JP2004067009A - タイヤ状態推定装置 - Google Patents

タイヤ状態推定装置 Download PDF

Info

Publication number
JP2004067009A
JP2004067009A JP2002231275A JP2002231275A JP2004067009A JP 2004067009 A JP2004067009 A JP 2004067009A JP 2002231275 A JP2002231275 A JP 2002231275A JP 2002231275 A JP2002231275 A JP 2002231275A JP 2004067009 A JP2004067009 A JP 2004067009A
Authority
JP
Japan
Prior art keywords
tire
gradient
resonance frequency
wear
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002231275A
Other languages
English (en)
Inventor
Hiroyoshi Kojima
小島 弘義
Katsuhiro Asano
浅野 勝宏
Koji Umeno
梅野 孝治
Masaru Sugai
菅井 賢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2002231275A priority Critical patent/JP2004067009A/ja
Publication of JP2004067009A publication Critical patent/JP2004067009A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/06Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle
    • B60C23/061Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle by monitoring wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/24Wear-indicating arrangements
    • B60C11/246Tread wear monitoring systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/06Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle
    • B60C23/061Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle by monitoring wheel speed
    • B60C23/062Frequency spectrum analysis of wheel speed signals, e.g. using Fourier transformation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Tires In General (AREA)

Abstract

【課題】車両におけるタイヤに関するある物理量から別の物理量を推定することによってタイヤの状態を推定する装置においてその推定精度を向上させる。
【解決手段】車輪速度センサ10を用いることにより、タイヤの共振周波数Fと、そのタイヤの動荷重半径Dと、そのタイヤの摩擦係数μがそのタイヤのスリップ率に対して変化する勾配であるμ勾配Bとを取得し、その取得された共振周波数Fと動荷重半径Dとμ勾配Bとに基づき、同じタイヤについて空気圧xと荷重yと摩耗度zとをタイヤの状態として推定する。
【選択図】図3

Description

【0001】
【発明の属する技術分野】
本発明は、車両におけるタイヤの状態を推定する技術に関するものであり、特に、その推定精度を向上させる技術に関するものである。
【0002】
【従来の技術】
車両走行中にその車両におけるタイヤの異常を発見することなどを目的としてタイヤの状態を推定する技術が既に存在する。推定されるタイヤの状態には、タイヤの空気圧や摩耗に関する状態がある。
【0003】
タイヤの状態を推定する一従来装置が特開2002−36837号公報に記載されている。この従来装置は、車輪速度を検出するセンサと、その検出された車輪速度に基づき、タイヤの摩耗を推定するタイヤ摩耗推定部とを備えている。
【0004】
タイヤのトレッド部は、一般に、ゴムにより構成されるとともに、そのトレッドの表面上を縦横に延びる溝により分割される複数のブロックにより構成される。一方、タイヤが摩耗すると、それのトレッド部の各ブロックの厚さが薄くなる。そのため、タイヤにそれの接地点において作用する前後方向力に対するトレッド部の各ブロックのたわみが小さくなり、その結果、トレッド部の剛性が見かけ上増加する。
【0005】
トレッド部の剛性が増加すると、タイヤの摩擦係数μがそのタイヤのスリップ率に対して変化する勾配であるμ勾配が増加する。このμ勾配は、タイヤのブレーキスティフネスと称されることがある。このように、タイヤの摩耗とμ勾配との間に一定の関係が成立し、よって、この関係を利用すれば、タイヤのμ勾配からタイヤの摩耗を推定することが可能となる。
【0006】
このような事実を前提として、上記従来装置におけるタイヤ摩耗推定部は次のように構成されている。すなわち、
(a)検出された車輪速度に基づき、車輪のスリップ比(スリップ率に相当する)と車両の加減速度(タイヤの摩擦係数に相当する)とを演算する手段と、
(b)車輪スリップ比の車両加減速度に対する1次回帰係数K1(μ勾配の逆数に相当する)と、車両加減速度の車輪スリップ比に対する1次の回帰係数K2(μ勾配に相当する)とを演算するとともに、それら回帰係数K1,K2間の相関係数を演算する手段と、
(c)その演算された相関係数の値に応じて所定の時間または所定の個数、1次回帰係数K1,K2を蓄積し、その蓄積された複数の1次回帰係数K1,K2の値の頻度分布と予め定められた頻度分布とを互いに比較することにより、タイヤの摩耗を推定する手段と
を含むように構成されているのである。
【0007】
【発明が解決しようとする課題】
この従来のタイヤ状態推定装置においては、基本的には、μ勾配のみからタイヤの摩耗度が推定される。しかし、μ勾配は、タイヤの摩耗以外の要因、例えば、タイヤの空気圧や荷重(例えば、接地荷重)の影響も受ける。すなわち、摩耗度が同じタイヤを用いてそれのμ勾配を取得しても、そのときのタイヤの空気圧や荷重が異なれば、μ勾配も異なってしまうのである。そのため、この従来のタイヤ状態推定装置では、タイヤの摩耗度というタイヤの状態を正確に推定することは困難である。
【0008】
このように、タイヤに関するある物理量を目的物理量として直接に取得する(検出する)ことに代えて、それとは物理的に異なる別の物理量であってタイヤに関するものを基礎物理量として用いることによって目的物理量を間接に取得する(推定する)ことが必要である場合に、目的物理量が影響を及ぼす物理量が複数存在するにもかかわらず、そのうちの一つのみを基礎物理量として選定して目的物理量を推定しようとしても、その推定精度を高めることは困難である。
【0009】
そして、この場合には、目的物理量が影響を及ぼす複数の物理量の全部、実質的な全部または要部、すなわち、少なくとも2種類の物理量を基礎物理量として選定して目的物理量を推定することが推定精度向上の観点から望ましい。
【0010】
このような知見に基づき、本発明は、タイヤに関するある物理量から別の物理量を推定することによってタイヤの状態を推定する場合においてその推定精度を向上させることを課題としてなされたものである。
【0011】
【課題を解決するための手段および発明の効果】
本発明によって下記の各態様が得られる。各態様は、項に区分し、各項に番号を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、本明細書に記載の技術的特徴のいくつかおよびそれらの組合せのいくつかの理解を容易にするためであり、本明細書に記載の技術的特徴やそれらの組合せが以下の態様に限定されると解釈されるべきではない。
(1) ホイールに装着されたタイヤの内部に空気が圧力下に封入されて成る車輪を備えた車両に設けられ、前記タイヤの状態を推定する装置であって、
前記タイヤの共振周波数と、前記タイヤの動荷重半径と、前記タイヤの摩擦係数μがそのタイヤのスリップ率に対して変化する勾配であるμ勾配とを取得する取得装置と、
その取得された共振周波数と動荷重半径とμ勾配とに基づき、前記タイヤについて空気圧と荷重と摩耗度との少なくとも1つを前記タイヤの状態として推定する推定器と
を含むタイヤ状態推定装置。
【0012】
同じタイヤについての共振周波数と動荷重半径とμ勾配はいずれも、同じタイヤについての空気圧の影響と荷重の影響と摩耗度の影響とを受ける物理量である。したがって、それら空気圧と荷重と摩耗度との少なくとも1つを別の物理量からの推定によって取得することが必要である場合には、その推定を共振周波数と動荷重半径とμ勾配とを一緒に考慮して行うことが望ましい。
【0013】
このような知見に基づき、本項に係る装置においては、共振周波数と動荷重半径とμ勾配とに基づき、空気圧と荷重と摩耗度との少なくとも1つがタイヤの状態として推定される。
【0014】
したがって、この装置によれば、共振周波数と動荷重半径とμ勾配とのうちのいずれか1つまたは2つに基づき、空気圧と荷重と摩耗度との少なくとも1つを推定する場合に比較し、その推定精度を向上させることが容易となる。
【0015】
本項における「荷重」の一例は、タイヤに作用する接地荷重である。
(2) 前記推定器が、前記空気圧と荷重と摩耗度とを前記タイヤの状態として推定するものである(1)項に記載のタイヤ状態推定装置。
【0016】
車両のユーザの観点からすれば、車両走行中にタイヤの状態を正しく把握するために参照することが必要なタイヤ情報は空気圧と荷重と摩耗度とである。これに対し、本項に係る装置によれば、空気圧と荷重と摩耗度とがタイヤの状態として推定される。
【0017】
したがって、この装置によれば、車両走行中にタイヤの状態を正しく把握するために参照することが必要なタイヤ情報が車両のユーザに提供される。
(3) 前記推定器が、前記共振周波数、動荷重半径およびμ勾配を含む第1変数群と、前記空気圧、荷重および摩耗度を含む第2変数群との関係を近似する関数式を用いることにより、前記タイヤの状態を推定するものである(1)または(2)項に記載のタイヤ状態推定装置。
【0018】
この装置によれば、共振周波数、動荷重半径およびμ勾配を含む第1変数群と、空気圧、荷重および摩耗度を含む第2変数群との関係を近似する関数式を用いることにより、タイヤの状態を簡単なアルゴリズムで推定することが可能となる。
(4) 前記関数式が、前記第1変数群と前記第2変数群との関係を線形的に近似するものである(3)項に記載のタイヤ状態推定装置。
【0019】
共振周波数、動荷重半径およびμ勾配を含む第1変数群と、空気圧、荷重および摩耗度を含む第2変数群との間には、線形の関係が成立する領域と非線形の関係が成立する領域とが存在すると考えられる。しかし、それら第1変数群と第2変数群との間に線形の関係が成立する領域に限定的に着目して前記関数式を定義しても、タイヤの状態を推定するに当たって実用上の問題は生じないと考えられる。
【0020】
一方、その関数式が線形化して定義する場合には、非線形化して定義する場合に比較し、その関数式を用いてタイヤの状態を推定するためのアルゴリズムを簡単にすることが容易となる。
【0021】
このような知見に基づき、本項に係る装置においては、共振周波数、動荷重半径およびμ勾配を含む第1変数群と、空気圧、荷重および摩耗度を含む第2変数群との関係を近似する関数式が、その関係を線形的に近似するものとされている。
(5) 前記取得装置が、前記車輪の角速度を車輪速度として検出する車輪速度センサを含み、その検出された車輪速度に基づき、前記共振周波数と動荷重半径とμ勾配とを算出するものである(1)ないし(4)項のいずれかに記載のタイヤ状態推定装置。
【0022】
この装置によれば、共振周波数と動荷重半径とμ勾配というように互いに異なる物理量を、それらに共通のセンサを用いて取得することが可能となる。したがって、この装置によれば、装置構成の簡単化、部品点数の削減および装置コストの低減を容易に図り得る。
(6) 前記推定器が、前記共振周波数と動荷重半径とμ勾配とから成る3つの物理量の少なくとも1つの取得値を、それ以外の物理量の取得値によって補正する補正手段を含む(1)ないし(5)項のいずれかに記載のタイヤ状態推定装置。
【0023】
共振周波数と動荷重半径とμ勾配という3つの物理量は相互に依存する。そのため、その相互依存性を崩す悪影響がタイヤ状態の推定値に及ばないようにすることが望ましい。
【0024】
このような知見に基づき、本項に係る装置においては、共振周波数と動荷重半径とμ勾配とから成る3つの物理量の少なくとも1つの取得値が、それ以外の物理量の取得値によって補正される。
【0025】
したがって、この装置によれば、共振周波数と動荷重半径とμ勾配とから成る3つの物理量間の相互依存性を適正化することにより、タイヤ状態の推定精度の低下を回避することが容易となる。
(7) 前記補正手段が、前記μ勾配の取得値を前記共振周波数の取得値によって補正する手段を含む(6)項に記載のタイヤ状態推定装置。
(8) 前記取得装置が、さらに、前記タイヤの温度をも取得するものであり、前記推定器が、その取得されたタイヤ温度を前記タイヤの状態の推定値に反映させるものである(1)ないし(7)項のいずれかに記載のタイヤ状態推定装置。
【0026】
タイヤの温度が変化すれば、タイヤを構成するゴムの剛性が変化し、共振周波数、動荷重半径およびμ勾配のそれぞれに影響を及ぼすと仮定すると、共振周波数、動荷重半径およびμ勾配のそれぞれに影響を及ぼす物理量として、空気圧、荷重および摩耗度の他にタイヤ温度も存在することになる。
【0027】
このような知見に基づき、本項に係る装置においては、タイヤ温度の取得値がタイヤの状態の推定値に反映させられる。したがって、この装置によれば、タイヤ温度をも考慮してタイヤの状態を推定することが可能となる。
(9) 前記推定器が、前記共振周波数、動荷重半径およびμ勾配を含む第1変数群と、前記空気圧、荷重、摩耗度およびタイヤ温度を含む第2変数群との関係を近似する関数式を、それら変数のうち共振周波数、動荷重半径、μ勾配およびタイヤ温度はそれぞれ既知数、空気圧、荷重および摩耗度はそれぞれ未知数として扱って解くことにより、空気圧、荷重および摩耗度の少なくとも1つを前記タイヤの状態として推定するものである(8)項に記載のタイヤ状態推定装置。
【0028】
【発明の実施の形態】
以下、本発明のさらに具体的な実施の形態のいくつかを図面に基づいて詳細に説明する。
【0029】
図1には、本発明の第1実施形態に従うタイヤ状態推定装置のハードウエア構成がブロック図で概念的に示されている。このタイヤ状態推定装置は車両に搭載されている。
【0030】
その車両は、それの前後左右にそれぞれ車輪を備えている。図1において「FL」は左前輪、「FR」は右前輪、「RL」は左後輪、「RR」は右後輪をそれぞれ意味している。
【0031】
各車輪は、よく知られているように、金属製のホイールに装着されたゴム製のタイヤの内部に空気が圧力下に封入されて構成されている。
【0032】
図1に示すように、このタイヤ状態推定装置は、各車輪ごとに車輪速度センサ10を備えている。各車輪速度センサ10は、よく知られているように、各車輪の角速度を車輪速度として検出するセンサである。具体的には、車輪速度センサ10は、電磁ピックアップであり、車輪と共に回転するロータの外周に形成された多数の歯の通過に応じて周期的に変化する電圧信号を出力する。
【0033】
それら4個の車輪速度センサ10は、図1に示すように、信号処理装置20に電気的に接続されている。この信号処理装置20は、コンピュータ22を主体とし、それら4個の車輪速度センサ10の出力信号に基づき、各輪ごとにタイヤの状態を推定する装置である。推定されるタイヤの状態は、タイヤの空気圧と荷重と摩耗度との少なくとも1つを含んでいる。
【0034】
図2には、コンピュータ22のハードウエア構成がブロック図で概念的に示されている。コンピュータ22は、よく知られているように、CPU30(プロセッサの一例)とROM32(メモリの一例)とRAM34(メモリの一例)とがバス36により互いに接続されて構成されている。
【0035】
ROM32には、図2に示すように、タイヤ状態推定プログラムおよび車速推定プログラムを始めとし、各種プログラムが予め記憶されている。
【0036】
車速推定プログラムは、よく知られているように、複数の車輪速度センサ10によりそれぞれ検出された複数の車輪速度に基づいて車速を推定するために実行されるプログラムである。
【0037】
タイヤ状態推定プログラムは、各輪ごとに、車輪速度センサ10から出力された車輪速度信号に基づき、タイヤの共振周波数Fと、動荷重半径Dと、μ勾配Bとを算出し、それら算出値に基づき、タイヤの空気圧xと荷重yと摩耗度zとの少なくとも1つをタイヤの状態として推定するために実行されるプログラムである。このタイヤ状態推定プログラムの詳細は後に説明する。
【0038】
図3には、このタイヤ状態推定装置が機能ブロック図で示されている。このタイヤ状態推定装置は、その物理的な存在に着目すれば、車輪速度センサ10と信号処理装置20とを含む構成を有すると考えられ、一方、その機能に着目すれば、タイヤ状態の推定に必要な物理量を車輪速度センサ10から取得する取得装置40と、その取得された物理量に基づいてタイヤ状態を推定する推定器42とを含む構成を有すると考えられる。
【0039】
図1に示すように、信号処理装置20には、さらに、表示器50も接続されている。この表示器50は、推定されたタイヤ状態を車両の運転者に視覚的に告知するために作動させられる。
【0040】
図1に示すように、信号処理装置20には、さらに、前後加速度センサ60も接続されている。この前後加速度センサ60は、車両の前後加速度を取得する装置の一例として車両に搭載されている。そのような装置の別の例として、車両の駆動力または制動力を制御するコントローラに対する指令信号を発生させる装置がある。
【0041】
信号処理装置20は、次のようなロジックに従ってタイヤ状態を推定する。
【0042】
図4には、タイヤの駆動力DF(タイヤの摩擦係数μに相当する)とタイヤのスリップ率sとの関係がグラフで表されている。このグラフは、前半の線形領域と後半の非線形領域とを含むように構成されており、その線形領域におけるグラフの勾配がμ勾配Bである。タイヤの駆動力DFは、車両の前後加速度に相当する。一方、タイヤのスリップ率sは、路面に対してタイヤがスリップする程度を表し、例えば、前記推定車速と車輪速度との差をその推定車速で割り算することによって取得することが可能である。したがって、μ勾配は、車両の前後加速度と、推定車速と、車輪速度とから算出することが可能である。
【0043】
このように定義されたμ勾配は、図5に示すように、タイヤの空気圧xと荷重y(一般的には接地荷重)とがそれぞれある値に固定された条件において、タイヤの摩耗度zに応じて変化する。さらに、μ勾配は、図6に示すように、タイヤの空気圧xと摩耗度zとがそれぞれある値に固定された条件において、タイヤの荷重yに応じて変化する。さらにまた、μ勾配は、図7に示すように、タイヤの荷重yと摩耗度zとがそれぞれある値に固定された条件において、タイヤの空気圧xに応じて変化する。
【0044】
このように、μ勾配Bは、タイヤの空気圧xと荷重yと摩耗度zとのそれぞれの影響を受ける。同様に、タイヤの共振周波数Fも動荷重半径Dも、タイヤの空気圧xと荷重yと摩耗度zとのそれぞれの影響を受ける。
【0045】
したがって、図8に式(1)で示すように、共振周波数Fは、空気圧xと荷重yと摩耗度zとをそれぞれ変数とする関数f1により定義できる。同様に、動荷重半径Dは、空気圧xと荷重yと摩耗度zとをそれぞれ変数とする関数f2により定義でき、また、μ勾配Bは、空気圧xと荷重yと摩耗度zとをそれぞれ変数とする関数f3により定義できる。
【0046】
図9には、共振周波数Fと空気圧xとの関係がグラフで表されている。両者を注目する領域すなわち動作領域を限定すれば、その動作領域を代表する動作基準点を通過する直線グラフにより、それら共振周波数Fと空気圧xとの関係を線形的に近似することが可能である。ここに、動作基準点は、例えば、タイヤが標準状態にある時期に着目して定義することが可能である。図9における直線グラフの傾斜角をθとすれば、その勾配f11はtanθで表すことができる。
【0047】
共振周波数Fについての線形近似は、他の変数すなわち荷重yおよび摩耗度zとの組合せについても妥当であり、しかも、このような線形近似は、動荷重半径Dおよびμ勾配Bを対象としても妥当である。したがって、共振周波数F、動荷重半径Dおよびμ勾配Bをそれぞれ出力変数とする第1変数群と、空気圧x、荷重yおよび摩耗度zをそれぞれ入力変数とする第2変数群とは、3行3列の係数マトリクスと、3行1列の定数マトリクスとを用いることにより、図8に式(2)で示すように、互いに関連付けられる。この式(2)を、係数マトリクスをA、定数マトリクスをCでそれぞれ表すことによって置換したのが式(3)である。
【0048】
この式(3)は、係数マトリクスAおよび定数マトリクスCが、空気圧x、荷重yおよび摩耗度zにより定義される座標空間を、共振周波数F、動荷重半径Dおよびμ勾配Bにより定義される座標空間に変換することを表している。図10には、このことが概念的にグラフで表されている。同図においては、空気圧x、荷重yおよび摩耗度zの各値の組合せは、関数f1により共振周波数Fの座標面上の一点に、関数f2により動荷重半径Dの座標面上の一点に、そして、関数f3によりμ勾配Bの座標面上の一点にそれぞれ対応させられる様子が表されている。
【0049】
共振周波数Fと動荷重半径Dとμ勾配Bとは、前述のように、3通りの相互独立な関係式(物理現象を記述する)により表現されるため、それら3つの変数は、それら間における相互依存性とは無関係に、1次独立の関係にあると仮定される。この仮定を採用すれば、係数マトリクスAの逆行列が存在することになるから、図8における式(3)は、図11における式(4)に変形できる。
【0050】
この式(4)から明らかなように、空気圧x、荷重yおよび摩耗度zはいずれも、共振周波数Fと動荷重半径Dとμ勾配Bとをそれぞれ変数とする関数g1、g2、g3により定義されることとなり、このことが式(5)により表されている。この式(5)は、図8における式(2)と同様に、3行3列の係数マトリクスと3行1列の定数マトリクスとを用いることにより、図11において式(6)により表される。この式(6)を、係数マトリクスをG、定数マトリクスをEでそれぞれ表すことによって置換したのが式(7)である。
【0051】
したがって、前記動作基準点に着目して上記係数マトリクスGと定数マトリクスEとを予め同定すけば、共振周波数Fと動荷重半径Dとμ勾配Bとの組合せに対応する空気圧xと荷重yと摩耗度zとの組合せが求められる。
【0052】
図12には、前記タイヤ状態推定プログラムの内容がフローチャートで概念的に表されている。このタイヤ状態推定プログラムは、コンピュータ22の電源投入後、繰返し実行される。
【0053】
各回の実行時には、まず、ステップS1(以下、単に「S1」で表す。他のステップについても同じとする)において、各輪ごとに、車輪速度センサ10により検出された車輪速度に基づいてタイヤの共振周波数Fが算出される。この算出手法の一例が特許第2836652号公報に開示されている。
【0054】
次に、S2において、各輪ごとに、車輪速度センサ10を用いてタイヤの動荷重半径Dが算出される。この動荷重半径Dは、それが小さいほど、同じ長さの路面上を転がるタイヤの回転数が増加するという事実に着目することにより、車輪速度センサ10により検出された車輪速度と前記推定車速との関係に基づいて算出することが可能である。
【0055】
ただし、動荷重半径Dを算出するために車輪速度センサ10を用いることは不可欠ではない。例えば、車両にGPSが搭載されている場合には、ある長さの時間に車両が実際に走行した距離をGPSを用いて電子地図上で測定し、その測定された距離を走行する間におけるタイヤの回転数を車輪速度センサ10を用いて測定する。GPSを用いて測定された距離を、車輪速度センサ10を用いて測定されたタイヤ回転数で割り算すれば、タイヤの外周長が算出され、この外周長から動荷重半径Dを算出することが可能である。
【0056】
その後、S3において、各輪ごとにμ勾配Bが算出される。このS3においては、前後加速度センサ60により検出された前後加速度がタイヤの駆動力DFに相当する物理量として参照されるとともに、車輪速度センサ10により検出された車輪速度と前記推定車速とからタイヤのスリップ率sが算出される。それら前後加速度とスリップ率sとの間に線形の関係が成立する走行状態において、前後加速度の一定時間あたりの変化量をスリップ率sの一定時間あたりの変化量で割り算することにより、μ勾配Bを算出することが可能である。
【0057】
続いて、S4において、タイヤに関する前記動作基準点における各種情報に基づき、前記係数マトリクスGと定数マトリクスEとが同定される。各マトリクスの各成分が動作環境(例えば、タイヤ状態を推定するためにコンピュータ20が動作する環境)に適合するように特定されるのである。
【0058】
ただし、それら係数マトリクスGおよび定数マトリクスEは、車両が工場から出荷されるときにコンピュータ22のROM32に書き込まれたデータを読み出すことによって同定することが可能である。そのようなデータの一例は、係数マトリクスGおよび定数マトリクスEの各初期値(固定値)に乗じられる適合係数である。ここに、各初期値は、タイヤの共振周波数F,動荷重半径Dおよびμ勾配Bがいずれも標準状態にあるときの値を意味する。
【0059】
その後、S5において、その同定された係数マトリクスGおよび定数マトリクスEと、前記算出された共振周波数F、動荷重半径Dおよびμ勾配Bとを図11の式(7)に代入することにより、空気圧xと荷重yと摩耗度zとが推定される。
【0060】
続いて、S6において、その推定結果が前記表示器50に出力され、可視化される。
【0061】
以上で、このタイヤ状態推定プログラムの一回の実行が終了する。
【0062】
以上の説明から明らかなように、本実施形態においては、信号処理装置20のうちS1を実行する部分が図3における共振周波数算出手段70を構成し、S2を実行する部分が動荷重半径算出手段72を構成し、S3を実行する部分がμ勾配算出手段74を構成し、S4ないしS6を実行する部分が推定器42を構成しているのである。
【0063】
さらに、それら共振周波数算出手段70、動荷重半径算出手段72およびμ勾配算出手段74と車輪速度センサ10とが互いに共同して取得装置40を構成しているのである。
【0064】
次に、本発明の第2実施形態を説明する。ただし、本実施形態は第1実施形態とハードウエア構成が共通し、異なるのはソフトウエア構成のみであるため、ソフトウエア構成のみについて詳細に説明し、ハードウエア構成については説明を省略する。
【0065】
本実施形態のソフトウエア構成は、図13にフローチャートで概念的に表されている空気圧推定プログラムと、前記車速推定プログラムとを含んでいる。その空気圧推定プログラムは、タイヤ状態としてタイヤの空気圧xのみを推定可能である点で、空気圧xのみならず荷重yおよび摩耗度zも推定可能である第1実施形態のタイヤ状態推定プログラムとは異なる。
【0066】
本実施形態における空気圧推定プログラムは、図13に示すように、まず、S31ないしS33において、前記S1ないしS3と同様に、各輪ごとに共振周波数Fと動荷重半径Dとμ勾配Bとが算出される。
【0067】
その後、S34において、共振周波数F,動荷重半径Dおよびμ勾配Bの組合せを空気圧xに関連付ける関数g1が定義される。この関数g1は、共振周波数Fについての係数K0と、動荷重半径Dについての係数K1と、μ勾配Bについての係数K2とを用いた1次関数である。このS34においては、前記S4と同様にして、それら係数K0,K1およびK2が同定され、それにより、関数g1が定義される。
【0068】
続いて、S35において、その同定された係数K0,K1およびK2と、前記算出された共振周波数F、動荷重半径Dおよびμ勾配Bとを関数g1に代入することにより、空気圧xが推定される。
【0069】
続いて、S36において、前記S6と同様にして、その推定結果が前記表示器50に出力され、可視化される。今回は、タイヤの空気圧xのみがタイヤ状態として推定されて車両の運転者に表示される。
【0070】
以上で、この空気圧推定プログラムの一回の実行が終了する。
【0071】
次に、本発明の第3実施形態を説明する。ただし、本実施形態は第1実施形態とハードウエア構成が共通し、異なるのはソフトウエア構成のみであるため、ソフトウエア構成のみについて詳細に説明し、ハードウエア構成については説明を省略する。
【0072】
