JP2004054196A - Negative photosensitive resin composition and semiconductor device - Google Patents
Negative photosensitive resin composition and semiconductor device Download PDFInfo
- Publication number
- JP2004054196A JP2004054196A JP2002244835A JP2002244835A JP2004054196A JP 2004054196 A JP2004054196 A JP 2004054196A JP 2002244835 A JP2002244835 A JP 2002244835A JP 2002244835 A JP2002244835 A JP 2002244835A JP 2004054196 A JP2004054196 A JP 2004054196A
- Authority
- JP
- Japan
- Prior art keywords
- resin composition
- group
- photosensitive resin
- negative photosensitive
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GLFKFHJEFMLTOB-UHFFFAOYSA-N Cc1ccc(C(C(F)(F)F)(C(F)(F)F)c2cc(C)c(C)cc2)cc1C Chemical compound Cc1ccc(C(C(F)(F)F)(C(F)(F)F)c2cc(C)c(C)cc2)cc1C GLFKFHJEFMLTOB-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Materials For Photolithography (AREA)
- Polyamides (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、高感度で高解像度であるネガ型感光性樹脂組成物及びそれを用いた半導体装置に関するものである。
【0002】
【従来の技術】
従来、半導体素子の表面保護膜、層間絶縁膜には、耐熱性に優れ又卓越した電気特性、機械特性等を有するポリイミド樹脂が用いられているが、近年半導体素子の高集積化、大型化、半導体装置の薄型化、小型化、半田リフローによる表面実装への移行等により耐熱サイクル性、耐熱ショック性等の著しい向上の要求があり、更に高性能の樹脂が必要とされるようになってきた。
【0003】
一方、ポリイミド樹脂自身に感光性を付与する技術が注目を集めてきており、例えば、下記式(4)に示されるネガ型感光性ポリイミド樹脂が挙げられる。
【化4】
【0004】
これを用いるとパターン作成工程の一部が簡略化でき、工程短縮及び歩留まり向上の効果はあるが、現像の際にN−メチル−2−ピロリドン等の溶剤が必要となるため、安全性、取扱い性に問題がある。そこで、アルカリ水溶液で現像ができるポジ型感光性樹脂組成物が開発されている。例えば、特開平3−247655号公報、特開平5−204156号公報、特開平6−258836号公報、特開平10−186658号公報、特開平10−307394号公報にはポリイミド樹脂の前駆体であるポリアミド樹脂と感光材であるジアゾキノン化合物より構成されるポジ型感光性樹脂組成物が開示されている。これらの感光材として用いられているジアゾキノン化合物は露光することにより化学変化を起こし、アルカリ水溶液に可溶となる。しかしその変化率は40%程度であるだけでなくそれ自身の光に対する吸収が大きいために、厚膜に塗布した場合、膜の底面にまで十分に光が届かない。そのため露光部を開口させるために多くの露光量を必要とし、感度が低くなるという問題があった。
【0005】
そこで、光化学反応による触媒作用を取り入れた化学増幅型のネガ型の感光性樹脂組成物が開発された。この化学増幅型のネガ型感光性樹脂組成物は、一般的に水酸基又はカルボキシル基を有するベース樹脂と光の照射により酸を発生する化合物及び適当な官能基を有する架橋材から構成されている。この化学増幅型のネガ型感光性樹脂組成物の現像メカニズムは、以下のようになっている。ベース樹脂は、水酸基及び/又はカルボキシル基を有するため未露光部では現像液であるアルカリ水溶液に溶解する。一方露光部は、光の照射により酸を発生する化合物が酸を発生し、酸が露光後の熱処理により拡散して触媒として働き、ベース樹脂中の水酸基又はカルボキシル基と架橋材を反応させると同時に3次元的な高分子架橋構造を形成することにより現像液に耐性を持つことになる。この露光部と未露光部との溶解性の差を利用し、未露光部を溶解除去することにより露光部のみの塗膜パターンの作成が可能となるものである。更に、この酸は脱離反応後も存在し、多くの反応を引き起こすため見かけの吸収された光量子の数と実際に化学反応を起こした分子の数との比を示す量子収率が高く、高感度化が容易となるだけでなく高い溶解コントラストが得られるために高解像度化も期待できる。
【0006】
この技術を応用した半導体素子の表面保護膜、層間絶縁膜用途として、ベース樹脂にポリイミド又はポリアミド樹脂を用いたネガ型化学増幅型感光性樹脂組成物の例が、特開平10−307393号公報、特開平11−228822号公報に開示されている。しかし前者に開示されている架橋材は、特定の有機基を有する尿素樹脂又はメラミン樹脂であり、これらは少量ながらも揮発性有機物質であるホルムアルデヒドを含んでいるため人体、環境への負荷が懸念されるだけでなく、溶解性に乏しいため長い現像時間を必要とする問題がある。又後者に開示されている架橋材は、多官能ビニルエーテル化合物であり、この化合物に由来するアセタール結合は溶解阻止能に乏しく、露光部の現像時における膜減り量が大きくなり目的とする膜厚が得られず、かつサイドエッチが大きくプロファイル性が悪い等の問題がある。
【0007】
【発明が解決しようとする課題】
本発明は、半導体素子の表面保護膜、層間絶縁膜用途に適した高感度、高解像度に優れ、露光部の膜減り量が大きくならないネガ型感光性樹脂組成物を提供するものである。
【0008】
【課題を解決するための手段】
本発明は、
[1] 一般式(1)で示される構造を含むポリアミド樹脂(A)、光により酸を発生する化合物(B)及び分子内に3,4−ジヒドロ−2H−ピラン基を少なくとも2個以上有する化合物(C)を含むことを特徴とするネガ型感光性樹脂組成物、
【0009】
【化5】
【0010】
[2] 一般式(1)で示される構造を含むポリアミド樹脂中のXが、式(2)の群より選ばれてなる第[1]項記載のネガ型感光性樹脂組成物、
【0011】
【化6】
【0012】
[3] 一般式(1)で示される構造を含むポリアミド樹脂中のYが、式(3)の群より選ばれてなる第[1]項又は[2]項記載のネガ型感光性樹脂組成物、
【0013】
【化7】
【0014】
