007063595A (en) Ceramic gas nozzle made of y2o3 sintered compact
JP3784180B2 (en) Corrosion resistant material
JP3769416B2 (en) Components for plasma processing equipment
JP2002068864A (en) Plasma resistant member and method of manufacturing for the same
JP4544708B2 (en) Plasma-resistant member and method for producing the same
TWI814429B (en) wafer support
JP2005225745A (en) Plasma resistant member and its producing method
JPH11278944A (en) Silicon nitride corrosion resistant member and its production
JP5077573B2 (en) Wafer

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041026