本実施形態のソフトウエア構成は、図14にフローチャートで概念的に表されている荷重推定プログラムと、前記車速推定プログラムとを含んでいる。その荷重推定プログラムは、タイヤ状態としてタイヤの荷重yのみを推定可能である点で、荷重yのみならず空気圧xおよび摩耗度zも推定可能である第1実施形態のタイヤ状態推定プログラムとは異なる。
【0073】
本実施形態における空気圧推定プログラムは、図14に示すように、まず、S51ないしS53において、前記S1ないしS3と同様に、各輪ごとに共振周波数Fと動荷重半径Dとμ勾配Bとが算出される。
【0074】
その後、S54において、共振周波数F,動荷重半径Dおよびμ勾配Bの組合せを荷重yに関連付ける関数g2が定義される。この関数g2は、μ勾配Bについての係数K0と、共振周波数Fについての係数K1と、動荷重半径Dについての係数K2とを用いた1次関数である。このS54においては、前記S4と同様にして、それら係数K0,K1およびK2が同定され、それにより、関数g2が定義される。図15ないし図17にはそれぞれ、係数K0,K1およびK2の物理的な意味がグラフで表されている。なお、それら図15ないし図17に示すグラフはあくまで例示であり、係数K0,K1およびK2の各値は適宜設定することが可能である。
【0075】
続いて、S55において、その同定された係数K0,K1およびK2と、前記算出された共振周波数F、動荷重半径Dおよびμ勾配Bとを関数g2に代入することにより、荷重yが推定される。
【0076】
続いて、S56において、前記S6と同様にして、その推定結果が前記表示器50に出力され、可視化される。今回は、タイヤの荷重yのみがタイヤ状態として推定されて車両の運転者に表示される。
【0077】
以上で、この荷重推定プログラムの一回の実行が終了する。
【0078】
次に、本発明の第4実施形態を説明する。ただし、本実施形態は第3実施形態とハードウエア構成が共通し、異なるのはソフトウエア構成のみであるため、ソフトウエア構成のみについて詳細に説明し、ハードウエア構成については説明を省略する。
【0079】
第1実施形態においては、共振周波数F、動荷重半径Dおよびμ勾配Bが、荷重yに、式によって表現された関数g2によって一挙に関連付けられ、その関数g2を用いて荷重yが一挙に推定される。
【0080】
これに対して、本実施形態においては、荷重yに代えて摩耗度zが推定されるとともに、直列の複数の補正工程を経て摩耗度zが推定される。
【0081】
図18には、本実施形態における摩耗度推定プログラムの内容がフローチャートで概念的に表されている。
【0082】
この摩耗度推定プログラムにおいては、まず、S71ないしS73において、前記S51ないしS53と同様に、各輪ごとに共振周波数Fと動荷重半径Dとμ勾配Bとがそれぞれ算出される。
【0083】
次に、S74において、その算出されたμ勾配Bが、その算出された共振周波数Fによって補正される。図19にグラフで示すように、μ勾配Bと摩耗度zとの関係は共振周波数Fによって変化する。
【0084】
そこで、本実施形態においては、μ勾配Bと摩耗度zとの実際の関係から、共振周波数Fが標準状態にあると仮定した場合の関係が取得されるように、もともとのμ勾配Bが補正される。この補正により、もともとのμ勾配Bがμ勾配B1に変更されることになる。
【0085】
この補正は、
B1=p(F)・B
なる式により表現される。ただし、p(F)は、共振周波数Fを変数として補正係数を導出するための関数式である。
【0086】
その後、S75において、そのμ勾配B1が、前記算出された動荷重半径Dによって補正される。μ勾配B1と動荷重半径Dとの間には、図20にグラフで示すように、動荷重半径Dと共にμ勾配が変化する関係が存在する。そこで、このS75においては、μ勾配B1が、動荷重半径Dが標準状態にあると仮定した場合の値B2に補正される。
【0087】
この補正は、
B2=q(D)・B1
なる式により表現される。ただし、q(D)は、動荷重半径Dを変数として補正係数を導出するための関数式である。
【0088】
続いて、S76において、そのμ勾配B2に基づいて摩耗度zが推定される。図21には、それらμ勾配B2と摩耗度zとの間に予め定められた関係がグラフで表されており、この関係が式またはマップにより表現されてROM32に記憶されている。したがって、このS76においては、その記憶された関係に従い、μ勾配B2に対応する摩耗度zが決定されることにより、現時点におけるタイヤの摩耗度zが推定される。
【0089】
この推定は、結局、
Figure 2004067009
なる式を用いて行われる。ただし、K0は、係数であり、図21に示す直線グラフの勾配をθで表せば、tanθで表すことができる。
【0090】
続いて、S77において、前記S56と同様にして、その推定結果が前記表示器50に出力され、可視化される。今回は、タイヤの摩耗度zのみがタイヤ状態として推定されて車両の運転者に表示される。
【0091】
以上で、この摩耗度推定プログラムの一回の実行が終了する。
【0092】
以上の説明から明らかなように、本実施形態においては、コンピュータ22のうち図18のS74を実行する部分とS75を実行する部分とがそれぞれ前記(6)項における「補正手段」の一例を構成し、そのうちS74を実行する部分が前記(7)項における「手段」の一例を構成しているのである。
【0093】
なお付言すれば、以上説明したいくつかの実施形態においてはいずれも、タイヤ状態を推定するために取得された物理量が共振周波数Fと動荷重半径Dとμ勾配Bとを含むように構成されていたが、タイヤの温度を追加的に含むように構成したり、タイヤのスリップ率を追加的に含むように構成したりして本発明を実施することが可能である。
【0094】
以上、本発明の実施形態のいくつかを図面に基づいて詳細に説明したが、これらは例示であり、前記[課題を解決するための手段および発明の効果]の欄に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。
【図面の簡単な説明】
【図1】本発明の第1実施形態に従うタイヤ状態推定装置のハードウエア構成を示すブロック図である。
【図2】図1におけるコンピュータのハードウエア構成を示すブロック図である。
【図3】上記タイヤ状態推定装置を示す機能ブロック図である。
【図4】図3におけるμ勾配Bの物理的意義を説明するためのグラフである。
【図5】そのμ勾配Bとタイヤの摩耗度zとの間の一般的な関係を説明するためのグラフである。
【図6】上記μ勾配Bとタイヤの荷重yとの間の一般的な関係を説明するためのグラフである。
【図7】上記μ勾配Bとタイヤの空気圧xとの間の一般的な関係を説明するためのグラフである。
【図8】上記実施形態において、共振周波数F、動荷重半径Dおよびμ勾配Bから成る変数群と、タイヤの空気圧x、荷重yおよび摩耗度zから成る変数群との間に成立する関係を記述するいくつかの関係式を示す図である。
【図9】図8におけるf11の物理的意義を説明するためのグラフである。
【図10】図8における関係式の数学的意義を概念的に示すグラフである。
【図11】図8における関係式をタイヤの空気圧x、荷重yおよび摩耗度zから成る変数群について解いたいくつかの関係式を示す図である。
【図12】図2におけるタイヤ状態推定プログラムの内容を概念的に表すフローチャートである。
【図13】本発明の第2実施形態に従うタイヤ状態推定装置のコンピュータにより実行される空気圧推定プログラムの内容を概念的に表すフローチャートである。
【図14】本発明の第3実施形態に従うタイヤ状態推定装置のコンピュータにより実行される荷重推定プログラムの内容を概念的に表すフローチャートである。
【図15】図14における係数K0の物理的意義を説明するためのグラフである。
【図16】図14における係数K1の物理的意義を説明するためのグラフである。
【図17】図14における係数K2の物理的意義を説明するためのグラフである。
【図18】本発明の第4実施形態に従うタイヤ状態推定装置のコンピュータにより実行される摩耗度推定プログラムの内容を概念的に表すフローチャートである。
【図19】図18のS74の実行内容を概念的に説明するためのグラフである。
【図20】図18のS75の実行内容を概念的に説明するためのグラフである。
【図21】図18のS76の実行内容を概念的に説明するためのグラフである。
【符号の説明】
10 車輪速度センサ
20 信号処理装置
22 コンピュータ
40 取得装置
42 推定器
50 表示器
70 共振周波数算出手段
72 動荷重半径算出手段
74 μ勾配算出手段

