JP2004066424A - Surface-covered cemented carbide cutting tool whose hard covering layer exhibits good wear resistance in high-speed heavy cutting condition - Google Patents
Surface-covered cemented carbide cutting tool whose hard covering layer exhibits good wear resistance in high-speed heavy cutting condition Download PDFInfo
- Publication number
- JP2004066424A JP2004066424A JP2002231265A JP2002231265A JP2004066424A JP 2004066424 A JP2004066424 A JP 2004066424A JP 2002231265 A JP2002231265 A JP 2002231265A JP 2002231265 A JP2002231265 A JP 2002231265A JP 2004066424 A JP2004066424 A JP 2004066424A
- Authority
- JP
- Japan
- Prior art keywords
- content point
- maximum content
- cemented carbide
- layer
- hard coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
この発明は、硬質被覆層が高強度と高硬度を有し、したがって各種の鋼や鋳鉄などの切削加工を、特に高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合に、硬質被覆層がチッピング(微小欠け)などの発生なく、すぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。
【0002】
【従来の技術】
一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して超硬基体と云う)の表面に、原子比で、
組成式:(Zr1−XTiX)C1−ZNZ(ただし、原子比で、X:0.40〜0.60、Z:0.40〜0.60)、
を満足するZrとTiの複合炭窒化物[以下、(Zr,Ti)CNで示す]層からなる硬質被覆層を1〜15μmの平均層厚で蒸着してなる被覆超硬工具が提案され、各種の鋼や鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている(例えば特許文献1参照)。
【0004】
さらに、上記の被覆超硬工具が、例えば図1に概略縦断面図で示される通り、中央部にステンレス鋼製の反応ガス吹き出し管が立設され、前記反応ガス吹き出し管には、図2(a)に概略斜視図で、同(b)に概略平面図で例示される黒鉛製の超硬基体支持パレットが串刺し積層嵌着され、かつこれらがステンレス鋼製のカバーを介してヒーターで加熱される構造を有する化学蒸着装置を用い、超硬基体を前記超硬基体支持パレットの底面に形成された多数の反応ガス通過穴位置に図示される通りに載置した状態で前記化学蒸着装置に装入し、
反応ガス組成(容量%で):ZrCl4:0.05〜5%、TiCl4:0.1〜6%、CH3CN:0.6〜5%、N2:0.5〜40%、H2:残り、
反応雰囲気温度:900〜1050℃、
反応雰囲気圧力:5〜50kPa、
の条件で(Zr,Ti)CNからなる硬質被覆層を形成することにより製造されることも知られている(例えば特許文献2参照)。
【0005】
【特許文献1】
特開昭62−56564号公報
【特許文献2】
特開2001−11632号公報
【0006】
【発明が解決しようとする課題】
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求も強く、これに伴い、切削加工は高速化の傾向を深め、かつ高切り込みや高送りなどの重切削条件での切削加工が強く求められる傾向にあるが、上記の従来被覆超硬工具においては、これを通常の切削加工条件で用いた場合には問題はないが、特に切削加工を高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合には、硬質被覆層の強度および硬さ不足が原因で、硬質被覆層の摩耗進行が一段と促進し、かつチッピングも発生し易くなることから、比較的短時間で使用寿命に至るのが現状である。
【0007】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に高速重切削加工条件で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具を構成する硬質被覆層に着目し、研究を行った結果、
(a)上記の図1,2に示される化学蒸着図装置を用いて形成された従来被覆超硬工具を構成する(Zr,Ti)CN層は、厚さ全体に亘って実質的に均一な組成を有し、したがって均質な硬さと強度を有するが、(Zr,Ti)CN層を形成するに際して、例えば図3に反応ガス組成自動制御システムが概略チャート図で示される通り、反応ガス組成および流量中央制御装置に、前記(Zr,Ti)CN層からなる硬質被覆層に層厚方向にそってZr最高含有点とTi最高含有点とを所定間隔をおいて交互に繰り返し形成させる目的で、前記Zr最高含有点およびTi最高含有点に対応した反応ガス組成、並びに前記両点間のZrおよびTiの連続変化に対応した反応ガス組成、さらに前記両点間の間隔および硬質被覆層の全体層厚を、過去の実績データに基づいてインプットし、この反応ガス組成および流量中央制御装置からの制御信号にしたがって、原料ガスボンベからのH2ガス、CH4ガス、N2ガス、およびHClガスの流量、さらにZrCl4ガスおよびTiCl4ガスの流量をそれぞれの原料流量自動制御装置にて制御しながら、化学蒸着装置の反応ガス吹き出し管に導入すると、層厚方向にそって、Zr最高含有点とTi最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Zr最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Zr最高含有点へZrおよびTiの含有量が連続的に変化する成分濃度分布構造をもつた(Zr,Ti)CN層からなる硬質被覆層が形成されるようになること。
【0008】
(b)上記(a)の繰り返し連続変化成分濃度分布構造の(Zr,Ti)CN層において、
上記Zr最高含有点が、
組成式:(Zr1−XTiX)C1−ZNZ(ただし、原子比で、X:0.02〜0.20、Z:0.40〜0.60)、
上記Ti最高含有点が、
組成式:(Ti1−YZrY)C1−ZNZ(ただし、原子比で、Y:0.02〜0.20、Z:0.40〜0.60)、
を満足し、かつ隣り合う上記Zr最高含有点と上記Ti最高含有点の厚さ方向の間隔を0.01〜0.2μmとすると、
上記Zr最高含有点部分では、Zrが主体を占め、これの作用によってきわめて高い強度を示し、一方上記Ti最高含有点部分では、Tiが主体を占め、これの作用によって高い硬さを示すようになり、かつこれらZr最高含有点と上記Ti最高含有点の間隔をきわめて小さくしたことから、層全体の特性として高強度と高硬度を具備するようになり、したがって、硬質被覆層がかかる構成の(Zr,Ti)CN層からなる被覆超硬工具は、各種の鋼や鋳鉄などの切削加工を、特に高い機械的衝撃を伴う重切削を、高速切削条件で行なった場合にも、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0009】
この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、(Zr,Ti)CN層からなる硬質被覆層を1〜15μmの全体平均層厚で蒸着してなる被覆超硬工具において、
上記硬質被覆層が、層厚方向にそって、Zr最高含有点とTi最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Zr最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Zr最高含有点へZrとTiの含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Zr最高含有点が、
組成式:(Zr1−XTiX)C1−ZNZ(ただし、原子比で、X:0.02〜0.20、Z:0.40〜0.60)、
上記Ti最高含有点が、
組成式:(Ti1−YZrY)C1−ZNZ(ただし、原子比で、Y:0.02〜0.20、Z:0.40〜0.60)、
を満足し、かつ隣り合う上記Zr最高含有点と上記Ti最高含有点の間隔が、0.01〜0.2μmである、
高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具に特徴を有するものである。
【0010】
つぎに、この発明の被覆超硬工具において、これを構成する硬質被覆層の組成を上記の通りに限定した理由を説明する。
(a)Zr最高含有点のX値
上記の通り硬質被覆層である(Zr,Ti)CN層において、Zr成分には層の強度を向上させ、一方Ti成分には層の硬さを向上させる作用があり、したがって、層の厚さ方向に沿ってZr分の高いZr最高含有点を繰り返し形成して層自体の強度を全体的に向上させ、同じくTi成分の高いTi最高含有点を繰り返し形成して層自体の硬さを全体的に向上させるものであるが、この場合Tiの割合を示すX値がZrとの合量に占める割合(原子比、以下同じ)で0.02未満になると、高硬度を有するTi最高含有点が隣接して存在しても、Zr最高含有点に所定の硬さを確保することができず、これが摩耗促進の原因となり、一方同値が0.20を越えると、急激な強度低下が起り、この結果チッピングが発生し易くなることから、X値を0.02〜0.20と定めた。
【0011】
(b)Ti最高含有点のY値
上記の通りZr最高含有点は高強度を有するが、反面硬さが不十分であるため、このZr最高含有点の硬さ不足を補う目的で、高硬度を有するTi最高含有点を厚さ方向に交互に介在させるものである。しかし、Zrの割合を示すY値がTiとの合量に占める割合(原子比)で0.02未満になると、高強度を有するZr最高含有点が隣接して存在しても、Ti最高含有点に所定の強度を確保することができず、この結果チッピングが発生し易くなり、一方同値が0.20を越えると、急激な硬さ低下が起り、これが摩耗促進の原因となることから、Y値を0.02〜0.20と定めた。
【0012】
(c)Zr最高含有点およびTi最高含有点のZ値
また、上記の(Zr,Ti)CN層において、C成分には層の硬さを向上させ、一方N成分には層の強度を向上させる作用があるが、この(Zr,Ti)CN層では、層の強度および硬さの制御は上記の通りZr最高含有点およびTi最高含有点によって行なうようにし、層の硬さおよび強度に及ぼすC成分およびN成分の影響をほぼ同じものとするために、Zr最高含有点およびTi最高含有点におけるZ値を0.4〜0.60と定めたのである。すなわち、Z値が0.60を越えると、相対的にN成分の割合がC成分に比して多くなり過ぎ、一方Z値が0.40未満では相対的にC成分の割合がN成分の割合に比して多くなり過ぎ、いずれの場合も層の強度がおよび硬さに著しい変化が現れるようになり、層の強度および硬さを制御することが困難になることから、Z値を0.4〜0.60と定めたのである。
【0013】
(d)Zr最高含有点とTi最高含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層に所望のすぐれた高強度と高硬度を確保することができなくなり、またその間隔が0.2μmを越えるとそれぞれの点がもつ欠点、すなわちZr最高含有点であれば硬さ不足、Ti最高含有点であれば強度不足が層内に局部的に現れ、これが摩耗進行を促進したり、チッピングを発生し易くしたりする原因となることから、その間隔を0.01〜0.2μmと定めた。
【0014】
(d)硬質被覆層の全体平均層厚
その層厚が1μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が15μmを越えると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
【0015】
【発明の実施の形態】
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。
原料粉末として、平均粒径:6.5μmを有する粗粒WC粉末、同3.5μmを有する中粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr3C2粉末、同1.0μmの(Ti,W)CN(質量比で、TiC/TiN/WC=24/20/56)粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表1に示される配合組成に配合し、ボールミルで72時間混合し、減圧乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を、表面部にCo富化層を形成するものについては13.3Pa、そして全体に亘って均一組織を有するものについては6.7Paの真空中、温度:1430℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.08のホーニング加工を施してISO規格・CNMG160612のチップ形状をもったWC基超硬合金製の超硬基体A1〜A10を形成した。なお、超硬基体A−1、A−3、A−4、A−6、A−7、およびA−9の表面部にCo富化層の形成が見られた。
【0016】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの炭素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.10のホーニング加工を施してISO規格・CNMG160612のチップ形状をもったTiCN系サーメット製の超硬基体B1〜B6を形成した。
【0017】
つぎに、上記の超硬基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した後、図1に示される化学蒸着装置内に、第2図に示される超硬基体支持パレットの位置決め穴に載置した状態で装入し、まず、装置内をヒーターで900℃に加熱したところで、TiCl4:4.2%、N2:30%、H2:残りからなる組成を有する反応ガスを反応ガス吹き出し管を通して導入して、装置内の反応雰囲気圧力を30kPaとし、この状態で20分間保持して前記超硬基体表面に、下地密着層として0.3μmの平均層厚をもった窒化チタン(TiN)層を形成し、ついで、同じく装置内の雰囲気温度をヒーターにて加熱して1020℃とした後、図3に示される反応ガス組成自動制御システムの反応ガス組成および流量中央制御装置に、過去の実績データにしたがって、表3,4にそれぞれ示される目標組成のZr最高含有点(Zr−1〜Zr−8)およびTi最高含有点(Ti−1〜Ti−8)に対応する反応ガス組成、前記Zr最高含有点とTi最高含有点間のZrとTiの含有量の連続変化および炭素と窒素の含有量に対応する反応ガス組成、さらに表5に示される前記両点間の目標間隔および硬質被覆層の目標全体層厚をインプットし、この反応ガス組成および流量中央制御装置からの信号にしたがって作動するコントロールバルブ内蔵の原料ガス流量自動制御装置を通して、原料ガスであるH2ガス、N2ガス、CH4ガス、TiCl4ガス、およびZrCl4ガス(この場合、前記TiCl4ガスは図示の通り流量制御されたH2ガスをキャリアガスとしてTiCl4ガス気化器に送り、ここで液体から気化されたTiCl4と共に原料ガス流量自動制御装置に送られ、また前記ZrCl4ガスは、ZrCl4発生器で金属Zrと流量制御されたHClガスを反応させることにより形成される)を、それぞれのガス流量を自動制御しながら、図1の化学蒸着装置の反応ガス吹き出し管から装置内に導入し(装置内の反応雰囲気圧力は常に7kPaに保持される)、もって前記超硬基体の表面に、層厚方向に沿って表3,4に示される目標組成のZr最高含有点とTi最高含有点とが交互に同じく表5に示される目標間隔で繰り返し存在し、かつ前記Zr最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Zr最高含有点へ実質的にZrとTiの含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、かつ同じく表5に示される目標全体層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0018】
また、比較の目的で、上記の超硬基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した後、同じくそれぞれ図1,2に示される通常の化学蒸着装置に装入し、上記したTiN層形成条件と同じ条件で下地密着層として0.3μmの平均層厚を有するTiN層を形成し、ついで反応雰囲気温度を1020℃に加熱した後、それぞれ表6に示される目標組成に対応した組成の反応ガスを反応ガス吹き出し管から導入し、反応雰囲気圧力を7kPaに一定とした条件で、前記超硬基体A1〜A10およびB1〜B6のそれぞれの表面に、表6,7に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Zr,Ti)CN層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0019】
つぎに、上記本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCM415の丸棒、
切削速度:360m/min.、
切り込み:5.0mm、
送り:0.28mm/rev.、
切削時間:10分、
の条件での合金鋼の乾式連続高速高切り込み切削加工試験、
被削材:JIS・S25Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:360m/min.、
切り込み:1.0mm、
送り:0.5mm/rev.、
切削時間:10分、
の条件での炭素鋼の乾式断続高速高送り切削加工試験、さらに、
被削材:JIS・FC250の長さ方向等間隔4本縦溝入り丸棒、
切削速度:400m/min.、
切り込み:5.5mm、
送り:0.30mm/rev.、
切削時間:10分、
の条件での鋳鉄の乾式断続高速高切り込み切削加工試験を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表4〜7に示した。
【0020】
【表1】
【0021】
【表2】
【0022】
【表3】
【0023】
【表4】
【0024】
【表5】
【0025】
【表6】
【0026】
【表7】
【0027】
この結果得られた本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16を構成する硬質被覆層について、厚さ方向に沿ってZr、Ti、炭素、および窒素の含有量をオージェ分光分析装置を用いて測定したところ、本発明被覆超硬チップ1〜16の硬質被覆層では、Zr最高含有点とTi最高含有点とがそれぞれ目標値と実質的に同じ組成および間隔で交互に繰り返し存在し、かつZr最高含有点からTi最高含有点、前記Ti最高含有点からZr最高含有点へZrとTiの含有量が連続的に変化する成分濃度分布構造を有することが確認され、また、硬質被覆層の全体平均層厚も目標全体層厚と実質的に同じ値を示した。一方前記従来被覆超硬チップ1〜16の硬質被覆層では厚さ方向に沿って組成変化が見られず、かつ目標組成と実質的に同じ組成および目標全体層厚と実質的に同じ全体平均層厚を示すことが確認された。
【0028】
【発明の効果】
表3〜7に示される結果から、硬質被覆層が層厚方向に、相対的にすぐれた高強度を有するZr最高含有点と相対的に高硬度を有するTi最高含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Zr最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Zr最高含有点へZrとTiの含有量が連続的に変化する成分濃度分布構造を有する本発明被覆超硬チップ1〜16は、いずれも各種の鋼や鋳鉄などの切削加工を、高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がチッピングの発生なく、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層が層厚方向に沿って実質的に組成変化のない従来被覆超硬チップ1〜16においては、特に高い機械的衝撃を伴う高速重切削条件では強度不足が原因でチッピングが発生し、硬さ不足と相俟って、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬工具は、通常の条件での切削加工は勿論のこと、特に各種の鋼や鋳鉄などの切削加工を、高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、すぐれた耐摩耗性と耐チッピング性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】被覆超硬工具を構成する硬質被覆層を形成するのに用いられている化学蒸着装置を例示する概略縦断面図である。
【図2】化学蒸着装置の構造部材である超硬基体支持パレットを示し、(a)が概略斜視図、(b)が概略平面図である。
【図3】この発明の被覆超硬工具を構成する硬質被覆層の形成に用いられる反応ガス組成自動制御システムの概略チャート図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a hard coating layer having a high strength and a high hardness. Therefore, the cutting of various steels and cast irons is performed at a particularly high speed and under heavy cutting conditions such as high cutting and high feed with high mechanical impact. The present invention relates to a cutting tool made of a surface-coated cemented carbide (hereinafter referred to as a coated cemented carbide tool) in which the hard coating layer exhibits excellent wear resistance without occurrence of chipping (minute chipping) or the like.
[0002]
[Prior art]
In general, coated carbide tools are used for throw-away inserts, drilling, etc., which are removably attached to the tip of a cutting tool for turning or planing of various materials such as steel and cast iron. There are solid type end mills used for drilling and miniature drills, as well as for face milling, grooving, shoulder processing, etc., and the cutting is performed in the same manner as the solid type end mill by detachably attaching the throw-away tip. A throw-away end mill tool and the like are known.
[0003]
Further, as a coated cemented carbide tool, a substrate made of tungsten carbide (hereinafter, referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter, referred to as TiCN) -based cermet (hereinafter, collectively referred to as a cemented carbide substrate) ) On the surface, in atomic ratio,
Composition formula: (Zr 1-X Ti X ) C 1-Z N Z ( provided that an atomic ratio, X: 0.40~0.60, Z: 0.40~0.60 ),
A coated carbide tool formed by depositing a hard coating layer composed of a composite carbonitride of Zr and Ti [hereinafter, referred to as (Zr, Ti) CN] with an average thickness of 1 to 15 μm, It is also known that when used in continuous cutting or intermittent cutting of various types of steel or cast iron, excellent cutting performance is exhibited (for example, see Patent Document 1).
[0004]
Further, as shown in the schematic vertical sectional view of FIG. 1, for example, the above coated carbide tool is provided with a reaction gas blowing pipe made of stainless steel at the center thereof, and the reaction gas blowing pipe is provided with a reaction gas blowing pipe shown in FIG. Graphite carbide substrate support pallets exemplified in a schematic perspective view in a) and a schematic plan view in b) are skewered, stacked and fitted, and heated by a heater via a stainless steel cover. Using a chemical vapor deposition apparatus having a structure as shown in the figure, the cemented carbide substrate is mounted on the chemical vapor deposition apparatus in a state where it is placed as shown in a number of reaction gas passage holes formed on the bottom surface of the cemented carbide support pallet. Enter
Reaction gas composition (by volume%): ZrCl 4: 0.05~5% , TiCl 4: 0.1~6%, CH 3 CN: 0.6~5%, N 2: 0.5~40%, H 2 : remaining,
Reaction atmosphere temperature: 900 to 1050 ° C,
Reaction atmosphere pressure: 5 to 50 kPa,
It is also known to manufacture by forming a hard coating layer made of (Zr, Ti) CN under the following conditions (for example, see Patent Document 2).
[0005]
[Patent Document 1]
JP-A-62-56564 [Patent Document 2]
JP 2001-11632 A [0006]
[Problems to be solved by the invention]
In recent years, the performance of cutting equipment has been remarkably improved, and on the other hand, there is a strong demand for labor-saving and energy-saving cutting, as well as low cost. There is a tendency to strongly demand cutting under heavy cutting conditions such as high feed, but in the above-mentioned conventional coated carbide tools, there is no problem if this is used under normal cutting conditions, but especially cutting When processing is performed at high speed and under heavy cutting conditions such as high cutting and high feed with high mechanical impact, wear of the hard coating layer further increases due to insufficient strength and hardness of the hard coating layer. At the present, the use life is shortened in a relatively short time since the acceleration is promoted and the chipping easily occurs.
[0007]
[Means for Solving the Problems]
In view of the above, the present inventors have developed the above-mentioned conventional coated cemented carbide tool in order to develop a coated cemented carbide tool in which the hard coating layer exhibits excellent wear resistance particularly under high-speed heavy cutting conditions. Focusing on the hard coating layer that constitutes
(A) The (Zr, Ti) CN layer constituting the conventional coated carbide tool formed using the chemical vapor deposition apparatus shown in FIGS. 1 and 2 is substantially uniform throughout its thickness. Although it has a composition, and thus has a uniform hardness and strength, in forming the (Zr, Ti) CN layer, for example, the reaction gas composition automatic control system shown in FIG. For the purpose of causing the central flow control device to alternately form the Zr maximum content point and the Ti maximum content point alternately at predetermined intervals along the layer thickness direction on the hard coating layer composed of the (Zr, Ti) CN layer, The reaction gas composition corresponding to the Zr maximum content point and the Ti maximum content point, the reaction gas composition corresponding to the continuous change of Zr and Ti between the two points, the interval between the two points and the entire layer of the hard coating layer Thick, over And input on the basis of the actual data, in accordance with a control signal from the reaction gas composition and flow rates central controller, H 2 gas from the raw material gas cylinder, CH 4 gas, N 2 gas, and the HCl gas flow rate, further ZrCl 4 When the gas and the TiCl 4 gas are introduced into the reaction gas blow-out tube of the chemical vapor deposition apparatus while controlling the flow rates of the respective raw material flow automatic controllers, the Zr maximum content point and the Ti maximum content point along the layer thickness direction. Are present alternately at predetermined intervals, and the content of Zr and Ti continuously changes from the Zr maximum content point to the Ti maximum content point, and from the Ti maximum content point to the Zr maximum content point. A hard coating layer composed of a (Zr, Ti) CN layer having a concentration distribution structure is formed.
[0008]
(B) In the (Zr, Ti) CN layer having the concentration distribution structure of the continuously changing component of the above (a)
The Zr maximum content point is:
Composition formula: (Zr 1-X Ti X ) C 1-Z N Z ( provided that an atomic ratio, X: 0.02~0.20, Z: 0.40~0.60 ),
The highest Ti content point is
Formula: (Ti 1-Y Zr Y ) C 1-Z N Z ( provided that an atomic ratio, Y: 0.02~0.20, Z: 0.40~0.60 ),
When the distance between the Zr maximum content point and the Ti maximum content point adjacent to each other in the thickness direction is 0.01 to 0.2 μm,
In the above Zr maximum content point portion, Zr occupies the main component and exhibits an extremely high strength by the action thereof, while in the above Ti maximum content portion portion, Ti occupies the main component and exhibits the high hardness by the action thereof. In addition, since the distance between the Zr maximum content point and the Ti maximum content point is extremely small, the layer as a whole has high strength and high hardness. A coated carbide tool consisting of a Zr, Ti) CN layer can be applied to a hard coating layer even when cutting various kinds of steel or cast iron, especially when performing heavy cutting with high mechanical impact under high-speed cutting conditions. Excellent wear resistance without chipping.
The research results shown in (a) and (b) above were obtained.
[0009]
The present invention has been made based on the results of the above-mentioned research, and comprises depositing a hard coating layer composed of a (Zr, Ti) CN layer on the surface of a super-hard substrate with a total average layer thickness of 1 to 15 μm. Coated carbide tools,
In the hard coating layer, the Zr maximum content point and the Ti maximum content point alternately and repeatedly exist at predetermined intervals along the layer thickness direction, and the Zr maximum content point, the Ti maximum content point, and the Ti Having a component concentration distribution structure in which the contents of Zr and Ti continuously change from the highest content point to the Zr highest content point,
Further, the Zr maximum content point is
Composition formula: (Zr 1-X Ti X ) C 1-Z N Z ( provided that an atomic ratio, X: 0.02~0.20, Z: 0.40~0.60 ),
The highest Ti content point is
Formula: (Ti 1-Y Zr Y ) C 1-Z N Z ( provided that an atomic ratio, Y: 0.02~0.20, Z: 0.40~0.60 ),
And the interval between the adjacent Zr maximum content point and the Ti maximum content point is 0.01 to 0.2 μm,
The present invention is characterized by a coated carbide tool in which a hard coating layer exhibits excellent wear resistance under high-speed heavy cutting conditions.
[0010]
Next, the reason why the composition of the hard coating layer constituting the coated cemented carbide tool of the present invention is limited as described above will be described.
(A) X value of highest Zr content point As described above, in the (Zr, Ti) CN layer which is a hard coating layer, the Zr component improves the strength of the layer, while the Ti component improves the hardness of the layer. Therefore, a high Zr maximum content point for Zr is repeatedly formed along the thickness direction of the layer to improve overall strength of the layer itself, and a high Ti maximum content point having a high Ti component is also repeatedly formed. In this case, when the X value indicating the ratio of Ti becomes less than 0.02 in the ratio (atomic ratio, the same applies hereinafter) in the total amount with Zr, the hardness of the layer itself is improved. Even if the highest Ti content point having high hardness exists adjacent to the Zr highest content point, the predetermined hardness cannot be secured at the highest Zr content point, which causes acceleration of wear, while the same value exceeds 0.20. Causes a sharp drop in strength, resulting in chipping Since the easily without, defining the X value as 0.02 to 0.20.
[0011]
(B) Y value of the highest Ti content point As described above, the highest Zr content point has high strength, but the hardness is insufficient. Are alternately interposed in the thickness direction. However, when the Y value indicating the ratio of Zr is less than 0.02 in the ratio (atomic ratio) to the total amount with Ti, even if the Zr highest content point having high strength exists adjacently, the highest Ti content is present. The predetermined strength cannot be secured at the point, and as a result, chipping is likely to occur.On the other hand, when the value exceeds 0.20, a sharp decrease in hardness occurs, and this causes acceleration of wear. The Y value was determined to be 0.02 to 0.20.
[0012]
(C) Z value of Zr maximum content point and Ti maximum content point In the above (Zr, Ti) CN layer, the C component improves the hardness of the layer, while the N component improves the layer strength. In the (Zr, Ti) CN layer, the strength and hardness of the layer are controlled by the Zr maximum content point and the Ti maximum content point as described above, and the effect on the layer hardness and strength is exerted. In order to make the effects of the C component and the N component substantially the same, the Z value at the Zr maximum content point and the Ti maximum content point was determined to be 0.4 to 0.60. That is, when the Z value exceeds 0.60, the ratio of the N component is relatively too large as compared with the C component, while when the Z value is less than 0.40, the ratio of the C component is relatively small. The Z value is set to 0 because the ratio becomes too large compared to the ratio, and in each case, the strength and hardness of the layer significantly change, and it becomes difficult to control the strength and hardness of the layer. .4 to 0.60.
[0013]
(D) The distance between the Zr maximum content point and the Ti maximum content point If the distance is less than 0.01 μm, it is difficult to clearly form each point with the above composition, and as a result, the desired high height for the layer is obtained. If the distance exceeds 0.2 μm, the strength and high hardness cannot be ensured. If the distance exceeds 0.2 μm, each point has disadvantages, that is, the Zr maximum content point has insufficient hardness, and the Ti maximum content point has insufficient strength. Appear locally in the layer, which promotes the progress of abrasion and facilitates the occurrence of chipping. Therefore, the spacing is set to 0.01 to 0.2 μm.
[0014]
(D) Overall average layer thickness of the hard coating layer If the layer thickness is less than 1 μm, the desired wear resistance cannot be secured, while if the average layer thickness exceeds 15 μm, chipping is likely to occur. Therefore, the average layer thickness was determined to be 1 to 15 μm.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the coated cemented carbide tool of the present invention will be specifically described with reference to examples.
As raw material powders, coarse WC powder having an average particle size of 6.5 μm, medium WC powder having an average particle size of 3.5 μm, fine WC powder having an average particle size of 0.8 μm, TaC powder having an average particle size of 1.3 μm, and 1.2 μm NbC powder, 1.2 μm ZrC powder, 2.3 μm Cr 3 C 2 powder, 1.0 μm (Ti, W) CN (TiC / TiN / WC = 24/20/56 by mass ratio) ) Powder and Co powder of 1.8 μm were prepared, and each of these raw material powders was blended to the composition shown in Table 1, mixed with a ball mill for 72 hours, dried under reduced pressure, and then compacted at a pressure of 100 MPa. The green compact is pressed in a vacuum of 13.3 Pa for those forming a Co-enriched layer on the surface and 6.7 Pa for those having a uniform structure over the entire surface at a temperature of 1430. At 1 ° C for 1 hour After sintering, after sintering, the cutting edge portion was subjected to a honing process of R: 0.08 to form cemented carbide substrates A1 to A10 made of a WC-based cemented carbide having a tip shape of ISO standard CNMG160612. Note that formation of a Co-enriched layer was observed on the surface portions of the carbide substrates A-1, A-3, A-4, A-6, A-7, and A-9.
[0016]
Further, as raw material powder, TiCN (TiC / TiN = 50/50 by weight) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder each having an average particle diameter of 0.5 to 2 μm , Co powder, and Ni powder were prepared, and these raw material powders were blended in the composition shown in Table 2, wet-mixed in a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. The green compact was sintered in a carbon atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.10 to obtain an ISO standard CNMG160612. Carbide bases B1 to B6 made of TiCN-based cermet having the chip shape described above were formed.
[0017]
Next, each of the above-mentioned super-hard substrates A1 to A10 and B1 to B6 is subjected to ultrasonic cleaning in acetone, dried, and then placed in a chemical vapor deposition apparatus shown in FIG. It was loaded while being placed in the positioning holes of the substrate supporting pallet. First, when the inside of the apparatus was heated to 900 ° C. with a heater, TiCl 4 : 4.2%, N 2 : 30%, and H 2 : remainder. A reaction gas having a composition is introduced through a reaction gas blow-out tube, the reaction atmosphere pressure in the apparatus is set to 30 kPa, and this state is maintained for 20 minutes. After forming a thick titanium nitride (TiN) layer and then heating the atmosphere in the apparatus to 1020 ° C. with a heater, the reaction gas composition of the reaction gas composition automatic control system shown in FIG. In accordance with the past performance data, the Zr maximum content point (Zr-1 to Zr-8) and the Ti maximum content point (Ti-1 to Ti- The reaction gas composition corresponding to 8), the continuous change of the Zr and Ti content between the Zr maximum content point and the Ti maximum content point, and the reaction gas composition corresponding to the carbon and nitrogen content are shown in Table 5. The target interval between the two points and the target total layer thickness of the hard coating layer are input, and the reaction gas composition and the flow rate of the raw material gas are automatically controlled through a raw gas flow automatic control device with a built-in control valve that operates in accordance with a signal from the central control device. in a H 2 gas, N 2 gas, CH 4 gas, TiCl 4 gas, and ZrCl 4 gas (in this case, H 2 the TiCl 4 gas, which is as a flow control shown A scan as a carrier gas feed to the TiCl 4 gas vaporizer, where it is sent to the raw gas flow automatic control device with TiCl 4 which has been vaporized from the liquid and said ZrCl 4 gas, metal Zr and flow control in ZrCl 4 generator (Formed by reacting the HCl gas thus produced) into the apparatus through the reaction gas blow-out pipe of the chemical vapor deposition apparatus shown in FIG. 1 while automatically controlling the respective gas flow rates (the reaction atmosphere pressure in the apparatus is (Always maintained at 7 kPa). Accordingly, the Zr maximum content point and the Ti maximum content point of the target compositions shown in Tables 3 and 4 are alternately arranged on the surface of the cemented carbide substrate along the layer thickness direction. The Zr and Ti contents are present repeatedly at the indicated target intervals and substantially from the Zr maximum content point to the Ti maximum content point, and from the Ti maximum content point to the Zr maximum content point. By depositing a hard coating layer having a continuously changing component concentration distribution structure and also having a target overall layer thickness also shown in Table 5, the present invention provides a coated super hard tool as a coated super hard tool. Hard alloy throw-away tips (hereinafter referred to as coated carbide tips) 1 to 16 were produced, respectively.
[0018]
For the purpose of comparison, the above-mentioned super-hard substrates A1 to A10 and B1 to B6 were ultrasonically cleaned in acetone, dried, and then loaded into a normal chemical vapor deposition apparatus also shown in FIGS. Then, a TiN layer having an average layer thickness of 0.3 μm was formed as a base adhesion layer under the same conditions as the TiN layer forming conditions described above, and then the reaction atmosphere temperature was heated to 1020 ° C. A reaction gas having a composition corresponding to the composition was introduced from a reaction gas blow-out pipe, and under the condition that the reaction atmosphere pressure was kept constant at 7 kPa, the surface of each of the carbide substrates A1 to A10 and B1 to B6 was added to Tables 6 and 7 below. The conventional coated cemented carbide tool is formed by depositing a hard coating layer composed of a (Zr, Ti) CN layer having a target composition and a target layer thickness shown in (1) and having substantially no composition change along the layer thickness direction. When Te conventional surface-coated cemented carbide indexable (hereinafter, conventional coating called carbide inserts) were 1-16 were prepared, respectively.
[0019]
Next, with respect to the above-mentioned coated carbide tips 1 to 16 of the present invention and conventional coated carbide tips 1 to 16, in a state where they were screwed to the tip of a tool steel tool with a fixing jig,
Work material: JIS SCM415 round bar,
Cutting speed: 360 m / min. ,
Cut: 5.0 mm,
Feed: 0.28 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed high-cut cutting test of alloy steel under the conditions
Work material: JIS S25C lengthwise round bar with four equally spaced longitudinal grooves,
Cutting speed: 360 m / min. ,
Cut: 1.0 mm,
Feed: 0.5 mm / rev. ,
Cutting time: 10 minutes,
Intermittent high-speed high-feed cutting test of carbon steel under the conditions of
Work material: Round bar with four vertical grooves at equal intervals in the length direction of JIS FC250
Cutting speed: 400 m / min. ,
Cut: 5.5 mm,
Feed: 0.30 mm / rev. ,
Cutting time: 10 minutes,
A dry intermittent high-speed, high-cut cutting test was performed on cast iron under the following conditions, and the flank wear width of the cutting edge was measured in each cutting test. The measurement results are shown in Tables 4 to 7.
[0020]
[Table 1]
[0021]
[Table 2]
[0022]
[Table 3]
[0023]
[Table 4]
[0024]
[Table 5]
[0025]
[Table 6]
[0026]
[Table 7]
[0027]
For the hard coating layers constituting the coated carbide tips 1 to 16 of the present invention and the conventional coated carbide tips 1 to 16 obtained as described above, the contents of Zr, Ti, carbon, and nitrogen along the thickness direction were Auger. When measured using a spectroscopic analyzer, in the hard coating layers of the coated superhard tips 1 to 16 of the present invention, the Zr maximum content point and the Ti maximum content point alternately at substantially the same composition and interval as the target values, respectively. It has been confirmed that it has a component concentration distribution structure in which the contents of Zr and Ti are repeatedly present and the Zr and Ti contents continuously change from the Zr maximum content point to the Ti maximum content point, and the Ti maximum content point to the Zr maximum content point, The overall average thickness of the hard coating layer was also substantially the same as the target overall thickness. On the other hand, in the hard coating layers of the conventional coated carbide tips 1 to 16, no composition change is observed along the thickness direction, and the composition is substantially the same as the target composition and the overall average layer is substantially the same as the target total layer thickness. It was confirmed that the film showed a thickness.
[0028]
【The invention's effect】
From the results shown in Tables 3 to 7, the hard coating layer has a predetermined interval between the Zr maximum content point having relatively excellent high strength and the Ti maximum content point having relatively high hardness in the layer thickness direction. And a component concentration distribution structure in which the contents of Zr and Ti continuously change from the Zr maximum content point to the Ti maximum content point, from the Ti maximum content point to the Zr maximum content point. The coated carbide tips 1 to 16 of the present invention can be used for cutting various types of steel or cast iron at high speeds and under heavy cutting conditions such as high cutting and high feed accompanied by high mechanical impact. In contrast, in the conventional coated carbide tips 1 to 16, the hard coating layer exhibits excellent wear resistance without occurrence of chipping, whereas the hard coating layer has substantially no composition change along the layer thickness direction. With particularly high mechanical shock Fast chipping occurs because insufficient strength in severe cutting conditions, I hardness shortage coupled with, it is clear that lead to a relatively short time service life.
As described above, the coated cemented carbide tool of the present invention can be used not only for cutting under normal conditions, but also for cutting various kinds of steel and cast iron, etc., at high speed, and with high cutting with high mechanical impact. Even when performed under heavy cutting conditions such as high feed and high cutting, it exhibits excellent wear resistance and chipping resistance, and exhibits excellent cutting performance over a long period of time. Therefore, it is possible to satisfactorily cope with cost reduction and further cost reduction.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view illustrating a chemical vapor deposition apparatus used for forming a hard coating layer constituting a coated carbide tool.
FIGS. 2A and 2B show a super hard substrate supporting pallet as a structural member of the chemical vapor deposition apparatus, wherein FIG. 2A is a schematic perspective view and FIG. 2B is a schematic plan view.
FIG. 3 is a schematic chart of a reaction gas composition automatic control system used for forming a hard coating layer constituting the coated carbide tool of the present invention.
Claims (1)
上記硬質被覆層が、層厚方向にそって、Zr最高含有点とTi最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Zr最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Zr最高含有点へZrとTiの含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Zr最高含有点が、
組成式:(Zr1−XTiX)C1−ZNZ(ただし、原子比で、X:0.02〜0.20、Z:0.40〜0.60)、
上記Ti最高含有点が、
組成式:(Ti1−YZrY)C1−ZNZ(ただし、原子比で、Y:0.02〜0.20、Z:0.40〜0.60)、
を満足し、かつ隣り合う上記Zr最高含有点と上記Ti最高含有点の間隔が、0.01〜0.2μmであること、
を特徴とする高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具。A surface-coated cemented carbide obtained by depositing a hard coating layer composed of a Zr and Ti composite carbonitride layer on the surface of a tungsten carbide-based cemented carbide substrate or a titanium carbonitride-based cermet substrate with an overall average thickness of 1 to 15 μm. In cutting tools made of alloy,
In the hard coating layer, the Zr maximum content point and the Ti maximum content point alternately and repeatedly exist at predetermined intervals along the layer thickness direction, and the Zr maximum content point, the Ti maximum content point, and the Ti Having a component concentration distribution structure in which the contents of Zr and Ti continuously change from the highest content point to the Zr highest content point,
Further, the Zr maximum content point is
Composition formula: (Zr 1-X Ti X ) C 1-Z N Z ( provided that an atomic ratio, X: 0.02~0.20, Z: 0.40~0.60 ),
The highest Ti content point is
Formula: (Ti 1-Y Zr Y ) C 1-Z N Z ( provided that an atomic ratio, Y: 0.02~0.20, Z: 0.40~0.60 ),
The distance between the Zr maximum content point and the Ti maximum content point adjacent to each other is 0.01 to 0.2 μm;
Surface coated cemented carbide cutting tool with a hard coating layer that exhibits excellent wear resistance under high speed heavy cutting conditions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002231265A JP3948020B2 (en) | 2002-08-08 | 2002-08-08 | Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002231265A JP3948020B2 (en) | 2002-08-08 | 2002-08-08 | Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004066424A true JP2004066424A (en) | 2004-03-04 |
JP3948020B2 JP3948020B2 (en) | 2007-07-25 |
Family
ID=32017087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002231265A Expired - Fee Related JP3948020B2 (en) | 2002-08-08 | 2002-08-08 | Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3948020B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010137314A (en) * | 2008-12-10 | 2010-06-24 | Sumitomo Electric Hardmetal Corp | Surface coated cutting tool |
JP2010137315A (en) * | 2008-12-10 | 2010-06-24 | Sumitomo Electric Hardmetal Corp | Surface coated cutting tool |
-
2002
- 2002-08-08 JP JP2002231265A patent/JP3948020B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010137314A (en) * | 2008-12-10 | 2010-06-24 | Sumitomo Electric Hardmetal Corp | Surface coated cutting tool |
JP2010137315A (en) * | 2008-12-10 | 2010-06-24 | Sumitomo Electric Hardmetal Corp | Surface coated cutting tool |
Also Published As
Publication number | Publication date |
---|---|
JP3948020B2 (en) | 2007-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3978779B2 (en) | Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions | |
JP4048364B2 (en) | Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions | |
JP3900521B2 (en) | Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions | |
JP3948020B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions. | |
JP3900520B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions | |
JP3922141B2 (en) | Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions. | |
JP3900517B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions | |
JP4224782B2 (en) | Surface-coated throw-away tip with excellent wear resistance and chipping resistance under high-speed heavy cutting conditions | |
JP3900516B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions. | |
JP3900528B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions. | |
JP3900527B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions. | |
JP3900519B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions. | |
JP3900526B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions. | |
JP2004154878A (en) | Surface coated cemented carbide cutting tool having hard coated layer exhibiting excellent wear resistance under high speed heavy cutting condition | |
JP3903483B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions. | |
JP3900518B2 (en) | Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions | |
JP3948019B2 (en) | Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions | |
JP4075052B2 (en) | Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under heavy cutting conditions. | |
JP2004237425A (en) | Cutting tool made of surface coated cemented carbide coated with hard coating layer having excellent wear resistance at high cutting speed | |
JP3900523B2 (en) | Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions | |
JP2002160106A (en) | Cutting tool made of surface coating cemented carbide having high surface lublicity against chip | |
JP2004202588A (en) | Surface-covered cemented carbide cutting tool having hard covering layer exhibiting superior abrasion resistance under high speed cutting condition | |
JP2004066421A (en) | Surface-covered superalloy cutting tool whose hard covering layer exhibits good chipping resistance and wear resistance in high-speed heavy cutting condition | |
JP2004130494A (en) | Surface covered cutting tool made of cermet having hard covering layer having high abrasion resistance in high speed cutting condition | |
JP2004050382A (en) | Surface-coated cemented carbide tool exhibiting superior chipping resistance under high-speed and heavy-duty cutting conditions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070326 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070408 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100427 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100427 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110427 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120427 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120427 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130427 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130427 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |