JP4206709B2 - Positive photosensitive resin composition and semiconductor device - Google Patents

Positive photosensitive resin composition and semiconductor device Download PDF

Info

Publication number
JP4206709B2
JP4206709B2 JP2002252566A JP2002252566A JP4206709B2 JP 4206709 B2 JP4206709 B2 JP 4206709B2 JP 2002252566 A JP2002252566 A JP 2002252566A JP 2002252566 A JP2002252566 A JP 2002252566A JP 4206709 B2 JP4206709 B2 JP 4206709B2
Authority
JP
Japan
Prior art keywords
mol
resin composition
photosensitive resin
positive photosensitive
polyamide resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002252566A
Other languages
Japanese (ja)
Other versions
JP2004132994A (en
Inventor
敏夫 番場
健 今村
孝 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002252566A priority Critical patent/JP4206709B2/en
Publication of JP2004132994A publication Critical patent/JP2004132994A/en
Application granted granted Critical
Publication of JP4206709B2 publication Critical patent/JP4206709B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、低温硬化性に優れるポジ型感光性樹脂組成物及びそれを用いた半導体装置に関するものである。
【0002】
【従来の技術】
従来、半導体素子の表面保護膜、層間絶縁膜には、耐熱性に優れ又卓越した電気特性、機械特性等を有するポリイミド樹脂が用いられているが、近年半導体素子の高集積化、大型化、半導体装置の薄型化、小型化、半田リフローによる表面実装への移行等により耐熱サイクル性、耐熱ショック性等の特性に対する著しい向上の要求があり、更に高性能の樹脂が必要とされるようになってきた。
【0003】
一方、ポリイミド樹脂自身に感光性を付与する技術が注目を集めてきており、例えば、下記式(4)に示される感光性ポリイミド樹脂が挙げられる。
【0004】
【化4】

Figure 0004206709
【0005】
これを用いるとパターン作成工程の一部が簡略化でき、工程短縮及び歩留まり向上の効果はあるが、現像の際にN−メチル−2−ピロリドン等の溶剤をスプレー状に噴霧することが必要となるため、安全性、取扱い性に問題がある。そこで、最近アルカリ水溶液で現像ができるポジ型の感光性樹脂組成物が開発されている。例えば、特公平1−46862号公報にはベース樹脂であるポリベンゾオキサゾール前駆体と感光材であるジアゾキノン化合物より構成されるポジ型感光性樹脂組成物が開示されている。これは高い耐熱性、優れた電気特性、微細加工性を有し、ウェハーコート用のみならず層間絶縁用としての可能性も有している。このポジ型の感光性樹脂組成物の現像メカニズムは、未露光部のジアゾキノン化合物はアルカリ水溶液に不溶であるが、露光することによりジアゾキノン化合物が化学変化を起こし、アルカリ水溶液に可溶となる。この露光部と未露光部との溶解性の差を利用し、露光部を溶解除去することにより未露光部のみの塗膜パターンの作成が可能となるものである。
【0006】
これらの感光性樹脂組成物は、上述したようにパターニングを行った後、熱的及び機械的に優れる塗膜を得るために、熱処理を行い硬化させることが必要である。この時、必要な温度は一般に300℃を越えている。しかし、近年半導体装置や半導体素子或いは適応する基板によっては、上記のような高温硬化を行うことができないものもあり、その場合従来の感光性樹脂組成物では充分な膜特性が得られず、膜にクラックが発生したり、剥がれが発生し、信頼性が得られないという問題が生じてきている。又、300℃以下のような低温で硬化した感光性樹脂組成物を層間絶縁用途に適用した場合、その多層化プロセスにおいて、クラック等が発生する等の問題も多く、低温硬化でも機械的特性が十分に発現するポジ型感光性樹脂組成物が強く望まれている。
【0007】
【発明が解決しようとする課題】
本発明は、従来の特性を維持しながら低温硬化性に優れる特性を有するポジ型感光性樹脂組成物及びそれを用いた半導体装置を提供するものである。
【0008】
本発明は、
[1]一般式(1)で示されるポリアミド樹脂(A)とフェノール化合物と1,2−ナフトキノン−2−ジアジド−5−スルホン酸及び/又は1,2−ナフトキノン−2−ジアジド−4−スルホン酸とのエステル化合物(B)を含むことを特徴とするポジ型感光性樹脂組成物、
【0009】
【化5】
Figure 0004206709
【0010】
[2] 一般式(1)で示されるポリアミド樹脂中のXが、式(2)の群より選ばれてなる第[1]項記載のポジ型感光性樹脂組成物、
【0011】
【化6】
Figure 0004206709
【0012】
[3] 一般式(1)で示されるポリアミド樹脂中のYが、式(3)の群より選ばれてなる第[1]項1又は第[2]項記載のポジ型感光性樹脂組成物、
【0013】
【化7】
Figure 0004206709
【0015】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明で用いる一般式(1)で示される構造を含むポリアミド樹脂中のXは、2〜4価の環状化合物基を表し、R1は、水酸基、O−R3で、mは0〜2の整数であり、これらは同一でも異なっていても良い。Yは、2〜6価の環状化合物基を表し、R2は水酸基、カルボキシル基、O−R3、COO−R3で、nは0〜4の整数であり、これらは同一でも異なっていても良い。ここでR3は炭素数1〜15の有機基である。但し、R1として水酸基がない場合は、R2は少なくとも1つはカルボキシル基でなければならない。又R2としてカルボキシル基がない場合は、R1は少なくとも1つは水酸基でなければならない。
【0016】
一般式(1)で示される構造を含むポリアミド樹脂において、Xの置換基としてのO−R3、Yの置換基としてのO−R3、COO−R3は、水酸基、カルボキシル基のアルカリ水溶液に対する溶解性を調節する目的で、炭素数1〜15の有機基で保護された基であり、必要により水酸基、カルボキシル基を保護しても良い。R3の例としては、ホルミル基、メチル基、エチル基、プロピル基、イソプロピル基、ターシャリーブチル基、ターシャリーブトキシカルボニル基、フェニル基、ベンジル基、テトラヒドロフラニル基、テトラヒドロピラニル基等が挙げられる。
【0017】
本発明の一般式(1)で示される構造を含むポリアミド樹脂のXは、例えば、
【0018】
【化8】
Figure 0004206709
【0019】
等であるがこれらに限定されるものではない。
これらの中で特に好ましいものとしては、式(2)の群より選ばれるものであり、又2種以上用いても良い。
【0020】
又一般式(1)で示される構造を含むポリアミド樹脂のYは、例えば、
【0021】
【化9】
Figure 0004206709
【0022】
等であるがこれらに限定されるものではない。
これらの中で特に好ましいものとしては、式(3)の群より選ばれるものであり、又2種以上用いても良い。
【0023】
本発明の一般式(1)で示される構造を含むポリアミド樹脂は、必要によってはXの構造を有するジアミン或いはビス(アミノフェノール)、2,4−ジアミノフェノール等から選ばれるアミン成分の一部を、以下に示される骨格を有するシリコーンジアミンで置き換えたものを含んでも良い。
【0024】
【化10】
Figure 0004206709
【0025】
上記シリコーンジアミンは、例えば、シリコンウェハーのような基板に対して、特に優れた密着性が必要な場合に用いるが、その使用割合はX骨格を有する化合物中の最大40モル%までである。40モル%を越えると露光部の樹脂の溶解性が極めて低下し、現像残り(スカム)が発生し、パターン加工ができなくなるので好ましくない。これらのシリコーンジアミンは単独でも又2種類以上用いても良い。
【0026】
ポリアミド樹脂の末端を封止する例として、特開平5−197153号公報に開示されているが、この樹脂は300℃以下の低温硬化では充分な塗膜特性が得られない。又特開2001−235860号公報には、末端に不飽和基を有する芳香族アミンを反応させてなる樹脂が開示されている。しかし、この末端封止された樹脂を用いても300℃以下の低温硬化では充分な塗膜特性が得られないことがある。特開2001−235860号公報に記載されている樹脂を合成する場合、酸、アミン、末端封止剤を同時に仕込んで反応させた場合、分子量が大きくなりにくいという問題がある。理由は末端封止剤が、反応中に分子の成長を阻害するものと考えられる。又末端封止剤で封止されていない末端も存在しており、塗膜物性の低下につながる。塗膜物性の低下は塗膜の伸度の低下につながり、その低下はプロセス中において、塗膜のクラックの発生の原因となる
そこで本発明者らは、酸成分をアミン成分(アミノ基と水酸基を有する)よりモル数を過剰にして、予め反応させ、酸末端にした後、末端封止剤である不飽和基を有する芳香族アミンを反応させるという方法について実験を試みたが、酸成分とアミン成分との初期段階の反応中に、しばしばゲル化が起こった。これは反応系中の過剰の酸成分が分子中のアミン成分に起因する水酸基と反応するためと考えられる。
【0027】
そこで種々検討の結果、一般式(1)中のZの構造を有する酸誘導体を用いて、末端をアミドとして末端キャップすることで、これらの問題を解決することができた。本発明のエチニル基を有する末端封止剤は300℃以下の低温においても、硬化反応が可能で架橋構造を形成し、塗膜性能を向上することができる。更に本発明においてはアミン成分を酸成分よりモル数を過剰にして、予め反応させ、アミン末端にした後に、末端封止剤である酸誘導体を反応することで、反応中にゲル化することなく末端処理が可能となった。
一般式(1)におけるZとしては、例えば
【0028】
【化11】
Figure 0004206709
等であるがこれらに限定されるものではない。
【0029】
これらのなかで特に好ましいものとしては、以下のものである。
【化12】
Figure 0004206709
【0030】
又本発明においては、一般式(1)の末端の一部が反応中において、その反応時の熱により、環化して、オキサゾール構造、又はイミド構造になっていてもよい。
【0031】
一般式(1)で示されるポリアミド樹脂は、ゲルパーミエーションクロマトグラフィを用いて、標準のポリスチレンの検量線により求めた重量平均分子量8000以上が好ましい。重量平均分子量8000未満だと、充分な塗膜性能が得られないためで好ましくない。
このポリアミド樹脂を約200〜400℃で加熱すると脱水閉環する反応と末端同士による架橋反応が起こり、その結果、ポリイミド、又はポリベンゾオキサゾール或いは両者の共重合という形で耐熱性樹脂が得られる。
【0032】
本発明で用いる光で酸が発生する化合物(B)としては、ジアジドキノン化合物、ハロゲン化トリアジン化合物、スルホン酸エステル化合物、ジスルホン化合物、ヨードニウム化合物、スルホニウム塩、フォスホニウム塩等のオニウム塩類等を使用することができるが、これらの中で感光特性の観点よりジアジドキノン化合物が好ましい。
【0033】
ジアゾキノン化合物(B)は、1,2−ベンゾキノンジアジド或いは1,2−ナフトキノンジアジド構造を有する化合物であり、米国特許明細書第2772975号、第2797213号、第3669658号により公知の物質である。例えば、下記のものが挙げられる。
【0034】
【化13】
Figure 0004206709
【0035】
【化14】
Figure 0004206709
【0036】
【化15】
Figure 0004206709
【0037】
【化16】
Figure 0004206709
【0038】
【化17】
Figure 0004206709
【0039】
【化18】
Figure 0004206709
【0040】
本発明で用いる光で酸が発生する化合物(B)の添加量は、一般式(1)のポリアミド樹脂100重量部に対して1〜50重量部が好ましい。1重量部未満だとポリアミド樹脂のパターニング性が不良となり、50重量部を越えると感度が大幅に低下おそれがあるので好ましくない。
【0041】
本発明におけるポジ型感光性樹脂組成物には、必要によりレベリング剤、シランカップリング剤等の添加剤を含んでも良い。
本発明においては、これらの成分を溶剤に溶解し、ワニス状にして使用する。溶剤としては、N−メチル−2−ピロリドン、γ−ブチロラクトン、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸メチル、乳酸エチル、乳酸ブチル、メチル−1,3−ブチレングリコールアセテート、1,3−ブチレングリコール−3−モノメチルエーテル、ピルビン酸メチル、ピルビン酸エチル、メチル−3−メトキシプロピオネート等が挙げられ、単独でも混合して用いても良い。
【0042】
本発明のポジ型感光性樹脂組成物は、まず該樹脂組成物を適当な支持体、例えば、シリコンウェハー、セラミック基板、アルミ基板等に塗布する。塗布量は、半導体装置の場合、硬化後の最終膜厚が0.1〜30μmになるように塗布する。膜厚が0.1μm未満だと半導体素子の保護表面膜としての機能を十分に発揮することが困難となり、30μmを越えると、微細な加工パターンを得ることが困難となる。塗布方法としては、スピンナーを用いる回転塗布、スプレーコーターを用いる噴霧塗布、浸漬、印刷、ロールコーティング等がある。次に、60〜130℃でプリベークして塗膜を乾燥後、所望のパターン形状に化学線を照射する。化学線としては、X線、電子線、紫外線、可視光線等が使用できるが、200〜500nmの波長のものが好ましい。
【0043】
次に照射部を現像液で溶解除去することによりレリーフパターンを得る。現像液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n−プロピルアミン等の第1アミン類、ジエチルアミン、ジ−n−プロピルアミン等の第2アミン類、トリエチルアミン、メチルジエチルアミン等の第3アミン類、ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の第4級アンモニウム塩等のアルカリ類の水溶液、及びこれにメタノール、エタノールのごときアルコール類等の水溶性有機溶媒や界面活性剤を適当量添加した水溶液を好適に使用することができる。現像方法としては、スプレー、パドル、浸漬、超音波等の方式が可能である。
【0044】
次に、現像によって形成したレリーフパターンをリンスする。リンス液としては、蒸留水を使用する。次に200℃以上の硬化温度で加熱処理を行い、硬化させる。硬化においては末端同士による架橋反応と環化する反応、つまりポリイミド環、もしくはオキサゾール環、又はポリイミド環とオキサゾール環の両方の環を形成の反応が起こるが、本発明においては、全ての環が環化している必要はなく、耐熱性、機械的特性に富む最終パターンを得ることができるものである。
本発明によるポジ型感光性樹脂組成物は、半導体用途のみならず、多層回路の層間絶縁やフレキシブル銅張板のカバーコート、ソルダーレジスト膜や液晶配向膜等としても有用である。
【0045】
【実施例】
以下、実施例により本発明を具体的に説明する。
<実施例1>
4,4’―オキシジフタル酸無水物17.1g(0.055モル)と2−メチル−2−プロパノール8.2g(0.110モル)とピリジン10.9g(0.138モル)とを温度計、攪拌機、原料投入口、乾燥窒素ガス導入管を備えた4つ口のセパラブルフラスコに入れ、N−メチル−2−ピロリドン150gを加えて溶解させた。この反応溶液に1−ヒドロキシ−1,2,3−ベンゾトリアゾール14.9g(0.110モル)をN−メチル−2−ピロリドン30gと共に滴下した後、ジシクロヘキシルカルボジイミド22.7g(0.110モル)をN−メチル−2−ピロリドン50gと共に滴下し、室温で一晩反応させた。その後、この反応溶液にジフェニルエーテル−4,4’−ジカルボン酸1.0モルと1−ヒドロキシ−1,2,3−ベンゾトリアゾール2.0モルとを反応させて得られたジカルボン酸誘導体(活性エステル)27.1g(0.055モル)とヘキサフルオロ−2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン44.7g(0.122モル)をN−メチル−2−ピロリドン70gと共に添加し、室温で2時間攪拌した。その後オイルバスを用いて75℃にて12時間攪拌して反応させた。次にN−メチル−2−ピロリドン21.5gに溶解した4−エチニルフタル酸無水物4.3g(0.025モル)を15分かけて滴下した。そのまま3時間、75℃で攪拌し、反応を終了した。反応混合物を濾過した後、反応混合物を水/メタノール=3/1(体積比)の溶液に投入、沈殿物を濾集し水で十分洗浄した後、真空下で乾燥し、一般式(1)で示され、Xが下記式X−1、Yが下記式Y−1及びY−2からなるポリアミド樹脂(A−1)を合成した。得られたポリアミド樹脂の分子量をゲルパーミエーションクロマトグラフィ(以下、GPCという)を用いて、標準のポリスチレンの検量線により求めた重量平均分子量(以下、Mwと呼ぶ。)は12200であった。この時のGPCの測定条件はガードカラム:GL―S300((株)日立製作所・製)、カラム:GL−S300MDT−5((株)日立製作所・製)×2本、カラム温度:30℃、展開溶媒:テトラヒドロフラン/N,N―ジメチルホルムアミド/リン酸=100/100/1(体積比)、展開溶媒の流速:1.0ml/分である。
【0046】
ポジ型感光性樹脂組成物の作製
合成したポリアミド樹脂(A−1)100g、下記式(Q−1)の構造を有する感光性ジアゾキノン化合物19gをγ−ブチロラクトン150gに溶解した後、0.2μmのテフロン(R)フィルターで濾過しポジ型感光性樹脂組成物を得た。
【0047】
特性評価
このポジ型感光性樹脂組成物をシリコンウェハー上にスピンコーターを用いて塗布した後、ホットプレートにて120℃で4分プリベークし、膜厚約7μmの塗膜を得た。この塗膜に凸版印刷(株)製・マスク(テストチャートNo.1:幅0.88〜50μmの残しパターン及び抜きパターンが描かれている)を通して、i線ステッパー((株)ニコン製・4425i)を用いて、露光量を変化させて照射した。
次に2.38%のテトラメチルアンモニウムヒドロキシド水溶液に40秒浸漬することによって露光部を溶解除去した後、純水で10秒間リンスした。その結果、露光量250mJ/cm2で照射した部分よりパターンが形成されていることが確認できた。(感度は250mJ/cm2)。解像度は3μmと非常に高い値を示した。
又これとは別に6インチシリコンウエハーに硬化後の厚さが10μmとなるようにポジ型感光性樹脂組成物を塗布し、120℃/4分でプリベークを行った。次にクリーンオーブンで酸素濃度を2000ppm以下に制御して、150℃/30分+210℃/180分で硬化を行った。次に得られたウェハーをダイシングソーを用いて、10mmの短冊状にカットした後、2%のHF水溶液(フッ酸)ことによって、ウェハーから剥離したフィルムを得た。次に引っ張り試験器にて引っ張り伸度を測定したところ、18%と良好であった。
上記と同様の方法で6インチシリコンウェハーに硬化後の厚みが10μmとなるように硬化膜を作製した後、スパッタ装置(SPF−740H:アネルバ・製)を用いて、Arガスによる逆スパッタ(300W/90秒)を行った後、クロムを0.05μm、次に銅0.2μmの膜付けを行った。次にレジストEPPRA(東京応化工業(株)・製)を5μmになるように塗布し、120℃/2分でプリベークを行った。続いてPLA601(キヤノン(株)・製)を用い、テストパターンを介して露光を行い、専用現像液で1分間現像した後、専用リンス液で1分間リンス、乾燥させた。次に120℃/2分のポストベークを行った。次にエンプレートAD−485(メルテックス・製)で銅を30秒間エッチングした後、純水で1分間リンス、乾燥させた。更に混酸クロムエッチング液(関東化学(株)・製)でクロムを30秒間エッチングした後、純水で1分間リンス、乾燥させた。次に専用剥離液を用いてレジストを剥離、表面観察を行ったところ、クラック等は発生せず良好であった。
【0048】
<実施例2>
ポリアミド樹脂の合成
テレフタル酸0.9モルとイソフタル酸0.1モルと1−ヒドロキシ−1,2,3−ベンゾトリアゾール2.0モルとを反応させて得られたジカルボン酸誘導体(活性エステル)360.4g(0.9モル)とヘキサフルオロ−2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン366.3g(1.0モル)とを温度計、攪拌機、原料投入口、乾燥窒素ガス導入管を備えた4つ口のセパラブルフラスコに入れ、N−メチル−2−ピロリドン3000gを加えて溶解させた。その後オイルバスを用いて75℃にて12時間反応させた。次に温度を5℃以下にして、N−メチル−2−ピロリドン100gに溶解させた4−エチニルベンゾイルクロライド32.9g(0.2モル)を15分かけて加え、更にピリジン17.4g(0.22モル)を添加した。2時間攪拌して反応を終了した。反応混合物を濾過した後、反応混合物を水/メタノール=3/1(体積比)の溶液に投入、沈殿物を濾集し水で充分洗浄した後、真空下で乾燥し、一般式(1)で示され、Xが下記式X−1、Yが下記式Y−3及びY−4の混合物からなる目的のポリアミド樹脂(A−2)を得た。得られたポリアミド樹脂の分子量をGPCを用いて求めたMwは29400であった。
【0049】
ポジ型感光性樹脂組成物の作製
合成したポリアミド樹脂(A−2)100g、下記式(Q−2)の構造を有する感光性ジアゾキノン化合物21gをγ−ブチロラクトン150gに溶解した後、0.2μmのテフロン(R)フィルターで濾過しポジ型感光性樹脂組成物を得た。それ以外は実施例1と同様の評価を行った。
【0050】
<実施例3>
ポリアミド樹脂の合成
ジフェニルエーテル−4,4’−ジカルボン酸1.0モルと1−ヒドロキシ−1,2,3−ベンゾトリアゾール2.0モルとを反応させて得られたジカルボン酸誘導体(活性エステル)443.2g(0.9モル)とヘキサフルオロ−2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン366.3g(1.0モル)とを温度計、攪拌機、原料投入口、乾燥窒素ガス導入管を備えた4つ口のセパラブルフラスコに入れ、N−メチル−2−ピロリドン3000gを加えて溶解させた。その後オイルバスを用いて75℃にて12時間反応させた。次にN−メチル−2−ピロリドン100gに溶解させた4−エチニルフタル酸無水物34.4g(0.2モル)を15分かけて加え、3時間攪拌して反応を終了した。反応混合物を濾過した後、反応混合物を水/メタノール=3/1(体積比)の溶液に投入、沈殿物を濾集し水で充分洗浄した後、真空下で乾燥し、一般式(1)で示され、Xが下記式X−1、Yが下記式Y−2からなる目的のポリアミド樹脂(A−3)を得た。得られたポリアミド樹脂の分子量をGPCを用いて求めたMwは22600であった。
【0051】
ポジ型感光性樹脂組成物の作製
合成したポリアミド樹脂(A−3)100g、下記式(Q−3)の構造を有する感光性ジアゾキノン化合物13gをγ−ブチロラクトン150gに溶解した後、0.2μmのテフロン(R)フィルターで濾過しポジ型感光性樹脂組成物を得た。それ以外は実施例1と同様の評価を行った。
【0052】
<実施例4>
ポリアミド樹脂の合成
テレフタル酸0.9モルとイソフタル酸0.1モルと1−ヒドロキシ−1,2,3−ベンゾトリアゾール2.0モルとを反応させて得られたジカルボン酸誘導体(活性エステル)360.4g(0.9モル)とヘキサフルオロ−2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン348.0g(0.95モル)と1,3−ビス(3−アミノプロピル)−1,1,3,3−テトラメチルジシロキサン12.4g(0.05モル)を温度計、攪拌機、原料投入口、乾燥窒素ガス導入管を備えた4つ口のセパラブルフラスコに入れ、N−メチル−2−ピロリドン3000gを加えて溶解させた。その後オイルバスを用いて75℃にて12時間反応させた。次に温度を5℃以下にし、N−メチル−2−ピロリドン100gに溶解させた4−エチニルベンゾイルクロライド32.9g(0.2モル)を15分かけて加え、更にピリジン17.4g(0.22モル)を添加した。2時間攪拌して反応を終了した。反応混合物を濾過した後、反応混合物を水/メタノール=3/1(体積比)の溶液に投入、沈殿物を濾集し水で充分洗浄した後、真空下で乾燥し、一般式(1)で示され、Xが下記式X−1、X−2、Yが下記式Y−3及びY−4の混合物からなる目的のポリアミド樹脂(A−4)を得た。得られたポリアミド樹脂の分子量をGPCを用いて求めたMwは16200であった。
【0053】
ポジ型感光性樹脂組成物の作製
合成したポリアミド樹脂(A−4)100g、下記式(Q−1)の構造を有する感光性ジアゾキノン化合物20gをγ−ブチロラクトン150gに溶解した後、0.2μmのテフロン(R)フィルターで濾過しポジ型感光性樹脂組成物を得た。それ以外は実施例1と同様の評価を行った。
【0054】
<実施例5>
ヘキサフルオロ−2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン44.0g(0.12モル)をN−メチル−2−ピロリドン200gに溶解させた後、N−メチル−2−ピロリドン160gに溶解させた無水トリメリット酸クロライド50.6g(0.24モル)を5℃以下に冷却しながら加えた。更にピリジン22.8g(0.29モル)を加えて、20℃以下で3時間攪拌した。次に、4,4’−ジアミノジフェニルエーテル28.0g(0.14モル)を加えた後、室温で5時間反応させた。次に内温を85℃にし、3時間攪拌した。次にN−メチル−2−ピロリドン500gに溶解させたエチニルフタル酸無水物8.6g(0.05モル)を加え、更に12時間攪拌して反応を終了した。反応終了後、濾過した反応混合物を、水/メタノール=5/1(体積比)に投入し、沈殿物を濾集して水で充分洗浄した後、真空下で乾燥し、一般式(1)で示され、Xが下記式X−1、X―3で、Yが下記式Y−5からなる混合物からなる目的のポリアミド樹脂(A−5)を合成した。得られたポリアミド樹脂の分子量をGPCを用いて求めたMwは12800であった。
【0055】
ポジ型感光性樹脂組成物の作製
合成したポリアミド樹脂(A−5)100g、下記式(Q−1)の構造を有する感光性ジアゾキノン化合物22gをγ−ブチロラクトン150gに溶解した後、0.2μmのテフロン(R)フィルターで濾過しポジ型感光性樹脂組成物を得た。それ以外は実施例1と同様の評価を行った。
【0056】
<実施例6>
ポリアミド樹脂の合成
ジフェニルエーテル−4,4’−ジカルボン酸1.0モルと1−ヒドロキシ−1,2,3−ベンゾトリアゾール2.0モルとを反応させて得られたジカルボン酸誘導体(活性エステル)443.2g(0.9モル)とヘキサフルオロ−2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン366.3g(1.0モル)とを温度計、攪拌機、原料投入口、乾燥窒素ガス導入管を備えた4つ口のセパラブルフラスコに入れ、N−メチル−2−ピロリドン3000gを加えて溶解させた。その後オイルバスを用いて75℃にて12時間反応させた。次にN−メチル−2−ピロリドン250gに溶解させたフェニルエチニルフタル酸無水物49.6g(0.2モル)を15分かけて加え、3時間攪拌して反応を終了した。反応混合物を濾過した後、反応混合物を水/メタノール=3/1(体積比)の溶液に投入、沈殿物を濾集し水で充分洗浄した後、真空下で乾燥し、一般式(1)で示され、Xが下記式X−1、Yが下記式Y−2からなる目的のポリアミド樹脂(A−6)を得た。得られたポリアミド樹脂の分子量をGPCを用いて求めたMwは26400であった。
【0057】
ポジ型感光性樹脂組成物の作製
合成したポリアミド樹脂(A−6)100g、下記式(Q−1)の構造を有する感光性ジアゾキノン化合物19gをγ−ブチロラクトン150gに溶解した後、0.2μmのテフロン(R)フィルターで濾過しポジ型感光性樹脂組成物を得た。それ以外は実施例1と同様の評価を行った
【0058】
<比較例1>
4,4’―オキシジフタル酸無水物17.1g(0.055モル)と2−メチル−2−プロパノール8.2g(0.110モル)とピリジン10.9g(0.138モル)とを温度計、攪拌機、原料投入口、乾燥窒素ガス導入管を備えた4つ口のセパラブルフラスコに入れ、N−メチル−2−ピロリドン150gを加えて溶解させた。この反応溶液に1−ヒドロキシ−1,2,3−ベンゾトリアゾール14.9g(0.110モル)をN−メチル−2−ピロリドン30gと共に滴下した後、ジシクロヘキシルカルボジイミド22.7g(0.110モル)をN−メチル−2−ピロリドン50gと共に滴下し、室温で一晩反応させた。その後、この反応溶液にジフェニルエーテル−4,4’−ジカルボン酸1.0モルと1−ヒドロキシ−1,2,3−ベンゾトリアゾール2.0モルとを反応させて得られたジカルボン酸誘導体(活性エステル)27.1g(0.055モル)とヘキサフルオロ−2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン44.8g(0.077モル)、エチニルアニリン3.9g(0.033モル)をN−メチル−2−ピロリドン70gと共に添加し、室温で2時間攪拌した。その後オイルバスを用いて75℃にて12時間攪拌して反応させた。反応混合物を濾過した後、反応混合物を水/メタノール=3/1(体積比)の溶液に投入、沈殿物を濾集し水で十分洗浄した後、真空下で乾燥し、一般式(1)で示され、Xが下記式X−1、Yが下記式Y−1及びY−2からなるポリアミド樹脂(A−7)を合成した。得られたポリアミド樹脂の分子量をGPCを用いて求めたMwは7800であった。
このようにして得られたポリアミドを用いて、実施例1と同様に評価を行った。
【0059】
<比較例2>
ジフェニルエーテル−4,4’−ジカルボン酸1.0モルと1−ヒドロキシ−1,2,3−ベンゾトリアゾール2.0モルとを反応させて得られたジカルボン酸誘導体(活性エステル)49.2g(0.10モル)とヘキサフルオロ−2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン33.0g(0.09モル)、とを温度計、攪拌機、原料投入口、乾燥窒素ガス導入管を備えた4つ口のセパラブルフラスコに入れ、N−メチル−2−ピロリドン500gを加えて溶解させた。その後オイルバスを用いて75℃にて上げ、1時間攪拌したところで、反応系がゲル化し、末端封止できなかった。
【0060】
<比較例3>
ポリアミド樹脂の合成
ジフェニルエーテル−4,4’−ジカルボン酸1.0モルと1−ヒドロキシ−1,2,3−ベンゾトリアゾール2.0モルとを反応させて得られたジカルボン酸誘導体(活性エステル)443.2g(0.9モル)とヘキサフルオロ−2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン366.3g(1.0モル)とを温度計、攪拌機、原料投入口、乾燥窒素ガス導入管を備えた4つ口のセパラブルフラスコに入れ、N−メチル−2−ピロリドン3000gを加えて溶解させた。その後オイルバスを用いて75℃にて12時間反応させた。次にN−メチル−2−ピロリドン160gに溶解させた5−ノルボルネン−2,3−ジカルボン酸無水物32.8g(0.2モル)を15分かけて加え、3時間攪拌して反応を終了した。反応混合物を濾過した後、反応混合物を水/メタノール=3/1(体積比)の溶液に投入、沈殿物を濾集し水で充分洗浄した後、真空下で乾燥し、一般式(1)で示され、Xが下記式X−1、Yが下記式Y−2からなる目的のポリアミド樹脂(A−8)を得た。得られたポリアミド樹脂の分子量をGPCを用いて求めたMwは18800であった。
【0061】
ポジ型感光性樹脂組成物の作製
合成したポリアミド樹脂(A−8)100g、下記式(Q−1)の構造を有する感光性ジアゾキノン化合物19gをγ−ブチロラクトン150gに溶解した後、0.2μmのテフロン(R)フィルターで濾過しポジ型感光性樹脂組成物を得た。それ以外は実施例1と同様の評価を行った。
【0062】
実施例1〜6は、伸度が10〜22%と良好な塗膜特性が得られ、更に多層化評価においてもクラックの発生はなかった。しかし比較例1では分子量が大きくならず、伸度も低くクラックも発生し、比較例2では酸過剰で反応するとゲル化が発生し、比較例3で用いた末端処理剤では伸度も低くクラックも発生した。
【0063】
以下に、実施例及び比較例の構造を示す。
【0064】
【化19】
Figure 0004206709
【0065】
【化20】
Figure 0004206709
【0066】
【化21】
Figure 0004206709
【0067】
【表1】
Figure 0004206709
【0068】
【表2】
Figure 0004206709
【0069】
【発明の効果】
本発明のポジ型感光性樹脂組成物は、従来の特性を維持しながら、300℃以下の低温硬化において優れた膜特性を有している。更に多層化におけるプロセスにも充分適用は可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive photosensitive resin composition excellent in low-temperature curability and a semiconductor device using the same.
[0002]
[Prior art]
Conventionally, polyimide resin having excellent heat resistance and excellent electrical characteristics, mechanical characteristics, etc. has been used for the surface protection film and interlayer insulation film of semiconductor elements. Due to the thinning and downsizing of semiconductor devices and the shift to surface mounting by solder reflow, there is a need for significant improvements in characteristics such as heat cycle resistance and heat shock resistance, and higher performance resins are required. I came.
[0003]
On the other hand, a technique for imparting photosensitivity to the polyimide resin itself has attracted attention, and examples thereof include a photosensitive polyimide resin represented by the following formula (4).
[0004]
[Formula 4]
Figure 0004206709
[0005]
When this is used, a part of the pattern creation process can be simplified, and there is an effect of shortening the process and improving the yield, but it is necessary to spray a solvent such as N-methyl-2-pyrrolidone in the form of a spray during development. Therefore, there are problems in safety and handling. Therefore, a positive photosensitive resin composition that can be developed with an aqueous alkaline solution has been recently developed. For example, Japanese Examined Patent Publication No. 1-46862 discloses a positive photosensitive resin composition comprising a polybenzoxazole precursor as a base resin and a diazoquinone compound as a photosensitive material. This has high heat resistance, excellent electrical properties, and fine processability, and has the potential not only for wafer coating but also for interlayer insulation. The development mechanism of this positive type photosensitive resin composition is that the unexposed portion of the diazoquinone compound is insoluble in the alkaline aqueous solution, but the diazoquinone compound undergoes a chemical change upon exposure to become soluble in the alkaline aqueous solution. By utilizing the difference in solubility between the exposed portion and the unexposed portion to dissolve and remove the exposed portion, a coating film pattern of only the unexposed portion can be created.
[0006]
These photosensitive resin compositions need to be cured by heat treatment in order to obtain a thermally and mechanically excellent coating film after patterning as described above. At this time, the necessary temperature generally exceeds 300 ° C. However, in recent years, some semiconductor devices, semiconductor elements, and applicable substrates cannot be cured at a high temperature as described above, and in such a case, sufficient film characteristics cannot be obtained with the conventional photosensitive resin composition. Cracks are generated or peeling occurs, resulting in a problem that reliability cannot be obtained. In addition, when a photosensitive resin composition cured at a low temperature of 300 ° C. or less is applied to an interlayer insulation application, there are many problems such as cracks in the multilayering process, and mechanical properties are also exhibited at low temperature curing. A positive photosensitive resin composition that fully develops is strongly desired.
[0007]
[Problems to be solved by the invention]
The present invention provides a positive photosensitive resin composition having characteristics that are excellent in low-temperature curability while maintaining conventional characteristics, and a semiconductor device using the same.
[0008]
The present invention
[1] A polyamide resin (A) represented by the general formula (1) Ester compound of phenolic compound and 1,2-naphthoquinone-2-diazide-5-sulfonic acid and / or 1,2-naphthoquinone-2-diazide-4-sulfonic acid A positive photosensitive resin composition comprising (B),
[0009]
[Chemical formula 5]
Figure 0004206709
[0010]
[2] The positive photosensitive resin composition according to item [1], wherein X in the polyamide resin represented by the general formula (1) is selected from the group of the formula (2):
[0011]
[Chemical 6]
Figure 0004206709
[0012]
[3] The positive photosensitive resin composition according to item [1] or [2], wherein Y in the polyamide resin represented by general formula (1) is selected from the group of formula (3) ,
[0013]
[Chemical 7]
Figure 0004206709
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
X in the polyamide resin containing the structure represented by the general formula (1) used in the present invention represents a divalent to tetravalent cyclic compound group, and R 1 Is a hydroxyl group, OR Three And m is an integer of 0 to 2, and these may be the same or different. Y represents a divalent to hexavalent cyclic compound group, and R 2 Is a hydroxyl group, carboxyl group, OR Three , COO-R Three And n is an integer of 0 to 4, and these may be the same or different. Where R Three Is an organic group having 1 to 15 carbon atoms. However, R 1 When there is no hydroxyl group, R 2 Must be at least one carboxyl group. Also R 2 When there is no carboxyl group as R 1 Must be at least one hydroxyl group.
[0016]
In the polyamide resin having the structure represented by the general formula (1), O—R as a substituent of X Three OR as a substituent for Y Three , COO-R Three Is a group protected with an organic group having 1 to 15 carbon atoms for the purpose of adjusting the solubility of the hydroxyl group and carboxyl group in an alkaline aqueous solution, and the hydroxyl group and carboxyl group may be protected if necessary. R Three Examples thereof include formyl group, methyl group, ethyl group, propyl group, isopropyl group, tertiary butyl group, tertiary butoxycarbonyl group, phenyl group, benzyl group, tetrahydrofuranyl group, tetrahydropyranyl group and the like.
[0017]
X of the polyamide resin containing the structure represented by the general formula (1) of the present invention is, for example,
[0018]
[Chemical 8]
Figure 0004206709
[0019]
However, it is not limited to these.
Among these, particularly preferred are those selected from the group of formula (2), and two or more of them may be used.
[0020]
Moreover, Y of the polyamide resin containing the structure represented by the general formula (1) is, for example,
[0021]
[Chemical 9]
Figure 0004206709
[0022]
However, it is not limited to these.
Among these, particularly preferred are those selected from the group of formula (3), and two or more of them may be used.
[0023]
The polyamide resin containing the structure represented by the general formula (1) of the present invention contains a part of the amine component selected from diamine or bis (aminophenol) having a structure of X, 2,4-diaminophenol, etc., if necessary. In addition, a silicone diamine having a skeleton shown below may be substituted.
[0024]
[Chemical Formula 10]
Figure 0004206709
[0025]
The silicone diamine is used, for example, when particularly excellent adhesion to a substrate such as a silicon wafer is required, and its use ratio is up to 40 mol% in the compound having an X skeleton. If it exceeds 40 mol%, the solubility of the resin in the exposed area will be extremely lowered, developing residue (scum) will occur, and pattern processing will not be possible, which is not preferred. These silicone diamines may be used alone or in combination of two or more.
[0026]
An example of sealing the end of a polyamide resin is disclosed in Japanese Patent Application Laid-Open No. 5-197153. However, when this resin is cured at a low temperature of 300 ° C. or lower, sufficient film properties cannot be obtained. Japanese Patent Application Laid-Open No. 2001-235860 discloses a resin obtained by reacting an aromatic amine having an unsaturated group at the terminal. However, even if this end-capped resin is used, sufficient coating characteristics may not be obtained by low-temperature curing at 300 ° C. or lower. When synthesizing a resin described in JP-A No. 2001-235860, there is a problem that when an acid, an amine, and an end-capping agent are charged simultaneously and reacted, the molecular weight is difficult to increase. The reason is considered that the end-capping agent inhibits the growth of molecules during the reaction. In addition, there are terminals that are not sealed with a terminal sealing agent, which leads to a decrease in physical properties of the coating film. Decrease in film properties leads to decrease in film elongation, which causes cracks in the film during the process.
Therefore, the present inventors have made the acid component in excess of the amine component (having an amino group and a hydroxyl group), reacted in advance and converted to an acid terminal, and then an aromatic group having an unsaturated group as a terminal blocking agent. Attempts were made to experiment with the method of reacting group amines, but gelation often occurred during the initial reaction of the acid component with the amine component. This is presumably because an excess acid component in the reaction system reacts with a hydroxyl group caused by an amine component in the molecule.
[0027]
As a result of various studies, these problems could be solved by using an acid derivative having the structure of Z in the general formula (1) and capping the terminal as an amide. The end-capping agent having an ethynyl group of the present invention can undergo a curing reaction even at a low temperature of 300 ° C. or less, can form a crosslinked structure, and can improve coating film performance. Furthermore, in the present invention, the amine component is made to have an excess of the number of moles compared to the acid component, reacted in advance and converted to an amine end, and then reacted with an acid derivative that is a terminal blocking agent without gelation during the reaction. End treatment became possible.
As Z in the general formula (1), for example,
[0028]
Embedded image
Figure 0004206709
However, it is not limited to these.
[0029]
Among these, the following are particularly preferable.
Embedded image
Figure 0004206709
[0030]
In the present invention, a part of the terminal of the general formula (1) may be cyclized by heat during the reaction to form an oxazole structure or an imide structure during the reaction.
[0031]
The polyamide resin represented by the general formula (1) preferably has a weight average molecular weight of 8000 or more determined by a standard polystyrene calibration curve using gel permeation chromatography. A weight average molecular weight of less than 8000 is not preferable because sufficient film performance cannot be obtained.
When this polyamide resin is heated at about 200 to 400 ° C., a dehydrating ring-closing reaction and a crosslinking reaction between terminals occur, and as a result, a heat-resistant resin is obtained in the form of polyimide, polybenzoxazole or copolymerization of both.
[0032]
As the compound (B) that generates an acid by light used in the present invention, diazidequinone compounds, halogenated triazine compounds, sulfonic acid ester compounds, disulfone compounds, iodonium compounds, onium salts such as sulfonium salts, phosphonium salts, and the like are used. Of these, diazide quinone compounds are preferred from the viewpoint of photosensitive properties.
[0033]
The diazoquinone compound (B) is a compound having a 1,2-benzoquinonediazide or 1,2-naphthoquinonediazide structure, and is a substance known from US Pat. Nos. 2,727,975, 2,797,213, and 3,669,658. For example, the following are mentioned.
[0034]
Embedded image
Figure 0004206709
[0035]
Embedded image
Figure 0004206709
[0036]
Embedded image
Figure 0004206709
[0037]
Embedded image
Figure 0004206709
[0038]
Embedded image
Figure 0004206709
[0039]
Embedded image
Figure 0004206709
[0040]
The amount of the compound (B) that generates an acid by light used in the present invention is preferably 1 to 50 parts by weight with respect to 100 parts by weight of the polyamide resin of the general formula (1). If it is less than 1 part by weight, the patterning property of the polyamide resin becomes poor, and if it exceeds 50 parts by weight, the sensitivity may be greatly lowered, which is not preferable.
[0041]
The positive photosensitive resin composition in the present invention may contain additives such as a leveling agent and a silane coupling agent as necessary.
In the present invention, these components are dissolved in a solvent and used in the form of a varnish. Solvents include N-methyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylacetamide, dimethyl sulfoxide, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol Monomethyl ether acetate, methyl lactate, ethyl lactate, butyl lactate, methyl-1,3-butylene glycol acetate, 1,3-butylene glycol-3-monomethyl ether, methyl pyruvate, ethyl pyruvate, methyl-3-methoxypropio And the like, and may be used alone or in combination.
[0042]
In the positive photosensitive resin composition of the present invention, first, the resin composition is applied to an appropriate support, for example, a silicon wafer, a ceramic substrate, an aluminum substrate or the like. In the case of a semiconductor device, the coating amount is applied so that the final film thickness after curing is 0.1 to 30 μm. When the film thickness is less than 0.1 μm, it is difficult to sufficiently exhibit the function as a protective surface film of the semiconductor element, and when it exceeds 30 μm, it is difficult to obtain a fine processed pattern. Application methods include spin coating using a spinner, spray coating using a spray coater, dipping, printing, roll coating, and the like. Next, after prebaking at 60 to 130 ° C. to dry the coating film, actinic radiation is applied to the desired pattern shape. As the actinic radiation, X-rays, electron beams, ultraviolet rays, visible rays and the like can be used, but those having a wavelength of 200 to 500 nm are preferable.
[0043]
Next, a relief pattern is obtained by dissolving and removing the irradiated portion with a developer. Developers include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and aqueous ammonia, primary amines such as ethylamine and n-propylamine, diethylamine, and di-n. Secondary amines such as propylamine, tertiary amines such as triethylamine and methyldiethylamine, alcohol amines such as dimethylethanolamine and triethanolamine, quaternary ammonium such as tetramethylammonium hydroxide and tetraethylammonium hydroxide An aqueous solution of an alkali such as a salt and an aqueous solution to which an appropriate amount of a water-soluble organic solvent such as methanol or ethanol or a surfactant is added can be preferably used. As a developing method, methods such as spraying, paddle, dipping, and ultrasonic waves are possible.
[0044]
Next, the relief pattern formed by development is rinsed. Distilled water is used as the rinse liquid. Next, heat treatment is performed at a curing temperature of 200 ° C. or higher to cure. In curing, a cross-linking reaction between ends and a cyclization reaction, that is, a reaction of forming a polyimide ring, an oxazole ring, or both a polyimide ring and an oxazole ring occur. There is no need to make it, and a final pattern having excellent heat resistance and mechanical properties can be obtained.
The positive photosensitive resin composition according to the present invention is useful not only for semiconductor applications, but also as interlayer insulation for multilayer circuits, cover coats for flexible copper-clad plates, solder resist films, liquid crystal alignment films, and the like.
[0045]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
<Example 1>
A thermometer containing 17.1 g (0.055 mol) of 4,4′-oxydiphthalic anhydride, 8.2 g (0.110 mol) of 2-methyl-2-propanol and 10.9 g (0.138 mol) of pyridine. Into a four-necked separable flask equipped with a stirrer, a raw material inlet, and a dry nitrogen gas inlet tube, 150 g of N-methyl-2-pyrrolidone was added and dissolved. 14.9 g (0.110 mol) of 1-hydroxy-1,2,3-benzotriazole was added dropwise to this reaction solution together with 30 g of N-methyl-2-pyrrolidone, and then 22.7 g (0.110 mol) of dicyclohexylcarbodiimide. Was added dropwise together with 50 g of N-methyl-2-pyrrolidone and allowed to react overnight at room temperature. Thereafter, a dicarboxylic acid derivative (active ester) obtained by reacting 1.0 mol of diphenyl ether-4,4′-dicarboxylic acid and 2.0 mol of 1-hydroxy-1,2,3-benzotriazole with this reaction solution. 27.1 g (0.055 mol) and 44.7 g (0.122 mol) of hexafluoro-2,2-bis (3-amino-4-hydroxyphenyl) propane together with 70 g of N-methyl-2-pyrrolidone And stirred at room temperature for 2 hours. Thereafter, the reaction was carried out by stirring at 75 ° C. for 12 hours using an oil bath. Next, 4.3 g (0.025 mol) of 4-ethynylphthalic anhydride dissolved in 21.5 g of N-methyl-2-pyrrolidone was added dropwise over 15 minutes. The mixture was stirred for 3 hours at 75 ° C. to complete the reaction. After filtering the reaction mixture, the reaction mixture was poured into a solution of water / methanol = 3/1 (volume ratio), the precipitate was collected by filtration, washed thoroughly with water, and then dried under vacuum to obtain the general formula (1) A polyamide resin (A-1) having the following formula X-1 and Y consisting of the following formulas Y-1 and Y-2 was synthesized. The weight average molecular weight (hereinafter referred to as Mw) of the obtained polyamide resin obtained by standard polystyrene calibration curve using gel permeation chromatography (hereinafter referred to as GPC) was 12200. The measurement conditions of GPC at this time are guard column: GL-S300 (manufactured by Hitachi, Ltd.), column: GL-S300MDT-5 (manufactured by Hitachi, Ltd.) × 2, column temperature: 30 ° C., Developing solvent: Tetrahydrofuran / N, N-dimethylformamide / phosphoric acid = 100/100/1 (volume ratio), Flow rate of developing solvent: 1.0 ml / min.
[0046]
Preparation of positive photosensitive resin composition
100 g of the synthesized polyamide resin (A-1) and 19 g of a photosensitive diazoquinone compound having the structure of the following formula (Q-1) are dissolved in 150 g of γ-butyrolactone, and then filtered through a 0.2 μm Teflon (R) filter. Type photosensitive resin composition was obtained.
[0047]
Characterization
This positive photosensitive resin composition was applied on a silicon wafer using a spin coater, and then prebaked on a hot plate at 120 ° C. for 4 minutes to obtain a coating film having a thickness of about 7 μm. Through this coating film, a mask made by Toppan Printing Co., Ltd. (test chart No. 1: a remaining pattern and a blanking pattern with a width of 0.88 to 50 μm are drawn), and an i-line stepper (Nikon Corporation 4425i) ) And changed the exposure amount.
Next, the exposed portion was dissolved and removed by immersing in an aqueous 2.38% tetramethylammonium hydroxide solution for 40 seconds, and then rinsed with pure water for 10 seconds. As a result, the exposure amount 250mJ / cm 2 It was confirmed that a pattern was formed from the portion irradiated with. (Sensitivity is 250mJ / cm 2 ). The resolution was as high as 3 μm.
Separately, a positive photosensitive resin composition was applied to a 6-inch silicon wafer so that the thickness after curing was 10 μm, and prebaked at 120 ° C. for 4 minutes. Next, the oxygen concentration was controlled to 2000 ppm or less in a clean oven, and curing was performed at 150 ° C./30 minutes + 210 ° C./180 minutes. Next, the obtained wafer was cut into a 10 mm strip using a dicing saw, and then a 2% HF aqueous solution (hydrofluoric acid) was used to obtain a film peeled from the wafer. Next, when the tensile elongation was measured with a tensile tester, it was as good as 18%.
A cured film is prepared on a 6-inch silicon wafer in the same manner as described above so that the thickness after curing becomes 10 μm, and then reverse sputtering (300 W) using Ar gas is performed using a sputtering apparatus (SPF-740H: manufactured by Anelva). / 90 sec), chromium was deposited to 0.05 μm and then copper to 0.2 μm. Next, resist EPPRA (manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied to a thickness of 5 μm and prebaked at 120 ° C./2 minutes. Subsequently, using PLA601 (manufactured by Canon Inc.), exposure was performed via a test pattern, development was performed with a dedicated developer for 1 minute, and then rinsed with a dedicated rinse solution for 1 minute and dried. Next, post-baking was performed at 120 ° C./2 minutes. Next, copper was etched for 30 seconds with Enplate AD-485 (manufactured by Meltex), rinsed with pure water for 1 minute, and dried. Further, chromium was etched with a mixed acid chromium etching solution (manufactured by Kanto Chemical Co., Inc.) for 30 seconds, rinsed with pure water for 1 minute, and dried. Next, the resist was peeled off using a special stripping solution, and the surface was observed.
[0048]
<Example 2>
Synthesis of polyamide resin
360.4 g of dicarboxylic acid derivative (active ester) obtained by reacting 0.9 mol of terephthalic acid, 0.1 mol of isophthalic acid and 2.0 mol of 1-hydroxy-1,2,3-benzotriazole 0.9 mol) and 366.3 g (1.0 mol) of hexafluoro-2,2-bis (3-amino-4-hydroxyphenyl) propane were added to a thermometer, a stirrer, a raw material inlet, and a dry nitrogen gas inlet tube. It was put into a four-necked separable flask, and 3000 g of N-methyl-2-pyrrolidone was added and dissolved. Thereafter, the mixture was reacted at 75 ° C. for 12 hours using an oil bath. Next, the temperature was lowered to 5 ° C. or less, and 32.9 g (0.2 mol) of 4-ethynylbenzoyl chloride dissolved in 100 g of N-methyl-2-pyrrolidone was added over 15 minutes, and further 17.4 g (0 .22 mol) was added. The reaction was terminated by stirring for 2 hours. After filtering the reaction mixture, the reaction mixture was poured into a solution of water / methanol = 3/1 (volume ratio), the precipitate was collected by filtration, washed thoroughly with water, and then dried under vacuum to obtain the general formula (1) A target polyamide resin (A-2) was obtained, wherein X is a mixture of the following formula X-1 and Y is a mixture of the following formulas Y-3 and Y-4. Mw obtained by using GPC for the molecular weight of the obtained polyamide resin was 29400.
[0049]
Preparation of positive photosensitive resin composition
100 g of the synthesized polyamide resin (A-2) and 21 g of a photosensitive diazoquinone compound having the structure of the following formula (Q-2) were dissolved in 150 g of γ-butyrolactone, and then filtered through a 0.2 μm Teflon (R) filter. Type photosensitive resin composition was obtained. Otherwise, the same evaluation as in Example 1 was performed.
[0050]
<Example 3>
Synthesis of polyamide resin
443.2 g (0) of a dicarboxylic acid derivative (active ester) obtained by reacting 1.0 mol of diphenyl ether-4,4′-dicarboxylic acid with 2.0 mol of 1-hydroxy-1,2,3-benzotriazole 0.9 mol) and 366.3 g (1.0 mol) of hexafluoro-2,2-bis (3-amino-4-hydroxyphenyl) propane were added to a thermometer, a stirrer, a raw material inlet, and a dry nitrogen gas inlet tube. It was put into a four-necked separable flask, and 3000 g of N-methyl-2-pyrrolidone was added and dissolved. Thereafter, the mixture was reacted at 75 ° C. for 12 hours using an oil bath. Next, 34.4 g (0.2 mol) of 4-ethynylphthalic anhydride dissolved in 100 g of N-methyl-2-pyrrolidone was added over 15 minutes, and the reaction was terminated by stirring for 3 hours. After filtering the reaction mixture, the reaction mixture was poured into a solution of water / methanol = 3/1 (volume ratio), the precipitate was collected by filtration, washed thoroughly with water, and then dried under vacuum to obtain the general formula (1) The target polyamide resin (A-3) was obtained, wherein X is the following formula X-1 and Y is the following formula Y-2. Mw obtained by using GPC for the molecular weight of the obtained polyamide resin was 22600.
[0051]
Preparation of positive photosensitive resin composition
100 g of the synthesized polyamide resin (A-3) and 13 g of a photosensitive diazoquinone compound having the structure of the following formula (Q-3) are dissolved in 150 g of γ-butyrolactone, and then filtered through a 0.2 μm Teflon (R) filter. Type photosensitive resin composition was obtained. Otherwise, the same evaluation as in Example 1 was performed.
[0052]
<Example 4>
Synthesis of polyamide resin
360.4 g of dicarboxylic acid derivative (active ester) obtained by reacting 0.9 mol of terephthalic acid, 0.1 mol of isophthalic acid and 2.0 mol of 1-hydroxy-1,2,3-benzotriazole .9 mol) and 348.0 g (0.95 mol) of hexafluoro-2,2-bis (3-amino-4-hydroxyphenyl) propane and 1,3-bis (3-aminopropyl) -1,1, 1,3-tetramethyldisiloxane (12.4 g, 0.05 mol) was placed in a four-necked separable flask equipped with a thermometer, stirrer, raw material inlet, and dry nitrogen gas inlet tube, and N-methyl-2 -3000 g of pyrrolidone was added and dissolved. Thereafter, the mixture was reacted at 75 ° C. for 12 hours using an oil bath. Next, the temperature was lowered to 5 ° C. or less, 32.9 g (0.2 mol) of 4-ethynylbenzoyl chloride dissolved in 100 g of N-methyl-2-pyrrolidone was added over 15 minutes, and further 17.4 g (0. 22 mol) was added. The reaction was terminated by stirring for 2 hours. After filtering the reaction mixture, the reaction mixture was poured into a solution of water / methanol = 3/1 (volume ratio), the precipitate was collected by filtration, washed thoroughly with water, and then dried under vacuum to obtain the general formula (1) A target polyamide resin (A-4) was obtained, wherein X is a mixture of the following formulas X-1, X-2, and Y is a mixture of the following formulas Y-3 and Y-4. Mw which calculated | required the molecular weight of the obtained polyamide resin using GPC was 16200.
[0053]
Preparation of positive photosensitive resin composition
100 g of the synthesized polyamide resin (A-4) and 20 g of a photosensitive diazoquinone compound having the structure of the following formula (Q-1) are dissolved in 150 g of γ-butyrolactone and then filtered through a 0.2 μm Teflon (R) filter. Type photosensitive resin composition was obtained. Otherwise, the same evaluation as in Example 1 was performed.
[0054]
<Example 5>
After dissolving 44.0 g (0.12 mol) of hexafluoro-2,2-bis (3-amino-4-hydroxyphenyl) propane in 200 g of N-methyl-2-pyrrolidone, N-methyl-2-pyrrolidone 50.6 g (0.24 mol) of trimellitic anhydride chloride dissolved in 160 g was added while cooling to 5 ° C. or lower. Further, 22.8 g (0.29 mol) of pyridine was added and stirred at 20 ° C. or lower for 3 hours. Next, after adding 48.0 '(diaminodiphenyl ether) 28.0g (0.14mol), it was made to react at room temperature for 5 hours. Next, the internal temperature was raised to 85 ° C. and the mixture was stirred for 3 hours. Next, 8.6 g (0.05 mol) of ethynylphthalic anhydride dissolved in 500 g of N-methyl-2-pyrrolidone was added, and the reaction was completed after stirring for 12 hours. After completion of the reaction, the filtered reaction mixture was poured into water / methanol = 5/1 (volume ratio), the precipitate was collected by filtration, washed thoroughly with water, and then dried under vacuum to obtain the general formula (1) A target polyamide resin (A-5) comprising a mixture of the following formulas X-1 and X-3 and Y consisting of the following formula Y-5 was synthesized. Mw which calculated | required the molecular weight of the obtained polyamide resin using GPC was 12800.
[0055]
Preparation of positive photosensitive resin composition
100 g of the synthesized polyamide resin (A-5) and 22 g of a photosensitive diazoquinone compound having the structure of the following formula (Q-1) were dissolved in 150 g of γ-butyrolactone, and then filtered through a 0.2 μm Teflon (R) filter. Type photosensitive resin composition was obtained. Otherwise, the same evaluation as in Example 1 was performed.
[0056]
<Example 6>
Synthesis of polyamide resin
443.2 g (0) of a dicarboxylic acid derivative (active ester) obtained by reacting 1.0 mol of diphenyl ether-4,4′-dicarboxylic acid with 2.0 mol of 1-hydroxy-1,2,3-benzotriazole 0.9 mol) and 366.3 g (1.0 mol) of hexafluoro-2,2-bis (3-amino-4-hydroxyphenyl) propane were added to a thermometer, a stirrer, a raw material inlet, and a dry nitrogen gas inlet tube. It was put into a four-necked separable flask, and 3000 g of N-methyl-2-pyrrolidone was added and dissolved. Thereafter, the mixture was reacted at 75 ° C. for 12 hours using an oil bath. Next, 49.6 g (0.2 mol) of phenylethynylphthalic anhydride dissolved in 250 g of N-methyl-2-pyrrolidone was added over 15 minutes, and the reaction was terminated by stirring for 3 hours. After filtering the reaction mixture, the reaction mixture was poured into a solution of water / methanol = 3/1 (volume ratio), the precipitate was collected by filtration, washed thoroughly with water, and then dried under vacuum to obtain the general formula (1) A target polyamide resin (A-6) was obtained, wherein X is represented by the following formula X-1 and Y is represented by the following formula Y-2. Mw obtained by using GPC for the molecular weight of the obtained polyamide resin was 26400.
[0057]
Preparation of positive photosensitive resin composition
100 g of the synthesized polyamide resin (A-6) and 19 g of a photosensitive diazoquinone compound having the structure of the following formula (Q-1) were dissolved in 150 g of γ-butyrolactone and then filtered through a 0.2 μm Teflon (R) filter. Type photosensitive resin composition was obtained. Otherwise, the same evaluation as in Example 1 was performed.
[0058]
<Comparative Example 1>
A thermometer containing 17.1 g (0.055 mol) of 4,4′-oxydiphthalic anhydride, 8.2 g (0.110 mol) of 2-methyl-2-propanol and 10.9 g (0.138 mol) of pyridine. Into a four-necked separable flask equipped with a stirrer, a raw material inlet, and a dry nitrogen gas inlet tube, 150 g of N-methyl-2-pyrrolidone was added and dissolved. 14.9 g (0.110 mol) of 1-hydroxy-1,2,3-benzotriazole was added dropwise to this reaction solution together with 30 g of N-methyl-2-pyrrolidone, and then 22.7 g (0.110 mol) of dicyclohexylcarbodiimide. Was added dropwise together with 50 g of N-methyl-2-pyrrolidone and allowed to react overnight at room temperature. Thereafter, a dicarboxylic acid derivative (active ester) obtained by reacting 1.0 mol of diphenyl ether-4,4′-dicarboxylic acid and 2.0 mol of 1-hydroxy-1,2,3-benzotriazole with this reaction solution. 27.1 g (0.055 mol), 44.8 g (0.077 mol) of hexafluoro-2,2-bis (3-amino-4-hydroxyphenyl) propane, 3.9 g (0.033 mol) of ethynylaniline ) Was added together with 70 g of N-methyl-2-pyrrolidone and stirred at room temperature for 2 hours. Thereafter, the reaction was carried out by stirring at 75 ° C. for 12 hours using an oil bath. After filtering the reaction mixture, the reaction mixture was poured into a solution of water / methanol = 3/1 (volume ratio), the precipitate was collected by filtration, washed thoroughly with water, and then dried under vacuum to obtain the general formula (1) A polyamide resin (A-7) having the following formula X-1 and Y consisting of the following formulas Y-1 and Y-2 was synthesized. Mw which calculated | required the molecular weight of the obtained polyamide resin using GPC was 7800.
Evaluation was performed in the same manner as in Example 1 using the polyamide thus obtained.
[0059]
<Comparative example 2>
49.2 g (0) of dicarboxylic acid derivative (active ester) obtained by reacting 1.0 mol of diphenyl ether-4,4′-dicarboxylic acid with 2.0 mol of 1-hydroxy-1,2,3-benzotriazole .10 mol) and 33.0 g (0.09 mol) of hexafluoro-2,2-bis (3-amino-4-hydroxyphenyl) propane, a thermometer, a stirrer, a raw material inlet, and a dry nitrogen gas inlet tube Was added to a four-necked separable flask, and 500 g of N-methyl-2-pyrrolidone was added and dissolved. Thereafter, using an oil bath, the temperature was raised to 75 ° C., and the mixture was stirred for 1 hour.
[0060]
<Comparative Example 3>
Synthesis of polyamide resin
443.2 g (0) of a dicarboxylic acid derivative (active ester) obtained by reacting 1.0 mol of diphenyl ether-4,4′-dicarboxylic acid with 2.0 mol of 1-hydroxy-1,2,3-benzotriazole 0.9 mol) and 366.3 g (1.0 mol) of hexafluoro-2,2-bis (3-amino-4-hydroxyphenyl) propane were added to a thermometer, a stirrer, a raw material inlet, and a dry nitrogen gas inlet tube. It was put into a four-necked separable flask, and 3000 g of N-methyl-2-pyrrolidone was added and dissolved. Thereafter, the mixture was reacted at 75 ° C. for 12 hours using an oil bath. Next, 32.8 g (0.2 mol) of 5-norbornene-2,3-dicarboxylic anhydride dissolved in 160 g of N-methyl-2-pyrrolidone was added over 15 minutes, and the reaction was terminated by stirring for 3 hours. did. After filtering the reaction mixture, the reaction mixture was poured into a solution of water / methanol = 3/1 (volume ratio), the precipitate was collected by filtration, washed thoroughly with water, and then dried under vacuum to obtain the general formula (1) The objective polyamide resin (A-8) which is shown by these and X consists of following formula X-1 and Y consists of following formula Y-2 was obtained. Mw which calculated | required the molecular weight of the obtained polyamide resin using GPC was 18800.
[0061]
Preparation of positive photosensitive resin composition
100 g of the synthesized polyamide resin (A-8) and 19 g of a photosensitive diazoquinone compound having the structure of the following formula (Q-1) were dissolved in 150 g of γ-butyrolactone, and then filtered through a 0.2 μm Teflon (R) filter. Type photosensitive resin composition was obtained. Otherwise, the same evaluation as in Example 1 was performed.
[0062]
In Examples 1 to 6, excellent coating properties such as an elongation of 10 to 22% were obtained, and no cracks were observed in the multilayer evaluation. However, in Comparative Example 1, the molecular weight does not increase, the elongation is low, and cracks are generated. In Comparative Example 2, gelation occurs when the reaction is performed with an excess of acid, and the end treatment agent used in Comparative Example 3 has low elongation and cracks. Also occurred.
[0063]
Below, the structure of an Example and a comparative example is shown.
[0064]
Embedded image
Figure 0004206709
[0065]
Embedded image
Figure 0004206709
[0066]
Embedded image
Figure 0004206709
[0067]
[Table 1]
Figure 0004206709
[0068]
[Table 2]
Figure 0004206709
[0069]
【The invention's effect】
The positive photosensitive resin composition of the present invention has excellent film characteristics in low-temperature curing at 300 ° C. or lower while maintaining conventional characteristics. Furthermore, it can be sufficiently applied to the process in the multilayering.

Claims (5)

一般式(1)で示されるポリアミド樹脂(A)とフェノール化合物と1,2−ナフトキノン−2−ジアジド−5−スルホン酸及び/又は1,2−ナフトキノン−2−ジアジド−4−スルホン酸とのエステル化合物(B)を含むことを特徴とするポジ型感光性樹脂組成物。
Figure 0004206709
A polyamide resin (A) represented by the general formula (1), a phenol compound and 1,2-naphthoquinone-2-diazide-5-sulfonic acid and / or 1,2-naphthoquinone-2-diazide-4-sulfonic acid A positive photosensitive resin composition comprising an ester compound (B).
Figure 0004206709
一般式(1)で示されるポリアミド樹脂中のXが、式(2)の群より選ばれてなる請求項1記載のポジ型感光性樹脂組成物。
Figure 0004206709
The positive photosensitive resin composition according to claim 1, wherein X in the polyamide resin represented by the general formula (1) is selected from the group of the formula (2).
Figure 0004206709
一般式(1)で示されるポリアミド樹脂中のYが、式(3)の群より選ばれてなる請求項1又は2記載のポジ型感光性樹脂組成物。
Figure 0004206709
The positive photosensitive resin composition according to claim 1 or 2, wherein Y in the polyamide resin represented by the general formula (1) is selected from the group of the formula (3).
Figure 0004206709
一般式(1)で示されるポリアミド樹脂が、ゲルパーミエーションクロマトグラフィを用いて、標準のポリスチレンの検量線により求めた重量平均分子量8000以上である請求項1〜のいずれかに記載のポジ型感光性
樹脂組成物。
The positive photosensitive resin according to any one of claims 1 to 3 , wherein the polyamide resin represented by the general formula (1) has a weight average molecular weight of 8000 or more obtained from a standard polystyrene calibration curve using gel permeation chromatography. Resin composition.
請求項1〜のいずれかに記載のポジ型感光性樹脂組成物を加熱脱水閉環後の膜厚が、0.1〜30μmになるように半導体素子上に塗布し、プリベーク、露光、現像、加熱して得られることを特徴とする半導体装置。The positive photosensitive resin composition according to any one of claims 1 to 4 is applied on a semiconductor element so that the film thickness after heat-dehydration and ring closure is 0.1 to 30 µm, and prebaking, exposure, development, A semiconductor device obtained by heating.
JP2002252566A 2002-08-12 2002-08-30 Positive photosensitive resin composition and semiconductor device Expired - Fee Related JP4206709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002252566A JP4206709B2 (en) 2002-08-12 2002-08-30 Positive photosensitive resin composition and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002234345 2002-08-12
JP2002252566A JP4206709B2 (en) 2002-08-12 2002-08-30 Positive photosensitive resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2004132994A JP2004132994A (en) 2004-04-30
JP4206709B2 true JP4206709B2 (en) 2009-01-14

Family

ID=32301007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002252566A Expired - Fee Related JP4206709B2 (en) 2002-08-12 2002-08-30 Positive photosensitive resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP4206709B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4911454B2 (en) 2006-09-19 2012-04-04 富士フイルム株式会社 Polybenzoxazole precursor, photosensitive resin composition using the same, and method for manufacturing semiconductor device
US8604113B2 (en) 2006-11-15 2013-12-10 Sumitomo Bakelite Co., Ltd. Photosensitive resin composition, insulating film, protective film, and electronic equipment
JP5169167B2 (en) * 2007-09-06 2013-03-27 住友ベークライト株式会社 Polyamide resin, positive photosensitive resin composition, cured film, protective film, insulating film, and semiconductor device and display device using the same
JP5169169B2 (en) * 2007-11-22 2013-03-27 住友ベークライト株式会社 Polyamide resin, positive photosensitive resin composition, cured film, protective film, insulating film, and semiconductor device and display device using the same
JP5029385B2 (en) * 2008-01-23 2012-09-19 日立化成デュポンマイクロシステムズ株式会社 Positive photosensitive resin precursor composition, method for producing patterned cured film, and electronic component
WO2010036170A1 (en) * 2008-09-23 2010-04-01 Nexam Chemical Ab Acetylenic polyamide
JP2014191252A (en) * 2013-03-28 2014-10-06 Sumitomo Bakelite Co Ltd Photosensitive resin composition, cured film, protective film, semiconductor device and display device

Also Published As

Publication number Publication date
JP2004132994A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
JPH09302221A (en) Positive photosensitive resin composition
JP4661245B2 (en) Positive photosensitive resin composition, semiconductor device and display element using the positive photosensitive resin composition, and manufacturing method of semiconductor device and display element
JP5050450B2 (en) Interlayer insulating film, positive photosensitive resin composition for forming protective film, protective film, interlayer insulating film, and semiconductor device and display element using the same
KR101067090B1 (en) Positive photosensitive resin composition, cured film, protective film, insulating film, and semiconductor device and display device therewith
JP4206709B2 (en) Positive photosensitive resin composition and semiconductor device
JPH11109620A (en) Positive photosensitive resin composition
JP4254177B2 (en) Positive photosensitive resin composition and semiconductor device
EP1400849B1 (en) Positive photosensitive resin compositions and semiconductor device
JP4040216B2 (en) Positive photosensitive resin composition and semiconductor device using the same
JP4569211B2 (en) Phenol compound, positive photosensitive resin composition, semiconductor device and display element, and method for manufacturing semiconductor device and display element
JP4379153B2 (en) Positive photosensitive resin composition and semiconductor device or display element using the same
JP4250935B2 (en) Positive photosensitive resin composition and semiconductor device
JP4325159B2 (en) Naphthoquinone diazide sulfonic acid ester, positive photosensitive resin composition and semiconductor device using the same
JP4159838B2 (en) Positive photosensitive resin composition and semiconductor device
JP4517723B2 (en) Naphthoquinonediazide sulfonic acid ester, positive photosensitive resin composition using the same, semiconductor device and display element
JP4581511B2 (en) Positive photosensitive resin composition, semiconductor device and display element, and method for manufacturing semiconductor device and display element
JP3839262B2 (en) Positive photosensitive resin composition and semiconductor device
JPH11143070A (en) Positive photosensitive resin composition
KR20110039441A (en) Positive-type photosensitive resin composition, cured film, protective film, insulating film, and semiconductor device and display device each comprising the cured film
JP3801379B2 (en) Positive photosensitive resin composition
JP2005010764A (en) Negative photosensitive resin composition, semiconductor device and display element, as well as method for manufacturing semiconductor device and display element
JP4345441B2 (en) Positive photosensitive resin composition and semiconductor device
JP4166058B2 (en) Positive photosensitive resin composition and semiconductor device
JP4517792B2 (en) Naphthoquinonediazide sulfonic acid ester, positive photosensitive resin composition, semiconductor device and display element using the positive photosensitive resin composition, and manufacturing method of semiconductor device and display element
JP2009108074A (en) Naphthoquinone diazide sulfonic acid ester, positive photosensitive resin composition using it, and semiconductor unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R150 Certificate of patent or registration of utility model

Ref document number: 4206709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees