JP2004055047A - 光磁気記録媒体およびその製造方法 - Google Patents
光磁気記録媒体およびその製造方法 Download PDFInfo
- Publication number
- JP2004055047A JP2004055047A JP2002211610A JP2002211610A JP2004055047A JP 2004055047 A JP2004055047 A JP 2004055047A JP 2002211610 A JP2002211610 A JP 2002211610A JP 2002211610 A JP2002211610 A JP 2002211610A JP 2004055047 A JP2004055047 A JP 2004055047A
- Authority
- JP
- Japan
- Prior art keywords
- underlayer
- magneto
- recording medium
- optical recording
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/10582—Record carriers characterised by the selection of the material or by the structure or form
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/10582—Record carriers characterised by the selection of the material or by the structure or form
- G11B11/10584—Record carriers characterised by the selection of the material or by the structure or form characterised by the form, e.g. comprising mechanical protection elements
Abstract
【課題】再生信号特性を向上する。
【解決手段】基板5上に、第1および第2の下地層6,7を介して、情報が記録される第3の磁性層13とこの第3の磁性層13に記録された情報を磁壁16を移動させることにより再生するための第1の磁性層11とを有する磁性層10が積層されてなる。第2の下地層7が第1の磁性層11に隣接して設けられ、第1の下地層6が第2の下地層7に隣接して基板5側に設けられる。そして、第1の下地層6と第2の下地層7は、密度が互いに異なる。
【選択図】 図1
【解決手段】基板5上に、第1および第2の下地層6,7を介して、情報が記録される第3の磁性層13とこの第3の磁性層13に記録された情報を磁壁16を移動させることにより再生するための第1の磁性層11とを有する磁性層10が積層されてなる。第2の下地層7が第1の磁性層11に隣接して設けられ、第1の下地層6が第2の下地層7に隣接して基板5側に設けられる。そして、第1の下地層6と第2の下地層7は、密度が互いに異なる。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、例えば光磁気ディスク等の磁気光学効果を利用してレーザ光により情報の記録および再生が行われる光磁気記録媒体およびその製造方法に関する。
【0002】
【従来の技術】
情報の書き換え可能な情報記録媒体として、各種の磁性記録媒体が実用化されている。特に、半導体レーザの熱エネルギを用いて磁性薄膜に磁区を書き込むことで情報を記録し、磁気光学効果を用いてこの記録情報を読み出す光磁気記録媒体は、高密度記録が可能な大容量可換媒体として期待されている。近年、動画像のデジタル化に伴って、これらの磁性記録媒体の記録密度を高めてさらに大容量の記録媒体とする要求が高まっている。
【0003】
一般に、光記録媒体の線記録密度は、再生光学系のレーザ光の波長および対物レンズの開口数NAに大きく依存する。すなわち、再生光学系のレーザ光の波長λと対物レンズの開口数NAが決まることでビームウェスト径が決定するため、信号再生可能な記録ピットの空間周波数は2NA/λ程度が限界となってしまう。したがって、従来の光ディスクで高密度化を実現するためには、再生光学系のレーザ光の波長λを短くするか、対物レンズの開口数NAを大きくする必要がある。しかしながら、レーザ光の波長λを短くすることは、発光素子の効率や発熱等の問題から容易ではない。また、対物レンズの開口数NAを大きくした場合には、焦点深度が浅くなる等の理由から、機械的精度に対する要求が厳しくなるという不都合が生じる。
【0004】
そこで、最近では、レーザ光の波長λや対物レンズの開口数NAを変更することなく、記録媒体の構成や再生方法を工夫して記録密度を改善する、いわゆる超解像技術が種々提案されている。
【0005】
例えば、特開平3−93058号公報には、磁気的に結合される再生層と記録保持層とを有してなる多層膜の、記録保持層に信号記録を行うとともに、再生層の磁化の向きを揃えた後、レーザ光を照射して加熱し、再生層の昇温領域に、記録保持層に記録された信号を転写させながら読み取る信号再生方法が開示されている。この信号再生方法によれば、再生時の符号間干渉を減少させることができるとともに、再生用のレーザ光のビームスポット径に対して、このレーザ光によって加熱されて転写温度に達し信号が検出される領域は、より小さな領域に限定できるため、空間周波数が2NA/λ以上の信号を再生することが可能である。
【0006】
しかしながら、上述した信号再生方法は、再生用のレーザ光のビームスポット径に対して、有効に使用される信号検出領域が小さくなるため、再生信号の振幅が低下し、十分な再生出力が得られないという欠点を有している。このため、有効信号検出領域をビームスポット径に対してあまり小さくすることができず、結局は光学系の回折限界で決まる記録密度に対して、大幅な高密度化を達成することはできない。
【0007】
このような問題点を解決する方法の1つとして、特開平6−290496号公報には、記録マーク(磁区)の境界部に存在する磁壁を光磁気記録媒体に生じた温度勾配に従って高温側に移動させることで、再生信号の振幅を低下させることなく、光学系の分解能を超えた記録密度の信号再生を可能にする再生方法が開示されている。
【0008】
以下、この再生方法について説明する。
【0009】
図11は、上述の公報に開示された光磁気記録媒体およびその情報再生原理を説明するための図で、図11(a)は光磁気記録媒体の構成および再生用のレーザ光が照射された部分の磁化状態を模式的に示す断面図、図11(b)はそのレーザ光の照射時に光磁気記録媒体に生じる温度分布を示す図、図11(c)は図11(b)の温度分布に対応する磁壁移動層の磁壁エネルギ密度σの分布を示す図である。
【0010】
図11(a)に示すように、この光磁気記録媒体の磁性層100は、磁壁移動層である第1の磁性層111、スイッチング層である第2の磁性層112、記録層である第3の磁性層113が順次積層されてなる。ここでは、第1の磁性層111が、再生用のレーザ光120が照射される照射面側に位置して形成されている。各磁性層111,112,113中の矢印m1,m2方向は原子スピンの向きを表している。この原子スピンの向きが相互に逆向きの領域の境界部には磁壁116が形成されている。
【0011】
矢印r方向はビームスポット120aに対して相対移動される媒体移動方向を表わしており、第3の磁性層113がr方向へ移動することで、ビームスポット120aが第3の磁性層113の記録トラックに沿って移動する。このビームスポット120aが照射された部分では、図11(b)に示すように、ビームスポット120aの移動方向に対して、ビームスポット120aの前方から温度が上昇し、位置Xcで温度のピークになるような温度分布が生じる。ここでは、位置Xaにおいて、媒体温度が第2の磁性層112のキュリー温度近傍の温度Tsに達するようになっている。
【0012】
第1の磁性層111における磁壁エネルギ密度σの分布は、図11(c)に示すように、ビームスポット120aの後方の温度ピーク近傍において極小となり、ビームスポット120aの前方ほど大きくなる。このように、位置X方向に磁壁エネルギ密度σの勾配があるとき、位置Xに存在する各層の磁壁に対して次式(1)から求められる力Fが作用する。
【0013】
F=∂σ/∂X ・・・(1)
この力Fは、磁壁エネルギの低い方に磁壁116を移動させるように作用する。第1の磁性層111は、磁壁抗磁力が小さく、磁壁移動度も大きいので、単層の場合にはこの力Fによって容易に磁壁116が移動する。ただし、位置Xaよりビームスポット120aの前方側に位置する領域においては、媒体温度が温度Tsより低く、磁壁抗磁力が大きな第3の磁性層113と交換結合しているために、磁壁116が移動せず、抗磁力が大きな第3の磁性層113中の磁壁の位置と対応する位置に固定されている。
【0014】
この光磁気記録媒体では、矢印r方向に光磁気記録媒体が移動し、第1の磁性層111の磁壁116が位置Xaの位置に移動したとき、その磁壁116の部分における媒体温度が第2の磁性層112のキュリー温度近傍の温度Tsまで上昇し、第1の磁性層111と第3の磁性層113との間の交換結合が切断される。この結果、第1の磁性層111の磁壁116は、破線で示す矢印s方向に向かって、より温度が高く、より磁壁エネルギ密度の小さな領域へと瞬間的に移動する。ビームスポット120aの下を磁壁116が通過するとき、位置Xaから位置Xcの範囲で第1の磁性層111の原子スピンは一方向に揃う。
【0015】
信号の間隔で形成されている磁壁116が、光磁気記録媒体の移動に伴って位置Xaに来る度に、第1の磁性層111中の磁壁116がビームスポット120aの下を瞬間的に移動し、位置Xaから位置Xcの範囲に記録磁区が拡大し、第1の磁性層111の原子スピンは一方向に揃う。この結果、再生信号の振幅は、記録されている磁壁の間隔(すなわち記録マーク長)によらず、常に一定かつ最大の振幅になり、光学的な回折限界に起因した波形干渉等の問題から完全に解放される。
【0016】
また、例えば特開平11−191245号公報には、基板の表面粗さを低減させることにより、磁壁の移動を円滑にさせる提案もなされている。これは、磁壁が移動する時、基板の表面粗さが移動の障害(磁壁抗磁力)になることに起因している。
【0017】
【発明が解決しようとする課題】
しかしながら、磁壁の移動を利用して再生を行う光磁気記録媒体においては、基板の表面粗さを低減させることで磁壁移動層の磁壁抗磁力も低減されるが、全記録再生領域において磁壁移動層の磁壁抗磁力が均一になるようなオーダーで基板の表面粗さを均一に作製することが非常に困難である。そして、基板の表面粗さの不均一さによる磁壁抗磁力の不均一性は、再生信号特性の劣化を招く大きな原因であった。
【0018】
このような表面粗さの不均一性を取り除くために、スタンパから調整する場合には、基板の表面粗さが、レジスト塗布精度、原盤ガラスの表面性に依存するため、光磁気記録媒体の製造工程の複雑化、高コスト化を招いてしまうという問題があった。また、射出成形後の基板に対する逆スパッタ処理、ベーク処理、UVオゾン処理などの追加処理を施す場合においても、光磁気記録媒体の製造工程の複雑化、高コスト化を招いてしまうという問題があった。
【0019】
本発明はこのような課題を鑑みなされたものであり、簡素な構成で、再生信号特性を向上することができる光磁気記録媒体、および簡単な製造工程により、再生信号特性が向上された光磁気記録媒体を容易に製造することができる光磁気記録媒体の製造方法を提供することを目的とする。
【0020】
【課題を解決するための手段】
本発明者は鋭意研究を重ねた結果、通常の射出成形後の樹脂基板(ポリカーボネート)表面には、記録マーク長と同等以上で、不規則な周期(100nm程度)の凹凸が存在し、そのような凹凸が基板の表面粗さの不均一性を与えていることを発見した。そして、このような凹凸は、基板と磁性層との間に設けられる下地層によって均すことが可能なことを掴んだ。
【0021】
すなわち、本発明の光磁気記録媒体は、基板上に、少なくとも第1および第2の下地層を介して、情報が記録される記録層とこの記録層に記録された情報を磁壁を移動させることにより再生するための磁壁移動層とを有する磁性層が積層されてなる磁壁移動型の光磁気記録媒体であって、第2の下地層が磁壁移動層に隣接して設けられるとともに、第1の下地層が第2の下地層に隣接して基板側に設けられている。そして、第1の下地層と第2の下地層は、密度が互いに異なる。
【0022】
以上のように構成された本発明の光磁気記録媒体は、基板と磁性層との間に設けられる下地層を少なくとも2層設けて、磁性層に隣接する側に第2の下地層を設け、より基板に近い側に密度が比較的低い第1の下地層を設けることにより、磁壁移動層の磁壁の移動を不均一にさせる要因である基板の表面上の凹凸が、第1の下地層をもって良好に埋められる。すなわち、第1の下地層によって、磁性層を成膜する前の基板の表面粗さが均一にされ、基板の表面粗さを調整することが可能になる。したがって、本発明の光磁気記録媒体によれば、全記録再生領域で磁壁抗磁力が均一に作用するので、良好な再生信号が得られる。
【0023】
また、本発明の光磁気記録媒体の製造方法は、基板上に第1の下地層および第2の下地層をスパッタリング法を用いて成膜する成膜工程を有する。そして、成膜工程では、第1の下地層の成膜時のスパッタリングガス圧力を、第2の下地層の成膜時のスパッタリングガス圧力よりも高くする。
【0024】
スパッタリング法によれば、高いスパッタリングガス圧力で成膜した場合に密度の低い膜が得られ、低いスパッタリングガス圧力で成膜した場合に密度の高い緻密な膜が得られる。そこで、本発明の光磁気記録媒体の製造方法は、基板と磁性層との間に設けられる下地層を多層化して、異なるスパッタリングガス圧力でそれぞれ成膜する。さらに詳しくは、基板に近い側の第1の下地層として高いスパッタリングガス圧力で誘電体を成膜した後、第2の下地層として低いスパッタリングガス圧力で誘電体を成膜する。
【0025】
また、本発明に係る光磁気記録媒体の製造方法は、成膜工程で、第1の下地層の成膜後に、ガス流量を変化させることによって、第1の下地層に第2の下地層を連続して成膜する。すなわち、第1の下地層の成膜後に、ガス流量を変化させることで、搬送および真空を破ることなくスパッタリングガス圧力を変えることが可能になるため、第1の下地層に第2の下地層を連続して成膜することが可能になる。
【0026】
また、本発明に係る光磁気記録媒体の製造方法は、基板上に第1の下地層および第2の下地層をスパッタリング法を用いて成膜する成膜工程を有する。そして、成膜工程では、第1の下地層の成膜時のターゲットと基板との距離が、第2の下地層の成膜時のターゲットと基板との距離よりも大きい。
【0027】
上述した本発明に係る光磁気記録媒体の製造方法によれば、基板上に第1の下地層および第2の下地層をスパッタリング法を用いて成膜する成膜工程を有し、そして、第1の下地層の成膜時のスパッタリングガス圧力を、第2の下地層の成膜時のスパッタリングガス圧力よりも高くすることで、基板の表面上の凹凸が、第1の下地層をもって良好に埋められる。すなわち、第1の下地層によって、磁性層の成膜前の基板の表面粗さが均一にされ、基板の表面粗さを調整することが可能になる。したがって、本発明の光磁気記録媒体によれば、全記録再生領域で磁壁抗磁力が均一に作用するので、良好な再生信号が得られる。
【0028】
上述した本発明に係る光磁気記録媒体の製造方法によれば、第1の下地層の成膜時のターゲットと基板との距離を、第2の下地層の成膜時のターゲットと基板との距離よりも大きくすることで、基板の表面上の凹凸が、第1の下地層をもって良好に埋められる。すなわち、第1の下地層によって、磁性層の成膜前の基板の表面粗さが均一にされ、基板の表面粗さを調整することが可能になる。したがって、本発明の光磁気記録媒体によれば、全記録再生領域で磁壁抗磁力が均一に作用するので、良好な再生信号が得られる。
【0029】
上述したように、本発明は、磁壁移動型の光磁気記録媒体において、簡素な構成、且つ簡単な製造工程で良好な再生信号が得られるという顕著な効果を得ることが可能になる。
【0030】
【発明の実施の形態】
(第1の実施形態)
次に本発明の実施形態について図面を参照して説明する。
【0031】
図1は本発明の第1の実施形態である光磁気記録媒体の基本的な層構成を模式的に示す断面図である。図1に示すように、光磁気記録媒体1は、透明な基板5上に第1の下地層6、第2の下地層7、磁性層10、上地層14が順次積層されて構成されている。また、磁性層10は、基板5側から順に、磁壁が移動する磁壁移動層である第1の磁性層11と、情報を記録(蓄積)する記録層である第3の磁性層13と、磁壁移動層と記録層間に設けられこれら各磁性層層より低い温度を有するスイッチング層である第2の磁性層12とがそれぞれ積層されている。そして、これら第1の磁性層11、第2の磁性層12、第3の磁性層13は、第2の磁性層12のキュリー温度以下で交換結合する。
【0032】
基板5としては、例えば、透明なポリカーボネート、ガラス等が用いられている。本実施形態では、トラックピッチが0.88μm程度、グルーブ幅が0.4μm程度、溝深さが60nm程度のポリカーボネート基板を用いた。
【0033】
図5は本実施形態で使用する基板5の表面状態を走査型プローブ顕微鏡(デジタルインスツルメント社製:Tapping Mode AFM)を用いて測定した測定結果であり、記録再生領域であるグルーブ部の表面形状の3次元像を表している。図5に示すように、基板5の表面上には、100nm程度の比較的大きな周期で凹凸が存在している。
【0034】
第1および第2の下地層6,7としては、例えば、Si3N4、AlN、SiO2、SiO、ZnS、MgF2などの透明誘電材料を使用することができる。保護層として再び形成される上地層14にも、これと同様の誘電材料を用いることができる。これら各層は、例えばマグネトロンスパッタ装置による連続スパッタリング、または連続蒸着等によって被着形成することができる。
【0035】
本実施形態では、第1の下地層6として、Siターゲットを用いて、Arガス60sccmとN2ガス20sccmを導入しながら0.6Paの圧力で反応性スパッタリング法によりポリカーボネート製の基板5上にSiNを5nmに形成した。
【0036】
図6は基板5上に第1の下地層6を形成した後に表面状態を走査型プローブ顕微鏡(デジタルインスツルメント社製:Tapping Mode AFM)を用いて測定した測定結果であり、第1の下地層6を形成した後のグルーブ部の表面状態の3次元像を表している。図6に示すように、基板5上に存在していた比較的大きな周期の凹凸が埋められて、凹凸の高さも減少している。このように、第1の下地層6は基板5の表面上の比較的大きな周期の凹凸を埋める効果がある。
【0037】
第1の下地層6を成膜した後、第2の下地層7は、Arガス19sccmとN2ガス12.7sccmを導入しながら0.2Paの圧力で反応性スパッタリング法によりSiNを30nmに形成した。第2の下地層7は、第1の下地層6の成膜後にガス流量を変化させることで、搬送および真空を破ることなくスパッタリングガス圧力を変えて、第1の下地層6の成膜後に連続して成膜することができる。これによれば、同一のターゲットを使用してスパッタリング成膜時の雰囲気を変更して行うだけでよいので、製造プロセスが簡略化される。
【0038】
したがって、光磁気記録媒体1によれば、第1の下地層6の成膜時に、第2の下地層7の成膜時のスパッタリングガス圧力よりも高いスパッタリングガス圧力で、第2の下地層7よりも密度が低い第1の下地層6が成膜されている。
【0039】
図4は本実施形態の第2の下地層7の表面状態を走査型プローブ顕微鏡(デジタルインスツルメント社製:Tapping Mode AFM)を用いて測定した測定結果であり、第2の下地層7を形成した後のグルーブ部の表面状態の3次元像を表している。図4に示すように、第2の下地層7より比較的密度が低い第1の下地層6を用いることで、基板5上に存在する周期が20nm程度の微小な凹凸を均一に形成することができ、磁壁抗磁力が均一に働くようになるため、良好な再生信号を得ることが可能になる。
【0040】
なお、本実施形態の第1の下地層7は、厚さ5nmに形成したが、基板5上の比較的大きな周期の凹凸を埋めて表面粗さを均一にすることを目的にしたものであり、厚さ5nmに限定されるものでなく、基板5上に存在する凹凸の高さ以上に形成することが望ましい。また、スパッタリングガス圧力についても、本実施形態ではArガス60sccmとN2ガス20sccmを導入し圧力を0.6Paとしたが、スパッタリングガス圧力を限定するものではない。
【0041】
また、第1および第2の下地層6,7の2層だけではなく、第2の下地層7よりも基板5側に位置して比較的密度が低い第1の下地層6が設けられる構成であれば、必要に応じて第1の下地層6と基板5との間に薄膜からなる他の下地層が形成されたり、他の成膜工程等が追加されたりしてもよい。また、第1の下地層6は、密度を連続的に変化させて形成されてもよい。
【0042】
また、本実施形態の光磁気記録媒体1の構成に加えて、更に例えばAl、AlTa、AlTi、AlCr、Cuなどからなる金属層を付加して、熱的な特性を調整可能に構成されてもよい。さらに、高分子樹脂からなる保護コートを付与してもよい。さらに、各層が成膜された基板を貼り合わせた構成としてもよい。
【0043】
また、本実施形態の光磁気記録媒体1の構成において、各第1、第2および第3の磁性層11,12,13は、種々の磁性材料によって構成することが考えられるが、例えば、Pr、Nd、Sm、Gd、Tb、Dy、Hoなどの希土類金属元素の1種類あるいは2種類以上が10〜40at%と、Fe、Co、Niなどの鉄族元素の1種類あるいは2種類以上が90〜60at%とで構成される希土類−鉄族非晶質合金によって構成してもよい。また、耐食性向上などのために、これにCr、Mn、Cu、Ti、Al、Si、Pt、Inなどの元素を少量添加してもよい。
【0044】
重希土類−鉄族非晶質合金の場合、飽和磁化は、希土類元素と鉄族元素との組成比により制御することが可能である。また、キュリー温度も、組成比により制御することが可能であるが、飽和磁化と独立に制御するためには、鉄族元素として、Feの一部をCoで置き換えた材料を用い、置換量を制御する方法がより好ましく利用できる。すなわち、Feの1at%をCoで置き換えることにより、6℃程度のキュリー温度上昇が見込めるので、この関係を用いて所望のキュリー温度となるようにCoの添加量を調整することができる。また、Cr、Tiなどの非磁性元素を微量添加することにより、キュリー温度を低下させることも可能である。さらにまた、2種類以上の希土類元素を用いてそれらの組成比を調整することによってもキュリー温度を制御することができる。
【0045】
上述した他に、例えばガーネット、白金族−鉄族周期構造膜、あるいは白金族−鉄族合金などの材料も使用可能である。
【0046】
第1の磁性層11としては、例えば、GdCo、GdFeCo、GdFe、NdGdFeCoなどの垂直磁気異方性の小さな希土類−鉄族非晶質合金や、ガーネット等のバブルメモリ用材料を用いることが望ましい。第3の磁性層13としては、例えば、TbFeCo、DyFeCo、TbDyFeCoなどの希土類−鉄族非晶質合金や、Pt/Co、Pd/Coなどの白金族−鉄族周期構造膜など、垂直磁気異方性が大きく安定に磁化状態が保持できるものが望ましい。
【0047】
また、少なくとも第1の磁性層11は、膜面内方向において隣接する記録トラック間で交換結合が切断されている。これにより磁壁の移動を記録トラックに沿って円滑に行うことが可能になる。このような様態は記録トラック間の磁性層を高出力のレーザ光でアニール処理することにより実現できる。
【0048】
図2は、本実施形態の光磁気記録媒体およびその情報再生原理を説明するための図で、図2(a)は光磁気記録媒体の構成および再生用のレーザ光が照射された部分の磁化状態を模式的に示す断面図、図2(b)はそのレーザ光の照射時に光磁気記録媒体に生じる温度分布を示す図、図2(c)は図2(b)の温度分布に対応する磁壁移動層の磁壁エネルギ密度σの分布を示す図である。
【0049】
図2(a)に示すように、この光磁気記録媒体1の磁性層10は、磁壁移動層である第1の磁性層11、スイッチング層である第2の磁性層12、記録層である第3の磁性層13が順次積層されてなる。ここでは、第1の磁性層11が、再生用のレーザ光20が照射される照射面側に位置して形成されている。各磁性層11,12,13中の矢印m1,m2方向は原子スピンの向きを表している。この原子スピンの向きが相互に逆向きの各領域の境界部には磁壁16が形成されている。
【0050】
光磁気記録媒体1は、照射されたレーザ光20のビームスポット20aに対して相対移動される媒体移動方向である図2中矢印r方向に移動することで、ビームスポット20aが第3の磁性層13の記録トラックに沿って移動する。このビームスポット20aが照射された領域では、図2(b)に示すように、ビームスポット20aの移動方向に対して、ビームスポット20aの前方から温度が上昇し、位置Xbで温度のピークになるような温度分布が生じる。ここでは、位置Xaにおいて、媒体温度が第2の磁性層12のキュリー温度近傍の温度Tsに達するようにされている。
【0051】
第1の磁性層11における磁壁エネルギ密度σの分布は、図2(c)に示すように、ビームスポット20aの後方の温度ピーク近傍において極小となり、ビームスポット20aの前方ほど大きくなる。このように、位置X方向に磁壁エネルギ密度σの勾配があるとき、位置Xに存在する各層の磁壁に対して次式(1)から求められる力Fが作用する。
【0052】
F=∂σ/∂X ・・・(1)
この力Fは、磁壁エネルギの低い方に磁壁を移動させるように作用する。
第1の磁性層11は、磁壁抗磁力が小さく、磁壁移動度も大きいので、単層の場合にはこの力Fによって容易に磁壁16が移動する。ただし、位置Xaよりビームスポット20aの前方側に位置する領域においては、媒体温度が温度Tsより低く、磁壁抗磁力が大きな第3の磁性層13と交換結合しているために、磁壁16が移動せず、抗磁力が大きな第3の磁性層13中の磁壁の位置と対応する位置に固定されている。
【0053】
この光磁気記録媒体1では、矢印r方向に光磁気記録媒体1が移動し、第1の磁性層11の磁壁16が位置Xaの位置に移動したとき、その磁壁16の部分における媒体温度が第2の磁性層12のキュリー温度近傍の温度Tsまで上昇し、第1の磁性層11と第3の磁性層113との間の交換結合が切断される。この結果、第1の磁性層11の磁壁16は、破線で示す矢印s方向に向かって、より温度が高く、且つより磁壁エネルギ密度が小さな領域へと瞬間的に移動する。ビームスポット20aの領域下を磁壁16が通過するとき、位置Xaから位置Xbの範囲で第1の磁性層11の原子スピンが一方向に揃う。
【0054】
信号の間隔で形成されている磁壁16が、光磁気記録媒体1の移動に伴って位置Xaに来る度に、第1の磁性層11中の磁壁16がビームスポット20aの領域下を瞬間的に移動し、位置Xaから位置Xbの範囲に記録磁区が拡大し、第1の磁性層11の原子スピンは一方向に揃う。この結果、再生信号の振幅は、記録されている磁壁の間隔(すなわち記録マーク長)によらず、常に一定かつ最大の振幅になり、光学的な回折限界に起因した波形干渉等の問題から完全に解放される。
【0055】
次に、本実施形態の光磁気記録媒体1におけるデータ信号の記録動作について簡単に説明する。
【0056】
データ信号の記録は、光磁気記録媒体を移動させながら、第3の磁性層13がキュリー温度以上になるようなレーザパワーを有するレーザ光20を記録トラックに沿って照射しながら外部磁場を記録すべきデータ信号に応じて変調して行うか、または、一定方向の磁界を印加しながら記録すべきデータ信号に応じてレーザパワーを変調して行う。後者の場合は、ビームスポット20aの所定領域のみが第3の磁性層13のキュリー温度近傍になるようにレーザ光20の強度を調整することによって、そのビームスポット径以下の記録磁区を形成することができ、その結果、レーザ光20の回折限界以下の周期で信号記録を行うことができる。
【0057】
図3に、本実施形態の光磁気記録媒体1に対してデータ信号の記録および再生を行う記録再生装置が備える光学系の一例の模式図を示す。
【0058】
図3に示すように、光学系は、光路の順に、レーザ光20を出射するレーザ光源51と、このレーザ光源51から出射されたレーザ光20を平行光に変換するコリメータレンズ52と、レーザ光源51からのレーザ光20を透過するとともに光磁気記録媒体1からの戻り光を反射するビームスプリッタ53と、このビームスプリッタ53を透過したレーザ光20を光磁気記録媒体1に集光する対物レンズ54と、ビームスプリッタ53に反射された戻り光を受光するディテクタ56を有する信号検出系55とを備えている。レーザ光源51は、記録再生用の光源であって、レーザ光20の波長が680nmである。ビームスプリッタ53は、レーザ光20を整形する整形部を有している。
【0059】
以上のように構成された光学系を備える記録再生装置では、光磁気記録媒体1の記録面のグルーブ(またはランド)上において、レーザ光源51からの出射された波長680nmのレーザ光20が集光された記録再生用のビームスポット20aが形成される。データ信号の再生は、光磁気記録媒体1を例えば線速度2.7m/secで移動しながら、記録再生用のビームスポット20aを用いて行う。これにより、再生時には、光磁気記録媒体1を図2(b)に示したような温度勾配で加熱することができる。
【0060】
各第1、第2および第3の磁性層11,12,13は、真空を破ることなく連続して成膜することで、互いに交換結合することが可能になる。磁壁移動層である第1の磁性層11には(Gd27(FeCo17))Cr1.8を36nm、スイッチング層である第2の磁性層12には、他の第1、第3の磁性層11,13と比べてキュリー温度近傍の温度Tsが150℃程度と最も低い垂直磁化膜(Tb24Fe)Cr1.9を10nm、記録層である第3の磁性層13には(Tb26(FeCo38))Cr1.85を60nm形成した。
【0061】
上地層14としては、第2の下地層7と同様にSiターゲットを用いてArガス19sccmとN2ガス12.7sccmを導入しながら反応性スパッタリング法によりSiNを50nm形成した。
【0062】
以上のような構成の光磁気記録媒体1について再生信号の評価を行った。ランド部にレーザーアニール処理を施し、信号評価はグルーブ部で行った。データ信号の記録は、記録用光学系のレーザ光20の波長λを680nm、対物レンズ54の開口数NAを0.55、記録時の線速度を2.7m/sとして、レーザパワー3.5mWのレーザ光20を照射しながら外部磁場300(Oe:エルステッド[CGS電磁単位系])を13.5MHzで変調して行った。このようにして記録したデータを、レーザパワー2.2mWのレーザ光20を用いて再生した。その結果、本実施形態の光磁気記録媒体1は、ジッター値が4.0nsとなり、後述する比較例1に示す第1の下地層が無い光磁気記録媒体61と比較して再生信号特性が向上された。
【0063】
上述したように、光磁気記録媒体1によれば、基板5と磁性層10との間に第1および第2の下地層6,7をそれぞれ形成して、磁性層10に隣接する側に第2の下地層7を設けるとともに、より基板5に近い側に密度が比較的低い第1の下地層6を設けることにより、第1の磁性層11の磁壁16の移動を不均一にさせる要因である基板5の表面上の凹凸が、第1の下地層6によって良好に埋められる。
【0064】
すなわち、第1の下地層6によって、基板5の表面粗さが均一にされ、その後に第2の下地層7を形成することで磁性層10の成膜前の下地表面粗さを調整することが可能になる。したがって、光磁気記録媒体1によれば、全記録再生領域で磁壁抗磁力が均一に作用するので、良好な再生信号を得ることができる。
【0065】
(比較例1)
図7は、比較例1の光磁気記録媒体の基本的な層構成を模式的に示す断面図である。比較例1の光磁気記録媒体は、下地層として第1の下地層を形成せずに第2の下地層のみ形成した点以外は第1の実施形態の光磁気記録媒体1と同一構成とした。なお、比較例1の光磁気記録媒体において、上述した光磁気記録媒体1と同一部位には、同一符号を付して説明を省略する。
【0066】
図7に示すように、比較例1の光磁気記録媒体61は、基板5上に下地層62が形成されている。この光磁気記録媒体61が備える下地層62は、光磁気記録媒体1が備える第2の下地層7に相当する。
【0067】
図8は本比較例1の光磁気記録媒体61の下地層62の表面状態を走査型プローブ顕微鏡(デジタルインスツルメント社製:Tapping Mode AFM)を用いて測定した測定結果である。図8は記録再生領域であるグルーブ部の下地層62の表面形状の3次元像を表している。図8に示すように、基板5の表面上に通常の下地層62を直接形成した場合には、基板5の表面上に存在する100nm程度の比較的大きな周期の凹凸が残ってしまう。
【0068】
本比較例1の光磁気記録媒体61について、上述した第1の実施形態の光磁気記録媒体1の場合と同様に記録再生信号評価を行った。ここで、信号評価を行ったマーク長は100nmであり、本比較例1の下地層62の表面に存在する凹凸の周期はこのマーク長と同程度である。その結果、比較例1の光磁気記録媒体61は、ジッター値が4.6nsとなり、第1の実施形態の光磁気記録媒体1に比較して再生信号特性が低下した。
【0069】
(第2の実施形態)
図9は、本発明の第2の実施形態の光磁気記録媒体の基本的な層構成を模式的に示す断面図である。第2の実施形態の光磁気記録媒体は、下地層として基板と第1の下地層との間に更に第3の下地層を形成した点以外は第1の実施形態の光磁気記録媒体1とほぼ同一構成とした。なお、第2の実施形態の光磁気記録媒体において、上述した光磁気記録媒体1と同一部位には同一符号を付して説明を省略する。
【0070】
図9に示すように、第2の実施形態の光磁気記録媒体2は、第1の下地層6と基板5との間に第3の下地層8が形成されている。この光磁気記録媒体2は、第1の実施形態の光磁気記録媒体1と同一の基板5上に、第3の下地層8として、Siターゲットを用いてArガス19sccmとN2ガス12.7sccmを導入しながら0.2Paの圧力で反応性スパッタリング法によりSiNを厚さ5nmに形成した。次に、ガス流量を変え、第3の下地層8上に、第1の実施形態と同様の第1の下地層6を厚さ5nmに形成した後、第2の下地層7としてArガス19sccmとN2ガス12.7sccmを導入しながら0.2Paの圧力でSiNを厚さ25nmに形成した。
【0071】
本実施形態の光磁気記録媒体2は、基板5と第1の下地層6の間に第3の下地層8を形成する点と、第2の下地層7の膜厚を25nmにする点以外は第1の実施形態の光磁気記録媒体1と同様な構成とした。
【0072】
上述した第2の実施形態の光磁気記録媒体2について、第1の実施形態の場合と同様の記録再生信号評価を行った。その結果、この光磁気記録媒体2は、ジッター値が4.0nsとなり、第1の実施形態の光磁気記録媒体1とほぼ同等の再生信号特性を得られた。
【0073】
(比較例2)
図10は、本発明の比較例2の光磁気記録媒体の基本的な層構成を模式的に示す断面図である。比較例2の光磁気記録媒体は、上述した光磁気記録媒体1の第1の下地層6と第2の下地層7を基板5上に形成する順序を逆にした点以外は第1の実施形態の光磁気記録媒体1と同一構成とした。なお、比較例2の光磁気記録媒体において、上述した光磁気記録媒体1と同一部位には同一符号を付して説明を省略する。
【0074】
図10に示すように、比較例2の光磁気記録媒体71は、基板5上に第1の下地層72、第2の下地層73の順に形成されている。この光磁気記録媒体71が備える第1の下地層72は、光磁気記録媒体1の第2の下地層7に相当し、光磁気記録媒体71が備える第2の下地層73は、光磁気記録媒体1の第1の下地層6に相当する。
【0075】
基板5上に、第1の下地層72としてSiターゲットを用いてArガス19sccmとN2ガス12.7sccmを導入しながら0.2Paの圧力で反応性スパッタリング法によりSiNを厚さ30nmに形成し、続いて、第2の下地層73としてArガス60sccmとN2ガス20sccmを導入しながら0.6Paの圧力で反応性スパッタリング法によりSiNを5nm形成した。
【0076】
上述した比較例2の光磁気記録媒体71について、上述の第1の実施形態の場合と同様の記録再生信号評価を行った。その結果、比較例2の光磁気記録媒体71は、ジッター値が4.8nsとなり、第1の実施形態の光磁気記録媒体1に比較して再生信号特性が低下した。
【0077】
(第3の実施形態)
第3の実施形態の光磁気記録媒体は、第1の下地層の成膜時のガス流量を変更した点以外は第1の実施形態の光磁気記録媒体1と同一構成である。第1の下地層として、Arガス80sccmとN2ガス20sccmを導入しながら0.8Paの圧力で反応性スパッタリング法によりSiNを5nm形成した。
【0078】
上述した第3の実施形態の光磁気記録媒体について、第1の実施形態の場合と同様の記録再生信号評価を行った。その結果、第3の実施形態の光磁気記録媒体は、ジッター値が4.0nsとなり、第1の実施形態の光磁気記録媒体1とほぼ同等の再生信号特性が得られた。
【0079】
(第4の実施形態)
第4の実施形態の光磁気記録媒体は、第1の下地層の成膜時のガス流量を変更した点以外は第1の実施形態の光磁気記録媒体1と同様に構成した。第1の下地層として、Arガス40sccmとN2ガス20sccmを導入しながら0.4Paの圧力で反応性スパッタリング法によりSiNを5nm形成した。
【0080】
上述した第4の実施形態の光磁気記録媒体について、第1の実施形態の場合と同様の記録再生信号評価を行った。その結果、第4の実施形態の光磁気記録媒体は、ジッター値が4.0nsとなり、第1の実施形態の光磁気記録媒体1とほぼ同等の再生信号特性が得られた。
【0081】
(第5の実施形態)
第5の実施形態の光磁気記録媒体は、第1の下地層の膜厚を変更した点以外は第1の実施形態の光磁気記録媒体1と同一構成である。第1の下地層として、Arガス60sccmとN2ガス20sccmを導入しながら0.6Paの圧力で反応性スパッタリング法によりSiNを10nm形成した。
【0082】
上述した第5の実施形態の光磁気記録媒体について、第1の実施形態の場合と同様の記録再生信号評価を行った。その結果、第5の実施形態の光磁気記録媒体は、ジッター値が4.0nsとなり、第1の実施形態の光磁気記録媒体1とほぼ同等の再生信号特性が得られた。
【0083】
(第6の実施形態)
第6の実施形態の光磁気記録媒体は、スパッタリング法による第1の下地層の成膜時に、基板5とSiターゲットとの間の距離を、第1の実施形態のときの2倍にし、ガス流量をArガス19sccmとN2ガス12.7sccm変更しスパッタ圧力を0.2Paにした点以外は第1の実施形態の光磁気記録媒体1と同様に構成した。すなわち、本実施形態の成膜工程では、第1の下地層の成膜時のターゲットと基板との距離を、第2の下地層の成膜時のターゲットと基板との距離よりも大きくした。
【0084】
上述した第6の実施形態の光磁気記録媒体について、第1の実施形態の場合と同様の記録再生信号評価を行った。その結果、第6の実施形態の光磁気記録媒体は、ジッター値が4.0nsとなり、第1の実施形態の光磁気記録媒体1とほぼ同等の再生信号特性が得られた。
【0085】
【発明の効果】
上述したように、本発明の光磁気記録媒体によれば、第2の下地層が磁壁移動層に隣接して設けられる第2の下地層と、この第2の下地層に隣接して基板側に設けられ第1の下地層が、密度が互いに異なることにより、基板の表面粗さが第1の下地層によって均一にされるため、良好な再生信号を得ることが可能になり、簡素な構成で、再生信号特性を向上することができる。
【0086】
本発明に係る光磁気記録媒体の製造方法によれば、簡単な製造工程により、再生信号特性が向上された光磁気記録媒体を容易に製造することができる。
【図面の簡単な説明】
【図1】本発明に係る第1の実施形態の光磁気記録媒体の基本的な層構成を模式的に示す断面図である。
【図2】本発明の光磁気記録媒体およびその情報再生原理を説明するための図であって、(a)は光磁気記録媒体の構成および再生用のレーザ光が照射された部分の磁化状態を模式的に示す断面図、(b)はそのレーザ光の照射時の光磁気記録媒体に形成される温度分布を示す図、(c)は(b)の温度分布に対応する磁壁移動層の磁壁エネルギ密度σの分布を示す図である。
【図3】本実施形態の光磁気記録媒体に対してデータ信号の記録および再生を行う記録再生装置が備える光学系の一例を示す模式図である。
【図4】本実施形態の第2の下地層の表面状態を走査型プローブ顕微鏡を用いた測定結果を示す図であり、第2の下地層を形成した後のグルーブ部の表面状態の3次元像を表している。
【図5】本実施形態の基板の表面状態を測定した測定結果を示す図であり、記録再生領域であるグルーブ部の表面形状の3次元像を表している。
【図6】基板上に第1の下地層を形成した後の表面状態を測定した測定結果を示す図であり、第1の下地層を形成した後のグルーブ部の表面状態の3次元像を表している。
【図7】比較例1の光磁気記録媒体の基本的な層構成を模式的に示す断面図である
【図8】前記比較例1の第2の下地層の表面状態を測定した測定結果を示す図である。
【図9】本発明に係る第2の実施形態の光磁気記録媒体の基本的な層構成を模式的に示す断面図である。
【図10】比較例2の光磁気記録媒体の基本的な層構成を模式的に示す断面図である。
【図11】従来の光磁気記録媒体およびその情報再生原理を説明するための図であって、(a)は光磁気記録媒体の構成および再生用のレーザ光が照射された部分の磁化状態を模式的に示す断面図、(b)はそのレーザ光の照射時の光磁気記録媒体に形成される温度分布を示す図、(c)は(b)の温度分布に対応する磁壁移動層の磁壁エネルギ密度σの分布を示す図である。
【符号の説明】
1,2 光磁気記録媒体
5 基板
6 第1の下地層
7 第2の下地層
8 第3の下地層
10 磁性層
11 第1の磁性層(磁壁移動層)
12 第2の磁性層(スイッチング層)
13 第3の磁性層(記録層)
14 上地層
16 磁壁
20 レーザ光
20a スポット
51 レーザ光源
52 コリメータレンズ
53 ビームスプリッタ
54 対物レンズ
55 信号検出系
56 ディテクタ
【発明の属する技術分野】
本発明は、例えば光磁気ディスク等の磁気光学効果を利用してレーザ光により情報の記録および再生が行われる光磁気記録媒体およびその製造方法に関する。
【0002】
【従来の技術】
情報の書き換え可能な情報記録媒体として、各種の磁性記録媒体が実用化されている。特に、半導体レーザの熱エネルギを用いて磁性薄膜に磁区を書き込むことで情報を記録し、磁気光学効果を用いてこの記録情報を読み出す光磁気記録媒体は、高密度記録が可能な大容量可換媒体として期待されている。近年、動画像のデジタル化に伴って、これらの磁性記録媒体の記録密度を高めてさらに大容量の記録媒体とする要求が高まっている。
【0003】
一般に、光記録媒体の線記録密度は、再生光学系のレーザ光の波長および対物レンズの開口数NAに大きく依存する。すなわち、再生光学系のレーザ光の波長λと対物レンズの開口数NAが決まることでビームウェスト径が決定するため、信号再生可能な記録ピットの空間周波数は2NA/λ程度が限界となってしまう。したがって、従来の光ディスクで高密度化を実現するためには、再生光学系のレーザ光の波長λを短くするか、対物レンズの開口数NAを大きくする必要がある。しかしながら、レーザ光の波長λを短くすることは、発光素子の効率や発熱等の問題から容易ではない。また、対物レンズの開口数NAを大きくした場合には、焦点深度が浅くなる等の理由から、機械的精度に対する要求が厳しくなるという不都合が生じる。
【0004】
そこで、最近では、レーザ光の波長λや対物レンズの開口数NAを変更することなく、記録媒体の構成や再生方法を工夫して記録密度を改善する、いわゆる超解像技術が種々提案されている。
【0005】
例えば、特開平3−93058号公報には、磁気的に結合される再生層と記録保持層とを有してなる多層膜の、記録保持層に信号記録を行うとともに、再生層の磁化の向きを揃えた後、レーザ光を照射して加熱し、再生層の昇温領域に、記録保持層に記録された信号を転写させながら読み取る信号再生方法が開示されている。この信号再生方法によれば、再生時の符号間干渉を減少させることができるとともに、再生用のレーザ光のビームスポット径に対して、このレーザ光によって加熱されて転写温度に達し信号が検出される領域は、より小さな領域に限定できるため、空間周波数が2NA/λ以上の信号を再生することが可能である。
【0006】
しかしながら、上述した信号再生方法は、再生用のレーザ光のビームスポット径に対して、有効に使用される信号検出領域が小さくなるため、再生信号の振幅が低下し、十分な再生出力が得られないという欠点を有している。このため、有効信号検出領域をビームスポット径に対してあまり小さくすることができず、結局は光学系の回折限界で決まる記録密度に対して、大幅な高密度化を達成することはできない。
【0007】
このような問題点を解決する方法の1つとして、特開平6−290496号公報には、記録マーク(磁区)の境界部に存在する磁壁を光磁気記録媒体に生じた温度勾配に従って高温側に移動させることで、再生信号の振幅を低下させることなく、光学系の分解能を超えた記録密度の信号再生を可能にする再生方法が開示されている。
【0008】
以下、この再生方法について説明する。
【0009】
図11は、上述の公報に開示された光磁気記録媒体およびその情報再生原理を説明するための図で、図11(a)は光磁気記録媒体の構成および再生用のレーザ光が照射された部分の磁化状態を模式的に示す断面図、図11(b)はそのレーザ光の照射時に光磁気記録媒体に生じる温度分布を示す図、図11(c)は図11(b)の温度分布に対応する磁壁移動層の磁壁エネルギ密度σの分布を示す図である。
【0010】
図11(a)に示すように、この光磁気記録媒体の磁性層100は、磁壁移動層である第1の磁性層111、スイッチング層である第2の磁性層112、記録層である第3の磁性層113が順次積層されてなる。ここでは、第1の磁性層111が、再生用のレーザ光120が照射される照射面側に位置して形成されている。各磁性層111,112,113中の矢印m1,m2方向は原子スピンの向きを表している。この原子スピンの向きが相互に逆向きの領域の境界部には磁壁116が形成されている。
【0011】
矢印r方向はビームスポット120aに対して相対移動される媒体移動方向を表わしており、第3の磁性層113がr方向へ移動することで、ビームスポット120aが第3の磁性層113の記録トラックに沿って移動する。このビームスポット120aが照射された部分では、図11(b)に示すように、ビームスポット120aの移動方向に対して、ビームスポット120aの前方から温度が上昇し、位置Xcで温度のピークになるような温度分布が生じる。ここでは、位置Xaにおいて、媒体温度が第2の磁性層112のキュリー温度近傍の温度Tsに達するようになっている。
【0012】
第1の磁性層111における磁壁エネルギ密度σの分布は、図11(c)に示すように、ビームスポット120aの後方の温度ピーク近傍において極小となり、ビームスポット120aの前方ほど大きくなる。このように、位置X方向に磁壁エネルギ密度σの勾配があるとき、位置Xに存在する各層の磁壁に対して次式(1)から求められる力Fが作用する。
【0013】
F=∂σ/∂X ・・・(1)
この力Fは、磁壁エネルギの低い方に磁壁116を移動させるように作用する。第1の磁性層111は、磁壁抗磁力が小さく、磁壁移動度も大きいので、単層の場合にはこの力Fによって容易に磁壁116が移動する。ただし、位置Xaよりビームスポット120aの前方側に位置する領域においては、媒体温度が温度Tsより低く、磁壁抗磁力が大きな第3の磁性層113と交換結合しているために、磁壁116が移動せず、抗磁力が大きな第3の磁性層113中の磁壁の位置と対応する位置に固定されている。
【0014】
この光磁気記録媒体では、矢印r方向に光磁気記録媒体が移動し、第1の磁性層111の磁壁116が位置Xaの位置に移動したとき、その磁壁116の部分における媒体温度が第2の磁性層112のキュリー温度近傍の温度Tsまで上昇し、第1の磁性層111と第3の磁性層113との間の交換結合が切断される。この結果、第1の磁性層111の磁壁116は、破線で示す矢印s方向に向かって、より温度が高く、より磁壁エネルギ密度の小さな領域へと瞬間的に移動する。ビームスポット120aの下を磁壁116が通過するとき、位置Xaから位置Xcの範囲で第1の磁性層111の原子スピンは一方向に揃う。
【0015】
信号の間隔で形成されている磁壁116が、光磁気記録媒体の移動に伴って位置Xaに来る度に、第1の磁性層111中の磁壁116がビームスポット120aの下を瞬間的に移動し、位置Xaから位置Xcの範囲に記録磁区が拡大し、第1の磁性層111の原子スピンは一方向に揃う。この結果、再生信号の振幅は、記録されている磁壁の間隔(すなわち記録マーク長)によらず、常に一定かつ最大の振幅になり、光学的な回折限界に起因した波形干渉等の問題から完全に解放される。
【0016】
また、例えば特開平11−191245号公報には、基板の表面粗さを低減させることにより、磁壁の移動を円滑にさせる提案もなされている。これは、磁壁が移動する時、基板の表面粗さが移動の障害(磁壁抗磁力)になることに起因している。
【0017】
【発明が解決しようとする課題】
しかしながら、磁壁の移動を利用して再生を行う光磁気記録媒体においては、基板の表面粗さを低減させることで磁壁移動層の磁壁抗磁力も低減されるが、全記録再生領域において磁壁移動層の磁壁抗磁力が均一になるようなオーダーで基板の表面粗さを均一に作製することが非常に困難である。そして、基板の表面粗さの不均一さによる磁壁抗磁力の不均一性は、再生信号特性の劣化を招く大きな原因であった。
【0018】
このような表面粗さの不均一性を取り除くために、スタンパから調整する場合には、基板の表面粗さが、レジスト塗布精度、原盤ガラスの表面性に依存するため、光磁気記録媒体の製造工程の複雑化、高コスト化を招いてしまうという問題があった。また、射出成形後の基板に対する逆スパッタ処理、ベーク処理、UVオゾン処理などの追加処理を施す場合においても、光磁気記録媒体の製造工程の複雑化、高コスト化を招いてしまうという問題があった。
【0019】
本発明はこのような課題を鑑みなされたものであり、簡素な構成で、再生信号特性を向上することができる光磁気記録媒体、および簡単な製造工程により、再生信号特性が向上された光磁気記録媒体を容易に製造することができる光磁気記録媒体の製造方法を提供することを目的とする。
【0020】
【課題を解決するための手段】
本発明者は鋭意研究を重ねた結果、通常の射出成形後の樹脂基板(ポリカーボネート)表面には、記録マーク長と同等以上で、不規則な周期(100nm程度)の凹凸が存在し、そのような凹凸が基板の表面粗さの不均一性を与えていることを発見した。そして、このような凹凸は、基板と磁性層との間に設けられる下地層によって均すことが可能なことを掴んだ。
【0021】
すなわち、本発明の光磁気記録媒体は、基板上に、少なくとも第1および第2の下地層を介して、情報が記録される記録層とこの記録層に記録された情報を磁壁を移動させることにより再生するための磁壁移動層とを有する磁性層が積層されてなる磁壁移動型の光磁気記録媒体であって、第2の下地層が磁壁移動層に隣接して設けられるとともに、第1の下地層が第2の下地層に隣接して基板側に設けられている。そして、第1の下地層と第2の下地層は、密度が互いに異なる。
【0022】
以上のように構成された本発明の光磁気記録媒体は、基板と磁性層との間に設けられる下地層を少なくとも2層設けて、磁性層に隣接する側に第2の下地層を設け、より基板に近い側に密度が比較的低い第1の下地層を設けることにより、磁壁移動層の磁壁の移動を不均一にさせる要因である基板の表面上の凹凸が、第1の下地層をもって良好に埋められる。すなわち、第1の下地層によって、磁性層を成膜する前の基板の表面粗さが均一にされ、基板の表面粗さを調整することが可能になる。したがって、本発明の光磁気記録媒体によれば、全記録再生領域で磁壁抗磁力が均一に作用するので、良好な再生信号が得られる。
【0023】
また、本発明の光磁気記録媒体の製造方法は、基板上に第1の下地層および第2の下地層をスパッタリング法を用いて成膜する成膜工程を有する。そして、成膜工程では、第1の下地層の成膜時のスパッタリングガス圧力を、第2の下地層の成膜時のスパッタリングガス圧力よりも高くする。
【0024】
スパッタリング法によれば、高いスパッタリングガス圧力で成膜した場合に密度の低い膜が得られ、低いスパッタリングガス圧力で成膜した場合に密度の高い緻密な膜が得られる。そこで、本発明の光磁気記録媒体の製造方法は、基板と磁性層との間に設けられる下地層を多層化して、異なるスパッタリングガス圧力でそれぞれ成膜する。さらに詳しくは、基板に近い側の第1の下地層として高いスパッタリングガス圧力で誘電体を成膜した後、第2の下地層として低いスパッタリングガス圧力で誘電体を成膜する。
【0025】
また、本発明に係る光磁気記録媒体の製造方法は、成膜工程で、第1の下地層の成膜後に、ガス流量を変化させることによって、第1の下地層に第2の下地層を連続して成膜する。すなわち、第1の下地層の成膜後に、ガス流量を変化させることで、搬送および真空を破ることなくスパッタリングガス圧力を変えることが可能になるため、第1の下地層に第2の下地層を連続して成膜することが可能になる。
【0026】
また、本発明に係る光磁気記録媒体の製造方法は、基板上に第1の下地層および第2の下地層をスパッタリング法を用いて成膜する成膜工程を有する。そして、成膜工程では、第1の下地層の成膜時のターゲットと基板との距離が、第2の下地層の成膜時のターゲットと基板との距離よりも大きい。
【0027】
上述した本発明に係る光磁気記録媒体の製造方法によれば、基板上に第1の下地層および第2の下地層をスパッタリング法を用いて成膜する成膜工程を有し、そして、第1の下地層の成膜時のスパッタリングガス圧力を、第2の下地層の成膜時のスパッタリングガス圧力よりも高くすることで、基板の表面上の凹凸が、第1の下地層をもって良好に埋められる。すなわち、第1の下地層によって、磁性層の成膜前の基板の表面粗さが均一にされ、基板の表面粗さを調整することが可能になる。したがって、本発明の光磁気記録媒体によれば、全記録再生領域で磁壁抗磁力が均一に作用するので、良好な再生信号が得られる。
【0028】
上述した本発明に係る光磁気記録媒体の製造方法によれば、第1の下地層の成膜時のターゲットと基板との距離を、第2の下地層の成膜時のターゲットと基板との距離よりも大きくすることで、基板の表面上の凹凸が、第1の下地層をもって良好に埋められる。すなわち、第1の下地層によって、磁性層の成膜前の基板の表面粗さが均一にされ、基板の表面粗さを調整することが可能になる。したがって、本発明の光磁気記録媒体によれば、全記録再生領域で磁壁抗磁力が均一に作用するので、良好な再生信号が得られる。
【0029】
上述したように、本発明は、磁壁移動型の光磁気記録媒体において、簡素な構成、且つ簡単な製造工程で良好な再生信号が得られるという顕著な効果を得ることが可能になる。
【0030】
【発明の実施の形態】
(第1の実施形態)
次に本発明の実施形態について図面を参照して説明する。
【0031】
図1は本発明の第1の実施形態である光磁気記録媒体の基本的な層構成を模式的に示す断面図である。図1に示すように、光磁気記録媒体1は、透明な基板5上に第1の下地層6、第2の下地層7、磁性層10、上地層14が順次積層されて構成されている。また、磁性層10は、基板5側から順に、磁壁が移動する磁壁移動層である第1の磁性層11と、情報を記録(蓄積)する記録層である第3の磁性層13と、磁壁移動層と記録層間に設けられこれら各磁性層層より低い温度を有するスイッチング層である第2の磁性層12とがそれぞれ積層されている。そして、これら第1の磁性層11、第2の磁性層12、第3の磁性層13は、第2の磁性層12のキュリー温度以下で交換結合する。
【0032】
基板5としては、例えば、透明なポリカーボネート、ガラス等が用いられている。本実施形態では、トラックピッチが0.88μm程度、グルーブ幅が0.4μm程度、溝深さが60nm程度のポリカーボネート基板を用いた。
【0033】
図5は本実施形態で使用する基板5の表面状態を走査型プローブ顕微鏡(デジタルインスツルメント社製:Tapping Mode AFM)を用いて測定した測定結果であり、記録再生領域であるグルーブ部の表面形状の3次元像を表している。図5に示すように、基板5の表面上には、100nm程度の比較的大きな周期で凹凸が存在している。
【0034】
第1および第2の下地層6,7としては、例えば、Si3N4、AlN、SiO2、SiO、ZnS、MgF2などの透明誘電材料を使用することができる。保護層として再び形成される上地層14にも、これと同様の誘電材料を用いることができる。これら各層は、例えばマグネトロンスパッタ装置による連続スパッタリング、または連続蒸着等によって被着形成することができる。
【0035】
本実施形態では、第1の下地層6として、Siターゲットを用いて、Arガス60sccmとN2ガス20sccmを導入しながら0.6Paの圧力で反応性スパッタリング法によりポリカーボネート製の基板5上にSiNを5nmに形成した。
【0036】
図6は基板5上に第1の下地層6を形成した後に表面状態を走査型プローブ顕微鏡(デジタルインスツルメント社製:Tapping Mode AFM)を用いて測定した測定結果であり、第1の下地層6を形成した後のグルーブ部の表面状態の3次元像を表している。図6に示すように、基板5上に存在していた比較的大きな周期の凹凸が埋められて、凹凸の高さも減少している。このように、第1の下地層6は基板5の表面上の比較的大きな周期の凹凸を埋める効果がある。
【0037】
第1の下地層6を成膜した後、第2の下地層7は、Arガス19sccmとN2ガス12.7sccmを導入しながら0.2Paの圧力で反応性スパッタリング法によりSiNを30nmに形成した。第2の下地層7は、第1の下地層6の成膜後にガス流量を変化させることで、搬送および真空を破ることなくスパッタリングガス圧力を変えて、第1の下地層6の成膜後に連続して成膜することができる。これによれば、同一のターゲットを使用してスパッタリング成膜時の雰囲気を変更して行うだけでよいので、製造プロセスが簡略化される。
【0038】
したがって、光磁気記録媒体1によれば、第1の下地層6の成膜時に、第2の下地層7の成膜時のスパッタリングガス圧力よりも高いスパッタリングガス圧力で、第2の下地層7よりも密度が低い第1の下地層6が成膜されている。
【0039】
図4は本実施形態の第2の下地層7の表面状態を走査型プローブ顕微鏡(デジタルインスツルメント社製:Tapping Mode AFM)を用いて測定した測定結果であり、第2の下地層7を形成した後のグルーブ部の表面状態の3次元像を表している。図4に示すように、第2の下地層7より比較的密度が低い第1の下地層6を用いることで、基板5上に存在する周期が20nm程度の微小な凹凸を均一に形成することができ、磁壁抗磁力が均一に働くようになるため、良好な再生信号を得ることが可能になる。
【0040】
なお、本実施形態の第1の下地層7は、厚さ5nmに形成したが、基板5上の比較的大きな周期の凹凸を埋めて表面粗さを均一にすることを目的にしたものであり、厚さ5nmに限定されるものでなく、基板5上に存在する凹凸の高さ以上に形成することが望ましい。また、スパッタリングガス圧力についても、本実施形態ではArガス60sccmとN2ガス20sccmを導入し圧力を0.6Paとしたが、スパッタリングガス圧力を限定するものではない。
【0041】
また、第1および第2の下地層6,7の2層だけではなく、第2の下地層7よりも基板5側に位置して比較的密度が低い第1の下地層6が設けられる構成であれば、必要に応じて第1の下地層6と基板5との間に薄膜からなる他の下地層が形成されたり、他の成膜工程等が追加されたりしてもよい。また、第1の下地層6は、密度を連続的に変化させて形成されてもよい。
【0042】
また、本実施形態の光磁気記録媒体1の構成に加えて、更に例えばAl、AlTa、AlTi、AlCr、Cuなどからなる金属層を付加して、熱的な特性を調整可能に構成されてもよい。さらに、高分子樹脂からなる保護コートを付与してもよい。さらに、各層が成膜された基板を貼り合わせた構成としてもよい。
【0043】
また、本実施形態の光磁気記録媒体1の構成において、各第1、第2および第3の磁性層11,12,13は、種々の磁性材料によって構成することが考えられるが、例えば、Pr、Nd、Sm、Gd、Tb、Dy、Hoなどの希土類金属元素の1種類あるいは2種類以上が10〜40at%と、Fe、Co、Niなどの鉄族元素の1種類あるいは2種類以上が90〜60at%とで構成される希土類−鉄族非晶質合金によって構成してもよい。また、耐食性向上などのために、これにCr、Mn、Cu、Ti、Al、Si、Pt、Inなどの元素を少量添加してもよい。
【0044】
重希土類−鉄族非晶質合金の場合、飽和磁化は、希土類元素と鉄族元素との組成比により制御することが可能である。また、キュリー温度も、組成比により制御することが可能であるが、飽和磁化と独立に制御するためには、鉄族元素として、Feの一部をCoで置き換えた材料を用い、置換量を制御する方法がより好ましく利用できる。すなわち、Feの1at%をCoで置き換えることにより、6℃程度のキュリー温度上昇が見込めるので、この関係を用いて所望のキュリー温度となるようにCoの添加量を調整することができる。また、Cr、Tiなどの非磁性元素を微量添加することにより、キュリー温度を低下させることも可能である。さらにまた、2種類以上の希土類元素を用いてそれらの組成比を調整することによってもキュリー温度を制御することができる。
【0045】
上述した他に、例えばガーネット、白金族−鉄族周期構造膜、あるいは白金族−鉄族合金などの材料も使用可能である。
【0046】
第1の磁性層11としては、例えば、GdCo、GdFeCo、GdFe、NdGdFeCoなどの垂直磁気異方性の小さな希土類−鉄族非晶質合金や、ガーネット等のバブルメモリ用材料を用いることが望ましい。第3の磁性層13としては、例えば、TbFeCo、DyFeCo、TbDyFeCoなどの希土類−鉄族非晶質合金や、Pt/Co、Pd/Coなどの白金族−鉄族周期構造膜など、垂直磁気異方性が大きく安定に磁化状態が保持できるものが望ましい。
【0047】
また、少なくとも第1の磁性層11は、膜面内方向において隣接する記録トラック間で交換結合が切断されている。これにより磁壁の移動を記録トラックに沿って円滑に行うことが可能になる。このような様態は記録トラック間の磁性層を高出力のレーザ光でアニール処理することにより実現できる。
【0048】
図2は、本実施形態の光磁気記録媒体およびその情報再生原理を説明するための図で、図2(a)は光磁気記録媒体の構成および再生用のレーザ光が照射された部分の磁化状態を模式的に示す断面図、図2(b)はそのレーザ光の照射時に光磁気記録媒体に生じる温度分布を示す図、図2(c)は図2(b)の温度分布に対応する磁壁移動層の磁壁エネルギ密度σの分布を示す図である。
【0049】
図2(a)に示すように、この光磁気記録媒体1の磁性層10は、磁壁移動層である第1の磁性層11、スイッチング層である第2の磁性層12、記録層である第3の磁性層13が順次積層されてなる。ここでは、第1の磁性層11が、再生用のレーザ光20が照射される照射面側に位置して形成されている。各磁性層11,12,13中の矢印m1,m2方向は原子スピンの向きを表している。この原子スピンの向きが相互に逆向きの各領域の境界部には磁壁16が形成されている。
【0050】
光磁気記録媒体1は、照射されたレーザ光20のビームスポット20aに対して相対移動される媒体移動方向である図2中矢印r方向に移動することで、ビームスポット20aが第3の磁性層13の記録トラックに沿って移動する。このビームスポット20aが照射された領域では、図2(b)に示すように、ビームスポット20aの移動方向に対して、ビームスポット20aの前方から温度が上昇し、位置Xbで温度のピークになるような温度分布が生じる。ここでは、位置Xaにおいて、媒体温度が第2の磁性層12のキュリー温度近傍の温度Tsに達するようにされている。
【0051】
第1の磁性層11における磁壁エネルギ密度σの分布は、図2(c)に示すように、ビームスポット20aの後方の温度ピーク近傍において極小となり、ビームスポット20aの前方ほど大きくなる。このように、位置X方向に磁壁エネルギ密度σの勾配があるとき、位置Xに存在する各層の磁壁に対して次式(1)から求められる力Fが作用する。
【0052】
F=∂σ/∂X ・・・(1)
この力Fは、磁壁エネルギの低い方に磁壁を移動させるように作用する。
第1の磁性層11は、磁壁抗磁力が小さく、磁壁移動度も大きいので、単層の場合にはこの力Fによって容易に磁壁16が移動する。ただし、位置Xaよりビームスポット20aの前方側に位置する領域においては、媒体温度が温度Tsより低く、磁壁抗磁力が大きな第3の磁性層13と交換結合しているために、磁壁16が移動せず、抗磁力が大きな第3の磁性層13中の磁壁の位置と対応する位置に固定されている。
【0053】
この光磁気記録媒体1では、矢印r方向に光磁気記録媒体1が移動し、第1の磁性層11の磁壁16が位置Xaの位置に移動したとき、その磁壁16の部分における媒体温度が第2の磁性層12のキュリー温度近傍の温度Tsまで上昇し、第1の磁性層11と第3の磁性層113との間の交換結合が切断される。この結果、第1の磁性層11の磁壁16は、破線で示す矢印s方向に向かって、より温度が高く、且つより磁壁エネルギ密度が小さな領域へと瞬間的に移動する。ビームスポット20aの領域下を磁壁16が通過するとき、位置Xaから位置Xbの範囲で第1の磁性層11の原子スピンが一方向に揃う。
【0054】
信号の間隔で形成されている磁壁16が、光磁気記録媒体1の移動に伴って位置Xaに来る度に、第1の磁性層11中の磁壁16がビームスポット20aの領域下を瞬間的に移動し、位置Xaから位置Xbの範囲に記録磁区が拡大し、第1の磁性層11の原子スピンは一方向に揃う。この結果、再生信号の振幅は、記録されている磁壁の間隔(すなわち記録マーク長)によらず、常に一定かつ最大の振幅になり、光学的な回折限界に起因した波形干渉等の問題から完全に解放される。
【0055】
次に、本実施形態の光磁気記録媒体1におけるデータ信号の記録動作について簡単に説明する。
【0056】
データ信号の記録は、光磁気記録媒体を移動させながら、第3の磁性層13がキュリー温度以上になるようなレーザパワーを有するレーザ光20を記録トラックに沿って照射しながら外部磁場を記録すべきデータ信号に応じて変調して行うか、または、一定方向の磁界を印加しながら記録すべきデータ信号に応じてレーザパワーを変調して行う。後者の場合は、ビームスポット20aの所定領域のみが第3の磁性層13のキュリー温度近傍になるようにレーザ光20の強度を調整することによって、そのビームスポット径以下の記録磁区を形成することができ、その結果、レーザ光20の回折限界以下の周期で信号記録を行うことができる。
【0057】
図3に、本実施形態の光磁気記録媒体1に対してデータ信号の記録および再生を行う記録再生装置が備える光学系の一例の模式図を示す。
【0058】
図3に示すように、光学系は、光路の順に、レーザ光20を出射するレーザ光源51と、このレーザ光源51から出射されたレーザ光20を平行光に変換するコリメータレンズ52と、レーザ光源51からのレーザ光20を透過するとともに光磁気記録媒体1からの戻り光を反射するビームスプリッタ53と、このビームスプリッタ53を透過したレーザ光20を光磁気記録媒体1に集光する対物レンズ54と、ビームスプリッタ53に反射された戻り光を受光するディテクタ56を有する信号検出系55とを備えている。レーザ光源51は、記録再生用の光源であって、レーザ光20の波長が680nmである。ビームスプリッタ53は、レーザ光20を整形する整形部を有している。
【0059】
以上のように構成された光学系を備える記録再生装置では、光磁気記録媒体1の記録面のグルーブ(またはランド)上において、レーザ光源51からの出射された波長680nmのレーザ光20が集光された記録再生用のビームスポット20aが形成される。データ信号の再生は、光磁気記録媒体1を例えば線速度2.7m/secで移動しながら、記録再生用のビームスポット20aを用いて行う。これにより、再生時には、光磁気記録媒体1を図2(b)に示したような温度勾配で加熱することができる。
【0060】
各第1、第2および第3の磁性層11,12,13は、真空を破ることなく連続して成膜することで、互いに交換結合することが可能になる。磁壁移動層である第1の磁性層11には(Gd27(FeCo17))Cr1.8を36nm、スイッチング層である第2の磁性層12には、他の第1、第3の磁性層11,13と比べてキュリー温度近傍の温度Tsが150℃程度と最も低い垂直磁化膜(Tb24Fe)Cr1.9を10nm、記録層である第3の磁性層13には(Tb26(FeCo38))Cr1.85を60nm形成した。
【0061】
上地層14としては、第2の下地層7と同様にSiターゲットを用いてArガス19sccmとN2ガス12.7sccmを導入しながら反応性スパッタリング法によりSiNを50nm形成した。
【0062】
以上のような構成の光磁気記録媒体1について再生信号の評価を行った。ランド部にレーザーアニール処理を施し、信号評価はグルーブ部で行った。データ信号の記録は、記録用光学系のレーザ光20の波長λを680nm、対物レンズ54の開口数NAを0.55、記録時の線速度を2.7m/sとして、レーザパワー3.5mWのレーザ光20を照射しながら外部磁場300(Oe:エルステッド[CGS電磁単位系])を13.5MHzで変調して行った。このようにして記録したデータを、レーザパワー2.2mWのレーザ光20を用いて再生した。その結果、本実施形態の光磁気記録媒体1は、ジッター値が4.0nsとなり、後述する比較例1に示す第1の下地層が無い光磁気記録媒体61と比較して再生信号特性が向上された。
【0063】
上述したように、光磁気記録媒体1によれば、基板5と磁性層10との間に第1および第2の下地層6,7をそれぞれ形成して、磁性層10に隣接する側に第2の下地層7を設けるとともに、より基板5に近い側に密度が比較的低い第1の下地層6を設けることにより、第1の磁性層11の磁壁16の移動を不均一にさせる要因である基板5の表面上の凹凸が、第1の下地層6によって良好に埋められる。
【0064】
すなわち、第1の下地層6によって、基板5の表面粗さが均一にされ、その後に第2の下地層7を形成することで磁性層10の成膜前の下地表面粗さを調整することが可能になる。したがって、光磁気記録媒体1によれば、全記録再生領域で磁壁抗磁力が均一に作用するので、良好な再生信号を得ることができる。
【0065】
(比較例1)
図7は、比較例1の光磁気記録媒体の基本的な層構成を模式的に示す断面図である。比較例1の光磁気記録媒体は、下地層として第1の下地層を形成せずに第2の下地層のみ形成した点以外は第1の実施形態の光磁気記録媒体1と同一構成とした。なお、比較例1の光磁気記録媒体において、上述した光磁気記録媒体1と同一部位には、同一符号を付して説明を省略する。
【0066】
図7に示すように、比較例1の光磁気記録媒体61は、基板5上に下地層62が形成されている。この光磁気記録媒体61が備える下地層62は、光磁気記録媒体1が備える第2の下地層7に相当する。
【0067】
図8は本比較例1の光磁気記録媒体61の下地層62の表面状態を走査型プローブ顕微鏡(デジタルインスツルメント社製:Tapping Mode AFM)を用いて測定した測定結果である。図8は記録再生領域であるグルーブ部の下地層62の表面形状の3次元像を表している。図8に示すように、基板5の表面上に通常の下地層62を直接形成した場合には、基板5の表面上に存在する100nm程度の比較的大きな周期の凹凸が残ってしまう。
【0068】
本比較例1の光磁気記録媒体61について、上述した第1の実施形態の光磁気記録媒体1の場合と同様に記録再生信号評価を行った。ここで、信号評価を行ったマーク長は100nmであり、本比較例1の下地層62の表面に存在する凹凸の周期はこのマーク長と同程度である。その結果、比較例1の光磁気記録媒体61は、ジッター値が4.6nsとなり、第1の実施形態の光磁気記録媒体1に比較して再生信号特性が低下した。
【0069】
(第2の実施形態)
図9は、本発明の第2の実施形態の光磁気記録媒体の基本的な層構成を模式的に示す断面図である。第2の実施形態の光磁気記録媒体は、下地層として基板と第1の下地層との間に更に第3の下地層を形成した点以外は第1の実施形態の光磁気記録媒体1とほぼ同一構成とした。なお、第2の実施形態の光磁気記録媒体において、上述した光磁気記録媒体1と同一部位には同一符号を付して説明を省略する。
【0070】
図9に示すように、第2の実施形態の光磁気記録媒体2は、第1の下地層6と基板5との間に第3の下地層8が形成されている。この光磁気記録媒体2は、第1の実施形態の光磁気記録媒体1と同一の基板5上に、第3の下地層8として、Siターゲットを用いてArガス19sccmとN2ガス12.7sccmを導入しながら0.2Paの圧力で反応性スパッタリング法によりSiNを厚さ5nmに形成した。次に、ガス流量を変え、第3の下地層8上に、第1の実施形態と同様の第1の下地層6を厚さ5nmに形成した後、第2の下地層7としてArガス19sccmとN2ガス12.7sccmを導入しながら0.2Paの圧力でSiNを厚さ25nmに形成した。
【0071】
本実施形態の光磁気記録媒体2は、基板5と第1の下地層6の間に第3の下地層8を形成する点と、第2の下地層7の膜厚を25nmにする点以外は第1の実施形態の光磁気記録媒体1と同様な構成とした。
【0072】
上述した第2の実施形態の光磁気記録媒体2について、第1の実施形態の場合と同様の記録再生信号評価を行った。その結果、この光磁気記録媒体2は、ジッター値が4.0nsとなり、第1の実施形態の光磁気記録媒体1とほぼ同等の再生信号特性を得られた。
【0073】
(比較例2)
図10は、本発明の比較例2の光磁気記録媒体の基本的な層構成を模式的に示す断面図である。比較例2の光磁気記録媒体は、上述した光磁気記録媒体1の第1の下地層6と第2の下地層7を基板5上に形成する順序を逆にした点以外は第1の実施形態の光磁気記録媒体1と同一構成とした。なお、比較例2の光磁気記録媒体において、上述した光磁気記録媒体1と同一部位には同一符号を付して説明を省略する。
【0074】
図10に示すように、比較例2の光磁気記録媒体71は、基板5上に第1の下地層72、第2の下地層73の順に形成されている。この光磁気記録媒体71が備える第1の下地層72は、光磁気記録媒体1の第2の下地層7に相当し、光磁気記録媒体71が備える第2の下地層73は、光磁気記録媒体1の第1の下地層6に相当する。
【0075】
基板5上に、第1の下地層72としてSiターゲットを用いてArガス19sccmとN2ガス12.7sccmを導入しながら0.2Paの圧力で反応性スパッタリング法によりSiNを厚さ30nmに形成し、続いて、第2の下地層73としてArガス60sccmとN2ガス20sccmを導入しながら0.6Paの圧力で反応性スパッタリング法によりSiNを5nm形成した。
【0076】
上述した比較例2の光磁気記録媒体71について、上述の第1の実施形態の場合と同様の記録再生信号評価を行った。その結果、比較例2の光磁気記録媒体71は、ジッター値が4.8nsとなり、第1の実施形態の光磁気記録媒体1に比較して再生信号特性が低下した。
【0077】
(第3の実施形態)
第3の実施形態の光磁気記録媒体は、第1の下地層の成膜時のガス流量を変更した点以外は第1の実施形態の光磁気記録媒体1と同一構成である。第1の下地層として、Arガス80sccmとN2ガス20sccmを導入しながら0.8Paの圧力で反応性スパッタリング法によりSiNを5nm形成した。
【0078】
上述した第3の実施形態の光磁気記録媒体について、第1の実施形態の場合と同様の記録再生信号評価を行った。その結果、第3の実施形態の光磁気記録媒体は、ジッター値が4.0nsとなり、第1の実施形態の光磁気記録媒体1とほぼ同等の再生信号特性が得られた。
【0079】
(第4の実施形態)
第4の実施形態の光磁気記録媒体は、第1の下地層の成膜時のガス流量を変更した点以外は第1の実施形態の光磁気記録媒体1と同様に構成した。第1の下地層として、Arガス40sccmとN2ガス20sccmを導入しながら0.4Paの圧力で反応性スパッタリング法によりSiNを5nm形成した。
【0080】
上述した第4の実施形態の光磁気記録媒体について、第1の実施形態の場合と同様の記録再生信号評価を行った。その結果、第4の実施形態の光磁気記録媒体は、ジッター値が4.0nsとなり、第1の実施形態の光磁気記録媒体1とほぼ同等の再生信号特性が得られた。
【0081】
(第5の実施形態)
第5の実施形態の光磁気記録媒体は、第1の下地層の膜厚を変更した点以外は第1の実施形態の光磁気記録媒体1と同一構成である。第1の下地層として、Arガス60sccmとN2ガス20sccmを導入しながら0.6Paの圧力で反応性スパッタリング法によりSiNを10nm形成した。
【0082】
上述した第5の実施形態の光磁気記録媒体について、第1の実施形態の場合と同様の記録再生信号評価を行った。その結果、第5の実施形態の光磁気記録媒体は、ジッター値が4.0nsとなり、第1の実施形態の光磁気記録媒体1とほぼ同等の再生信号特性が得られた。
【0083】
(第6の実施形態)
第6の実施形態の光磁気記録媒体は、スパッタリング法による第1の下地層の成膜時に、基板5とSiターゲットとの間の距離を、第1の実施形態のときの2倍にし、ガス流量をArガス19sccmとN2ガス12.7sccm変更しスパッタ圧力を0.2Paにした点以外は第1の実施形態の光磁気記録媒体1と同様に構成した。すなわち、本実施形態の成膜工程では、第1の下地層の成膜時のターゲットと基板との距離を、第2の下地層の成膜時のターゲットと基板との距離よりも大きくした。
【0084】
上述した第6の実施形態の光磁気記録媒体について、第1の実施形態の場合と同様の記録再生信号評価を行った。その結果、第6の実施形態の光磁気記録媒体は、ジッター値が4.0nsとなり、第1の実施形態の光磁気記録媒体1とほぼ同等の再生信号特性が得られた。
【0085】
【発明の効果】
上述したように、本発明の光磁気記録媒体によれば、第2の下地層が磁壁移動層に隣接して設けられる第2の下地層と、この第2の下地層に隣接して基板側に設けられ第1の下地層が、密度が互いに異なることにより、基板の表面粗さが第1の下地層によって均一にされるため、良好な再生信号を得ることが可能になり、簡素な構成で、再生信号特性を向上することができる。
【0086】
本発明に係る光磁気記録媒体の製造方法によれば、簡単な製造工程により、再生信号特性が向上された光磁気記録媒体を容易に製造することができる。
【図面の簡単な説明】
【図1】本発明に係る第1の実施形態の光磁気記録媒体の基本的な層構成を模式的に示す断面図である。
【図2】本発明の光磁気記録媒体およびその情報再生原理を説明するための図であって、(a)は光磁気記録媒体の構成および再生用のレーザ光が照射された部分の磁化状態を模式的に示す断面図、(b)はそのレーザ光の照射時の光磁気記録媒体に形成される温度分布を示す図、(c)は(b)の温度分布に対応する磁壁移動層の磁壁エネルギ密度σの分布を示す図である。
【図3】本実施形態の光磁気記録媒体に対してデータ信号の記録および再生を行う記録再生装置が備える光学系の一例を示す模式図である。
【図4】本実施形態の第2の下地層の表面状態を走査型プローブ顕微鏡を用いた測定結果を示す図であり、第2の下地層を形成した後のグルーブ部の表面状態の3次元像を表している。
【図5】本実施形態の基板の表面状態を測定した測定結果を示す図であり、記録再生領域であるグルーブ部の表面形状の3次元像を表している。
【図6】基板上に第1の下地層を形成した後の表面状態を測定した測定結果を示す図であり、第1の下地層を形成した後のグルーブ部の表面状態の3次元像を表している。
【図7】比較例1の光磁気記録媒体の基本的な層構成を模式的に示す断面図である
【図8】前記比較例1の第2の下地層の表面状態を測定した測定結果を示す図である。
【図9】本発明に係る第2の実施形態の光磁気記録媒体の基本的な層構成を模式的に示す断面図である。
【図10】比較例2の光磁気記録媒体の基本的な層構成を模式的に示す断面図である。
【図11】従来の光磁気記録媒体およびその情報再生原理を説明するための図であって、(a)は光磁気記録媒体の構成および再生用のレーザ光が照射された部分の磁化状態を模式的に示す断面図、(b)はそのレーザ光の照射時の光磁気記録媒体に形成される温度分布を示す図、(c)は(b)の温度分布に対応する磁壁移動層の磁壁エネルギ密度σの分布を示す図である。
【符号の説明】
1,2 光磁気記録媒体
5 基板
6 第1の下地層
7 第2の下地層
8 第3の下地層
10 磁性層
11 第1の磁性層(磁壁移動層)
12 第2の磁性層(スイッチング層)
13 第3の磁性層(記録層)
14 上地層
16 磁壁
20 レーザ光
20a スポット
51 レーザ光源
52 コリメータレンズ
53 ビームスプリッタ
54 対物レンズ
55 信号検出系
56 ディテクタ
Claims (5)
- 基板上に、少なくとも第1および第2の下地層を介して、情報が記録される記録層と前記記録層に記録された情報を磁壁を移動させることにより再生するための磁壁移動層とを有する磁性層が積層されてなる光磁気記録媒体であって、
前記第2の下地層は前記磁壁移動層に隣接して設けられ、前記第1の下地層は前記第2の下地層に隣接して前記基板側に設けられて、
前記第1の下地層と前記第2の下地層は、密度が互いに異なることを特徴とする光磁気記録媒体。 - 前記第1の下地層は、前記第2の下地層よりも密度が低い請求項1に記載の光磁気記録媒体。
- 請求項1または2に記載の光磁気記録媒体を製造する製造方法であって、
前記基板上に前記第1の下地層および前記第2の下地層をスパッタリング法を用いて成膜する成膜工程を有し、
前記成膜工程では、前記第1の下地層の成膜時のスパッタリングガス圧力が、前記第2の下地層の成膜時のスパッタリングガス圧力よりも高いことを特徴とする光磁気記録媒体の製造方法。 - 前記成膜工程では、前記第1の下地層の成膜後に、ガス流量を変化させることによって、前記第1の下地層に前記第2の下地層を連続して成膜する請求項3に記載の光磁気記録媒体の製造方法。
- 請求項1または2に記載の光磁気記録媒体を製造する製造方法であって、
前記基板上に前記第1の下地層および前記第2の下地層をスパッタリング法を用いて成膜する成膜工程を有し、
前記成膜工程では、前記第1の下地層の成膜時のターゲットと前記基板との距離が、前記第2の下地層の成膜時のターゲットと前記基板との距離よりも大きいことを特徴とする光磁気記録媒体の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002211610A JP2004055047A (ja) | 2002-07-19 | 2002-07-19 | 光磁気記録媒体およびその製造方法 |
US10/616,939 US20040013050A1 (en) | 2002-07-19 | 2003-07-11 | Magneto-optical recording medium having two underlying layers having different characteristics and method of producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002211610A JP2004055047A (ja) | 2002-07-19 | 2002-07-19 | 光磁気記録媒体およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004055047A true JP2004055047A (ja) | 2004-02-19 |
Family
ID=30437594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002211610A Pending JP2004055047A (ja) | 2002-07-19 | 2002-07-19 | 光磁気記録媒体およびその製造方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20040013050A1 (ja) |
JP (1) | JP2004055047A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005062301A1 (ja) * | 2003-12-19 | 2005-07-07 | Fujitsu Limited | 光磁気記録媒体およびその製造方法、光磁気記録媒体用基板、並びに、母型スタンパおよびその製造方法 |
EP1569175A2 (en) | 2004-02-27 | 2005-08-31 | Fuji Jukogyo Kabushiki Kaisha | Data recording apparatus and data recording method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070008987A1 (en) * | 2005-07-06 | 2007-01-11 | Microsoft Corporation | Capturing contacts via people near me |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4202932A (en) * | 1978-07-21 | 1980-05-13 | Xerox Corporation | Magnetic recording medium |
US5168482A (en) * | 1989-08-31 | 1992-12-01 | Sony Corporation | Magnetooptical recording and playback method employing multi-layer recording medium with record holding layer and playback layer |
JPH05174433A (ja) * | 1991-11-30 | 1993-07-13 | Sony Corp | 光磁気記録媒体 |
EP0618572B1 (en) * | 1993-04-02 | 2002-07-03 | Canon Kabushiki Kaisha | Magnetooptical recording medium on which high-density information can be recorded and method of reproducing the recorded information |
US6177175B1 (en) * | 1997-10-16 | 2001-01-23 | Canon Kabushiki Kaisha | Magneto-optical medium utilizing domain wall displacement |
US6826131B2 (en) * | 2000-10-11 | 2004-11-30 | Matsushita Electric Industrial Co., Ltd. | Magneto-optical recording medium having multiple magnetic layers |
JP4350312B2 (ja) * | 2001-01-12 | 2009-10-21 | キヤノン株式会社 | 磁壁移動型光磁気記録媒体および情報再生方法 |
-
2002
- 2002-07-19 JP JP2002211610A patent/JP2004055047A/ja active Pending
-
2003
- 2003-07-11 US US10/616,939 patent/US20040013050A1/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005062301A1 (ja) * | 2003-12-19 | 2005-07-07 | Fujitsu Limited | 光磁気記録媒体およびその製造方法、光磁気記録媒体用基板、並びに、母型スタンパおよびその製造方法 |
EP1569175A2 (en) | 2004-02-27 | 2005-08-31 | Fuji Jukogyo Kabushiki Kaisha | Data recording apparatus and data recording method |
Also Published As
Publication number | Publication date |
---|---|
US20040013050A1 (en) | 2004-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6177175B1 (en) | Magneto-optical medium utilizing domain wall displacement | |
US7012857B2 (en) | Magneto optical recording medium having a multilayer recording film of different thickness | |
JPH10149592A (ja) | 磁壁移動を利用して情報を再生する光磁気記録媒体および信号再生方法 | |
KR100478684B1 (ko) | 자벽이동형 광자기기록매체 및 그 재생방법 | |
JP2000187898A (ja) | 磁性記録媒体 | |
US6343052B1 (en) | Magneto-optical medium having film with rounded upper corner and thickness decreasing to the side end on lands | |
JPH08147777A (ja) | 光学的記録媒体、記録再生方法および再生装置 | |
JP3472158B2 (ja) | 光磁気記録媒体 | |
US7522479B2 (en) | Domain wall displacement for magneto-optical recording medium having multiple magnetic layers | |
JP2004055047A (ja) | 光磁気記録媒体およびその製造方法 | |
US7399539B2 (en) | DWDD-type magneto-optic recording medium including buffer regions between recording track regions and method of producing the same | |
JPH11126381A (ja) | 光磁気記録媒体 | |
US6707767B2 (en) | Domain wall displacement magneto-optical storage medium, and method for reproducing thereof | |
JPH11126386A (ja) | 光磁気記録媒体 | |
JPH11328762A (ja) | 光磁気記録媒体 | |
JP4185054B2 (ja) | 光磁気記録媒体 | |
JP2004185757A (ja) | 光磁気記録媒体及びその製造方法 | |
JP2000207791A (ja) | 磁性記録媒体 | |
JP2008152842A (ja) | 磁性記録媒体 | |
JP2003303456A (ja) | 光磁気記録媒体、および、その製造方法 | |
JPH08249737A (ja) | 光学的記録媒体および再生方法 | |
JP2004310961A (ja) | 光磁気記録媒体 | |
JP2008117528A (ja) | 光磁気記録媒体 | |
JP2004192677A (ja) | 磁壁移動型光磁気記録媒体 | |
JP2002042393A (ja) | 光磁気記録媒体の製造方法 |