Claims (8)

  1. ホイールに装着されたタイヤの内部に空気が圧力下に封入されて成る車輪を備えた車両に設けられ、前記タイヤの状態を推定する装置であって、
    前記タイヤの共振周波数と、前記タイヤの動荷重半径と、前記タイヤの摩擦係数μがそのタイヤのスリップ率に対して変化する勾配であるμ勾配とを取得する取得装置と、
    その取得された共振周波数と動荷重半径とμ勾配とに基づき、前記タイヤについて空気圧と荷重と摩耗度との少なくとも1つを前記タイヤの状態として推定する推定器と
    を含むタイヤ状態推定装置。
  2. 前記推定器が、前記空気圧と荷重と摩耗度とを前記タイヤの状態として推定するものである請求項1に記載のタイヤ状態推定装置。
  3. 前記推定器が、前記共振周波数、動荷重半径およびμ勾配を含む第1変数群と、前記空気圧、荷重および摩耗度を含む第2変数群との関係を近似する関数式を用いることにより、前記タイヤの状態を推定するものである請求項1または2に記載のタイヤ状態推定装置。
  4. 前記関数式が、前記第1変数群と前記第2変数群との関係を線形的に近似するものである請求項3に記載のタイヤ状態推定装置。
  5. 前記取得装置が、前記車輪の角速度を車輪速度として検出する車輪速度センサを含み、その検出された車輪速度に基づき、前記共振周波数と動荷重半径とμ勾配とを算出するものである請求項1ないし4のいずれかに記載のタイヤ状態推定装置。
  6. 前記推定器が、前記共振周波数と動荷重半径とμ勾配とから成る3つの物理量の少なくとも1つの取得値を、それ以外の物理量の取得値によって補正する補正手段を含む請求項1ないし5のいずれかに記載のタイヤ状態推定装置。
  7. 前記補正手段が、前記μ勾配の取得値を前記共振周波数の取得値によって補正する手段を含む請求項6に記載のタイヤ状態推定装置。
  8. 前記取得装置が、さらに、前記タイヤの温度をも取得するものであり、前記推定器が、その取得されたタイヤ温度を前記タイヤの状態の推定値に反映させるものである請求項1ないし7のいずれかに記載のタイヤ状態推定装置。
JP2002231275A 2002-08-08 2002-08-08 タイヤ状態推定装置 Pending JP2004067009A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002231275A JP2004067009A (ja) 2002-08-08 2002-08-08 タイヤ状態推定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002231275A JP2004067009A (ja) 2002-08-08 2002-08-08 タイヤ状態推定装置

Publications (1)

Publication Number Publication Date
JP2004067009A true JP2004067009A (ja) 2004-03-04

Family

ID=32017095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002231275A Pending JP2004067009A (ja) 2002-08-08 2002-08-08 タイヤ状態推定装置

Country Status (1)

Country Link
JP (1) JP2004067009A (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163412A (ja) * 2005-12-16 2007-06-28 Sumitomo Rubber Ind Ltd タイヤ空気圧低下警報装置および方法、ならびにタイヤ空気圧低下警報プログラム
US7579943B2 (en) 2005-12-16 2009-08-25 Sumitomo Rubber Industries, Ltd. Apparatus, method and program for alarming decrease in tire air-pressure
US7619510B2 (en) 2005-12-16 2009-11-17 Sumitomo Rubber Industries, Ltd. Apparatus, method and program for alarming abnormality in tire air-pressure
EP2722202A1 (en) * 2012-10-19 2014-04-23 The Goodyear Tire & Rubber Company Vehicle tire load estimation
KR101535856B1 (ko) * 2013-12-12 2015-07-13 현대오트론 주식회사 타이어 압력 모니터링 장치 및 방법
JP2017505429A (ja) * 2013-12-18 2017-02-16 コンパニー ゼネラール デ エタブリッスマン ミシュラン 回転半径を評価することによる潜在的密着力の推定
KR101756348B1 (ko) 2015-12-07 2017-07-10 현대오트론 주식회사 간접 방식 타이어 공기압 관리 시스템의 시험 장치 및 방법
CN107399207A (zh) * 2016-05-18 2017-11-28 车王电子股份有限公司 轮胎监测方法
US9995654B2 (en) 2015-07-08 2018-06-12 The Goodyear Tire & Rubber Company Tire and vehicle sensor-based vehicle state estimation system and method
CN108146162A (zh) * 2016-12-05 2018-06-12 固特异轮胎和橡胶公司 间接轮胎压力和磨损状态估计系统及方法
JP2019011048A (ja) * 2017-06-29 2019-01-24 ザ・グッドイヤー・タイヤ・アンド・ラバー・カンパニー タイヤ摩耗状態推定システムおよび方法
JP2019093741A (ja) * 2017-11-17 2019-06-20 トヨタ自動車株式会社 車両安定制御装置
US10391822B2 (en) 2016-05-06 2019-08-27 Mobiletron Electronics Co., Ltd. Method for monitoring tire condition
CN111412848A (zh) * 2019-01-04 2020-07-14 郑州宇通客车股份有限公司 一种轮胎磨损检测方法及装置
US10981562B2 (en) 2017-11-28 2021-04-20 Toyota Jidosha Kabushiki Kaisha Vehicle stability control device
JP2021526476A (ja) * 2018-06-14 2021-10-07 ブリヂストン ヨーロッパ エヌブイ/エスエイBridgestone Europe Nv/Sa トレッド摩耗監視システム及び方法
JP2021533029A (ja) * 2018-08-06 2021-12-02 ブリヂストン ヨーロッパ エヌブイ/エスエイBridgestone Europe Nv/Sa トレッド摩耗監視システム及び方法
CN115452422A (zh) * 2022-08-01 2022-12-09 中国第一汽车股份有限公司 一种考虑胎面磨损的轮胎滚动半径和负荷半径的试验方法
JP7459106B2 (ja) 2018-12-14 2024-04-01 コンパニー ゼネラール デ エタブリッスマン ミシュラン タイヤの摩耗及び寿命末期を予測するためのモデル
JP7483124B2 (ja) 2021-03-16 2024-05-14 日立Astemo株式会社 物理量検出装置

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7579943B2 (en) 2005-12-16 2009-08-25 Sumitomo Rubber Industries, Ltd. Apparatus, method and program for alarming decrease in tire air-pressure
US7619510B2 (en) 2005-12-16 2009-11-17 Sumitomo Rubber Industries, Ltd. Apparatus, method and program for alarming abnormality in tire air-pressure
JP2007163412A (ja) * 2005-12-16 2007-06-28 Sumitomo Rubber Ind Ltd タイヤ空気圧低下警報装置および方法、ならびにタイヤ空気圧低下警報プログラム
US9358846B2 (en) 2012-10-19 2016-06-07 The Goodyear Tire & Rubber Company Vehicle weight and center of gravity estimation system and method
EP2722202A1 (en) * 2012-10-19 2014-04-23 The Goodyear Tire & Rubber Company Vehicle tire load estimation
CN103770788A (zh) * 2012-10-19 2014-05-07 固特异轮胎和橡胶公司 车辆重量和重心估计系统及方法
JP2014084100A (ja) * 2012-10-19 2014-05-12 The Goodyear Tire & Rubber Co 車両重量および重心推定システムおよび方法
KR101535856B1 (ko) * 2013-12-12 2015-07-13 현대오트론 주식회사 타이어 압력 모니터링 장치 및 방법
JP2017505429A (ja) * 2013-12-18 2017-02-16 コンパニー ゼネラール デ エタブリッスマン ミシュラン 回転半径を評価することによる潜在的密着力の推定
US9995654B2 (en) 2015-07-08 2018-06-12 The Goodyear Tire & Rubber Company Tire and vehicle sensor-based vehicle state estimation system and method
KR101756348B1 (ko) 2015-12-07 2017-07-10 현대오트론 주식회사 간접 방식 타이어 공기압 관리 시스템의 시험 장치 및 방법
US10391822B2 (en) 2016-05-06 2019-08-27 Mobiletron Electronics Co., Ltd. Method for monitoring tire condition
CN107399207A (zh) * 2016-05-18 2017-11-28 车王电子股份有限公司 轮胎监测方法
CN108146162A (zh) * 2016-12-05 2018-06-12 固特异轮胎和橡胶公司 间接轮胎压力和磨损状态估计系统及方法
JP2019011048A (ja) * 2017-06-29 2019-01-24 ザ・グッドイヤー・タイヤ・アンド・ラバー・カンパニー タイヤ摩耗状態推定システムおよび方法
JP2019093741A (ja) * 2017-11-17 2019-06-20 トヨタ自動車株式会社 車両安定制御装置
US10974707B2 (en) 2017-11-17 2021-04-13 Toyota Jidosha Kabushiki Kaisha Vehicle stability control device
JP7106843B2 (ja) 2017-11-17 2022-07-27 トヨタ自動車株式会社 車両安定制御装置
US10981562B2 (en) 2017-11-28 2021-04-20 Toyota Jidosha Kabushiki Kaisha Vehicle stability control device
JP2021526476A (ja) * 2018-06-14 2021-10-07 ブリヂストン ヨーロッパ エヌブイ/エスエイBridgestone Europe Nv/Sa トレッド摩耗監視システム及び方法
JP7028997B2 (ja) 2018-06-14 2022-03-02 ブリヂストン ヨーロッパ エヌブイ/エスエイ トレッド摩耗監視システム及び方法
JP2021533029A (ja) * 2018-08-06 2021-12-02 ブリヂストン ヨーロッパ エヌブイ/エスエイBridgestone Europe Nv/Sa トレッド摩耗監視システム及び方法
JP7079373B2 (ja) 2018-08-06 2022-06-01 ブリヂストン ヨーロッパ エヌブイ/エスエイ トレッド摩耗監視システム及び方法
JP7459106B2 (ja) 2018-12-14 2024-04-01 コンパニー ゼネラール デ エタブリッスマン ミシュラン タイヤの摩耗及び寿命末期を予測するためのモデル
CN111412848A (zh) * 2019-01-04 2020-07-14 郑州宇通客车股份有限公司 一种轮胎磨损检测方法及装置
CN111412848B (zh) * 2019-01-04 2022-04-05 宇通客车股份有限公司 一种轮胎磨损检测方法及装置
JP7483124B2 (ja) 2021-03-16 2024-05-14 日立Astemo株式会社 物理量検出装置
CN115452422A (zh) * 2022-08-01 2022-12-09 中国第一汽车股份有限公司 一种考虑胎面磨损的轮胎滚动半径和负荷半径的试验方法

Similar Documents

Publication Publication Date Title
JP2004067009A (ja) タイヤ状態推定装置
CN108780016B (zh) 轮胎载荷推断方法及轮胎载荷推断装置
US9636955B2 (en) Tire temperature predictive system and method
JP4830015B2 (ja) タイヤ空気圧低下検出装置及び方法、並びにタイヤの空気圧低下検出プログラム
JP5012675B2 (ja) タイヤの姿勢制御装置および方法
US20030121319A1 (en) Apparatus for estimating a tire condition and apparatus for determining a tire abnormal condition
JP4479993B2 (ja) タイヤに加わる力の成分およびセルフアライニングトルクを求める方法
JP7079373B2 (ja) トレッド摩耗監視システム及び方法
JPH09309304A (ja) タイヤ空気圧検出装置
JP6899752B2 (ja) タイヤ接地面における摩擦係数の余裕度を算出する方法、システム及びプログラム
JP2010521365A (ja) タイヤ空気圧間接監視における較正
US20090171531A1 (en) Wheel attitude control method and wheel attitude control device
JP2007163157A (ja) 車両の荷重推定方法および装置、ならびに車両の荷重推定のためのプログラム
US6834543B2 (en) Underinflation detector and method of correcting output of sensor using the same
JP2019113373A (ja) 輪荷重推定装置
US20220203783A1 (en) Tire wear state estimation apparatus
JP5206490B2 (ja) 車両接地面摩擦状態推定装置及びその方法
US9387736B2 (en) System, method, and program for detecting deflated tires
JP2002248915A (ja) タイヤ状態推定装置
CN109715418A (zh) 绝对车轮滚动半径的估计和竖向压缩值的估计
EP3431313B1 (en) Tire rotation speed correction apparatus
US6865456B2 (en) Underinflation detector
JP4946174B2 (ja) タイヤの接地長算出方法及びタイヤの接地長算出装置
JP3872367B2 (ja) タイヤ状態量推定装置
US20070010964A1 (en) Process and system for detecting decrease in tire air-pressure and tire deflation judging program