[4] 一般式(1)で示される構造を含むポリアミド樹脂(A)の末端がアルケニル基又はアルキニル基を少なくとも1個を有する脂肪族基又は環式化合物基を含む酸無水物によって末端封止されてなる第[1]項〜[3]項のいずれかに記載のネガ型感光性樹脂組成物、
[5] 第[1]項〜[4]項のいずれかに記載のネガ型感光性樹脂組成物を用いて製作されてなることを特徴とする半導体装置、
[6] 第[1]項〜[5]項のいずれかに記載のネガ型感光性樹脂組成物を加熱脱水閉環後の膜厚が、0.1〜30μmになるように半導体素子上に塗布し、プリベーク、露光、露光後加熱、現像、加熱して得られることを特徴とする半導体装置、
である。
【0015】
【発明の実施の形態】
一般式(1)で示される構造を含むポリアミド樹脂中のXは、2〜4価の環状化合物基を表し、R1は、水酸基、O−R3で、mは0〜2の整数、これらは同一でも異なっていても良い。Yは、2〜6価の環状化合物基を表し、R2は水酸基、カルボキシル基、O−R3、COO−R3で、nは0〜4の整数、これらは同一でも異なっていても良い。ここでR3は炭素数1〜15の有機基である。但し、R1として水酸基がない場合は、R2は少なくとも1つはカルボキシル基でなければならない。又R2としてカルボキシル基がない場合は、R1は少なくとも1つは水酸基でなければならない。
一般式(1)で示される構造を含むポリアミド樹脂は、例えばXの構造を有するジアミン或いはビス(アミノフェノール)、2,4−ジアミノフェノール等から選ばれる化合物、必要により配合されるZの構造を有するシリコーンジアミンとYの構造を有するテトラカルボン酸無水物、トリメリット酸無水物、ジカルボン酸或いはジカルボン酸ジクロリド、ジカルボン酸誘導体、ヒドロキシジカルボン酸、ヒドロキシジカルボン酸誘導体等から選ばれる化合物とを反応して得られるものである。なお、ジカルボン酸の場合には反応収率等を高めるため、1−ヒドロキシ−1,2,3−ベンゾトリアゾール等を予め反応させた活性エステルの型のジカルボン酸誘導体を用いてもよい。一般式(1)で示される構造を含むポリアミド樹脂において、Xの置換基としてのO−R3、Yの置換基としてのO−R3、COO−R3は、水酸基、カルボキシル基のアルカリ水溶液に対する溶解性を調節する目的で、炭素数1〜15の有機基で保護された基であり、必要により水酸基、カルボキシル基を保護しても良い。R3の例としては、ホルミル基、メチル基、エチル基、プロピル基、イソプロピル基、ターシャリーブチル基、ターシャリーブトキシカルボニル基、フェニル基、ベンジル基、テトラヒドロフラニル基、テトラヒドロピラニル基等が挙げられる。
このポリアミド樹脂を約300〜400℃で加熱すると脱水閉環し、ポリイミド又はポリベンゾオキサゾール、或いは両者の共重合という形で耐熱性樹脂が得られる。
【0016】
本発明の一般式(1)で示される構造を含むポリアミド樹脂のXは、例えば、
【化8】
等であるがこれらに限定されるものではない。これら中で特に好ましいものとしては、式(2)の群より選ばれるものであり、これらは2種以上用いても良い。
【0017】
又一般式(1)で示される構造を含むポリアミド樹脂のYは、例えば、
【化9】
等であるがこれらに限定されるものではない。これらの中で特に好ましいものとしては、式(3)の群より選ばれるものであり、これらは2種以上用いても良い。
【0018】
又本発明のネガ型感光性樹脂組成物は、Yの構造を有するジカルボン酸或いはジカルボン酸ジクロリド又はジカルボン酸誘導体とXの構造を有するビス(アミノフェノール)、2,4−ジアミノフェノール等から選ばれる化合物、必要により配合されるZの構造を有するシリコーンジアミンを反応させてポリアミド樹脂を合成した後、該ポリアミド樹脂中に含まれる末端のアミノ基をアルケニル基又はアルキニル基を少なくとも1個有する脂肪族基又は環式化合物基を含む酸無水物を用いてアミドとしてキャップすることが、保存性の観点から好ましい。
【0019】
アルケニル基又はアルキニル基を少なくとも1個有する脂肪族基又は環式化合物基を含む酸無水物に起因する基としては、例えば、
【化10】
等が挙げられるが、これらに限定されるものではない。
【0020】
これらの中で特に好ましいものとしては、
【化11】
より選ばれるものであり、これらは2種以上用いても良い。
【0021】
更に、必要によって用いる一般式(1)で示される構造を含むポリアミド樹脂のZは、例えば、
【化12】
等であるがこれらに限定されるものではなく、これらは2種以上用いても良い。
【0022】
一般式(1)で示される構造を含むポリアミド樹脂のZは、例えば、シリコンウェハーのような基板に対して、特に優れた密着性が必要な場合に用いるが、その使用割合bは、最大40モル%までである。40モル%を越えるとベース樹脂の溶解性が極めて低下し、現像残り(スカム)が発生し、パターン加工ができなくなる。
【0023】
本発明のネガ型感光性樹脂組成物に用いられる、光により酸を発生する化合物(B)は、Photograph.Sci.Eng.,18,p387(1974)、CHEMTECH,Oct.p624(1980)、Polym.Mater.Sci.Eng.,72,p406(1995)、Macromol.Chem.Rapid Commun.14,p203(1993)、J.Photopolym.Sci.Technol.,6,p67(1993)記載のオニウム塩類、Macromolecules,21,p2001(1988)、Chem.Mater.3,p462(1991)、Proc.SPIE,1086,2(1989)記載の2−ニトロベンジルエステル類、J.Photopolym.Sci.Technol.,2,p429(1989)、Proc.SPIE,1262,p575(1990)記載のN−イミノスルホネート類、Polym.Mat.Sci.Eng.,61,269(1989)記載のナフトキノンジアジド−4−スルホン酸エステル類、J.Photopolym.Sci.Technol.,4,p389(1991)、Proc.SPIE,2195,p173(1994)記載のハロゲン系化合物類等が挙げられる。
【0024】
光により酸を発生する化合物(B)の配合量は、特に限定されないがポリアミド樹脂(A)100重量部に対し1〜30重量部が好ましい。光により酸を発生する化合物(B)の配合量が、下限値未満であれば、架橋反応を起こすための触媒としての酸の量が不足するために露光部の膜減り量が大きくなるおそれがあり、上限値を越えれば冷凍保存時に析出したり、未露光部にまで拡散する触媒としての酸の量が多くなり架橋が促進されるため、目的とするパターンの寸法性が得られなかったり、現像後にスカムが見られるおそれがあり好ましくない。
【0025】
本発明に用いる分子内に3,4−ジヒドロ−2H−ピラン基を少なくとも2個以上有する化合物(C)は、架橋材として作用し、露光部においては露光後加熱時に光により酸を発生する化合物から発生した酸の働きにより、一般式(1)で示される構造を含むポリアミド樹脂中の水酸基、カルボキシル基と反応し、テトラヒドロピラン構造を有するアセタール結合を形成し、アルカリ水溶液に対する耐性を向上させるものである。分子内に3,4−ジヒドロ−2H−ピラン基を少なくとも2個以上有する化合物(C)としては、例えば、ビ(3,4−ジヒドロ−2H−ピラン−6−イル)、3,4−ジヒドロ−2H−ピラン−イルメチル−3,4−ジヒドロ−2H−ピラン−2−カルボキシレート等が挙げられるが、これらに限定されるものではない。これらは2種以上用いても良い。
分子内に3,4−ジヒドロ−2H−ピラン基を少なくとも2個以上有する化合物(C)の配合量は、特に限定されないが、ポリアミド樹脂(A)の水酸基及び/又はカルボキシル基のモル数に対し、3,4−ジヒドロ−2H−ピラン基が15〜80モル%となる配合量が好ましい。配合量が下限値未満であれば、架橋が不十分であるため現像時の膜減り量が大きくなり目的とする膜厚が得られず、コントラストが小さくなり解像度が低下し、上限値を越えれば、耐熱性樹脂を得るための加熱処理の際に収縮する割合が大きくなり目的とする膜厚が得られなかったり、未露光部で架橋する割合が大きくなるため溶解性が低下して目的とするパターンの寸法性が得られなかったり、現像後にスカムが見られたりするおそれがあり好ましくない。
【0026】
本発明における成分(A)〜(C)を均一に溶解しワニス状とする溶剤としては、特に限定しないが、光により酸を発生する化合物からの酸が失活するのを防ぐために窒素原子を有さない溶剤が好ましい。その具体例としては、炭素数3〜10の環状ケトン、炭素数3〜10の環状ラクトン、ジメチルスルホキシド、ジエチレングリコールジアルキルエーテル、プロピレングリコールモノアルキルエーテル、ジプロピレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテルアセテート、3−メチル−3−メトキシブタノール、乳酸メチル、乳酸エチル、乳酸ブチル、メチル−1,3−ブチレングリコールアセテート、1,3−ブチレングリコール−3−モノアルキルエーテル、トリアルキルベンゼン、ピルビン酸メチル、ピルビン酸エチル、メチル−3−メトキシプロピオネート等が挙げられ、より好ましいものとしては、γ−ブチロラクトン、ε−カプロラクトン、シクロペンタノン、ジメチルスルホキシド、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、3−メチル−3−メトキシブタノール、メシチレン、乳酸メチル、乳酸エチル、乳酸ブチルが挙げられ、これらは2種以上用いても良い。
【0027】
本発明のネガ型感光性樹脂組成物は、必要により露光部のアルカリ水溶液に対する溶解阻止能を阻害しない程度に未露光部の溶解性を改善する目的で低分子のフェノール化合物を含有させることができる。低分子フェノール化合物としては、下記のものを挙げることができるがこれらに限定されない。これらは2種以上用いても良い。
【0028】
【化13】
【0029】
【化14】
【0030】
【化15】
【0031】
【化16】
【0032】
本発明におけるネガ型感光性樹脂組成物には、必要によりレベリング剤、シランカップリング剤等の添加剤を配合することができる。
本発明のネガ型感光性樹脂組成物は、まず該樹脂組成物を適当な支持体、例えばシリコンウェハー、セラミック基板、アルミ基板等に塗布する。塗布量は、半導体装置の場合、硬化後の最終膜厚が0.1〜30μmになるように塗布する。膜厚が0.1μm未満だと半導体素子の保護表面膜としての機能を十分に発揮することが困難となり、30μmを越えると、微細な加工パターンを得ることが困難となる。塗布方法としては、スピンナーを用いた回転塗布、スプレーコーターを用いた噴霧塗布、浸漬、印刷、ロールコーティング等がある。
【0033】
次に、60〜130℃でプリベークして塗膜を乾燥後、所望のパターン形状に化学線を照射する。化学線としては、X線、電子線、紫外線、可視光線等が使用できるが、200〜500nmの波長のものが好ましい。露光後、オーブンやホットプレートを用い、60〜130℃で熱処理を行う。この露光後加熱によって光により酸を発生する化合物から発生した酸が拡散し、触媒反応により架橋し、現像液に耐性をもつ樹脂となる。
【0034】
次に未露光部を現像液で溶解除去することによりレリーフパターンを得る。現像液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n−プロピルアミン等の第1アミン類、ジエチルアミン、ジ−n−プロピルアミン等の第2アミン類、トリエチルアミン、メチルジエチルアミン等の第3アミン類、ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の第4級アンモニウム塩等のアルカリ類の水溶液、及びこれにメタノール、エタノールのごときアルコール類等の水溶性有機溶媒や界面活性剤を適当量添加した水溶液を好適に使用することができる。現像方法としては、スプレー、パドル、浸漬、超音波等の方式が可能である。
【0035】
次に、現像によって形成したレリーフパターンをリンスする。リンス液としては、蒸留水を使用する。次に加熱処理を行い、イミド環又はオキサゾール環を形成して耐熱性に富む最終パターンを得る。
本発明によるネガ型感光性樹脂組成物は、半導体用途のみならず、多層回路の層間絶縁やフレキシブル銅張板のカバーコート、ソルダーレジスト膜や液晶配向膜等としても有用である。上記以外の半導体装置の製造方法は公知の方法を用いることができる。
【0036】
【実施例】
以下、実施例により本発明を具体的に説明する。
<実施例1>
ポリアミド樹脂の合成
4,4’―オキシジフタル酸無水物17.1g(0.055モル)と2−メチル−2−プロパノール18.0g(0.24モル)とピリジン8.2g(0.104モル)とを温度計、攪拌機、原料投入口、乾燥窒素ガス導入管を備えた4つ口のセパラブルフラスコに入れ、γ−ブチロラクトン150gを加えて溶解させた。この反応溶液に1−ヒドロキシ−1,2,3−ベンゾトリアゾール14.9g(0.110モル)をγ−ブチロラクトン30gと共に滴下した後、ジシクロヘキシルカルボジイミド22.7g(0.110モル)をγ−ブチロラクトン50gと共に滴下し、室温で一晩反応させた。その後、この反応溶液にジフェニルエーテル−4,4’−ジカルボン酸1モルと1−ヒドロキシ−1,2,3−ベンゾトリアゾール2モルとを反応させて得られたジカルボン酸誘導体(活性エステル)27.1g(0.055モル)とヘキサフルオロ−2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン48.5g(0.132モル)をγ−ブチロラクトン75gと共に添加し、室温で2時間攪拌した。その後オイルバスを用いて75℃で12時間攪拌して反応を終了した。反応混合物を濾過した後、反応混合物を水/メタノール=3/1(体積比)の溶液に投入、沈殿物を濾集し水で充分洗浄した後、真空下で乾燥し、一般式(1)で示され、Xが下記式X−1、Yが下記式Y−1及びY−2で、a=100、b=0からなるポリアミド樹脂(A−1)を合成した。
【0037】
<ネガ型感光性樹脂組成物の作製>
合成したポリアミド樹脂(A−1)10g、N−ヒドロキシナフタルイミドトリフルオロメタンスルホネート(光により酸を発生する化合物。以下、光酸発生材という)0.5g、架橋材として3,4−ジヒドロ−2H−ピラン−イルメチル−3,4−ジヒドロ−2H−ピラン−2−カルボキシレート5.2g(ポリアミド樹脂(A−1)の(カルボキシル基+水酸基)モル数に対し、架橋基である3,4−ジヒドロ−2H−ピラン基が75モル%)をγ−ブチロラクトン25gに溶解した後、0.2μmのテフロン(R)フィルターで濾過しネガ型感光性樹脂組成物を得た。
【0038】
<特性評価>
このネガ型感光性樹脂組成物をシリコンウェハー上にスピンコーターを用いて塗布した後、ホットプレートにて100℃で3分プリベークし、膜厚5.0μmの塗膜を得た。この塗膜に凸版印刷(株)製・マスク(テストチャートNo.1:幅0.88〜50μmの残しパターン及び抜きパターンが描かれている)を通して、i線ステッパー((株)ニコン製・4425i)を用いて、露光量を変化させて照射した。その後ホットプレートにて110℃で5分露光後加熱を行った。次に2.38%のテトラメチルアンモニウムヒドロキシド水溶液に30秒間2回(現像時間)浸漬することによって未露光部を溶解除去した後、純水で10秒間リンスした。その結果、露光量150mJ/cm2で照射した部分の膜減り量は当初の膜厚の厚みからの減少量で0.7μmと低い値を示し、残膜率((現像後膜厚)÷(プリベーク後膜厚)×100)は86%であった。解像度は前述のテストマスクより3μmと高い値を示した。
【0039】
<実施例2>
テレフタル酸0.9モルとイソフタル酸0.1モルと1−ヒドロキシ−1,2,3−ベンゾトリアゾール2モルとを反応させて得られたジカルボン酸誘導体(活性エステル)332.3g(0.83モル)とヘキサフルオロ−2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン366.3g(1モル)とを温度計、攪拌機、原料投入口、乾燥窒素ガス導入管を備えた4つ口のセパラブルフラスコに入れ、γ−ブチロラクトン3000gを加えて溶解させた。その後オイルバスを用いて75℃で12時間反応させた。次にγ−ブチロラクトン500gに溶解させた5−ノルボルネン−2,3−ジカルボン酸無水物32.8g(0.2モル)を加え、更に12時間攪拌して反応を終了した。反応混合物を濾過した後、反応混合物を水/メタノール=3/1(体積比)の溶液に投入、沈殿物を濾集し水で充分洗浄した後、真空下で乾燥し、一般式(1)で示され、Xが下記式X−1、Yが下記式Y−3及びY−4の混合物で、a=100、b=0からなる目的のポリアミド樹脂(A−2)を得た。更に3,4−ジヒドロ−2H−ピラン−イルメチル−3,4−ジヒドロ−2H−ピラン−2−カルボキシレートの配合量を表1の様に変えた以外は、実施例1と同様の評価を行った。
【0040】
<実施例3>
実施例2における、3,4−ジヒドロ−2H−ピラン−イルメチル−3,4−ジヒドロ−2H−ピラン−2−カルボキシレートをビ(3,4−ジヒドロ−2H−ピラン−6−イル)(架橋材)2.0g(ポリアミド樹脂(A−2)の水酸基モル数に対し、架橋基である3,4−ジヒドロ−2H−ピラン基が60モル%)に変えた以外は、実施例1と同様にしてネガ型感光性樹脂組成物を作製し、実施例1と同様の評価を行った。
【0041】
<実施例4>
実施例2におけるポリアミド樹脂の合成において、テレフタル酸0.9モルとイソフタル酸0.1モルの替わりに、テレフタル酸0.5モルとジフェニルエーテル−4,4’−ジカルボン酸0.5モルを用いて、実施例1と同様にして反応した。反応混合物を濾過した後、反応混合物を水/メタノール=3/1(体積比)の溶液に投入、沈殿物を濾集し水で充分洗浄した後、真空下で乾燥し、一般式(1)で示され、Xが下記式X−1、Yが下記式Y−2、Y−3で、a=100、b=0からなるポリアミド樹脂(A−3)を合成した。更に3,4−ジヒドロ−2H−ピラン−イルメチル−3,4−ジヒドロ−2H−ピラン−2−カルボキシレートの配合量を表1の様に変えた以外は、実施例1と同様の評価を行った。
【0042】
<比較例1>
実施例2における、3,4−ジヒドロ−2H−ピラン−イルメチル−3,4−ジヒドロ−2H−ピラン−2−カルボキシレートをジエチレングリコールジビニルエーテルに替え、その配合量を表1のように変えた以外は、実施例1と同様の評価を行った。
<比較例2>
実施例2における、3,4−ジヒドロ−2H−ピラン−イルメチル−3,4−ジヒドロ−2H−ピラン−2−カルボキシレートを1,4−シクロヘキサンジメタノールジビニルエーテルに替え、その配合量を表1のように変えた以外は、実施例1と同様の評価を行った。実施例、比較例の評価結果を表1に示す。
【0043】
以下に、実施例及び比較例のX−1、Y−1、Y−2、Y−3、Y−4の構造を示す。
【化17】
【0044】
【表1】
【0045】
【発明の効果】
本発明のネガ型感光性樹脂組成物は、高感度かつ高解像度であり、現像後の露光部の膜減り量が少なく、半導体素子の表面保護膜、層間絶縁膜用途に最適である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a negative photosensitive resin composition having high sensitivity and high resolution, and a semiconductor device using the same.
[0002]
[Prior art]
Conventionally, a polyimide resin having excellent heat resistance and excellent electrical properties and mechanical properties has been used for a surface protection film and an interlayer insulating film of a semiconductor element. There is a demand for remarkable improvements in heat cycle resistance and heat shock resistance due to the shift to surface mounting due to the thinning and miniaturization of semiconductor devices and solder reflow, and further high-performance resins are required. .
[0003]
On the other hand, a technique of imparting photosensitivity to the polyimide resin itself has attracted attention, and examples thereof include a negative photosensitive polyimide resin represented by the following formula (4).
Embedded image
[0004]
When this is used, a part of the pattern forming process can be simplified, and there is an effect of shortening the process and improving the yield. However, since a solvent such as N-methyl-2-pyrrolidone is required for development, safety and handling are improved. There is a problem with sex. Therefore, a positive photosensitive resin composition that can be developed with an aqueous alkali solution has been developed. For example, JP-A-3-247655, JP-A-5-204156, JP-A-6-258636, JP-A-10-186658 and JP-A-10-307394 disclose a precursor of a polyimide resin. A positive photosensitive resin composition comprising a polyamide resin and a diazoquinone compound as a photosensitive material is disclosed. The diazoquinone compound used as such a photosensitive material undergoes a chemical change upon exposure to light and becomes soluble in an aqueous alkaline solution. However, the rate of change is not only about 40% but also the absorption of light by itself is large. Therefore, when applied to a thick film, light does not sufficiently reach the bottom surface of the film. Therefore, there is a problem that a large amount of exposure is required to open the exposed portion, and the sensitivity is lowered.
[0005]
Then, a chemically amplified negative photosensitive resin composition incorporating a catalytic action by a photochemical reaction was developed. This chemically amplified negative photosensitive resin composition is generally composed of a base resin having a hydroxyl group or a carboxyl group, a compound generating an acid upon irradiation with light, and a cross-linking material having an appropriate functional group. The developing mechanism of the chemically amplified negative photosensitive resin composition is as follows. Since the base resin has a hydroxyl group and / or a carboxyl group, the base resin is dissolved in an alkali aqueous solution as a developing solution in an unexposed portion. On the other hand, in the exposed area, a compound that generates an acid by irradiation with light generates an acid, and the acid diffuses by heat treatment after exposure to act as a catalyst, thereby reacting a hydroxyl group or a carboxyl group in the base resin with a cross-linking material, and By forming a three-dimensional polymer cross-linked structure, it becomes resistant to a developer. By utilizing the difference in solubility between the exposed part and the unexposed part and dissolving and removing the unexposed part, it becomes possible to form a coating film pattern only on the exposed part. In addition, this acid is present after the elimination reaction and causes many reactions, so that the quantum yield, which indicates the ratio of the number of apparently absorbed photons to the number of molecules that have actually undergone a chemical reaction, is high and high. In addition to facilitating sensitivity enhancement, high resolution can be expected because a high dissolution contrast is obtained.
[0006]
As a surface protective film of a semiconductor element to which this technology is applied, as an interlayer insulating film, an example of a negative chemically amplified photosensitive resin composition using a polyimide or polyamide resin as a base resin is disclosed in JP-A-10-307393, It is disclosed in JP-A-11-228822. However, the cross-linking material disclosed in the former is a urea resin or a melamine resin having a specific organic group, and these contain formaldehyde, which is a volatile organic substance, even though in a small amount. In addition, there is a problem that a long developing time is required due to poor solubility. The cross-linking material disclosed in the latter is a polyfunctional vinyl ether compound, the acetal bond derived from this compound has poor dissolution inhibiting ability, and the film thickness at the time of development of the exposed portion becomes large, and the desired film thickness is obtained. There is a problem in that it cannot be obtained, the side etch is large, and the profile is poor.
[0007]
[Problems to be solved by the invention]
The present invention provides a negative photosensitive resin composition which is excellent in high sensitivity and high resolution and which does not increase the amount of film loss in an exposed portion, which is suitable for use as a surface protective film and an interlayer insulating film of a semiconductor element.
[0008]
[Means for Solving the Problems]
The present invention
[1] A polyamide resin (A) having a structure represented by the general formula (1), a compound (B) generating an acid by light, and having at least two or more 3,4-dihydro-2H-pyran groups in a molecule. A negative photosensitive resin composition comprising the compound (C),
[0009]
Embedded image
[0010]
[2] The negative photosensitive resin composition according to [1], wherein X in the polyamide resin having the structure represented by the general formula (1) is selected from the group of the formula (2):
[0011]
Embedded image
[0012]
[3] The negative photosensitive resin composition according to the above [1] or [2], wherein Y in the polyamide resin having the structure represented by the general formula (1) is selected from the group of the formula (3). object,
[0013]
Embedded image
[0014]
[4] The terminal of the polyamide resin (A) having the structure represented by the general formula (1) is blocked with an acid anhydride containing an aliphatic group or a cyclic compound group having at least one alkenyl group or alkynyl group. The negative photosensitive resin composition according to any one of the items [1] to [3],
[5] A semiconductor device manufactured by using the negative photosensitive resin composition according to any one of [1] to [4].
[6] The negative photosensitive resin composition according to any one of [1] to [5] is coated on a semiconductor element such that the film thickness after heat dehydration and ring closure is 0.1 to 30 μm. And a prebaking, exposure, post-exposure heating, development, a semiconductor device obtained by heating,
It is.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
X in the polyamide resin containing the structure represented by the general formula (1) represents a divalent to tetravalent cyclic compound group, R 1 is a hydroxyl group, OR 3 , and m is an integer of 0 to 2; May be the same or different. Y represents a divalent to hexavalent cyclic compound group, R 2 is a hydroxyl group, a carboxyl group, OR 3 , COO-R 3 , and n is an integer of 0 to 4, which may be the same or different . Here, R 3 is an organic group having 1 to 15 carbon atoms. However, when there is no hydroxyl group as R 1, R 2 is at least one must be a carboxyl group. Also when there is no carboxyl group as R 2, R 1 is to be at least one hydroxyl group.
The polyamide resin having the structure represented by the general formula (1) is, for example, a compound selected from diamine having the structure of X or bis (aminophenol), 2,4-diaminophenol, etc. Reacting a compound selected from a silicone diamine having and a tetracarboxylic anhydride having the structure of Y, trimellitic anhydride, dicarboxylic acid or dicarboxylic dichloride, a dicarboxylic acid derivative, a hydroxydicarboxylic acid, a hydroxydicarboxylic acid derivative, etc. It is obtained. In the case of a dicarboxylic acid, a dicarboxylic acid derivative in the form of an active ester in which 1-hydroxy-1,2,3-benzotriazole or the like has been reacted in advance may be used in order to increase the reaction yield and the like. In a polyamide resin having a structure represented by the general formula (1), OR 3 as a substituent of X, OR 3 and COO-R 3 as a substituent of Y are an aqueous alkali solution of a hydroxyl group or a carboxyl group. It is a group protected by an organic group having 1 to 15 carbon atoms for the purpose of adjusting the solubility of the compound, and a hydroxyl group or a carboxyl group may be protected if necessary. Examples of R 3 include formyl group, methyl group, ethyl group, propyl group, isopropyl group, tertiary butyl group, tertiary butoxycarbonyl group, phenyl group, benzyl group, tetrahydrofuranyl group, tetrahydropyranyl group and the like. Can be
When this polyamide resin is heated at about 300 to 400 ° C., the ring is dehydrated and closed, and a heat-resistant resin is obtained in the form of polyimide or polybenzoxazole or a copolymer of both.
[0016]
X of the polyamide resin having a structure represented by the general formula (1) of the present invention is, for example,
Embedded image
Etc., but are not limited to these. Particularly preferred among these are those selected from the group of formula (2), and two or more of these may be used.
[0017]
Y of the polyamide resin having the structure represented by the general formula (1) is, for example,
Embedded image
Etc., but are not limited to these. Among them, particularly preferred are those selected from the group of formula (3), and two or more of these may be used.
[0018]
The negative photosensitive resin composition of the present invention is selected from dicarboxylic acid or dicarboxylic acid dichloride or dicarboxylic acid derivative having the structure of Y and bis (aminophenol) having the structure of X and 2,4-diaminophenol. After reacting a compound and, if necessary, a silicone diamine having a structure of Z which is blended to synthesize a polyamide resin, an aliphatic group having at least one alkenyl or alkynyl group at a terminal amino group contained in the polyamide resin Alternatively, capping as an amide using an acid anhydride containing a cyclic compound group is preferable from the viewpoint of storage stability.
[0019]
Examples of the group derived from an acid anhydride containing an aliphatic group or a cyclic compound group having at least one alkenyl group or alkynyl group include, for example,
Embedded image
And the like, but are not limited thereto.
[0020]
Particularly preferred among these are:
Embedded image
And two or more of these may be used.
[0021]
Further, Z of the polyamide resin containing the structure represented by the general formula (1) that is used as needed is, for example,
Embedded image
However, the present invention is not limited to these, and two or more of these may be used.
[0022]
For example, Z of the polyamide resin having the structure represented by the general formula (1) is used when particularly excellent adhesion to a substrate such as a silicon wafer is required. Up to mol%. If the amount exceeds 40 mol%, the solubility of the base resin is extremely reduced, and undeveloped portions (scum) are generated, so that pattern processing cannot be performed.
[0023]
The compound (B) which generates an acid by light used in the negative photosensitive resin composition of the present invention is described in Photograph. Sci. Eng. , 18 , p387 (1974), CHEMTECH, Oct. p624 (1980), Polym. Mater. Sci. Eng. , 72 , p406 (1995), Macromol. Chem. Rapid Commun. 14 , p203 (1993); Photopolym. Sci. Technol. , 6 , p67 (1993), Macromolecules, 21 , p2001 (1988), Chem. Mater. 3 , p462 (1991), Proc. 2-nitrobenzyl esters described in SPIE, 1086 , 2 (1989); Photopolym. Sci. Technol. , 2 , p429 (1989), Proc. N-iminosulfonates described in SPIE, 1262 , p575 (1990), Polym. Mat. Sci. Eng. , 61 , 269 (1989); naphthoquinonediazide-4-sulfonic acid esters; Photopolym. Sci. Technol. , 4 , p389 (1991), Proc. And halogen-based compounds described in SPIE, 2195 , p173 (1994).
[0024]
The amount of the compound (B) that generates an acid by light is not particularly limited, but is preferably 1 to 30 parts by weight based on 100 parts by weight of the polyamide resin (A). If the compounding amount of the compound (B) that generates an acid by light is less than the lower limit, the amount of the acid as a catalyst for causing a crosslinking reaction is insufficient, so that the amount of film reduction in an exposed portion may increase. Yes, if it exceeds the upper limit, or precipitate during frozen storage, because the amount of acid as a catalyst that diffuses to the unexposed area is increased and crosslinking is promoted, or the dimensionality of the intended pattern is not obtained, It is not preferable because scum may be observed after development.
[0025]
The compound (C) having at least two 3,4-dihydro-2H-pyran groups in the molecule used in the present invention acts as a cross-linking agent, and in the exposed area, generates an acid by light upon heating after exposure. Reacts with a hydroxyl group or a carboxyl group in a polyamide resin having a structure represented by the general formula (1) by the action of an acid generated from to form an acetal bond having a tetrahydropyran structure, thereby improving resistance to an aqueous alkali solution. It is. Examples of the compound (C) having at least two 3,4-dihydro-2H-pyran groups in the molecule include bi (3,4-dihydro-2H-pyran-6-yl), 3,4-dihydro -2H-pyran-ylmethyl-3,4-dihydro-2H-pyran-2-carboxylate, and the like, but is not limited thereto. Two or more of these may be used.
The compounding amount of the compound (C) having at least two 3,4-dihydro-2H-pyran groups in the molecule is not particularly limited, but is based on the number of moles of the hydroxyl group and / or the carboxyl group of the polyamide resin (A). The amount of the 3,4-dihydro-2H-pyran group is preferably 15 to 80 mol%. If the compounding amount is less than the lower limit, if the cross-linking is insufficient, the amount of film loss at the time of development becomes large and the intended film thickness cannot be obtained, the contrast is reduced, the resolution is reduced, and if the upper limit is exceeded. In the heat treatment for obtaining a heat-resistant resin, the rate of shrinkage increases and the desired film thickness cannot be obtained. This is not preferable because the dimensional properties of the pattern may not be obtained or scum may be observed after development.
[0026]
The solvent for uniformly dissolving the components (A) to (C) in the present invention to form a varnish is not particularly limited. However, in order to prevent deactivation of an acid from a compound which generates an acid by light, a nitrogen atom is used. Solvents that do not have are preferred. Specific examples thereof include a cyclic ketone having 3 to 10 carbon atoms, a cyclic lactone having 3 to 10 carbon atoms, dimethyl sulfoxide, diethylene glycol dialkyl ether, propylene glycol monoalkyl ether, dipropylene glycol monoalkyl ether, and propylene glycol monoalkyl ether acetate. , 3-methyl-3-methoxybutanol, methyl lactate, ethyl lactate, butyl lactate, methyl-1,3-butylene glycol acetate, 1,3-butylene glycol-3-monoalkyl ether, trialkylbenzene, methyl pyruvate, pyrvin Ethyl acid, methyl-3-methoxypropionate and the like are more preferable, and γ-butyrolactone, ε-caprolactone, cyclopentanone, dimethyl sulfoxide, propyl sulfonate and the like are more preferable. Lenglycol monomethyl ether, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether, diethylene glycol dimethyl ether, 3-methyl-3-methoxybutanol, mesitylene, methyl lactate, ethyl lactate, and butyl lactate. Is also good.
[0027]
The negative-type photosensitive resin composition of the present invention can contain a low-molecular-weight phenol compound for the purpose of improving the solubility of the unexposed part to the extent that the dissolution inhibiting ability of the exposed part in an aqueous alkali solution is not hindered, if necessary. . Examples of the low molecular weight phenol compound include, but are not limited to, the following. Two or more of these may be used.
[0028]
Embedded image
[0029]
Embedded image
[0030]
Embedded image
[0031]
Embedded image
[0032]
Additives such as a leveling agent and a silane coupling agent can be added to the negative photosensitive resin composition of the present invention, if necessary.
The negative photosensitive resin composition of the present invention is first applied to a suitable support such as a silicon wafer, a ceramic substrate, an aluminum substrate or the like. In the case of a semiconductor device, the application amount is such that the final film thickness after curing is 0.1 to 30 μm. If the thickness is less than 0.1 μm, it will be difficult to sufficiently exert the function as a protective surface film of the semiconductor element, and if it exceeds 30 μm, it will be difficult to obtain a fine processed pattern. Examples of the coating method include spin coating using a spinner, spray coating using a spray coater, dipping, printing, and roll coating.
[0033]
Next, after pre-baking at 60 to 130 ° C. to dry the coating film, the desired pattern shape is irradiated with actinic radiation. As the actinic radiation, X-rays, electron beams, ultraviolet rays, visible rays and the like can be used, but those having a wavelength of 200 to 500 nm are preferable. After exposure, heat treatment is performed at 60 to 130 ° C. using an oven or a hot plate. The acid generated from the compound that generates an acid by light due to the heating after the exposure is diffused and crosslinked by a catalytic reaction to form a resin resistant to a developing solution.
[0034]
Next, a relief pattern is obtained by dissolving and removing the unexposed portion with a developing solution. Examples of the developing solution include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and aqueous ammonia, primary amines such as ethylamine and n-propylamine, diethylamine, and di-n. Secondary amines such as propylamine, tertiary amines such as triethylamine and methyldiethylamine, alcoholamines such as dimethylethanolamine and triethanolamine, and quaternary ammoniums such as tetramethylammonium hydroxide and tetraethylammonium hydroxide. An aqueous solution of an alkali such as a salt and an aqueous solution obtained by adding an appropriate amount of a water-soluble organic solvent such as an alcohol such as methanol and ethanol or a surfactant thereto can be suitably used. As a developing method, a system such as spray, paddle, immersion, and ultrasonic wave can be used.
[0035]
Next, the relief pattern formed by development is rinsed. Distilled water is used as the rinsing liquid. Next, a heat treatment is performed to form an imide ring or an oxazole ring to obtain a final pattern having high heat resistance.
The negative photosensitive resin composition according to the present invention is useful not only for semiconductor applications but also for interlayer insulation of multilayer circuits, cover coats of flexible copper clad boards, solder resist films, liquid crystal alignment films, and the like. A known method can be used as a method for manufacturing a semiconductor device other than the above.
[0036]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
<Example 1>
Synthesis of polyamide resin 17.1 g (0.055 mol) of 4,4'-oxydiphthalic anhydride, 18.0 g (0.24 mol) of 2-methyl-2-propanol and 8.2 g (0.104 mol) of pyridine Were placed in a four-necked separable flask equipped with a thermometer, a stirrer, a raw material inlet, and a dry nitrogen gas inlet tube, and 150 g of γ-butyrolactone was added and dissolved. After dropping 14.9 g (0.110 mol) of 1-hydroxy-1,2,3-benzotriazole together with 30 g of γ-butyrolactone to the reaction solution, adding 22.7 g (0.110 mol) of dicyclohexylcarbodiimide to γ-butyrolactone. The mixture was dropped together with 50 g, and reacted at room temperature overnight. Thereafter, 27.1 g of a dicarboxylic acid derivative (active ester) obtained by reacting 1 mol of diphenyl ether-4,4'-dicarboxylic acid with 2 mol of 1-hydroxy-1,2,3-benzotriazole to this reaction solution. (0.055 mol) and 48.5 g (0.132 mol) of hexafluoro-2,2-bis (3-amino-4-hydroxyphenyl) propane were added together with 75 g of γ-butyrolactone, and the mixture was stirred at room temperature for 2 hours. . Thereafter, the reaction was completed by stirring at 75 ° C. for 12 hours using an oil bath. After filtering the reaction mixture, the reaction mixture was poured into a solution of water / methanol = 3/1 (volume ratio), and the precipitate was collected by filtration, washed sufficiently with water, and dried under vacuum to obtain a compound represented by the general formula (1). Wherein X is the following formula X-1, Y is the following formula Y-1 and Y-2, and a polyamide resin (A-1) consisting of a = 100 and b = 0 was synthesized.
[0037]
<Preparation of negative photosensitive resin composition>
10 g of the synthesized polyamide resin (A-1), 0.5 g of N-hydroxynaphthalimide trifluoromethanesulfonate (a compound that generates an acid by light, hereinafter referred to as a photoacid generator), and 3,4-dihydro-2H as a crosslinker -Pyran-ylmethyl-3,4-dihydro-2H-pyran-2-carboxylate (5.2 g) (3,4-crosslinking group relative to (carboxyl group + hydroxyl group) mole number of polyamide resin (A-1)) 25 mol% of dihydro-2H-pyran group) was dissolved in 25 g of γ-butyrolactone, and then filtered through a 0.2 μm Teflon (R) filter to obtain a negative photosensitive resin composition.
[0038]
<Characteristic evaluation>
The negative photosensitive resin composition was applied on a silicon wafer using a spin coater, and then prebaked on a hot plate at 100 ° C. for 3 minutes to obtain a coating film having a thickness of 5.0 μm. An i-line stepper (manufactured by Nikon Corporation, 4425i) is passed through a mask (test chart No. 1: a pattern with a width of 0.88 to 50 μm left and a blank pattern) manufactured by Toppan Printing Co., Ltd. ) Was used to change the exposure amount. Thereafter, heating was performed after exposure at 110 ° C. for 5 minutes using a hot plate. Next, the unexposed portion was dissolved and removed by immersion twice in a 2.38% aqueous solution of tetramethylammonium hydroxide for 30 seconds (development time), followed by rinsing with pure water for 10 seconds. As a result, the amount of film reduction in a portion irradiated with an exposure amount of 150 mJ / cm 2 was as small as 0.7 μm from the initial film thickness, and the residual film ratio ((film thickness after development) 後 ( (Film thickness after prebaking) × 100) was 86%. The resolution was 3 μm higher than that of the test mask described above.
[0039]
<Example 2>
332.3 g (0.83) of a dicarboxylic acid derivative (active ester) obtained by reacting 0.9 mol of terephthalic acid, 0.1 mol of isophthalic acid and 2 mol of 1-hydroxy-1,2,3-benzotriazole. Mol) and 366.3 g (1 mol) of hexafluoro-2,2-bis (3-amino-4-hydroxyphenyl) propane were mixed with a thermometer, a stirrer, a raw material inlet, and a dry nitrogen gas inlet tube. In a separable flask having a mouth, 3000 g of γ-butyrolactone was added and dissolved. Thereafter, the reaction was carried out at 75 ° C. for 12 hours using an oil bath. Next, 32.8 g (0.2 mol) of 5-norbornene-2,3-dicarboxylic anhydride dissolved in 500 g of γ-butyrolactone was added, and the mixture was further stirred for 12 hours to complete the reaction. After filtering the reaction mixture, the reaction mixture was poured into a solution of water / methanol = 3/1 (volume ratio), and the precipitate was collected by filtration, washed sufficiently with water, and dried under vacuum to obtain a compound represented by the general formula (1). Wherein X is a mixture of the following formulas X-1 and Y is a mixture of the following formulas Y-3 and Y-4, and an intended polyamide resin (A-2) consisting of a = 100 and b = 0 was obtained. Further, the same evaluation as in Example 1 was performed except that the amount of 3,4-dihydro-2H-pyran-ylmethyl-3,4-dihydro-2H-pyran-2-carboxylate was changed as shown in Table 1. Was.
[0040]
<Example 3>
In Example 2, 3,4-dihydro-2H-pyran-ylmethyl-3,4-dihydro-2H-pyran-2-carboxylate was converted to bi (3,4-dihydro-2H-pyran-6-yl) (crosslinked Material) Same as Example 1 except that 2.0 g (60 mol% of 3,4-dihydro-2H-pyran groups, which are crosslinking groups, with respect to the number of moles of hydroxyl groups of the polyamide resin (A-2)). In this way, a negative photosensitive resin composition was prepared, and the same evaluation as in Example 1 was performed.
[0041]
<Example 4>
In the synthesis of the polyamide resin in Example 2, instead of 0.9 mol of terephthalic acid and 0.1 mol of isophthalic acid, 0.5 mol of terephthalic acid and 0.5 mol of diphenyl ether-4,4′-dicarboxylic acid were used. The reaction was carried out in the same manner as in Example 1. After filtering the reaction mixture, the reaction mixture was poured into a solution of water / methanol = 3/1 (volume ratio), and the precipitate was collected by filtration, washed sufficiently with water, and dried under vacuum to obtain a compound represented by the general formula (1). Wherein X is the following formula X-1, Y is the following formula Y-2, Y-3, and a polyamide resin (A-3) consisting of a = 100 and b = 0 was synthesized. Further, the same evaluation as in Example 1 was performed except that the amount of 3,4-dihydro-2H-pyran-ylmethyl-3,4-dihydro-2H-pyran-2-carboxylate was changed as shown in Table 1. Was.
[0042]
<Comparative Example 1>
Except that 3,4-dihydro-2H-pyran-ylmethyl-3,4-dihydro-2H-pyran-2-carboxylate in Example 2 was changed to diethylene glycol divinyl ether, and the compounding amount was changed as shown in Table 1. Was evaluated in the same manner as in Example 1.
<Comparative Example 2>
In Example 2, 3,4-dihydro-2H-pyran-ylmethyl-3,4-dihydro-2H-pyran-2-carboxylate was replaced with 1,4-cyclohexanedimethanol divinyl ether, and the compounding amount is shown in Table 1. The same evaluation as in Example 1 was performed, except that the evaluation was changed as follows. Table 1 shows the evaluation results of the examples and the comparative examples.
[0043]
Hereinafter, the structures of X-1, Y-1, Y-2, Y-3, and Y-4 of Examples and Comparative Examples are shown.
Embedded image
[0044]
[Table 1]
[0045]
【The invention's effect】
INDUSTRIAL APPLICABILITY The negative photosensitive resin composition of the present invention has high sensitivity and high resolution, has a small amount of film loss in an exposed portion after development, and is most suitable for a surface protective film of a semiconductor element and an interlayer insulating film.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002244835A JP4159827B2 (en) | 2002-05-31 | 2002-08-26 | Negative photosensitive resin composition and semiconductor device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002158472 | 2002-05-31 | ||
JP2002244835A JP4159827B2 (en) | 2002-05-31 | 2002-08-26 | Negative photosensitive resin composition and semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004054196A true JP2004054196A (en) | 2004-02-19 |
JP4159827B2 JP4159827B2 (en) | 2008-10-01 |
Family
ID=31949128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002244835A Expired - Fee Related JP4159827B2 (en) | 2002-05-31 | 2002-08-26 | Negative photosensitive resin composition and semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4159827B2 (en) |
-
2002
- 2002-08-26 JP JP2002244835A patent/JP4159827B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP4159827B2 (en) | 2008-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09302221A (en) | Positive photosensitive resin composition | |
JP4661245B2 (en) | Positive photosensitive resin composition, semiconductor device and display element using the positive photosensitive resin composition, and manufacturing method of semiconductor device and display element | |
JP4125093B2 (en) | Positive photosensitive resin composition and semiconductor device | |
JP4254177B2 (en) | Positive photosensitive resin composition and semiconductor device | |
JPH11109620A (en) | Positive photosensitive resin composition | |
JP3966667B2 (en) | Positive photosensitive resin composition and semiconductor device using the same | |
JP4125094B2 (en) | Positive photosensitive resin composition and semiconductor device | |
EP1400849B1 (en) | Positive photosensitive resin compositions and semiconductor device | |
JP4206709B2 (en) | Positive photosensitive resin composition and semiconductor device | |
JP2002040654A (en) | Positive photosensitive resin composition | |
JP2003302761A (en) | Positive photosensitive resin composition and semiconductor device | |
JP2003241378A (en) | Positive photosensitive resin composition and semiconductor device | |
JP4325159B2 (en) | Naphthoquinone diazide sulfonic acid ester, positive photosensitive resin composition and semiconductor device using the same | |
JP4379153B2 (en) | Positive photosensitive resin composition and semiconductor device or display element using the same | |
JP4250935B2 (en) | Positive photosensitive resin composition and semiconductor device | |
JP3886334B2 (en) | Positive photosensitive resin composition and semiconductor device | |
JP4159827B2 (en) | Negative photosensitive resin composition and semiconductor device | |
JP4517723B2 (en) | Naphthoquinonediazide sulfonic acid ester, positive photosensitive resin composition using the same, semiconductor device and display element | |
JP4159838B2 (en) | Positive photosensitive resin composition and semiconductor device | |
JP2003248315A (en) | Positive photosensitive resin composition and semiconductor device | |
JP3839262B2 (en) | Positive photosensitive resin composition and semiconductor device | |
JP2005010764A (en) | Negative photosensitive resin composition, semiconductor device and display element, as well as method for manufacturing semiconductor device and display element | |
JP3801379B2 (en) | Positive photosensitive resin composition | |
JP4197213B2 (en) | Positive photosensitive resin composition and semiconductor device using the same | |
JP4345441B2 (en) | Positive photosensitive resin composition and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050713 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080704 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080715 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080716 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |