JP2004061362A - 測長用ハンドツール - Google Patents

測長用ハンドツール Download PDF

Info

Publication number
JP2004061362A
JP2004061362A JP2002221602A JP2002221602A JP2004061362A JP 2004061362 A JP2004061362 A JP 2004061362A JP 2002221602 A JP2002221602 A JP 2002221602A JP 2002221602 A JP2002221602 A JP 2002221602A JP 2004061362 A JP2004061362 A JP 2004061362A
Authority
JP
Japan
Prior art keywords
measured
vibrator
distance
sound pressure
hand tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002221602A
Other languages
English (en)
Inventor
Kazuhiko Hidaka
日高 和彦
Satoshi Koga
古賀 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2002221602A priority Critical patent/JP2004061362A/ja
Publication of JP2004061362A publication Critical patent/JP2004061362A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length-Measuring Instruments Using Mechanical Means (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

【課題】本発明の目的は測定誤差を大幅に低減することのできる測長用ハンドツールを提供することにある。
【解決手段】スケールは超音波センサ14により空気中の被測定物18の測長軸の延長線上に作られた被測定物側音圧分布34であり、該超音波センサ14は、ベース12に重心位置のみが支持され、該測長軸の延長線と一致する軸方向の振動子26と、該振動子26の重心位置を振動の節として軸方向に共振させ、該振動子26からの距離に応じた音圧分布34,36を作る加振手段28と、振動子被測定物側端部26aと被検部40b間の距離に応じた音圧により変化する振動子26の振動の状態量を検出する検出手段30と、を備え、該振動子26の振動の状態量より得られた振動子被測定物側端部26aと被検部40b間の距離に基づいて、被測定物18a,18bの寸法を測定することを特徴とする測長用ハンドツール10。
【選択図】   図1

