JP2004063720A - Manufacturing method of build-up multilayer printed-wiring board - Google Patents

Manufacturing method of build-up multilayer printed-wiring board Download PDF

Info

Publication number
JP2004063720A
JP2004063720A JP2002219232A JP2002219232A JP2004063720A JP 2004063720 A JP2004063720 A JP 2004063720A JP 2002219232 A JP2002219232 A JP 2002219232A JP 2002219232 A JP2002219232 A JP 2002219232A JP 2004063720 A JP2004063720 A JP 2004063720A
Authority
JP
Japan
Prior art keywords
layer
build
plating
multilayer printed
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002219232A
Other languages
Japanese (ja)
Inventor
Kokuko Naoi
直井 克巧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2002219232A priority Critical patent/JP2004063720A/en
Publication of JP2004063720A publication Critical patent/JP2004063720A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a build-up multilayer printed-wiring board that can form a filled via whose surface is flat in a hole for via having a small diameter (100 μmϕ or less) and high aspect ratio (0.7 or more). <P>SOLUTION: A resin photosensitive layer 31 is formed on both the surfaces of a circuit board (an internal layer board) 10. A series of patterning treatments such as pattern exposure and development are made. An insulating layer 31a where the hole 32 for via is formed at a specific position is formed. A ground conductor layer is formed on the insulating layer 31a and in the hole 32 for via by electroless copper plating. By electrolytic panel plating using an electrolytic copper plating bath where an addition agent for the filled via is added with the plating substrate conductor layer as a cathode, a conductor layer 41 and the filled via 42 are formed, the conductor layer 41 is subjected to patterning treatment, second wiring layers 41a, 41b, a pad electrode 41c, and the like are formed, and the four-layer build-up multilayer printed-wiring board 100 is obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、絶縁基材上に絶縁層を介して少なくとも2層以上の配線層が形成されたビルドアップ多層プリント配線板の製造方法に関する。
【0002】
【従来の技術】
電子機器の小型化、高密度化、高性能化が進んでいる中で、そこに用いられる多層回路板も小型化、高密度化、高速化の要求が高まっており、それらの要求を満たした多層プリント配線板が求められている。
多層プリント配線板は、回路基板(内層基板)とプリプレグシートを積層して、配線層を形成して多層プリント配線板板を形成していく方式から、回路基板(内層基板)上に絶縁層、配線層を交互に積み上げていくビルドアップ方式の多層プリント配線板へと移行しつつある。
【0003】
このようなビルドアップ多層プリント配線板は、次のような手順により作製される。
図1(a)〜(e)に、ビルドアップ多層プリント配線板の製造方法の一例を示す。
まず、絶縁基材11の両面に第1配線層21a及び第1配線層21bが形成された回路基板(内層基板)10の両面にアディティブ接着剤を厚さ数十μmに塗布し、乾燥して、樹脂感光層31を形成する(図1(a)及び(b)参照)。  次に、樹脂感光層31にパターン露光、現像等の一連のパターンニング処理を行って、樹脂感光層の所定位置に内径100μm〜200μmのビア用孔32が形成された絶縁層31aを形成する(図1(c)参照)。
【0004】
次に、絶縁層31a及びビア用孔32の内壁を粗化処理、触媒核付与及び活性化処理を行った後、無電解銅めっき等により、 絶縁層31a上及びビア用孔32内壁に0.2〜1.0μm厚のめっき下地導体層を形成する(特に図示せず)。
次に、めっき下地導体層をカソードにして電解パネルめっきを行い、ビア用孔内にフィルドビア42を、絶縁層31a上に導体層41を形成する(図1(d)参照)。
【0005】
次に、導体層41をパターニング処理することにより、第2配線層41a及び第2配線層41bを形成し、第2配線層41a及び第2配線層41bが第1配線層21a及び第1配線層21bとフィルドビア42にて電気的に接続された4層のビルドアップ多層プリント配線板を作製することができる(図1(e)参照)。
【0006】
【発明が解決しようとする課題】
この種のビルドアップ多層プリント配線板では、ビルドアップ層30の表面を平坦な状態にしなくてはならないという要求がある。
これは、ビルドアップ層30の表面に凹凸があると、表面実装を行った場合にはんだボイド等の発生により、各電子部品の障害を起こすからである。
このような凹凸がビルドアップ層30表面に発生する最大の原因としては、ビア用孔32に対する穴埋めが不完全でフィルドビア42の中央部が窪んでしまうことが挙げられる。
【0007】
しかしながら、近年の導体パターンの高多層化や高密度化によりビアの小径化や高アスペクト比化が進むことによりビア用孔はより小さく、また、深くなっている。そのため、フィルドビアを電解パネルめっきで形成する場合、ビア用孔の中でのめっき液交換がされ難くなり、結果として、電解めっきによる穴埋めが不完全でフィルドビアの中央部が窪んでしまったり、フィルドビア中にボイド(空洞化)が発生してしまうという問題がある。
【0008】
本発明は上記問題点に鑑みなされたものであり、小径(100μmφ以下)、且つ高アスペクト比(0.7以上)のビア用孔に表面が平坦なフィルドビアを形成することができるビルドアップ多層プリント配線板の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明に於いて上記問題を解決するために、まず請求項1においては、絶縁基材上に絶縁層を介して少なくとも1層以上の配線層が形成されたビルドアップ多層プリント配線板の各配線層間を電気的に接続するフィルドビアをめっき法によって形成するビルドアップ多層プリント配線板の製造方法において、所定厚の前記絶縁層にビア用孔を形成した後、無電解めっき浴を用いて前記絶縁層上及び前記ビア用孔内にめっき下地導体層を形成し、前記めっき下地導体層をカソードにしてフィルドビア用添加剤を用いた電解めっき浴を用いた電解パネルめっきにて、前記ビア用孔を埋めるようにしたことを特徴とするビルドアップ多層プリント配線板の製造方法としたものである。
【0010】
また、請求項2においては、前記ビア用孔は、厚さ150μm以下の前記絶縁層に開口径100μm以下で、アスペクト比が0.7以上であることを特徴とする請求項1に記載のビルドアップ多層プリント配線板の製造方法としたものである。
【0011】
また、請求項3においては、前記電解めっき浴は、電解硫酸銅めっき浴であることを特徴とする請求項1または2に記載のビルドアップ多層プリント配線板の製造方法としたものである。
【0012】
さらにまた、請求項4においては、前記電解パネルめっきは、噴流構造のめっき設備及びユニポーラ電流を有するパルス電源を用いて、電解めっきを行うことを特徴とする請求項1乃至3のいずれか1項に記載のビルドアップ多層プリント配線板の製造方法としたものである。
【0013】
ビルドアップ多層プリント配線板のフィルドビアを作製する際、ビア用孔を小径(100μm以下)且つ高アスペクト比(0.7以上)にした場合電解めっき時のビア用孔内へのめっき液の交換がされ難くなるため、電解めっき浴中の金属イオンや添加剤の供給不足を補う必要がある。本発明では、フィルドビア用添加剤を用いた電解めっき浴を用いた電解パネルめっきにて、噴流めっき装置での十分な液撹拌やパルス電源を用いたユニポーラ電流(ユニポーラ電流での休止時間は、金属イオンが電極に引き付けられるということがないため、金属イオンのランダムな熱拡散運動によって、拡散層の金属イオン濃度が回復する作用を有する)を用いることにより、電解めっき時の浴中の金属イオンや添加剤をビア用孔内に供給し、めっき析出をより促進することができるようにした。
このように、ビア用孔の開口部周辺と底部との間でのめっき析出速度を均一化することにより、電解析出の状態をよりスムーズに改善することができ、表面が平坦なフィルドビアを有するビルドアップ層を得ることができる。
【0014】
また、請求項3に係る発明では、めっき下地導体層とフィルドビアがともに銅からなる導体層であることから、互いに馴染みやすく、高い密着性が得られるため、信頼性の高いフィルドビアを得ることができる。さらに、銅は導電性に優れるので、低抵抗のフィルドビアを得ることができる。
【0015】
【発明の実施の形態】
以下、本発明のビルドアップ多層プリント配線板の製造方法について図面を用いて説明する。
図1(a)〜(e)は、本発明のビルドアップ多層プリント配線板の製造方法の一実施例を工程順に示す模式構成部分断面図である。
まず、ガラス不織布にエポキシ樹脂を含浸させた絶縁基材11の両面に銅箔を貼り合わせた銅張り積層板を用い、銅箔をサブトラクティブプロセスにてパターニング処理して、絶縁基材11の両面に第1配線層21a及び第1配線層21bを形成し、回路基板(内層基板)10を作製する(図1(a)参照)。
【0016】
次に、回路基板(内層基板)10の両面にアディティブ用接着剤を塗布し、乾燥して、樹脂感光層31を形成し(図1(b)参照)、パターン露光、現像等の一連のパターニング処理を行って、所定位置にビア用孔32を形成した絶縁層31aを形成する(図1(c)参照)。
ここで、ビア用孔32は厚さ150μm以下の絶縁層に開口径100μm以下のビア用孔に適用される。
アディティブ用接着剤は、例えば、難溶のエポキシ樹脂マトリクス中に易溶の樹脂フィラーを分散させ、感光性を持たせた感光性樹脂溶液である。
また、ビア用孔32はフォトプロセスを用いて形成したが、レーザー加工等で形成してもよい。その際は感光性は必要ないため、通常の絶縁層がそのまま使用できる。
また、絶縁層31aの厚さは20μm〜150μm程度に設定される。
【0017】
次に、絶縁層31a上及びビア用孔32内を粗化剤にて粗面化処理し、微細なアンカー用凹部を有する粗化面を形成する。
ここで、粗化剤とは、絶縁層31中の易溶成分を溶解する薬剤であって、例えばクロム酸、クロム酸塩、硫酸、塩酸、過マンガン酸等の溶液が上げられる。
さらに、絶縁層31a上及びビア用孔32内に、無電解めっき析出時のコアとなるPd(パラジウム)等の触媒核を付与した後、それを活性化する処理を行う。このとき、ビア用孔32の側面や、ビア用孔32の底面にも、触媒核が付与される。
【0018】
次に、無電解銅めっき浴(キューポジット253(商品名):シプレイ社製)にて処理温度:30〜40℃、処理時間:10〜40分にて無電解銅めっきを行い、絶縁層31a上及びビア用孔32内にめっき下地導体層(特に、図示せず)を形成する。このめっき下地導体層は、いわゆる薄付けめっき導体層であり、その厚さは0.1μm〜3.0μmと極めて薄いものである。
【0019】
次に、噴流式めっき装置を用いて、めっき下地導体層をカソードにしてフィルドビア用添加剤を添加してなる電解銅めっき浴の撹拌を行い、さらに、パルス電源によるユニポーラ電流の通電条件にて電解パネルめっきを行い、ビア用孔内にフィルドビア42を、絶縁層31a上に導体層41を形成する(図1(d)参照)。
ここで、電解銅めっき浴では、ビア用孔内にめっきを厚く成長させ、ビア用孔内をめっきにて充填させることを促進するために、フィルドビア用添加剤を用いることが望ましい。
以下に電解銅めっき浴を用いた電解パネルめっきの条件の一例を記す。

Figure 2004063720
【0020】
次に、導体層41をパターニング処理することにより、第2配線層41a、第2配線層41b及びパッド電極41c等を形成して、第2配線層41a、第2配線層41b及びパッド電極41cが第1配線層21a及び第1配線層21bとフィルドビア42にて電気的に接続された4層のビルドアップ多層プリント配線板100を得ることができる(図1(e)参照)。
さらに必要であれば、上記工程を必要回数繰り返すことにより所望層数のビルドアップ多層プリント配線板を作製することができる。
【0021】
【実施例】
以下、実施例により本発明を詳細に説明する。
まず、ガラス不織布にエポキシ樹脂を含浸させた絶縁基材11の両面に18μmの銅箔を貼り合わせた銅張り積層板を用い、パターニング処理して第1配線層21a及び第1配線層21bが形成された回路基板(内層基板)10を作製した(図1(a)参照)。
【0022】
次に、回路基板(内層基板)10の両面にアディティブ用接着剤を塗布し、乾燥して、樹脂感光層31を形成し(図1(b)参照)、パターン露光、現像等の一連のパターニング処理を行って、所定位置に50μmφのビア用孔32が形成された50μm厚の絶縁層31aを形成した(図2(c)参照)。
【0023】
次に、絶縁層31a上及びビア用孔32内を過マンガン酸溶液からなる粗化剤にて粗面化処理し、Pd等の触媒核を付与した後活性化処理を行った。
次に、無電解銅めっき浴(キューポジット253(商品名):シプレイ社製)を用いて処理温度:34℃、処理時間:30分にて無電解銅めっきを行い、絶縁層31a上及びビア用孔32内に0.5μm厚のめっき下地導体層(特に、図示せず)を形成した。
【0024】
次に、噴流式めっき装置を用いて、めっき下地導体層をカソードにしてフィルドビア用添加剤を添加してなる電解銅めっき浴を用いて、下記に示すめっき条件にて電解パネルめっきを行い、ビア用孔32内にフィルドビア42を、絶縁層31a上に25μm厚の導体層41を形成した(図1(d)参照)。
電解銅めっき浴:
CuSO    225g/リットル
SO     55g/リットル
CL       60ml/リットル
処理温度:23℃
処理時間:113分
通電条件
電流密度:1.0A/dm
ユニポーラ電流:定常時間;20msec、休止時間;1msec
噴流式めっき装置での噴流流量:30L/分
【0025】
次に、導体層41上にドライフィルム(AQ2558(商品名):旭化成工業社製)を加熱、転写して感光層を形成し、パターン露光、現像等の一連のパターニング処理を行ってレジストパターンを形成し、レジストパターンをエッチングマスクにして塩化第2鉄溶液を用いて導体層41のエッチングを行い、第2配線層41a、第2配線層41b及びパッド電極41c等を形成して、第2配線層41a、第2配線層41b及びパッド電極41cが第1配線層21a及び第1配線層21bとフィルドビア42にて電気的に接続された4層のビルドアップ多層プリント配線板100を得た(図2(e)参照)。
【0026】
ビルドアップ多層プリント配線板100のフィルドビア42上には窪み等は形成されておらず、ビルドアップ層30はほぼ平坦な面が形成されていることが確認された。
【0027】
本発明のビルドアップ多層プリント配線板の製造法を適用することにより、以下のような効果を得ることができる。
ビア用孔32を100μmφ以下の小径にしても、本発明の電解銅めっき条件を採用することにより、中央部に窪みを生じない、表面が平坦なフィルドビア42を得ることができる。
また、めっき下地導体層及びその上に析出する導体層41が、ともに銅で形成されているため、各層界面での高い密着性が付与され、信頼性の高いフィルドビア、第2配線層及びパッド電極等を得ることができる。さらに、銅は導電性に優れるので、低抵抗のフィルドビアを得ることができる。
【0028】
【発明の効果】
上記したように、本発明のビルドアップ多層プリント配線板の製造法を適用することにより、ビア用孔の径が100μm以下であっても、表面が平坦な、密着性に優れたフィルドビアを形成でき、低コストで、高信頼性のビルドアップ多層プリント配線板を提供できる。
【図面の簡単な説明】
【図1】(a)〜(e)は、本発明のビルドアップ多層プリント配線板の製造方法の一実施例を工程順に示す模式構成部分断面図である。
【符号の説明】
10……回路基板(内層基板)
11……絶縁基材
21a、21b……第1配線層
30……ビルドアップ層
31……感光層
31a……絶縁層
32……ビア用孔
41……導体層
42……フィルドビア
41a、41b……第2配線層
41c……パッド電極
100……ビルドアップ多層プリント配線板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a build-up multilayer printed wiring board in which at least two or more wiring layers are formed on an insulating base via an insulating layer.
[0002]
[Prior art]
As the miniaturization, high density, and high performance of electronic devices are progressing, the demands for miniaturization, high density, and high speed of the multilayer circuit boards used therein are also increasing. There is a need for multilayer printed wiring boards.
The multilayer printed wiring board is formed by laminating a circuit board (inner layer board) and a prepreg sheet, forming a wiring layer to form a multilayer printed wiring board board, and forming an insulating layer on the circuit board (inner layer board). It is shifting to a build-up type multilayer printed wiring board in which wiring layers are alternately stacked.
[0003]
Such a build-up multilayer printed wiring board is manufactured by the following procedure.
1A to 1E show an example of a method for manufacturing a build-up multilayer printed wiring board.
First, an additive adhesive is applied to both surfaces of the circuit board (inner substrate) 10 having the first wiring layer 21a and the first wiring layer 21b formed on both surfaces of the insulating base material 11 to a thickness of several tens of μm and dried. Then, a resin photosensitive layer 31 is formed (see FIGS. 1A and 1B). Next, a series of patterning processes such as pattern exposure and development are performed on the resin photosensitive layer 31 to form an insulating layer 31a in which a via hole 32 having an inner diameter of 100 μm to 200 μm is formed at a predetermined position of the resin photosensitive layer ( FIG. 1 (c)).
[0004]
Next, after performing roughening treatment, catalyst nucleus provision and activation treatment on the inner wall of the insulating layer 31a and the via hole 32, the inner wall of the insulating layer 31a and the inner wall of the via hole 32 are formed by electroless copper plating or the like. A plating base conductor layer having a thickness of 2 to 1.0 μm is formed (not particularly shown).
Next, electrolytic panel plating is performed using the plating base conductor layer as a cathode to form a filled via 42 in the via hole and a conductor layer 41 on the insulating layer 31a (see FIG. 1D).
[0005]
Next, the second wiring layer 41a and the second wiring layer 41b are formed by patterning the conductor layer 41, and the second wiring layer 41a and the second wiring layer 41b are formed by the first wiring layer 21a and the first wiring layer. A four-layer build-up multilayer printed wiring board electrically connected to the via 21b and the filled via 42 can be manufactured (see FIG. 1E).