Description

【0001】
【発明の属する技術分野】
本発明は測長用ハンドツール、特にその測定誤差の低減機構に関する。
【0002】
【従来の技術】
従来より、例えばマイクロメータ、ノギス等の測長用ハンドツールが用いられている。
測長用ハンドツールは、ベースと、対向する二の接触部と、移動手段と、スケールを備える。そして、主に使用者が測長用ハンドツールのベース等を手に持ち、移動手段により接触部を相対移動し、該二の接触部で被測定物を挟み込み、二の接触部間の間隔、つまり接触部に接触した被測定物の二ヶ所の距離をスケールで読み取るものである。
【0003】
【発明が解決しようとする課題】
ところで、測定室の基礎等に設置して測定を行うような一般的な測定装置の要求精度が高くなるに伴って、主に使用者の手持ちにより測定が行われるハンドツールにおいても高い測定精度が要求されるようになった。
しかしながら、ハンドツールは大掛かりな一般的な測定装置に比較し、手軽に測定が行える反面、測定誤差の低減は改善の余地が残されていた。
すなわち、従来はハンドツールにおいても測定誤差を低減する対策が考えられるが、ハンドツールにおける測定誤差の最大の原因が不明であるので、効果的な対策が立たなかった。
【0004】
また従来はハンドツールに対し、一般的な測定装置に用いられるような測定誤差を低減するための付加物を設けることも考えられる。しかしながら、これによりハンドツールの構成の複雑化、コストの上昇を招いてしまい、ハンドツールの手軽さ等の利点を損ねてしまうため、前記解決手段として採用するには至らなかった。
このために一般的な測定装置に比較し、ハンドツールに関しては測定誤差の低減化が遅れており、測長の分野においては、ハンドツールの測定誤差の低減技術の開発が急務であった。
本発明は前記従来技術の課題に鑑みなされたものであり、その目的は測定誤差を大幅に低減することのできる測長用ハンドツールを提供することにある。
【0005】
【課題を解決するための手段】
本発明者らが測長用ハンドツールの測定誤差の原因について鋭意検討を重ねた結果、測長用ハンドツールにおいては、一般的な測定装置とは異なる使用方法から生じる誤差と、小型化を最優先した構造から生じる誤差が大きいことを究明した。
まず使用方法に関し、一般的な測定装置は、測定室の基礎等に一般的に設置された状態で測定が行われるのに対し、ハンドツールは主に使用者が手に持った状態で測定が行われる。
【0006】
しかしながら、ハンドツールにおいては使用者が手に持つことにより、手からの熱がスケール等のハンドツール構成部材に伝達され、該構成部材が熱膨張することにより、測定誤差が生じることがある。
ここで、温度変化による誤差の低減は一般的な測定装置でも大切なことであり、一般的な測定装置では、使用者が手に持った状態では測定が行われず、測定室の基礎等に一般的に設置された状態で測定が行われるので、主に測定室内の温度等の管理を重要と考えている。これに対し、ハンドツールにおいては、主に使用者がハンドツールを直に手に持つので、一般的な測定装置に比較し、この手からの熱による構成部材の熱膨張から生じる誤差の影響が大きいのである。
【0007】
次に測長用ハンドツールの構造に関し、その小型化のために各構成部材を限られたスペースの中に詰め込んでおり、スケール、移動手段の移動軸等を被測定物の測長軸の延長線上に配置すると、測長用ハンドツールはその測長軸方向に長くなり小型化の弊害となる。このためハンドツールにおいては、アッベの原理に反する構造であっても、小型化を最優先させており、通常は被測定物の測長軸の延長線上よりスケール、移動手段の移動軸等を離して配置することが多い。
しかしながら、前述のようなハンドツールのような手から伝達される熱によるハンドツール構成部材の熱膨張は、ハンドツール構成部材の配置のずれも生じるので、アッベの原理に反する構造が及ぼす測定誤差も、さらに大きくしており、これらの誤差が重なり、ハンドツールの測定誤差の要因となっている。
【0008】
このようにハンドツールでは、測定誤差を効果的に低減するためには、一般的な測定装置ではあまり重要と考えられていない、手から伝達される熱によるハンドツール構成部材の熱膨張から生じる測定誤差を低減することが非常に重要である。しかしながら、このとき、元々のアッベの誤差もきちんと低減しておかなければ、ハンドツール構成部材の熱膨張から生じる測定誤差の低減化を図ろうとしても、期待するほどの効果が得られないこともわかった。
【0009】
このために本発明者らが、前記ハンドツールにおいて特徴的な課題を解決するために、さらに鋭意検討を重ねた結果、空気中の被測定物の測長軸の延長線上に音圧分布という仮想スケール部を作ることによりアッベの構造の採用によるハンドツールの小型化を損なわないこと、仮想スケールとしての音圧分布とは反対側の背面側音圧分布を利用することにより温度補正が、簡素、低廉等に行え、手軽さというハンドツールの利点を損なわないことを見出し、本発明を完成するに至った。
【0010】
すなわち、前記目的を達成するために本発明にかかる測長用ハンドツールは、腕部と、超音波センサと、スケールと、を備えた測長用ハンドツールであって、前記スケールは、前記超音波センサにより空気が周期的に押されることにより、該空気中の被測定物の測長軸の延長線上に作られた被測定物側音圧分布であり、
前記超音波センサは、振動子と、加振手段と、検出手段と、を備え、前記検出手段により検出された振動子の振動の状態量より得られた該振動子の被測定物側端部と被検部間の距離に基づいて、被測定物の相対向する端面間の寸法を測定することを特徴とする。
【0011】
ここで、前記腕部は、ベースに設けられ、被測定物の相対向する端面のうちの一端面と接触する基準側接触部を含む。
また前記超音波センサは、前記被測定物の測長軸の延長線上に測定軸を有し、かつ前記腕部の基準側接触部に対し所定離隔距離をおいて対向するようにベースに配置され、該被測定物の測長軸の延長線上において該基準側接触部に対する被測定物の接触前と接触した状態とで変化する被検部までの距離を測定する。
【0012】
前記スケールは、前記被検部までの距離の物差しとして用いる。
前記振動子は、前記ベースに重心位置のみが支持され、前記被測定物の測長軸の延長線と一致する軸方向を有し、超音波振動する。
前記加振手段は、前記振動子の重心位置を振動の節とし、該振動子をその軸方向に共振させ、前記空気中の被測定物の測長軸の延長線上に、該振動子からの距離に応じた音圧分布を作る。
前記検出手段は、前記振動子の被測定物側端部と被検部間の距離に応じた音圧により変化する振動子の振動の状態量を検出する。
【0013】
ここにいう振動子をその軸方向に共振させとは、高い検出感度を実現するために、加振手段により振動子を加振する周波数と、振動子の共振周波数を一致させることが好ましい。この振動子の共振周波数は、温度等の要因によって変わることがあるので、高い検出感度を維持するには、加振手段により加振する周波数を、振動子の共振周波数の変化に合わせて調整することが、より好ましい。
【0014】
なお、本発明においては、固定部を備え、また前記加振手段は、前記振動子の重心位置を振動の節とし、かつ該振動子の被測定物側端部及び背面側端部を振動の腹とし、該振動子をその軸方向に共振させ、
前記検出手段は、前記振動子の被測定物側端部と被検部間における前記被測定物の測長軸の延長線上に生じ、該振動子の被測定物側端部と被検部間の距離に応じて変化する被測定物側音圧分布と、前記振動子の背面側端部と固定部間における前記被測定物の測長軸の延長線上に生じ、前記振動子の被測定物側端部と被検部間の距離の変化によっても変化しない背面側音圧分布の和を検出し、
前記振動子背面側端部と前記固定部間の離隔距離は、前記検出手段により被測定物側音圧分布と背面側音圧分布情報の和が検出されることにより、前記背面側音圧分布により前記被測定物側音圧分布の温度依存性が相殺されるように選択され、
前記温度依存性が相殺された検出手段よりの被測定物側音圧分布より、前記振動子の被測定物側端部と被検部間の距離を得ることが好適である。
【0015】
ここで、前記固定部は、前記振動子被測定物側端部の反対側の背面側端部に対し、前記被測定物の測長軸の延長線上にて所定離隔距離をおいて対向配置される。
また本発明において、前記振動子の背面側端部と固定部間の離隔距離は、該振動子の被測定物側端部と被検部間の距離の測定範囲よりも、前記超音波振動の空間波長の1/4波長の奇数倍の差があることが好適である。
【0016】
また本発明において、前記被検部は、前記被測定物の測長軸の延長線上において、前記振動子の被測定物側端部に対し基準側接触部方向に所定離隔距離に配置された基準位置から、該基準側接触部方向に移動し、該基準側接触部に接触している状態の被測定物の背面側端面と接触する超音波反射板であり、
移動手段を備え、
また前記超音波センサは、前記基準位置から被測定物の背面側端面に接触するまでの超音波反射板の距離を、前記基準側接触部と超音波反射板で被測定物を挟んだ状態で測定することにより、前記被測定物の相対向する端面間の寸法を測定することが好適である。
【0017】
ここで、前記移動手段は、前記超音波反射板を前記被測定物の測長軸の延長線上にて移動させる。
さらに本発明において、前記被検部は、前記被測定物が接触していない状態の基準側接触部、ないし前記基準側接触部に基準側端面が接触している状態の被測定物の背面側端面であり、
前記超音波センサは、前記基準側接触部から、該基準側接触部に基準側端面が接触している状態の被測定物の背面側端面までの距離を、該被測定物を挟まない状態で測定することが好適である。
【0018】
【発明の実施の形態】
以下、図面に基づき本発明の好適な一実施形態について説明する。
第一実施形態
図1には本発明の第一実施形態にかかる測長用ハンドツールの概略構成が示されている。なお、本実施形態においては、測長用ハンドツールを接触型、非接触型両用としているが、まず接触型の測長用ハンドツールとして用いる例について説明する。本実施形態においては、被検部として、超音波反射板の反射面を想定しており、超音波センサにより、超音波反射板が同図(A)に示されるような基準位置から、同図(B)に示されるような被測定物の片端面に接触するまでの距離を測定している。
【0019】
同図に示す測長用ハンドツール10は、ベース12と、超音波センサ14と、摺動手段(移動手段)16を備え、超音波センサ14を内界センサとして用い、使用者の手持ちにより、被測定物18の寸法を接触押圧で測定するものである。前記ベース12は、略U字状に形成され、腕部20と、腕部22を備え、腕部20と腕部22は、被測定物18の測長軸の延長線上にて対向配置されている。前記腕部20は、被測定物18の一端面18aと接触する接触部材(基準側接触部)24を備える。
【0020】
前記腕部22は、超音波センサ14の測定軸が、ベース12の腕部20と腕部22を結ぶ線、つまり被測定物18の測長軸の延長線上となるように超音波センサ14を内蔵している。
前記超音波センサ14は、振動子26と、加振手段28と、検出手段30を備え、振動子被測定物側端部26aとベースの腕部20間の相対距離(所定離隔距離)は概念的に変化しないように構成されている。
【0021】
前記振動子26は、例えば柱状に形成された弾性体等よりなり、その軸方向が被測定物18の測長軸の延長線と一致するように、略ロの字状のスタイラスホルダ32に振動子26の軸方向の略中央部(重心位置)が支持され、該スタイラスホルダ32がベース12に固定されており、超音波振動する。
前記振動子26の被測定物側端部26aの反対側の背面側端部26bは、スタイラスホルダ32の内壁面(固定部)32aと被測定物18の測長軸の延長線上で所定の離隔距離をおいて対向配置されている。
【0022】
前記加振手段28は、例えば圧電素子等の超音波発信源よりなり、振動子26の重心位置を振動の節とし、該振動子26をその軸方向に共振させる。ここで、本実施形態においては高い検出精度を得るため加振手段28により振動子26を加振する周波数と、振動子26の共振周波数を一致させている。振動子26の被測定物側端部26aにより空気が被測定物18の測長軸方向に周期的に押されることにより、空気中の被測定物18の測長軸の延長線上に被測定物側音圧分布(スケール)34が仮想スケール部として作られる。また振動子26の背面側端部26bとスタイラスホルダ32の内壁面32a間に背面側音圧分布36が作られる。
【0023】
前記検出手段30は、例えば圧電素子等よりなり、振動子26の振動振幅等の振動の状態量を検出する。つまり前記振動子26の被測定物側端部26aにより作られた被測定物側音圧分布34の影響を振動子被測定物側端部26aが受け、また振動子26の背面側端部26bにより作られた背面側音圧分布36の影響を振動子背面側端部26bが受けることにより、振動子26の振動振幅等の振動の状態量が変化する。これを検出手段30により検出している。
【0024】
前記摺動手段16は、振動子26を収容する筒状体38と、超音波反射板(被検部)40と、当接部42と、コイルばね44と、摺動用レバー46を備え、ベース12の腕部22の超音波センサ14近傍にて、摺動手段16の摺動軸(移動軸)が被測定物18の測長軸の延長線上に位置するように、つまり筒状体38の中心線と被測定物18の測長軸の延長線とが、同一直線線上に設けられている。前記筒状体38の被測定物側端部には、超音波センサ14の振動子被測定物側端部26aと腕部20間に介在するように超音波反射板40が着脱自在に設けられている。該筒状体38の背面側端部には当接部42が設けられており、該当接部42に摺動用レバー46の当接部48が当接するように設けられている。
【0025】
前記筒状体38の背面側端部にはベース12と連結しているコイルばね44が装着されており、摺動手段16が腕部20から離れる向きに力が付与されている。
前記超音波反射板40は、その表面に被測定物18の背面側端面18bと接触する接触部40aを有し、その裏面に超音波センサ14よりの超音波を反射する反射面40bを有している。
【0026】
前記摺動用レバー46は、ベース12に対しピン50を介して回動自在に設けられており、コイルばね44近傍の摺動手段16の一部に接触している。そして摺動用レバー46の当接部48で摺動手段16の当接部42を押すことにより、摺動手段16を摺動させている。つまり筒状体38と共に超音波反射板40を被測定物18の測長軸の延長線上にて移動し、超音波反射板40の接触部40aを被測定物18の背面側端面18bに接触させる。
そして、被測定物18をベース12の接触部材24と超音波反射板40の接触部40aで挟んだ状態で、検出手段30により検出された振動子26の振動の状態量より、振動子26の被測定物側端部26aと超音波反射板40の反射面40b間の距離を測定している。このようにして測定された距離に、予め得ておいた超音波反射板40の厚みを加えることにより、被測定物18の相対向する端面18a,18b間の寸法を知ることができる。
【0027】
なお、本実施形態においては、外部出力手段52を備えており、前述のようにして測定された被測定物18の寸法の値が、該外部出力手段52により指示される。
本実施形態にかかる測長用ハンドツール10は概略以上のように構成され、以下にその作用について説明する。
【0028】
使用者は同図(A)に示されるような測長用ハンドツール10を手に持つ。
ここで、本実施形態においては、同図(A)に示されるような超音波反射板40の反射面40bの被測定物の測長軸の延長線上の位置を基準位置としている。そして使用者は同図(B)に示されるようにベース12の腕部20の接触部材24に、被測定物18の一端面18aを突き当てる。次に使用者は摺動用レバー46を図中矢印I方向に押し、被測定物18の他端面18bに超音波反射板40の接触部40aを接触させることにより、被測定物18をベース12の接触部材24と超音波反射板40の接触部40aで挟んでいる。
【0029】
ここで、一般的にマイクロメータ等の測長用ハンドツールでは、摺動手段を摺動させる機構にネジを用いており、指で取手を回転させネジを回転させることにより摺動手段の摺動を行っているが、このような回転機構を用いたのでは、使い勝手が悪く、作業時間がかかる。
そこで、本実施形態においては、被測定物18の端面18bに超音波反射板40を接触させるために前述のようなマイクロメータ等における回転機構を用いることも可能ではあるが、同図に示すような摺動用レバー46を採用することが特に好適である。
【0030】
この結果、本実施形態においては、使用者は摺動用レバー46を、指を使わずに手の腹で押すことにより、超音波反射板40の摺動を容易に行うことができるので、使い勝手等の作業性の向上が図られ、作業時間の短縮も実現している。
そして、本実施形態においては、前述のように使用者が摺動用レバー46により被測定物18の他端面18bに超音波反射板40を接触させた状態で、超音波センサ14により、該振動子26の被測定物側端部26aと超音波反射板40の反射面40b間の距離を測定している。
【0031】
ところで、測長用ハンドツール10においては、測定誤差の低減が非常に重要である。
ここで、ハンドツールは主に使用者が手に持って作業を行うため、使用者の手から伝わる熱により誤差が生じることがある。
そこで、本実施形態にかかるハンドツールでは、超音波センサ14が、前述のような熱変動から生じる誤差を校正するための機能を備えている。
【0032】
すなわち、本実施形態においては、まず超音波センサ14を振動子26の重心位置を中心に対称構造としている。そして、振動子26の背面側端部26bに対し、被測定物18の測長軸の延長線上にて、所定の離隔距離をおいてスタイラスホルダ32の内壁面(固定部)32aを対向配置している。
このため、加振手段28は、振動子26の支持点である重心位置を振動の節とし、かつ該振動子26の被測定物被測定物側端部26a及び背面側先端26bを振動の腹とし、該振動子26をその軸方向に共振させることができる。これにより本実施形態においては、振動子26の被測定物側に被測定物側音圧分布34が仮想スケール部として作られる。またその背面側に背面側音圧分布36が作られる。
【0033】
そして、検出手段30により、前記振動子26の被測定物側端部26aと超音波反射板40の反射面40b間に生じ、その間の距離に応じて変化する被測定物側音圧分布34と、前記振動子26の背面側端部26bとスタイラスホルダ32の内壁面32a間に生じ、振動子26の被測定物側端部26aと超音波反射板40の反射面40b間の距離の変化によっても変化しない背面側音圧分布36の和を検出している。
ここで、本実施形態においては、検出手段30により被測定物側音圧分布34と背面側音圧分布36の和が検出されることにより、背面側音圧分布36により被測定物側音圧分布34の温度依存性が相殺される。
【0034】
そして、前述のようにして温度依存性が相殺された検出手段30よりの被測定物側音圧分布34より、振動子26の被測定物側端部26aと超音波反射板40の反射面40b間の距離を測定する。
このようにして測定された距離に、超音波反射板40の測長軸方向の厚みを足し合わせることにより、被測定物18の端面18a,18b間の寸法を測定している。
【0035】
この結果、本実施形態においては、生じる測定誤差がネグリジブルであり、使用者の手からハンドツールに伝わる熱から生じる誤差を大幅に低減することができる。
すなわち本実施形態においては、ハンドツールに伝わる熱により、特に仮想スケール部に温度変動が生じ、超音波波長が変化した場合であっても、誤差を大幅に低減することができる。
【0036】
また従来は、小型化のためにハンドツールにおいては接触部から離れた箇所にスケールが配置され、つまり被測定物の測長軸の延長線上より離れてスケール、移動手段の移動軸等が配置されることが多い。このような接触部から離れた箇所に配置されたスケールから寸法を読み取るため、従来の構成の測長用ハンドツールでは、アッベ誤差が生じ易かった。
これに対し、本実施形態においては、空気中の被測定物18の測長軸の延長線上に被測定物側音圧分布34を作り、これを仮想スケールとして用いており、該仮想スケール、被測定物の測長軸、摺動手段の摺動軸(移動手段の移動軸)等の配置がアッベの原理に確実にかなっているので、測定誤差を大幅に低減することができる。
【0037】
以上のように本実施形態にかかる測長用ハンドツールによれば、超音波センサの振動子が空気を周期的に押すことによりにより被測定物の測長軸の延長線上に作られた被測定物側音圧分布を仮想スケール部として用い、また検出手段により振動子の被測定物側端部と超音波反射板の反射面間の距離に応じた音圧により変化する振動子の振動の状態量より、その間の距離を測定し、該距離より被測定物の寸法を測定することとしたので、従来のハンドツールに比較し、測定誤差を大幅に低減することができる。
【0038】
また本実施形態においては、振動子の背面側端部側の空気中に作られた背面側音圧分布により、前記振動子の被測定物側端部と超音波反射板の反射面間の距離情報を含む被測定物側音圧分布を温度補正することにより、従来方式に比較し温度に対して安定な測距が行えるので、測定誤差を大幅に低減することができる。しかも、本実施形態においては、前記背面側音圧分布により温度補正を行っているので、一般的な測定装置で用いられるような温度センサ等の付加物を設けて温度補正を行うものに比較し、前記ハンドツールにおける測定誤差の低減を、簡素な構成で低廉に実現することができる。
【0039】
<超音波センサ>
本実施形態においては、超音波センサの振動方式としては、絶対測長距離が反射波を検出可能な無限距離となるパルス方式(フライングタイム計測)を採用することもできる。しかしながら、本実施形態においては、ハンドツールにおいて特徴的な手から伝達される熱による熱膨張が及ぼす誤差、アッベの原理に反する構造から生じる誤差をより効果的に低減するために、絶対距離測定が波長の4分の1となる、本実施形態にかかる超音波センサ14の駆動方式を採用することが非常に好ましい。
【0040】
特に超音波センサの選択においては、二つのことに注意する必要があり、一つは超音波センサが被測定物までの絶対距離を検出することができることである。もう一つは音圧現象を活用する測定において超音波センサを対称構造とし、温度変動に伴う音圧変動により発生する測定誤差を大幅に低減し、温度に対して安定な測距を簡素且つ低廉に実現することである。
このために本実施形態においては図2に示されるような超音波センサ14を用いている。なお、同図(A)は超音波センサ14を側方より見た図、同図(B)は同様の超音波センサ14を下方より見た図である。
【0041】
同図に示す超音波センサ14は、駆動回路54と、信号処理回路56を備える。
ここで、前記駆動回路54は加振手段28と接続され、信号処理回路56は検出手段30と接続されている。
また前記加振手段28、検出手段30は、振動子26に対し軸対称となる両側に二組配置されており、振動子26の振動の節近傍に位置している。
前記スタイラスホルダ32に振動子26の重心位置が支持されており、該振動子26の被測定物側端面26aが、超音波反射板40の反射面40bと対向している。
【0042】
そして、前記駆動回路54は、例えば加振手段28の電気的励起手段であり、その励起周波数は振動子26の軸方向の振動の共振周波数に等しく、加振手段28を超音波振動させている。
この加振手段28の超音波振動は、超音波振動子26を軸方向に超音波振動させる。該振動子26の振動は、該振動子26の軸方向の伸縮による振動であり、該振動子被測定物側端面26aの超音波反射板40の反射面40bに対する近接と離隔を周期的(超音波周波数)に繰返している。
【0043】
ここで、前記超音波振動子26の重心位置が振動振幅の節に位置し、該振動子26の被測定物側端面26a及び背面側端面26bが、振動振幅の腹に位置しているので、振動子26の被測定物側端面26aと超音波反射板40の反射面40b間に音場を作っている。
そして、振動子被測定物側端面26aと超音波反射板40の反射面40b間の距離lに応じた音圧を振動子被測定物側端面26aが受けて、該振動子26の少なくとも振動振幅を含む状態量情報が変化する。検出手段30により振動子26の振動の状態量を検出し、これを信号処理回路56に出力している。
【0044】
前記信号処理回路56は、検出手段30よりの出力信号、つまり交流出力信号の整流、増幅を行う。
また前記信号処理回路56は、該検出手段30よりの交流出力信号より振幅情報の抽出を行っている。
本実施形態において、信号処理回路56は、振幅抽出のために、例えば特開平10−9848号等に開示されている二相正弦波の二乗和合成方法、又は交流のピークをサンプリングする方式等を採用している。すなわち検出手段30よりの交流出力信号の振幅を高速に抽出し、該振幅情報より、振動子26の被測定物側端面26aと超音波反射板40の反射面40b間の距離lの絶対値を得ている。
【0045】
このように本実施形態においては、振動子26の超音波振動により、その被測定物側端面26aと超音波反射板40の反射面40b間の空気中で超音波が発生し、該振動子26の被測定物側端面26aよりの超音波は、該被測定物側端面26aと超音波反射板40の反射面40b間の空気中を伝播し、対向する超音波反射板40の反射面40bに達し反射され、再び振動子26の被測定物側端面26aに戻り、定在波を形成し得る。
そして、超音波は振動子26に反作用を及ぼすので、このような共振状態は振動子26の振動の振幅等の状態量の測定により検出することができる。
【0046】
この振動子26の振動の状態量は、振動子26の被測定物側端面26aと超音波反射板40の反射面40b間の距離lに応じて変化する。この振動子26の振動の状態量を検出手段30により検出することにより、振動子26の被測定物側端面26aと超音波反射板40の反射面40b間の距離lを得ることができる。なお、本実施形態においては、前記検出手段30の検出感度を最も高くするために、振動子26の振動周波数は、振動子26の長さに応じて定まる軸方向の振動の共振周波数に一致させている。
【0047】
また本実施形態においては、振動子26の共振周波数は、温度等の要因によって変わることがあるので、高い検出感度をより高いレベルで維持するために、加振手段28により加振する周波数を、振動子28の共振周波数の変化に合わせて調整している。
以下、本実施形態にかかる超音波センサ14の測定原理について、より詳細に説明する。
【0048】
図3には前記振動子26とその振動モード(一次)が示されている。
同図に示す超音波センサ14は、加振手段28が振動子26の振動振幅58の節近傍に配置されており、振動子26を、振動子26の固有振動数に略一致した振動数で軸方向に振動している。このため、同図に示すように振動子26の両端面26a,26bでは、通常、最も低い共振周波数で振動する一次モードの振動振幅58の腹となる。なお、同図では1次の振動モードを示したが、高次であってもよい。
【0049】
また前記検出手段30も、前記加振手段28と同様、前記振動振幅58の節近傍に配置されているので、振動子26と超音波反射板40の反射面40b間の近接による振動振幅58の拘束に対応して出力信号を変化させている。
このように本実施形態においては、超音波センサ14を振動子26の重心位置を中心とする対称構造としている。したがって、本実施形態においては、振動振幅58の節は振動振幅58の弾性変位がないところとなるため、外乱がスタイラスホルダ32を経由して発生しても、振動子26の振動振幅58には影響を与えない。これにより本実施形態においては、外乱振動に対する安定性が向上すると共に、加振手段28により振動子26を容易に振動させることができる。
【0050】
図4には例えば前記図3に示した振動子26の超音波振動により、本実施形態にかかる超音波センサ14と超音波反射板40の反射面40b間の距離lに生じ得る超音波の定在波の様子が示されている。
以下に管中における振動子26と超音波反射板40の反射面40b間の空気の振動の概要について説明する。
【0051】
すなわち、同図に示すように振動子26の被測定物側端面26aの変位をu、振動子26の被測定物側端面26aと超音波反射板40の反射面40b間の距離をlとし、その間の位置をxとすると、粒子速度分布uは点線(同図I)で、音圧分布pは実線(同図II)で各々示され、次式で各々表現することができる。
【数1】
Figure 2004061362
【数2】
Figure 2004061362
このときのρは密度、cは音速、波数kは角周波数ωを音速cで割った値(k=ω/c)を示す。
【0052】
同図では距離l=λとし共鳴状態となっている様子を示している。このように共鳴状態では、振動子26の被測定物側端面26aにおいて粒子速度は節、音圧速度は腹となっている。この共鳴は、振動子26の被測定物側端面26aと超音波反射板40の反射面40b間の距離lがλ/2の整数倍でおきている。
図5には振動子26の被測定物側端面26aと超音波反射板40の反射面40b間の距離lと前記信号処理回路56よりの出力信号の傾向が示されている。なお、同図では、横軸に振動子26の被測定物側端面26aと超音波反射板40の反射面40b間の距離lをとり、縦軸には前記信号処理回路56よりの出力信号をとっている。なお図Iの点線は、下記式(4)を示しており、同図IIの実線は、実際の信号処理回路56よりの出力信号を示している。また同図Iに示す点線、同図IIに示す実線は、適当なオフセットをつけて示している。
【0053】
信号処理回路56の出力信号の振幅はx=0、つまり振動子26の被測定物側端面26aにおける音圧の影響により変化する。振幅先端における音圧は
【数3】
Figure 2004061362
と表される。信号処理回路56の出力信号(Output)は、定数kを用いて、
【数4】
Figure 2004061362
と表される。
【0054】
前記数4に示した音圧分布Pの式(2)は、管中における音圧分布であるが、ここで管のない空気の場を対象とするような、音圧に対する拘束物が超音波反射板40の反射面40b以外にない場合には、音圧は二次元的に拡がっていくこと、また振動子26の内部損失等の影響により、信号処理回路56の出力信号が振動子26の被測定物側端面26aの音圧を忠実に検出しない等の理由により、実際には、同図IIの実線に示されるように変化する。
【0055】
信号処理回路56の出力信号は、前記式(4)から分かるように
【数5】
Figure 2004061362
で極小値を、
【数6】
Figure 2004061362
で極大値を示す。
【0056】
ここで、前記波数kは音速cによって
【数7】
Figure 2004061362
のように示されるので、結局、信号処理回路56の出力信号は波長λによって
【数8】
Figure 2004061362
【数9】
Figure 2004061362
のように示される。
【0057】
ここで、本実施形態において特徴的なことは、温度センサ等を設けることなく、被測定物側音圧と背面側音圧の双方の物理的作用を活用することにより、使用者の手から伝わる熱の影響から生じる誤差を低減したことである。
このために本実施形態においては、まず超音波センサ14を振動子26の重心位置を中心とする対称構造としている。そして図6に示すように振動子26の被測定物側端面26aが超音波反射板40の反射面40bと対向し、振動子26の背面側端面26bがスタイラスホルダ32の内壁面(固定面)32aと対向している。
【0058】
ここで、本実施形態においては、振動子26の背面側端面26bとスタイラスホルダ内壁面32a間の離隔距離の設定は、被測定物側端面26aでの測定に影響を及ぼす。本実施形態においては、この振動子26の背面側端面26bに対し所定の離隔距離lrefをおいて対向配置されたスタイラスホルダ32の内壁面32a間に介在する空気層の定在振動現象(背面側音圧分布)を利用することにより温度補正をしている。
すなわち、前記音圧関係式(3)、(4)に現れる音圧分布ρ、粒子速度分布c、及び波数kは音圧場の温度の影響により変動する。
【0059】
したがって、本実施形態においては、使用者の手からの熱による音場の空気の温度に依存して同一の距離lでも音圧が同一でなくなる可能性がある。裏を返せば同一の検出値でも実際の距離lが同一でなくなり、これがハンドツールにおいて誤差をもたらす可能性が大きい。
そこで、本実施形態では、超音波センサ14を振動子26の重心位置を中心とする対称構造とすることにより、検出手段30により得られる出力信号Oは、被測定物側音圧検出成分信号Oと背面側音圧検出成分信号Oとの和としている。すなわち、
【数10】
Figure 2004061362
【0060】
ただし、前記背面側音圧検出成分信号Oは固定値であり、被測定物側音圧検出成分信号Oは超音波反射板40の反射面40bとの距離lに応じて変化する。
したがって、検出手段30よりの出力信号Oの変化は、被測定物側音圧検出成分信号Oの変化であるので、検出手段30よりの出力信号Oの検出により、被測定物側音圧検出成分信号Oの変化を知ることができる。
【0061】
具体的には、測定すべき距離lがl=l±a(測定範囲;a、aは通常波長λに対して小さくとる)とするとき、温度変動に対応する被測定物側音圧検出成分信号Oの振動変動の向き(位相)と背面側音圧検出成分信号Oの信号変動の向き(位相)を反転しておけば、検出手段30よりの出力信号Oは、このような温度変化の影響が相殺されている。
そして、前述のように位相を反転するには、前記背面側の離隔距離lrefを、振動子26の被測定物側端面26aと超音波反射板40の反射面40b間の距離lの測定範囲lとλ/4(λ;空中超音波振動の波長)の差を設ければよい。
すなわち、
【数11】
Figure 2004061362
【0062】
そして、特に測定範囲aが小さい場合、本実施形態における使用者の手の熱から生じる誤差の低減効果は大きい。
より具体的には、図7に示すように一定の温度で測定を行って検出される音圧速度分布は実線で示されるようになる。なお、同図(a)は前記被測定物側音圧検出成分信号Oを示し、同図(b)は前記背面側音圧検出成分信号Oを示し、同図(c)は前記検出手段30よりの出力O(=O+O)を示す。
しかしながら、音速は主に伝播する空気の温度に依存する。このため、使用者の手からの熱による温度変動に伴い、音圧速度分布も点線で示されるように変動してしまう。
【0063】
すなわち、振動子26の被測定物側端面26aからの距離がlとなるような位置を測定範囲aの中心として用いると、同図(a)に示すように被測定物側音圧検出成分信号Oは、例えば○印で示す情報が温度変動により矢印A,B方向(上下方向)に変動してしまい、これが測定誤差となる。
一方、同図(b)に示すように振動子26の背面側端面26bとスタイラスホルダ32の内壁面32a間の離隔距離lrefを前記(l+λ/4)となるような長さに設定することにより、前記背面側音圧検出成分信号Oは、▲印で示す位置での位置情報が、同図(a)と比較し温度による影響が逆となる。つまり温度変動により矢印C,D方向に変動する。
【0064】
そして、検出手段30では、前記双方の振動子26の外的拘束が重畳し出力されるため、該検出手段30よりの出力O(O=O+O)は同図(c)に示すようになる。つまり、点線で示されるように波長が大小によらず、同図(c)に示す検出手段30よりの出力Oは、前記温度変動が相殺されている。すなわち同図(c)に示す測定範囲2aでは、実線と温度変動があった場合を示す点線、一点鎖線が重なり合っている。これは前述のように振動子26の背面側端面26bとスタイラスホルダ32の内壁面32a間の離隔距離lrefを適切に設定することにより、使用者の手による熱変動に対し、本実施形態にかかる超音波センサ14をロバスト化することができることを意味している。
【0065】
このように本実施形態においては、使用者からの手の熱から生じる誤差を低減するために、振動子26の軸方向に振動の節を中心として対称構造とすることにより、振動子背面側端面26bとスタイラスホルダ内壁面32a間においても背面側音圧分36を生じさせ、しかも検出手段30により、振動子26の被測定物側と背面側の外的拘束が重畳して出力されるようにしている。
この結果、検出手段30により、前記被測定物側音圧分布34と背面側音圧分布36との和の信号を出力させることにより、使用者の手の熱から生じる誤差の大幅な削減が行える。
【0066】
ここで、本実施形態において、振動子背面側端面26bとスタイラスホルダ内壁面32a間の離隔距離lrefは、超音波反射板40の反射面40bとの距離lの測定範囲aよりも、超音波振動の空間波長λの1/4波長の奇数倍の差を設けることが非常に好ましい。これにより本実施形態においては、温度変動に対応する被測定物側音圧検出成分信号Oの信号変動の向き(位相)と背面側音圧検出成分信号Oの信号変動の向き(位相)を反転することができる。これにより本実施形態においては、検出手段30よりの検出出力Oが、前述のように使用者の手からの熱変動の影響が相殺されている。
【0067】
第二実施形態
一般的な測定装置では、被測定物と接触部との相対移動が、通常は機械送りにより行われる。このため被測定物と接触部との接触力、つまり測定力は機械により一定にすることが非常に容易であるから、基本的には誰が測定しても同じ結果が得られる。
これに対し、ハンドツールでは使用者により測定力が異なり、測定力が異なると、ハンドツール、被測定物の変形も異なる。
【0068】
したがって、ハンドツールにおいては、さらにハンドツール、被測定物の変形による測定誤差を小さくするために、つまり誰が測定しても同じ結果が得られるように測定力を適正、かつ均一なものとすることが非常に重要である。
このために前記構成の測長用ハンドツールを非接触型のハンドツールとして用いることも非常に好ましい。
すなわち、前記構成の超音波センサは、内界センサばかりでなく、外界センサとしての機能も有し、つまり接触方式、非接触方式の両用であり、次に被測定物を片端非接触(無圧)で寸法測定する例について、図8を参照しつつ説明する。なお、前記第一実施形態と対応する部分には符号100を加えて示し説明を省略する。
【0069】
前記測長用ハンドツール110においては、筒状体138の被測定物側端部に対し、超音波反射板が取り外し自在に設けられており、本実施形態においては、超音波反射板を取り外した状態で測定を行っている。
また本実施形態においては、被検部として、被測定物が接しない状態の腕部120の接触部材(基準側接触部)124と、該接触部材124と被測定物118を接した状態の被測定物118の端面118bを想定しており、超音波センサ114により、ベース112の腕部120の接触部材124から、被測定物118の端面118bまでの寸法を測定している。
【0070】
すなわち、本実施形態においては、振動子126の被測定物側端部126aよりの超音波を被測定物118が接しない状態の接触部(被検部)124に送信し、その反射波を受信する測定を行う。また該接触部材124と被測定物118を接した状態の被測定物118の端面(被検部)118bに、振動子126の被測定物側端部126aよりの超音波を送信し、その反射波を受信する測定を行う。これらの測定を行うことにより、被測定物118の端面118a,118b間の寸法を直接測定している。
【0071】
具体的には、本実施形態においては、例えば接触部材124までの距離測定として、超音波センサ114により、振動子126の被測定物側端部126aよりの超音波を直接、被測定物が接しない状態の腕部120の接触部材124に送信し、その反射波を受信することにより、振動子被測定物側端面126aと腕部120の接触部材124間の距離を測定している。
また本実施形態においては、被測定物端面118bまでの測定として、使用者は腕部120の接触部材124に被測定物118の一端面118aを突き当てる。そして、超音波センサ114により、振動子126の被測定物側端部126aよりの超音波を直接、接触部材124に接触している状態の被測定物118の端面118bに送信し、その反射波を受信することにより、振動子126の被測定物側端面126aと被測定物118の端面118b間の距離を測定する。
【0072】
そして、超音波センサ114の信号処理手段(図示省略)は、前述のようにして測定された腕部120の接触部材124までの距離と、被測定物端面118bまでの距離の差を求めることにより、被測定物118の一端面118aから他端面118bまでの寸法を測定している。
この結果、本実施形態においては、超音波センサ114を外界センサとして用いるが、前記第一実施形態と同様、空気中の被測定物118の測長軸の延長線上に仮想スケールとして被測定物側音圧分布134を作成しているので、アッベ誤差を排除することができる。
【0073】
また本実施形態において、超音波センサ114は、前記第一実施形態と同様、定常振動する振動子126の被測定物側端部126aと被検部間に介在する空気層の定在振動現象である被測定物側音圧現象134を活用して、振動子126の被測定物側端部126aと被検部間の距離測定を行っている。
また本実施形態においては、使用者の手から伝わる熱に対して安定な測距を行うために超音波センサ114の構造を対称型とし、振動子126の背面側端部126bと対向する空気層の定在振動現象である背面側音圧分布136を利用して、被測定物側音圧分布134の温度補正を行っている。
【0074】
したがって、本実施形態においては、前記第一実施形態と同様、使用者の手から伝わる熱に対して安定な測距が行えるので、測定誤差を大幅に低減することができる。しかも、本実施形態においては、前記第一実施形態と同様、一般的な測定装置に用いられる温度センサ等の付加物を用いて温度補正を行うハンドツールに比較し、ハンドツールの測定誤差の低減を簡素、低廉等に行うことができる。さらに、本実施形態においては、被測定物118の端面118bに非接触なので、つまり使用者は測長用ハンドツール110により被測定物118を挟持しないので、被測定物118をハンドツール110で挟み込んだ時の接触力によるハンドツール、被測定物の変形と、これに伴う測定誤差を確実に防ぐことができる。
【0075】
これにより本実施形態においては、前記第一実施形態に比較し、より測定誤差の低減化を図ることができる。
しかも、本実施形態においては、前記ハンドツール110、被測定物118の変形と、これに伴う測定誤差の発生防止を、実質的に前記第一実施形態の超音波反射板40を取り外し自在に設けることにより、これを取り外すだけで行える。
したがって、本実施形態においては、ハンドツールに要求される構成の簡素化、低廉化を損なうことなく、測定誤差の大幅な低減を図ることができる。
【0076】
なお、本実施形態において、摺動用レバー146は所定の位置に常時固定される必要はなく、被測定物118を介在させる前の腕部120の接触部材124までの距離と、被測定物118を介在させたときの距離の差をとる時間だけ、摺動用レバー146を摺動しないようにしておけばよい。この時間は、被測定物118のハンドツール110への装着時間とみなしてよく、例えば1秒以下等の非常に短時間と想定される。
また前記各構成において、熱の影響をより低減するために、少なくともスタイラスホルダ、振動子は、例えばインバー、スーパーインバー等の低熱膨張材料で構成されていることが、特に好ましい。
【0077】
【発明の効果】
以上説明したように本発明にかかる測長用ハンドツールによれば、超音波センサにより空気中の被測定物測長軸の延長線上に作られた被測定物側音圧分布をスケールとして用い、検出手段により振動子の被測定物側端部と被検部間の距離に応じた被測定物側音圧により変化する振動子の振動の状態量を検出することにより、被測定物の寸法を測定することとしたので、測定誤差を大幅に低減することができる。
また本発明においては、前記検出手段により、前記被測定物側音圧分布と前記振動子の背面側端部と固定部間に生じる背面側音圧分布との和を検出し、被測定物の寸法を測定することにより、測定誤差をより大幅に低減することができる。また本発明においては、前記振動子の背面側端部と固定部間の離隔距離として、前記距離の測定範囲よりも、前記超音波振動の空間波長の1/4波長の奇数倍の差を設定することにより、測定誤差の大幅な低減が確実に行える。
さらに本発明においては、基準側接触部から、該基準側接触部に基準側端面が接触している状態の被測定物の背面側端面までの距離を、被測定物を挟持することなく測定することにより、測定誤差をより大幅に低減することができる。
【図面の簡単な説明】
【図1】本発明の第一実施形態にかかる測長用ハンドツールの概略構成の説明図である。
【図2】本実施形態にかかる測長用ハンドツールにおいて好適な超音波センサの説明図である。
【図3】本実施形態にかかる振動子とその振動モードの一例である。
【図4】本実施形態にかかる超音波センサと被検部間に生じる定存波の様子である。
【図5】本実施形態にかかる超音波センサと被検部間の距離と信号処理手段の出力との関係の説明図である。
【図6】本実施形態にかかる背面側音圧分布の説明図である。
【図7】本実施形態にかかる温度補正機構の説明図である。
【図8】本発明の第二実施形態にかかる測長用ハンドツールの概略構成の説明図である。
【符号の説明】
10,110 測長用ハンドツール
12,112 ベース
14,114 超音波センサ
24,124 接触部材(基準側接触部)
26,126 振動子
28,128 加振手段
28,128 検出手段
34,134 被測定物側音圧分布(スケール)

Claims (5)

  1. ベースに設けられ、被測定物の相対向する端面のうちの一端面と接触する基準側接触部を含む腕部と、前記被測定物の測長軸の延長線上に測定軸を有し、かつ前記腕部の基準側接触部に対し所定離隔距離をおいて対向するようにベースに配置され、該被測定物の測長軸の延長線上において該基準側接触部に対する被測定物の接触前と接触した状態とで変化する被検部までの距離を測定する超音波センサと、前記被検部までの距離の物差しとして用いるスケール部と、を備えた測長用ハンドツールであって、
    前記スケール部は、前記超音波センサにより空気が周期的に押されることにより、該空気中の被測定物の測長軸の延長線上に作られた被測定物側音圧分布であり、
    前記超音波センサは、前記ベースに重心位置のみが支持され、前記被測定物の測長軸の延長線と一致する軸方向を有し、超音波振動する振動子と、
    前記振動子の重心位置を振動の節とし、該振動子をその軸方向に共振させ、前記空気中の被測定物の測長軸の延長線上に、該振動子からの距離に応じた音圧分布を作る加振手段と、
    前記振動子の被測定物側端部と被検部間の距離に応じた音圧により変化する振動子の振動の状態量を検出する検出手段と、
    を備え、前記検出手段により検出された振動子の振動の状態量より得られた該振動子の被測定物側端部と被検部間の距離に基づいて、被測定物の相対向する端面間の寸法を測定することを特徴とする測長用ハンドツール。
  2. 請求項1記載の測長用ハンドツールにおいて、前記振動子被測定物側端部の反対側の背面側端部に対し、前記被測定物の測長軸の延長線上にて所定離隔距離をおいて対向配置された固定部を備え、
    前記加振手段は、前記振動子の重心位置を振動の節とし、かつ該振動子の被測定物側端部及び背面側端部を振動の腹とし、該振動子をその軸方向に共振させ、前記検出手段は、前記振動子の被測定物側端部と被検部間における前記被測定物の測長軸の延長線上に生じ、該振動子の被測定物側端部と被検部間の距離に応じて変化する被測定物側音圧分布と、前記振動子の背面側端部と固定部間における前記被測定物の測長軸の延長線上に生じ、前記振動子の被測定物側端部と被検部間の距離の変化によっても変化しない背面側音圧分布の和を検出し、
    前記振動子背面側端部と前記固定部間の離隔距離は、前記検出手段により被測定物側音圧分布と背面側音圧分布情報の和が検出されることにより、前記背面側音圧分布により前記被測定物側音圧分布の温度依存性が相殺されるように選択され、
    前記温度依存性が相殺された検出手段よりの被測定物側音圧分布より、前記振動子の被測定物側端部と被検部間の距離を得ることを特徴とする測長用ハンドツール。
  3. 請求項2記載の測長用ハンドツールにおいて、前記振動子の背面側端部と固定部間の離隔距離は、該振動子の被測定物側端部と被検部間の距離の測定範囲よりも、前記超音波振動の空間波長の1/4波長の奇数倍の差があることを特徴とする測長用ハンドツール。
  4. 請求項1〜3のいずれかに記載の測長用ハンドツールにおいて、前記被検部は、前記被測定物の測長軸の延長線上において、前記振動子の被測定物側端部に対し基準側接触部方向に所定離隔距離に配置された基準位置から、該基準側接触部方向に移動し、該基準側接触部に接触している状態の被測定物の背面側端面と接触する超音波反射板であり、
    前記超音波反射板を前記被測定物の測長軸の延長線上にて移動させる移動手段を備え、
    前記超音波センサは、前記基準位置から被測定物の背面側端面に接触するまでの超音波反射板の距離を、前記基準側接触部と超音波反射板で被測定物を挟んだ状態で測定することにより、前記被測定物の相対向する端面間の寸法を測定することを特徴とする測長用ハンドツール。
  5. 請求項1〜3のいずれかに記載の測長用ハンドツールにおいて、前記被検部は、前記被測定物が接触していない状態の基準側接触部、ないし前記基準側接触部に基準側端面が接触している状態の被測定物の背面側端面であり、
    前記超音波センサは、前記基準側接触部から、該基準側接触部に基準側端面が接触している状態の被測定物の背面側端面までの距離を、該被測定物を挟まない状態で測定することを特徴とする測長用ハンドツール。
JP2002221602A 2002-07-30 2002-07-30 測長用ハンドツール Pending JP2004061362A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002221602A JP2004061362A (ja) 2002-07-30 2002-07-30 測長用ハンドツール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002221602A JP2004061362A (ja) 2002-07-30 2002-07-30 測長用ハンドツール

Publications (1)

Publication Number Publication Date
JP2004061362A true JP2004061362A (ja) 2004-02-26

Family

ID=31941869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002221602A Pending JP2004061362A (ja) 2002-07-30 2002-07-30 測長用ハンドツール

Country Status (1)

Country Link
JP (1) JP2004061362A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014072089A1 (de) * 2012-11-09 2014-05-15 Seca Ag Längenmessgerät
JP2015504154A (ja) * 2011-12-06 2015-02-05 アレヴァAreva 原子炉の内部構造の直線状の動きを測定するための音響センサ
CN104422354A (zh) * 2013-09-03 2015-03-18 株式会社三丰 确认尺寸测量手工工具中的工件测量值的方法
CN104422356A (zh) * 2013-08-29 2015-03-18 株式会社三丰 用于计量工具的校准控制装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504154A (ja) * 2011-12-06 2015-02-05 アレヴァAreva 原子炉の内部構造の直線状の動きを測定するための音響センサ
WO2014072089A1 (de) * 2012-11-09 2014-05-15 Seca Ag Längenmessgerät
US10143402B2 (en) 2012-11-09 2018-12-04 Seca Ag Length measuring device
CN104422356A (zh) * 2013-08-29 2015-03-18 株式会社三丰 用于计量工具的校准控制装置
CN104422354A (zh) * 2013-09-03 2015-03-18 株式会社三丰 确认尺寸测量手工工具中的工件测量值的方法

Similar Documents

Publication Publication Date Title
JP3611809B2 (ja) 少量サンプルの迅速測定用レオメータ
US20080307885A1 (en) Method and Apparatus for Precisely Measuring Wire Tension and Other Conditions, and High-Sensitivity Vibration Sensor Constructed in Accordance Therewith
US7352271B2 (en) Probe and contour measuring instrument
CN102564309A (zh) 基于光纤布拉格光栅的微孔尺寸测量装置及方法
JP2002039737A (ja) 加振型接触検出センサ
JP2625364B2 (ja) タッチ信号プローブ
JP2004061362A (ja) 測長用ハンドツール
JP3130289B2 (ja) タッチ信号プローブ
JP6104708B2 (ja) 追尾式レーザ干渉計
WO1998019133A1 (fr) Dispositif de controle dimensionnel sans contact ultrasonore
JPH07190734A (ja) 円周面形状測定方法
JP2001091206A (ja) タッチセンサ
EP3894829B1 (en) Planar vibratory viscometer, viscometer member, and related method
JP4326192B2 (ja) 非接触超音波間隙検出センサ
CN210221371U (zh) 一种基于迈克尔逊干涉原理的微压力测量装置
JP2003194543A (ja) 角速度センサ
JP2001304952A (ja) 超音波音圧センサ
JP3587915B2 (ja) タッチ信号プローブ
JP2009139188A (ja) 超音波表面粗さ測定方法と装置
RU2382990C1 (ru) Датчик механических колебаний
JP2003050117A (ja) 厚さ測定方法及び厚さ測定装置
TWI260410B (en) Optical accelerometer
RU2659097C2 (ru) Способ компенсации погрешности от углового ускорения основания для кориолисова вибрационного гироскопа с непрерывным съёмом навигационной информации
JP3937220B2 (ja) コリオリ質量流量計
RU2230298C1 (ru) Приспособление для замера амплитуды колебаний вибрационного смесителя