[0006]
[Problems to be solved by the invention]
In this type of build-up multilayer printed wiring board, there is a demand that the surface of the build-up layer 30 must be flat.
This is because, if the surface of the build-up layer 30 has irregularities, solder voids or the like may occur when performing surface mounting, thereby causing failure of each electronic component.
The largest cause of such unevenness on the surface of the build-up layer 30 is that the filling of the via hole 32 is incomplete and the center of the filled via 42 is depressed.
[0007]
However, via holes are becoming smaller and deeper as the diameter of vias is reduced and the aspect ratio is increased due to the increase in the number of layers and the density of conductor patterns in recent years. Therefore, when the filled via is formed by electrolytic panel plating, it is difficult to exchange the plating solution in the via hole, and as a result, the hole filling by the electrolytic plating is incomplete and the center of the filled via is depressed, There is a problem that voids (hollowing) occur.
[0008]
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and is a build-up multilayer print capable of forming a filled via with a flat surface in a via hole having a small diameter (100 μmφ or less) and a high aspect ratio (0.7 or more). An object of the present invention is to provide a method for manufacturing a wiring board.
[0009]
[Means for Solving the Problems]
In order to solve the above problems in the present invention, first, according to claim 1, each wiring of a build-up multilayer printed wiring board in which at least one wiring layer is formed on an insulating base via an insulating layer In a method for manufacturing a build-up multilayer printed wiring board, wherein a filled via for electrically connecting layers is formed by a plating method, a via hole is formed in the insulating layer having a predetermined thickness, and then the insulating layer is formed using an electroless plating bath. An underplating conductor layer is formed on the top and in the via hole, and the via hole is filled by electrolytic panel plating using an electroplating bath using a filled via additive with the plating underconductor layer as a cathode. A method of manufacturing a build-up multilayer printed wiring board characterized by having the above-described structure.
[0010]
2. The build according to claim 1, wherein the via hole has an opening diameter of 100 μm or less and an aspect ratio of 0.7 or more in the insulating layer having a thickness of 150 μm or less. This is a method for manufacturing an up-multilayer printed wiring board.
[0011]
According to a third aspect of the present invention, there is provided the method of manufacturing a build-up multilayer printed wiring board according to the first or second aspect, wherein the electrolytic plating bath is an electrolytic copper sulfate plating bath.
[0012]
Still further, in claim 4, the electrolytic panel plating is performed by using a plating facility having a jet structure and a pulse power supply having a unipolar current. The method for producing a build-up multilayer printed wiring board described in (1).
[0013]
When making a filled via of a build-up multilayer printed wiring board, if the via hole has a small diameter (100 μm or less) and a high aspect ratio (0.7 or more), the plating solution needs to be exchanged into the via hole during electrolytic plating. Therefore, it is necessary to compensate for insufficient supply of metal ions and additives in the electrolytic plating bath. In the present invention, in an electrolytic panel plating using an electrolytic plating bath using an additive for filled via, sufficient liquid agitation in a jet plating apparatus or a unipolar current using a pulse power source (the pause time in the unipolar current is a Since the ions are not attracted to the electrode, the metal ions in the bath at the time of electrolytic plating can be removed by using a random thermal diffusion motion of the metal ions, which has the effect of restoring the metal ion concentration in the diffusion layer. Additives were supplied into the via holes to further promote plating deposition.
Thus, by uniformizing the plating deposition rate between the periphery of the opening of the via hole and the bottom, the state of electrolytic deposition can be more smoothly improved, and the filled via has a flat surface. Build-up layer can be obtained.
[0014]
According to the third aspect of the present invention, since the plating base conductor layer and the filled via are both conductor layers made of copper, they are easily compatible with each other and have high adhesion, so that a highly reliable filled via can be obtained. . Further, copper has excellent conductivity, so that a low-resistance filled via can be obtained.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method for manufacturing a build-up multilayer printed wiring board according to the present invention will be described with reference to the drawings.
1A to 1E are schematic partial cross-sectional views showing one embodiment of a method for manufacturing a build-up multilayer printed wiring board according to the present invention in the order of steps.
First, using a copper-clad laminate in which a copper foil is bonded to both sides of an insulating base material 11 in which a glass nonwoven fabric is impregnated with an epoxy resin, the copper foil is subjected to a patterning process by a subtractive process. Then, a first wiring layer 21a and a first wiring layer 21b are formed, and a circuit board (inner substrate) 10 is manufactured (see FIG. 1A).
[0016]
Next, an additive adhesive is applied to both sides of the circuit board (inner layer substrate) 10 and dried to form a resin photosensitive layer 31 (see FIG. 1B), and a series of patterning such as pattern exposure and development is performed. By performing the processing, an insulating layer 31a having a via hole 32 formed at a predetermined position is formed (see FIG. 1C).
Here, the via hole 32 is applied to a via hole having an opening diameter of 100 μm or less in an insulating layer having a thickness of 150 μm or less.
The additive adhesive is, for example, a photosensitive resin solution in which a readily soluble resin filler is dispersed in a hardly soluble epoxy resin matrix to impart photosensitivity.
Further, the via holes 32 are formed by using a photo process, but may be formed by laser processing or the like. In that case, since no photosensitivity is required, a normal insulating layer can be used as it is.
Further, the thickness of the insulating layer 31a is set to about 20 μm to 150 μm.
[0017]
Next, the surface of the insulating layer 31a and the inside of the via hole 32 are roughened with a roughening agent to form a roughened surface having fine anchor recesses.
Here, the roughening agent is a chemical that dissolves easily soluble components in the insulating layer 31, and examples thereof include solutions of chromic acid, chromate, sulfuric acid, hydrochloric acid, permanganic acid, and the like.
Further, after a catalyst nucleus such as Pd (palladium) serving as a core during electroless plating deposition is provided on the insulating layer 31a and in the via hole 32, a process of activating the catalyst nucleus is performed. At this time, the catalyst nuclei are also applied to the side surface of the via hole 32 and the bottom surface of the via hole 32.
[0018]
Next, electroless copper plating is performed in an electroless copper plating bath (Cuposit 253 (trade name): manufactured by Shipley Co., Ltd.) at a processing temperature of 30 to 40 ° C. and a processing time of 10 to 40 minutes. A plating base conductor layer (particularly not shown) is formed on the upper side and in the via hole 32. This plating base conductor layer is a so-called thin plating conductor layer, and its thickness is as extremely small as 0.1 μm to 3.0 μm.
[0019]
Next, using a jet-type plating apparatus, the electrolytic copper plating bath containing the additive for the filled via was stirred with the base conductor layer of the plating as a cathode, and further subjected to electrolysis under a unipolar current supply condition by a pulse power supply. Panel plating is performed to form a filled via 42 in the via hole and a conductor layer 41 on the insulating layer 31a (see FIG. 1D).
Here, in the electrolytic copper plating bath, it is desirable to use a filled via additive in order to grow the plating thickly in the via hole and to fill the via hole with plating.
An example of conditions for electrolytic panel plating using an electrolytic copper plating bath is described below.
Figure 2004063720
[0020]
Next, by patterning the conductor layer 41, the second wiring layer 41a, the second wiring layer 41b, the pad electrode 41c and the like are formed, and the second wiring layer 41a, the second wiring layer 41b, and the pad electrode 41c are formed. A four-layer build-up multilayer printed wiring board 100 electrically connected to the first wiring layer 21a and the first wiring layer 21b by the filled via 42 can be obtained (see FIG. 1E).
If necessary, the above steps are repeated as many times as necessary to produce a build-up multilayer printed wiring board having a desired number of layers.
[0021]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
First, a first wiring layer 21a and a first wiring layer 21b are formed by patterning using a copper-clad laminate in which 18 μm copper foil is bonded to both surfaces of an insulating base material 11 in which a glass nonwoven fabric is impregnated with an epoxy resin. Thus, a circuit board (inner layer substrate) 10 was manufactured (see FIG. 1A).
[0022]
Next, an additive adhesive is applied to both sides of the circuit board (inner layer substrate) 10 and dried to form a resin photosensitive layer 31 (see FIG. 1B), and a series of patterning such as pattern exposure and development is performed. By performing the process, an insulating layer 31a having a thickness of 50 μm and a via hole 32 having a diameter of 50 μm was formed at a predetermined position (see FIG. 2C).
[0023]
Next, the surface of the insulating layer 31a and the inside of the via hole 32 were subjected to a surface roughening treatment using a roughening agent composed of a permanganic acid solution, and a catalyst nucleus such as Pd was provided, followed by an activation treatment.
Next, using an electroless copper plating bath (Cuposit 253 (trade name), manufactured by Shipley Co., Ltd.), electroless copper plating was performed at a processing temperature of 34 ° C. and a processing time of 30 minutes, and the insulating layer 31a and the via A 0.5 μm-thick plating base conductor layer (particularly not shown) was formed in the hole 32.
[0024]
Next, using a jet plating apparatus, electrolytic panel plating was performed under the following plating conditions using an electrolytic copper plating bath obtained by adding an additive for a filled via with the plating underlying conductor layer as a cathode, and A filled via 42 was formed in the hole 32, and a conductor layer 41 having a thickness of 25 μm was formed on the insulating layer 31a (see FIG. 1D).
Electrolytic copper plating bath:
CuSO 4 225 g / liter H 2 SO 4 55 g / liter CL 60 ml / liter Processing temperature: 23 ° C.
Processing time: 113 minutes Energizing condition Current density: 1.0 A / dm 2
Unipolar current: steady time; 20 msec, pause time; 1 msec
Jet flow rate in jet plating apparatus: 30 L / min
Next, a dry film (AQ2558 (trade name) manufactured by Asahi Kasei Kogyo Co., Ltd.) is heated and transferred onto the conductor layer 41 to form a photosensitive layer, and a series of patterning processes such as pattern exposure and development are performed to form a resist pattern. The conductive layer 41 is etched using a ferric chloride solution using the resist pattern as an etching mask to form a second wiring layer 41a, a second wiring layer 41b, a pad electrode 41c, etc. A four-layer build-up multilayer printed wiring board 100 in which the layer 41a, the second wiring layer 41b, and the pad electrode 41c are electrically connected to the first wiring layer 21a, the first wiring layer 21b, and the filled via 42 is obtained (FIG. 2 (e)).
[0026]
No depression or the like was formed on the filled via 42 of the build-up multilayer printed wiring board 100, and it was confirmed that the build-up layer 30 had a substantially flat surface.
[0027]
By applying the method for manufacturing a build-up multilayer printed wiring board of the present invention, the following effects can be obtained.
Even if the via hole 32 has a small diameter of 100 μmφ or less, the electrolytic via plating condition of the present invention can provide a filled via 42 having a flat surface with no depression at the center.
In addition, since the plating base conductor layer and the conductor layer 41 deposited thereon are both formed of copper, high adhesion is provided at each layer interface, and a highly reliable filled via, a second wiring layer, and a pad electrode are provided. Etc. can be obtained. Further, copper has excellent conductivity, so that a low-resistance filled via can be obtained.
[0028]
【The invention's effect】
As described above, by applying the method for manufacturing a build-up multilayer printed wiring board of the present invention, a filled via having a flat surface and excellent adhesion can be formed even when the diameter of the via hole is 100 μm or less. A low-cost, highly reliable build-up multilayer printed wiring board can be provided.
[Brief description of the drawings]
FIGS. 1A to 1E are schematic partial cross-sectional views showing one embodiment of a method for manufacturing a build-up multilayer printed wiring board according to the present invention in the order of steps.
[Explanation of symbols]
10 Circuit board (inner layer board)
11 Insulating base materials 21a and 21b First wiring layer 30 Build-up layer 31 Photosensitive layer 31a Insulating layer 32 Via hole 41 Conductor layer 42 Filled vias 41a and 41b ... Second wiring layer 41c... Pad electrode 100... Build-up multilayer printed wiring board

Claims (4)

絶縁基材上に絶縁層を介して少なくとも2層以上の配線層が形成されたビルドアップ多層プリント配線板の各配線層間を電気的に接続するフィルドビアをめっき法によって形成するビルドアップ多層プリント配線板の製造方法において、所定厚さの前記絶縁層にビア用孔を形成した後、無電解めっき浴を用いて前記絶縁層上及び前記ビア用孔の内壁にめっき下地導体層を形成し、前記めっき下地導体層をカソードにしてフィルドビア用添加剤を用いた電解めっき浴を用いた電解パネルめっきにて、前記ビア用孔を埋めるようにしたことを特徴とするビルドアップ多層プリント配線板の製造方法。A build-up multilayer printed wiring board in which a filled via for electrically connecting each wiring layer of a build-up multilayer printed wiring board having at least two or more wiring layers formed on an insulating base via an insulating layer is formed by plating. In the manufacturing method, after forming a via hole in the insulating layer having a predetermined thickness, a plating base conductor layer is formed on the insulating layer and on the inner wall of the via hole using an electroless plating bath. A method for manufacturing a build-up multilayer printed wiring board, characterized in that said via holes are filled by electrolytic panel plating using an electrolytic plating bath using an additive for filled vias with an underlying conductor layer as a cathode. 前記ビア用孔は、厚さ150μm以下の前記絶縁層に開口径100μm以下、かつ、アスペクト比が0.7以上であることを特徴とする請求項1に記載のビルドアップ多層プリント配線板の製造方法。2. The manufacture of a build-up multilayer printed wiring board according to claim 1, wherein the via hole has an opening diameter of 100 μm or less and an aspect ratio of 0.7 or more in the insulating layer having a thickness of 150 μm or less. 3. Method. 前記電解めっき浴は、電解硫酸銅めっき浴であることを特徴とする請求項1または2に記載のビルドアップ多層プリント配線板の製造方法。The method for manufacturing a build-up multilayer printed wiring board according to claim 1, wherein the electrolytic plating bath is an electrolytic copper sulfate plating bath. 前記電解パネルめっきは、噴流構造のめっき設備及びユニポーラ電流を有するパルス電源を用いて、電解めっきを行うことを特徴とする請求項1乃至3のいずれか1項に記載のビルドアップ多層プリント配線板の製造方法。4. The build-up multilayer printed wiring board according to claim 1, wherein the electrolytic panel plating is performed by using a plating facility having a jet structure and a pulse power supply having a unipolar current. 5. Manufacturing method.
JP2002219232A 2002-07-29 2002-07-29 Manufacturing method of build-up multilayer printed-wiring board Pending JP2004063720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002219232A JP2004063720A (en) 2002-07-29 2002-07-29 Manufacturing method of build-up multilayer printed-wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002219232A JP2004063720A (en) 2002-07-29 2002-07-29 Manufacturing method of build-up multilayer printed-wiring board

Publications (1)

Publication Number Publication Date
JP2004063720A true JP2004063720A (en) 2004-02-26

Family

ID=31940188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002219232A Pending JP2004063720A (en) 2002-07-29 2002-07-29 Manufacturing method of build-up multilayer printed-wiring board

Country Status (1)

Country Link
JP (1) JP2004063720A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077808A (en) * 2011-09-16 2013-04-25 Hoya Corp Method for manufacturing substrate and method for manufacturing wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077808A (en) * 2011-09-16 2013-04-25 Hoya Corp Method for manufacturing substrate and method for manufacturing wiring board

Similar Documents

Publication Publication Date Title
JP5213094B2 (en) Method and process for embedding conductive vias in a dielectric layer
EP2647267B1 (en) Method for manufacturing printed circuit board
US4770900A (en) Process and laminate for the manufacture of through-hole plated electric printed-circuit boards
JP2003218519A (en) Printed board and its manufacturing method
JP2004265967A (en) Multilayer printed wiring board, its manufacturing method and semiconductor device
JP3596374B2 (en) Manufacturing method of multilayer printed wiring board
JP2003124637A (en) Multilayer wiring board
JP2004063720A (en) Manufacturing method of build-up multilayer printed-wiring board
JPH05283865A (en) Manufacture of multilayer flexible printed-circuit board
JP5369950B2 (en) Multilayer printed wiring board manufacturing method and multilayer printed wiring board
JP4051923B2 (en) Manufacturing method of build-up multilayer printed wiring board
JP2006339483A (en) Wiring board and manufacturing method thereof
JP2004319994A (en) Method for manufacturing printed wiring board
JP2005333050A (en) Printed wiring board and method for forming via hole using via-fill plating
JP2005251894A (en) Method of manufacturing printed circuit board
KR20140039921A (en) Method of manufacturing printed circuit board
JP2004311555A (en) Method of manufacturing built-up multilayer printed wiring board
CN112996259B (en) Manufacturing method of circuit boards with different copper thicknesses
JP2001053444A (en) Method for forming via filled with conductor and method for manufacturing multilayer wiring board
JP4934901B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP2001291957A (en) Wiring board and manufacturing method therefor
JP2004281835A (en) Printed wiring board and method for manufacturing the same
JP2002171066A (en) Manufacturing method for multi-layered wiring board
JP2001189536A (en) Wiring substrate
JP2000277918A (en) Manufacture of printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050621

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Effective date: 20080619

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20080930

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20081128

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20090324

Free format text: JAPANESE INTERMEDIATE CODE: A02