JP2004052384A - Connecting structure of boring guider and synthetic steel pipe in tunnel boring machine - Google Patents

Connecting structure of boring guider and synthetic steel pipe in tunnel boring machine Download PDF

Info

Publication number
JP2004052384A
JP2004052384A JP2002211925A JP2002211925A JP2004052384A JP 2004052384 A JP2004052384 A JP 2004052384A JP 2002211925 A JP2002211925 A JP 2002211925A JP 2002211925 A JP2002211925 A JP 2002211925A JP 2004052384 A JP2004052384 A JP 2004052384A
Authority
JP
Japan
Prior art keywords
pipe
steel pipe
synthetic
synthetic steel
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002211925A
Other languages
Japanese (ja)
Other versions
JP3834273B2 (en
Inventor
Kenji Kotani
小谷 謙二
Taku Hirose
広瀬 卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Kikai Kogyo Co Ltd
Yachiyo Engineering Co Ltd
Original Assignee
Fuji Kikai Kogyo Co Ltd
Yachiyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Kikai Kogyo Co Ltd, Yachiyo Engineering Co Ltd filed Critical Fuji Kikai Kogyo Co Ltd
Priority to JP2002211925A priority Critical patent/JP3834273B2/en
Publication of JP2004052384A publication Critical patent/JP2004052384A/en
Application granted granted Critical
Publication of JP3834273B2 publication Critical patent/JP3834273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pipe jacking method of a high-load bearing force one-process system using a synthetic steel pipe in a tunnel boring machine for supposing a steel pipe sheath pipe system. <P>SOLUTION: A connecting pipe 20 is arranged between an excavation guider 10 and the synthetic steel pipe 30. The front face side of the connecting pipe 20 can be connected to the excavation guider 10, and the rear surface side can be connected to the synthetic steel pipe 30, respectively nonrotatably. The inside of the connecting pipe 20 is provided with a steel bar installing part 24 for fixing the front end of an extracting steel bar 72 arranged inside the synthetic steel pipe 30. The inside of the connecting pipe 20 is provided with a mud sending-discharging connecting pipe 25 for connecting a mud sending-discharging pipe port 181 of the excavation guider 10 and a mud sending-discharging pipe 71 on the synthetic steel pipe 30 side. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、小口径管推進工法に用いられる横穴掘進機の掘削先導体と合成鋼管との接続構造等に関し、詳細には、鋼管さや管方式用の横穴掘進機において、鋼管に代え、鋼管外殻の内側にコンクリートが遠心成型されてなる合成鋼管を施工する場合の接続構造等に関する。
【0002】
【従来の技術】
従来より、上下水道管等を地下に埋設配管する小口径管推進工法として、種々の用途に対応できるなど適用範囲の広い鋼管さや管方式が知られている。
【0003】
この鋼管さや管方式とは、推進管として鋼管(さや管)を用いる工法であり、掘削先導体で地盤を掘削しながら、その後ろに順次鋼管を溶接接続しながら押して推進していき、推進後に、鋼管(さや管)内に下水道本管、水道本管、電力ケーブル等を挿入し、さらにその周囲をコンクリート等で充填する工法である。
【0004】
この鋼管さや管方式では、掘削先導体と先頭の鋼管および順次継がれる鋼管同士は溶接によって接続されているため、不測の事態が生じた場合には、推進していた鋼管を発進立坑側から引っ張って順次引き戻すことができる。
【0005】
一方、鋼管内にコンクリートを遠心成型した合成鋼管等を用いた高耐荷力一工程方式も知られている。この合成鋼管は一般的なヒューム管と同様にそのまま上下水道管等として使用できる上、先行する管の後部に後続する管の前部を差し込むことで接続できるようになっている。このため、この合成鋼管を用いた高耐荷力一工程方式では、鋼管さや管方式のような推進後の本管挿入工程や充填工程が不要となる上、鋼管を接続するための溶接作業も不要となり、施工期間の短縮、施工コストの低減を図ることができる。
【0006】
【発明が解決しようとする課題】
しかしながら、従来、鋼管さや管方式を採用することが想定されている横穴掘進機では、管種の違いのために、合成鋼管を用いた高耐荷力一工程方式を採用することができなかった。
【0007】
すなわち、合成鋼管は差込式で接続されるため、掘進時に作用する圧縮には強いが、引張りには弱い。したがって、不測の事態が生じても、鋼管のように発進立坑側から合成鋼管を引っ張って引き戻すことができず、特別の対策を別途講じる必要がある。
【0008】
また、合成鋼管にはコンクリート層が形成されているため、鋼管より内径が小さい。したがって、掘削先導体から土砂を排出する送排泥管が合成鋼管内側のコンクリート層の高さ位置で干渉してしまう問題もある。
【0009】
本発明は、上記事情に鑑みてなされたものであり、鋼管さや管方式を行うことが想定されている横穴掘進機において、合成鋼管を用いた高耐荷力一工程方式の推進工法を実現することができる横穴掘進機における掘削先導体と合成鋼管との接続構造等を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するべく本発明は、地中で土砂や岩石を掘削する掘削先導体の後側に鋼管を順次溶接して接続しながら、これを発進立坑に設置した推進ジャッキで押して掘進する横穴掘進機において、鋼管外殻の内側にコンクリートが遠心成型され、各管の後部に後続する管の前部を挿入することで順次接続可能であるとともに、各管の前部に設けられた回り止め突起体が先行する各管の後部に設けられた嵌合孔に嵌合することで各管が相対回転不能に接続される合成鋼管を、前記鋼管に代えて施工するために前記掘削先導体と前記合成鋼管とを接続する接続構造であって、前記掘削先導体と前記合成鋼管との間に配置される接続管と、前記接続管の前面側に設けられ、前記掘削先導体の後面と相対回転不能かつ離間不能に接続される前側接続部と、前記接続管の後面側に設けられ、前記合成鋼管の前部が挿入されることで該合成鋼管と接続される後側接続部と、前記接続管の後面側に設けられ、前記後側接続部で接続された前記合成鋼管の前部に設けられた前記回り止め突起体が嵌合されることで、該合成鋼管と相対回転不能に接続する嵌合孔と、前記接続管の内部に設けられ、順次接続される前記合成鋼管の内側を通って発進立坑に至る引抜き用鋼棒の前端部を固定する取付部と、前記接続管の内部に設けられ、前記掘削先導体から掘削土砂を水流とともに排出するべく、該掘削先導体の後面の送排泥管口と順次接続された前記合成鋼管内を貫くように発進立坑まで接続される送排泥管とを接続する送排泥連絡管と、を備えたことを特徴とするものである。
【0011】
このような接続構造によると、接続管は合成鋼管の前部が挿入されることで合成鋼管と接続される後側接続部を備えているため、各合成鋼管同士を接続する場合と同様に、溶接作業を要することなく容易に短時間で接続管に合成鋼管を接続することができる。
【0012】
また、掘削先導体と接続管とは相対回転不能に接続され、合成鋼管の先頭の管と接続管とは、合成鋼管側に設けられている回り止め突起体が接続管の嵌合孔に嵌合することで回り止めが図られているため、横穴内に挿入される掘削先導体、接続管および合成鋼管のすべての相対回転を防止して、効率的に横穴の掘進を行うことができる。
【0013】
また、差込式で接続されるために引張りには弱い合成鋼管であるが、順次接続される合成鋼管の内側を通って発進立坑に至る引き抜き用鋼棒の前端部が、接続管に備えられた取付部にて固定されるため、不測の事態が生じた際には、この引抜き用鋼棒を発進立坑側から引っ張ることで接続管を発進立坑側に引っ張り、これによって順次接続された合成鋼管を先頭側から引き戻し方向に押して圧縮力を作用させながら引き戻すことができるとともに、接続管と離間不能に接続された掘削先導体も一緒に引き戻すことができる。
【0014】
また、コンクリート層が形成されているために鋼管より内径が小さい合成鋼管側の送排泥管の高さ位置が掘削先導体側の送排泥管口の高さ位置より高い位置にある場合であっても、接続管は両者を接続する送排泥連絡管を備えているため、掘削先導体で掘削される土砂を確実に発進立坑側に排出させ、円滑な掘進作業を実現することができる。
【0015】
以上のように、本発明にかかる接続構造によれば、鋼管さや管方式を行うことが想定された横穴掘進機を用いながら、鋼管と合成鋼管という管種の違いを克服して、鋼管の替わりに合成鋼管による高耐荷力一工程方式の推進工法を実現することができる。
【0016】
そして、合成鋼管を用いた高耐荷力一工程方式を実施することにより、鋼管さや管方式のような推進後の本管挿入工程や充填工程、さらに鋼管接続の溶接作業も不要となり、施工期間の短縮、施工コストの低減を図ることができる。
【0017】
また、本発明は、地中で土砂や岩石を掘削する掘削先導体の後側に鋼管を順次溶接して接続しながら、これを発進立坑に設置した推進ジャッキで押して掘進する横穴掘進機において、鋼管外殻の内側にコンクリートが遠心成型され、各管の後部に後続する管の前部を挿入することで順次接続可能であるとともに、各管の前部に設けられた回り止め突起体が先行する各管の後部に設けられた嵌合孔に嵌合することで各管が相対回転不能に接続される合成鋼管を、前記鋼管に代えて施工するために順次接続される前記合成鋼管の内側に配設されるサポート体であって、前記合成鋼管内を貫いて配設される引抜き用鋼棒および送排泥管をそれぞれ支持する支持部と、前記各支持部をそれぞれ前記合成鋼管の下方および側方の内側壁近傍に保持するように前記各支持部を連結する連結部と、前記合成鋼管内の下方および側方の内側壁との接触部分に設けられた合成樹脂からなる保護当たり部と、を備えたことを特徴とするものである。
【0018】
合成鋼管は、鋼管と違ってコンクリート層を持つために内径が小さくなるが、このようなサポート体によると、合成鋼管内に配設される引抜き用鋼棒および送排泥管を管内の下方及び側方の内側壁近傍に保持することができるため、推進中の合成鋼管の管断面の中央部を空隙とすることができる。これにより、空隙となった管断面の中央部を利用して、たとえば発進立坑から掘進目的方向に向けてガイドビームを照射することができ、このガイドビームを掘削先導体側で受光することで掘削先導体の掘進方向の直進性の判別・修正を容易かつ確実に行うことができる。
【0019】
また、サポート体には、合成鋼管内の下方および側方の内側壁との接触部分に設けられた合成樹脂からなる保護当たり部が設けられているため、合成鋼管の内壁を傷つけてしまうことを防止できる。
【0020】
【発明の実施の形態】
図1は、本発明の一実施形態にかかる横穴掘進機の全体システム構成の概略図である。
【0021】
この図に示すように、横穴掘進機を構成するシステムは、主要構成要素として、掘削先導体10、接続管20、推進管としての合成鋼管30…、出発立坑内に設置される推進機40、立坑周辺に設置される汚水処理部51、滑剤供給部52、操作盤53、油圧ユニット54、発電機55等を含む地上設備を備えている。
【0022】
掘削先導体10はカッターヘッド11によって地盤を掘削し、その後ろに順次合成鋼管30…が接続されながら、出発立坑側から推進機40によって押され、掘進していく。
【0023】
図2は、出発立坑内にセットされる掘削先導体10および推進機40を示す概略斜視図である。
【0024】
この図に示すように、掘削先導体10は、その先頭に設けられたカッターヘッド11、カッターヘッド11で掘削された土砂や岩片を砕くクラッシャーコーン12、カッターヘッド11等を駆動するカッターモータ13、掘進方向を調整する複数の方向修正ジャッキ14…、掘削方向を案内するガイドビームを受けるターゲットボックス15、ターゲットボックス15を撮影するカメラボックス16、掘削して生じた土砂を排出するための送排泥管18,18等を備えている。
【0025】
推進機40は、出発立坑に設置される推進フレーム41、推進フレーム41上で掘進方向に動作する左右一対の推進ジャッキ42,42、推進ジャッキ42,42の押圧駆動力を掘削先導体10に伝達するため、掘削先導体10や合成鋼管30の後面を押すプッシャー金具43、掘進方向を案内するガイドビームを照射するガイドビーム照射器44、推進反力に抗して推進フレーム41を支持する反力板45、および掘削される横穴からの漏水等を防止する止水坑口46等を備えている。なお、プッシャー金具43には、後述するように合成鋼管30の後面に設けられる嵌合孔37に嵌合する突起が設けられ、推進時に推進機40と最後尾の合成鋼管30との回り止めが図られている。
【0026】
図3は、接続管20および合成鋼管30の縦断面図、図4は、接続管20の縦断面詳細図、図5は、接続管20の後背面斜視図、図6は、合成鋼管30の一部切り欠き斜視図である。
【0027】
これらの図に示すように、接続管20は、掘削先導体10の後側で、合成鋼管30との間に配置される。なお、この接続管20は、掘進工程が完了した際、到達立坑から搬出され、掘進した横穴中に敷設するものではない。また、合成鋼管30の先頭の管301は、掘進初期の作業性を容易に確保するべく、後続の管302…よりも短いものが採用されている。
【0028】
接続管20の外形は、鋼製の管本体21によって形成されている。
【0029】
管本体21の前縁側は、半径方向および前後方向とも肉厚に形成されており、ここに、掘削先導体10の後面と接続するためのボルト孔(前側接続部)211…が設けられている。このボルト孔211…は、たとえば周方向に略等間隔に6カ所設けられている。一方、掘削先導体10側にも接続管20と接続するためのボルト孔17…が設けられており、接続管20側のボルト孔211…とボルト結合することによって、掘削先導体10と接続管20は、相対回転不能かつ離間不能な状態で結合される。なお、接続管20と掘削先導体10との接続は、相対回転不能かつ離間不能であれば、上記ボルト結合以外の結合形態を採用してもよい。
【0030】
管本体21の前後方向略中央部の上部には、滑剤又は薬液の注入孔212が設置されている。
【0031】
管本体21の後部は、外径が若干小径化され、周方向に2条の溝部を有する小径部213が形成されており、この溝部にゴム等の弾性体からなるシール部22が巻き掛けられて水密が保持された状態で、その外側に鋼板からなるカラー23が被されている。このカラー23は、その内側に合成鋼管30の前部が挿入されることで該合成鋼管30と差込式で接続される後側接続部を構成している。
【0032】
管本体21の後面上部には、後述する合成鋼管30の回り止め突起体36が嵌合され、接続管20と合成鋼管30とを相対回転不能に接続するための嵌合孔214が設けられている。
【0033】
このような構造によると、接続管20は前側接続部および後側接続部で掘削先導体10および合成鋼管との相対回転が防止されているため、効率的に横穴の掘進を行うことができる。
【0034】
管本体21内の後部近傍には、その左右両側に引抜き用鋼棒72,72の前端部を固定するための鋼棒取付部24、24が設けられている。引き抜き用鋼棒72,72とは、差込式で接続されるために引張りには弱い合成鋼管30を、不測の事態が生じたときに発進立坑に引き戻すことができるように、合成鋼管30の内側に配設される鋼棒である。
【0035】
鋼棒取付部24,24は、管本体21の後部左右両側からそれぞれ内側に突出するように設けられたリブ241、241に取り付け孔242,242が形成され、ここに支持金具243、243がそれぞれ装着されて構成されている。
【0036】
この支持金具243,243の前部は、取り付け孔242,242を前方に貫通して雄ねじが切られており、ここにそれぞれ2つのナット244…が取り付けられることで抜け止めされている。また、この支持金具243、243の後部には雌ねじが切られており、ここに雄ねじが切られた引き抜き用鋼棒72,72の前端部がねじ込み固定されるようになっている。さらに、引き抜き用鋼棒72,72に通されたナット244,244を支持金具243,243側に締めることで引き抜き用鋼棒72,72は、その前端部において支持金具243,243に確実に取り付けられるようになっている。
【0037】
このような鋼棒取付部24、24が合成鋼管30より前側の接続管20に設けられていることにより、不測の事態が生じた際には引抜き用鋼棒72,72を発進立坑側から引っ張ることで接続管20を発進立坑側に引っ張り、これによって順次接続された合成鋼管30を先頭側から引き戻し方向に押して圧縮力を作用させながら引き戻すことができる。なお、この引き戻し作業は、上述したプッシャー金具43に代えて、引き戻し用鋼棒72,72の後端を抜け止め状態で取り付け可能なプラー金具を推進機40に装着し、推進ジャッキ42の推進力を前後逆に作用させることによって行われる。
【0038】
管本体21内の下部には、掘削先導体10から掘削土砂を水流とともに排出するべく、掘削先導体10側の管路18,18と合成鋼管30側の管路71,71とをつなぐ送排泥連絡管25,25が配設されている。なお、この掘削土砂を排出する管路は、発進立坑側から掘削先導体10側に水流を送る送水管路と、掘削先導体10側から水流に掘削土砂が混ざった泥流を発進立坑側に戻す排泥管路との2本からなる。
【0039】
掘削先導体10側の管路18,18の管口181,181の高さ位置は、掘削先導体10の底部近傍に位置している。これは、この掘削先導体10が鋼管さや管方式を想定したもので、鋼管さや管方式に用いられる鋼管の内底高さ位置に合わせられているからである。すなわち、鋼管内の送排泥管は鋼管の内底上に置かれるのが通常の使用形態であったが、鋼管の内底高さは管の外側下面よりわずかに鋼板の厚さ分程度上方にあるだけだからである。
【0040】
一方、このような鋼管に代えて使用する合成鋼管30では、鋼管外殻の内側にコンクリート層が形成されるため、その内底高さは鋼管よりも上方に位置する。
【0041】
接続管20内に設けられる送排泥連絡管25,25は、その前部の管結合部252,252においてこのような掘削先導体10内の送排泥管口181と接続され、その後部において合成鋼管30内に配設される送排泥管71と接続される。このため、送排泥連絡管25,25の前後方向の中間部分は、前側(掘削先導体10側)より後側(合成鋼管30側)が高くなるように折り曲げられている。また、送排泥連絡管25,25の後部は、管受け251によって、合成鋼管30内の送排泥管71の高さ位置に下側から支持されている。このような送排泥連絡管25,25により、掘削先導体10で掘削される土砂を確実に発進立坑側に排出させ、円滑な掘進作業を実現することができる。
【0042】
合成鋼管30は、鋼管外殻31の内側に、コンクリート部32が遠心成形されて構成されている。この合成鋼管30の前部は外径が小径の差込部33となっており、後部は後続の管の差込部33が挿入可能な差込受け部35となっている。差込部33の周囲にはゴム等の弾性体からなるシール部34が2条に巻き掛けられており、先行する管の差込受け部35に後続の管の差込部33を挿入して、両管を接続した状態で、水密状態が保持されるようになっている。
【0043】
この差込部33の前面側には前方に突出する回り止め突起体36が設けられ、差込受け部35内の後面側には、前記回り止め突起体36に対応する位置に回り止め突起体36を挿入可能な嵌合孔37が形成されている。これにより、各合成鋼管30は、先行する管の差込受け部35に後続の管の差込部33を挿入して接続したとき、両管は相対的な回転が防止されるようになっている。
【0044】
各合成鋼管30の前後方向中間部には、合成鋼管30を発進立坑に搬入する際にクレーン等で吊り下げるための吊り下げ部38、38が、管の内側に掘り込まれるように2カ所形成されている。
【0045】
なお、このような合成鋼管30には、コンクリート部32の内側面が合成樹脂等によって表面被覆(内面ライニング)されているものや、あるいは内側面にコンクリートが露出したものを含む。
【0046】
このような合成鋼管30の内部には、横穴掘進中、上述した送排泥管(スラリ管)71,71や引抜き用鋼棒72,72、さらに、発進立坑側から掘削先導体10を駆動制御するための電力線や制御信号線、油圧管等が配設される。
【0047】
具体的には、合成鋼管30は、掘削先導体10が所定距離だけ掘進する毎に、発進立坑で最後尾の合成鋼管30の後ろに順次継ぎ足されていくが、この際、送排泥管71、71は管接続具74,74によって、また引き抜き用鋼棒72,72はカプラ73,73によって継ぎ足されていく。
【0048】
また、合成鋼管30内であって管断面の略中心領域には、発進立坑内のガイドビーム照射器44から照射される掘進の直進性を確保するためのガイドビームが通る。このため、各合成鋼管30内では、管断面の略中心領域にガイドビームを通す空隙を確実に確保できるように、上述した送排泥管71,71や引抜き用鋼棒72,72の配設位置を安定させて支持するサポート体60が取り付けられている。
【0049】
図7は、合成鋼管の一部を切り欠いたサポート体60の使用状態を示す斜視図、図8は、合成鋼管30内部の管断面図である。
【0050】
サポート体60は、ほぼ合成鋼管30の内周面に沿った円弧形状で、合成鋼管30内の内底部から左右両側部に至る円弧状枠体61を備える。この円弧状枠体61の左右方向中央位置には、送排泥管押さえ金具62が蝶ねじ63によって着脱可能に取り付けられている。これら円弧状枠体61と送排泥管押さえ金具62とが、送排泥管71,71を上下からに挟み込んで支持する送排泥管支持部64を形成している。この送排泥管支持部64により、送排泥管71,71は、合成鋼管30の下側内壁近傍に支持されている。
【0051】
また、円弧状枠体61の左右両端部には、それぞれ引き抜き用鋼棒72,72を支持する鋼棒支持部65,65が設けられている。この鋼棒支持部65,65により、引き抜き用鋼棒72,72は、合成鋼管30の左右両側の内壁近傍に支持されている。
【0052】
このように、円弧状枠体61は、これら送排泥管支持部64および鋼棒支持部65,65をそれぞれ所定位置に位置させながら連結する連結部として機能している。また、この円弧状枠体61の下側であって、合成鋼管30内の左右斜め下方の内壁面と接触する位置には、合成樹脂等の柔らかい材料で構成された保護当たり部66,66が、ねじ止めにて取り付けられている。サポート体60は、この保護当たり部66,66で合成鋼管30の内面と接触することによって、合成鋼管30の内面を傷つけることなく、合成鋼管30内で位置決めされるようになっている。
【0053】
このようなサポート体60によると、合成鋼管30内の送排泥管71,71および引き抜き用鋼棒72,72は、管の内壁近傍に安定して位置決めされる。合成鋼管30内には他にも電力線や制御信号線、油圧管等が配設されるが、これらは一般に可撓性を有するため、送排泥管71,71や引き抜き用鋼棒72,72等に巻き掛けることで容易に、内壁近傍に位置決めすることが可能である。こうして、合成鋼管30内に配設される各管等をその内壁近傍に位置決めすれば、コンクリート部32を有するために、鋼管さや管方式に用いられる鋼管より内径が小さく、管内のスペースが送排泥管その他で占拠されやすい合成鋼管30であるが、管の中央の領域を空隙として確保することができる。
【0054】
これにより、図8にガイドビームの通過する領域を仮想的なターゲット19で示すように、この空隙となった管の中央部の空隙にガイドビームを照射して掘削先導体10の掘進方向の直進性の判別・修正を容易かつ確実に行うことができる。
【0055】
以上のような接続管20を用いた接続構造によれば、鋼管さや管方式を行うことが想定された横穴掘進機を用いながら、鋼管と合成鋼管という管種の違いを克服して、鋼管の替わりに合成鋼管による高耐荷力一工程方式の推進工法を実現することができ、合成鋼管を用いた高耐荷力一工程方式を実施することにより、鋼管さや管方式のような推進後の本管挿入工程や充填工程、さらに鋼管接続の溶接作業も不要となり、施工期間の短縮、施工コストの低減を図ることができる。
【0056】
また、以上のようなサポート体60によれば、内径の小さい合成鋼管を用いながらも、その中央部に空隙を確保してガイドビームの利用を可能とし、直進掘削を確実に実現することができる。
【0057】
以上、本発明について一実施形態に基づいて説明したが、本発明は上記に限定されるものではなく、その要旨を変更しない範囲において、種々変形させてよいことはいうまでもない。
【0058】
【発明の効果】
以上のように、本発明にかかる横穴掘進機における掘削先導体と合成鋼管の接続構造によれば、鋼管さや管方式を行うことが想定された横穴掘進機を用いながら、鋼管と合成鋼管という管種の違いを克服して、鋼管の代わりに合成鋼管による高耐荷力一工程方式の推進工法を実現し、掘進後の本管挿入工程や充填工程、さらに鋼管接続の溶接作業を不要として、施工期間の短縮、施工コストの低減を図ることができる。
【0059】
また、横穴掘進機におけるサポート体によれば、合成鋼管の管断面の中央部を空隙として、ここに掘進目的方向を案内するガイドビームを照射することを可能とし、これにより掘進方向の直進性の判別・修正を容易かつ確実に行うことができる。
【図面の簡単な説明】
【図1】この発明の一実施形態にかかる横穴掘進機の全体構成概略図である。
【図2】横穴掘進機本体の一部切り欠き斜視図である。
【図3】接続管および合成鋼管の縦断面図である。
【図4】接続管の縦断面詳細図である。
【図5】接続管の後背面斜視図である。
【図6】合成鋼管の一部切り欠き斜視図である。
【図7】サポート体の使用状態を示す斜視図である。
【図8】合成鋼管の内部状態を示す断面図である。
【符号の説明】
10 掘削先導体
18 送排泥管
181 送排泥管口
19 ターゲット
20 接続管
211 ボルト孔(前側接続部)
214 嵌合孔
22 シール部
23 カラー(後側接続部)
24 鋼棒取付部
25 送排泥連絡管
30 合成鋼管
31 鋼管外殻部
32 コンクリート部
33 差込部
34 シール部
35 差込受け部
36 回り止め突起体
37 嵌合孔
40 推進機
41 推進フレーム
42 推進ジャッキ
43 プッシャー金具
44 ガイドビーム照射器
60 サポート体
61 円弧状枠体(連結部)
62 送排泥管押さえ金具
63 蝶ねじ
64 送排泥管支持部
65 鋼棒支持部
66 保護当たり部
71 送排泥管(スラリ管)
72 引き抜き用鋼棒
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a connection structure between a drilled conductor and a synthetic steel pipe of a lateral hole excavator used in a small-diameter pipe propulsion method, and more particularly, to a lateral hole excavator for a steel pipe sheath tube method, in which a steel pipe is replaced with a steel pipe. The present invention relates to a connection structure and the like when a synthetic steel pipe formed by centrifugally forming concrete inside a shell is constructed.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a small-diameter pipe propulsion method for burying water supply and sewage pipes underground and piping, a steel pipe sheath pipe method having a wide application range such as being applicable to various uses is known.
[0003]
The steel pipe sheathing method is a method of using steel pipes (sheath pipes) as propulsion pipes. While excavating the ground with the conductor to be excavated, sequentially pushing and welding the steel pipes behind it, pushing and propelling, In this method, a sewer main pipe, a water main pipe, a power cable, and the like are inserted into a steel pipe (sheath pipe), and the surrounding area is filled with concrete or the like.
[0004]
In this steel pipe sheathing method, the excavated conductor, the leading steel pipe, and the steel pipe to be successively connected are connected by welding, so in the event of an unexpected situation, the steel pipe being propelled is pulled from the starting shaft side. Can be pulled back one by one.
[0005]
On the other hand, a high-load-bearing one-step method using a synthetic steel pipe formed by centrifugally forming concrete in a steel pipe is also known. This synthetic steel pipe can be used as a water and sewage pipe as it is like a general fume pipe, and can be connected by inserting the front part of the following pipe into the rear part of the preceding pipe. For this reason, the high load-bearing one-step method using the synthetic steel pipe eliminates the need for the main pipe insertion step and filling step after propulsion as in the steel pipe sheathing method, and also eliminates the welding work for connecting the steel pipes. Thus, the construction period can be shortened and the construction cost can be reduced.
[0006]
[Problems to be solved by the invention]
However, conventionally, in a horizontal hole excavator which is assumed to adopt a steel pipe sheathing method, a high load-bearing one-step method using a synthetic steel pipe cannot be adopted due to a difference in pipe type.
[0007]
That is, since the synthetic steel pipe is connected by a plug-in type, it is strong against compression acting during excavation but weak against tension. Therefore, even if an unexpected situation occurs, the synthetic steel pipe cannot be pulled back from the starting shaft like a steel pipe, and special measures need to be taken separately.
[0008]
Further, since the concrete layer is formed on the synthetic steel pipe, the inner diameter is smaller than that of the steel pipe. Therefore, there is also a problem that the feed and discharge mud pipe for discharging earth and sand from the excavated conductor interferes at the height position of the concrete layer inside the synthetic steel pipe.
[0009]
The present invention has been made in view of the above circumstances, and realizes a high load-bearing one-step propulsion method using a synthetic steel pipe in a side-hole excavator that is supposed to perform a steel pipe sheathing method. It is an object of the present invention to provide a connection structure between a drilled conductor and a synthetic steel pipe in a lateral hole excavator capable of forming a hole.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a lateral hole for excavating by pushing a steel pipe to a backside of an excavated conductor for excavating earth and sand or rocks in the ground while sequentially welding and connecting the steel pipe with a propulsion jack installed in a starting shaft. In the excavator, concrete is centrifugally molded inside the outer shell of the steel pipe, and it can be connected sequentially by inserting the front part of the succeeding pipe at the rear of each pipe, and the detent provided at the front of each pipe A synthetic steel pipe to which each pipe is connected so that it cannot rotate relative to each other by fitting into a fitting hole provided at the rear part of each preceding pipe of the preceding pipe, and the excavated conductor for construction in place of the steel pipe. A connection structure for connecting the synthetic steel pipe, wherein a connection pipe disposed between the excavated conductor and the synthetic steel pipe, provided on a front side of the connection pipe, relative to a rear surface of the excavated conductor. Front contact that is non-rotatably and non-separably connected A rear connection portion provided on the rear surface side of the connection pipe and connected to the synthetic steel pipe by inserting a front portion of the synthetic steel pipe; and a rear connection portion provided on the rear surface side of the connection pipe, A fitting hole that is connected to the synthetic steel pipe so that it cannot rotate relative to the synthetic steel pipe by fitting the detent projection provided on the front part of the synthetic steel pipe connected by the side connection part; A mounting portion for fixing a front end of a drawing steel rod reaching the starting shaft through the inside of the synthetic steel pipe which is sequentially connected, and a mounting portion provided inside the connection pipe and excavated from the excavated conductor. Mud connection for connecting the mud pipe on the rear surface of the excavated conductor and the mud pipe connected to the starting shaft so as to penetrate the synthetic steel pipe which is sequentially connected so as to discharge with the water flow And a pipe.
[0011]
According to such a connection structure, since the connection pipe has the rear connection part connected to the synthetic steel pipe by inserting the front part of the synthetic steel pipe, similar to the case of connecting each synthetic steel pipe, The synthetic steel pipe can be easily connected to the connecting pipe in a short time without requiring a welding operation.
[0012]
Further, the excavated conductor and the connection pipe are connected so as to be relatively non-rotatable, and the leading pipe and the connection pipe of the synthetic steel pipe are fitted with the detent projections provided on the synthetic steel pipe side in the fitting holes of the connection pipe. Since the rotation is prevented by joining, all relative rotations of the excavated conductor, the connecting pipe, and the synthetic steel pipe inserted into the lateral hole can be prevented, and the lateral hole can be efficiently excavated.
[0013]
In addition, the connection pipe is a synthetic steel pipe that is weak against pulling because it is connected by a plug-in method, but the connection pipe is provided with a front end portion of a steel rod for drawing that passes through the inside of the sequentially connected synthetic steel pipe and reaches the starting shaft. In the event of an unforeseen situation, the steel pipe for pulling is pulled from the starting shaft side to pull the connecting pipe toward the starting shaft side, so that the synthetic steel pipes sequentially connected by this Can be pulled back from the head side in the pulling-back direction while applying a compressive force, and the excavated conductor connected irremovably to the connecting pipe can be pulled back together.
[0014]
Also, the case where the height position of the mud pipe on the synthetic steel pipe side smaller in inner diameter than the steel pipe due to the formation of the concrete layer is higher than the height position of the mud pipe port on the conductor side of the excavation destination. However, since the connecting pipe is provided with the sending and discharging mud connecting pipe that connects the two, the earth and sand excavated by the excavated conductor can be reliably discharged to the starting shaft side, and a smooth excavating operation can be realized.
[0015]
As described above, according to the connection structure according to the present invention, the steel pipe and the synthetic steel pipe are used to overcome the difference in the pipe type, and the steel pipe is replaced by using the side hole excavator which is assumed to perform the steel pipe sheathing method. In addition, it is possible to realize a one-step propulsion method with a high load-bearing capacity using a synthetic steel pipe.
[0016]
In addition, by implementing the one-step method with high load-bearing capacity using synthetic steel pipes, the main pipe insertion step and filling step after propulsion, such as the steel pipe sheath pipe method, and the welding work of the steel pipe connection are also unnecessary, and the construction period Shortening and reduction of construction costs can be achieved.
[0017]
The present invention also relates to a horizontal hole excavator that excavates by pushing a steel jack on a starting jack installed in a starting shaft while sequentially welding and connecting a steel pipe to a rear side of an excavating conductor for excavating earth and sand or rocks in the ground, Concrete is centrifugally molded inside the outer shell of the steel pipe, which can be connected sequentially by inserting the front part of the succeeding pipe into the rear part of each pipe, and the detent projections provided at the front part of each pipe lead. The synthetic steel pipes to which the respective pipes are connected to each other so as to be relatively non-rotatable by fitting into fitting holes provided at the rear portion of the respective pipes, the inside of the synthetic steel pipes which are sequentially connected in place of the steel pipes for construction. A support portion for supporting a drawing steel rod and a feed / discharge mud pipe which are provided through the inside of the synthetic steel pipe, respectively, and each of the support portions is provided below the synthetic steel pipe. And hold it near the side inner wall. A connecting portion for connecting the supporting portions, and a protection contact portion made of synthetic resin provided at a contact portion with the lower and side inner walls in the synthetic steel pipe. It is.
[0018]
Unlike a steel pipe, a synthetic steel pipe has a concrete layer and therefore has a smaller inner diameter.However, according to such a support body, a drawing steel rod and a feed / discharge pipe disposed in the synthetic steel pipe are located below and inside the pipe. Since it can be held near the lateral inner wall, the central portion of the cross section of the synthetic steel pipe being propelled can be a gap. Thus, a guide beam can be irradiated from the starting shaft to the excavation target direction, for example, by utilizing the central portion of the cross section of the pipe that has become an air gap. It is possible to easily and surely determine and correct the straightness of the excavation direction of the body.
[0019]
In addition, since the support body is provided with a protection contact portion made of synthetic resin provided at a portion in contact with the lower and side inner walls in the synthetic steel pipe, it is possible to prevent the inner wall of the synthetic steel pipe from being damaged. Can be prevented.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic diagram of the overall system configuration of a lateral excavator according to an embodiment of the present invention.
[0021]
As shown in this figure, the system constituting the horizontal excavator includes, as main components, a conductor 10 to be excavated, a connecting pipe 20, a synthetic steel pipe 30 as a propulsion pipe, a propulsion machine 40 installed in a starting shaft, Ground facilities including a sewage treatment section 51, a lubricant supply section 52, an operation panel 53, a hydraulic unit 54, a generator 55, and the like, which are installed around the shaft, are provided.
[0022]
The excavation destination conductor 10 excavates the ground by the cutter head 11, and is pushed by the propulsion device 40 from the departure shaft while excavating while the synthetic steel pipes 30 are sequentially connected to the excavation ground.
[0023]
FIG. 2 is a schematic perspective view showing the excavation destination conductor 10 and the propulsion device 40 set in the starting shaft.
[0024]
As shown in this figure, a conductor 10 to be excavated includes a cutter head 11 provided at the head thereof, a crusher cone 12 for crushing earth and sand or rock fragments excavated by the cutter head 11, a cutter motor 13 for driving the cutter head 11, and the like. A plurality of direction correcting jacks 14 for adjusting the excavation direction; a target box 15 for receiving a guide beam for guiding the excavation direction; a camera box 16 for photographing the target box 15; Tubes 18 and 18 are provided.
[0025]
The propulsion device 40 transmits the propulsion frame 41 installed in the starting shaft, the pair of left and right propulsion jacks 42, 42 operating in the excavation direction on the propulsion frame 41, and the pressing driving force of the propulsion jacks 42, to the excavation destination conductor 10. To do this, a pusher fitting 43 for pushing the back surface of the excavated conductor 10 or the synthetic steel pipe 30, a guide beam irradiator 44 for irradiating a guide beam for guiding the excavation direction, and a reaction force for supporting the propulsion frame 41 against the propulsion reaction force A plate 45 and a water stop hole 46 for preventing water leakage from the excavated lateral hole are provided. The pusher fitting 43 is provided with a projection that fits into a fitting hole 37 provided on the rear surface of the synthetic steel pipe 30 as described later, and prevents rotation between the propulsion device 40 and the last synthetic steel pipe 30 during propulsion. It is planned.
[0026]
3 is a longitudinal sectional view of the connecting pipe 20 and the synthetic steel pipe 30, FIG. 4 is a detailed longitudinal sectional view of the connecting pipe 20, FIG. 5 is a rear perspective view of the connecting pipe 20, and FIG. It is a partially cutaway perspective view.
[0027]
As shown in these drawings, the connecting pipe 20 is disposed between the excavated conductor 10 and the synthetic steel pipe 30. When the excavation process is completed, the connection pipe 20 is not carried out from the reaching shaft and is not laid in the excavated lateral hole. Further, as the first pipe 301 of the synthetic steel pipe 30, a pipe shorter than the subsequent pipes 302... Is adopted in order to easily secure workability at the beginning of excavation.
[0028]
The outer shape of the connection pipe 20 is formed by a steel pipe main body 21.
[0029]
The front edge side of the pipe main body 21 is formed thick in both the radial direction and the front-rear direction, and bolt holes (front connection portions) 211... For connection to the rear surface of the excavation destination conductor 10 are provided here. . The bolt holes 211 are provided at six locations at substantially equal intervals in the circumferential direction, for example. On the other hand, bolt holes 17 for connecting to the connection pipe 20 are also provided on the excavation destination conductor 10 side, and the excavation destination conductor 10 and the connection pipe are connected by bolting with the bolt holes 211 on the connection pipe 20 side. 20 are connected so that they cannot rotate relative to each other and cannot be separated. Note that the connection between the connection pipe 20 and the excavation destination conductor 10 may be a connection mode other than the bolt connection as long as the connection pipe 20 and the excavation destination conductor 10 cannot be relatively rotated and cannot be separated from each other.
[0030]
An injection hole 212 for a lubricant or a chemical solution is provided at an upper portion of a substantially central portion in the front-rear direction of the tube main body 21.
[0031]
The rear portion of the tube main body 21 has a slightly reduced outer diameter and is formed with a small diameter portion 213 having two grooves in the circumferential direction, and a seal portion 22 made of an elastic material such as rubber is wound around the groove. In a state where watertightness is maintained, a collar 23 made of a steel plate is covered on the outside thereof. The collar 23 constitutes a rear connection portion connected to the synthetic steel tube 30 in a plug-in manner by inserting a front portion of the synthetic steel tube 30 into the inside thereof.
[0032]
At the upper part of the rear surface of the pipe main body 21, a rotation preventing projection 36 of the synthetic steel pipe 30, which will be described later, is fitted, and a fitting hole 214 for connecting the connection pipe 20 and the synthetic steel pipe 30 so that they cannot rotate relatively is provided. I have.
[0033]
According to such a structure, since the connection pipe 20 is prevented from rotating relative to the excavated conductor 10 and the synthetic steel pipe at the front connection part and the rear connection part, it is possible to efficiently excavate the horizontal hole.
[0034]
In the vicinity of the rear part in the pipe main body 21, steel rod mounting parts 24, 24 for fixing the front ends of the drawing steel rods 72, 72 are provided on both left and right sides thereof. The synthetic steel pipe 30 is connected to the pull-out steel rods 72 and 72 by a plug-in method, so that the synthetic steel pipe 30 that is weak in tension can be pulled back to the starting shaft when an unexpected event occurs. It is a steel bar arranged inside.
[0035]
In the steel rod mounting portions 24, 24, mounting holes 242, 242 are formed in ribs 241, 241 provided so as to protrude inward from the left and right sides of the rear portion of the tube body 21, respectively, and support fittings 243, 243 are provided here. It is configured to be mounted.
[0036]
The front portions of the support brackets 243 and 243 are forwardly threaded through the mounting holes 242 and 242, and are externally threaded. Two nuts 244. Further, female screws are cut at rear portions of the support brackets 243 and 243, and front ends of the steel rods 72 and 72, which are cut with male screws, are screwed and fixed. Further, the nuts 244, 244 passed through the steel bars 72, 72 for pulling are tightened toward the support brackets 243, 243, so that the steel bars 72, 72 for pulling are securely attached to the support brackets 243, 243 at their front ends. It is supposed to be.
[0037]
By providing such steel rod mounting portions 24, 24 in the connecting pipe 20 on the front side of the synthetic steel pipe 30, in the event of an unexpected situation, the pulling steel rods 72, 72 are pulled from the starting shaft. Thus, the connecting pipe 20 is pulled toward the starting shaft, whereby the sequentially connected synthetic steel pipes 30 can be pushed from the leading side in the pulling direction and pulled back while applying a compressive force. In this pull-back operation, instead of the pusher fitting 43 described above, a puller fitting capable of attaching the rear ends of the pull-back steel rods 72, 72 in a retaining state is attached to the propulsion device 40, and the propulsion force of the propulsion jack 42 is attached. By acting in reverse.
[0038]
In the lower part of the pipe main body 21, in order to discharge excavated earth and sand from the excavated conductor 10 together with the water flow, the pipes 18, 18 on the excavated conductor 10 are connected to the pipelines 71, 71 on the synthetic steel pipe 30. Mud communication pipes 25, 25 are provided. The pipeline for discharging the excavated sediment includes a water supply pipeline for sending a water flow from the starting shaft to the excavating conductor 10, and a mud flow in which the excavated sediment is mixed with the water flow from the excavating conductor 10 to the starting shaft. It consists of two pipes, a return pipe and a return pipe.
[0039]
The height positions of the pipe openings 181 and 181 of the conduits 18 and 18 on the side of the excavation destination conductor 10 are located near the bottom of the excavation destination conductor 10. This is because the excavation destination conductor 10 is based on the steel pipe sheathing method and is adjusted to the inner bottom height position of the steel pipe used for the steel pipe sheathing method. In other words, the pipe used in the steel pipe is usually placed on the inner bottom of the steel pipe, but the height of the inner bottom of the steel pipe is slightly higher than the lower surface of the outside of the pipe by the thickness of the steel plate. Because there is only
[0040]
On the other hand, in the synthetic steel pipe 30 used in place of such a steel pipe, since the concrete layer is formed inside the steel pipe outer shell, the inner bottom height is located higher than the steel pipe.
[0041]
The mud feeding / discharging communication pipes 25, 25 provided in the connecting pipe 20 are connected to such a mud sending / discharging pipe port 181 in the excavation destination conductor 10 at pipe connecting portions 252, 252 at a front portion thereof, and at a rear portion thereof. It is connected to a feed / discharge mud pipe 71 provided in the synthetic steel pipe 30. For this reason, the middle part in the front-back direction of the feeding and discharging mud connecting pipes 25, 25 is bent so that the rear side (the synthetic steel pipe 30 side) is higher than the front side (the excavation destination conductor 10 side). Further, the rear part of the feed / discharge communication pipes 25, 25 is supported from below by a pipe receiver 251 at the height position of the feed / discharge mud pipe 71 in the synthetic steel pipe 30. By such feed / discharge communication pipes 25, 25, the earth and sand excavated by the excavation destination conductor 10 can be reliably discharged to the starting shaft, and a smooth excavation work can be realized.
[0042]
The synthetic steel pipe 30 is formed by centrifugally forming a concrete part 32 inside a steel pipe outer shell 31. The front part of the synthetic steel pipe 30 is an insertion part 33 having a small outer diameter, and the rear part is an insertion receiving part 35 into which the insertion part 33 of the subsequent pipe can be inserted. Around the insertion portion 33, a seal portion 34 made of an elastic material such as rubber is wound around two lines, and the insertion portion 33 of the following tube is inserted into the insertion receiving portion 35 of the preceding tube. In a state where both pipes are connected, a watertight state is maintained.
[0043]
On the front surface side of the insertion portion 33, a detent protrusion 36 projecting forward is provided, and on the rear surface side of the insertion receiving portion 35, a detent protrusion is provided at a position corresponding to the detent protrusion 36. A fitting hole 37 into which a can be inserted is formed. Thereby, when each synthetic steel pipe 30 is connected by inserting the insertion part 33 of the succeeding pipe into the insertion receiving part 35 of the preceding pipe, the two pipes are prevented from rotating relative to each other. I have.
[0044]
At the middle part in the front-rear direction of each synthetic steel pipe 30, two suspending portions 38, 38 for hanging the synthetic steel pipe 30 by a crane or the like when carrying the synthetic steel pipe 30 into the starting shaft are formed so as to be dug into the inside of the pipe. Have been.
[0045]
In addition, such a synthetic steel pipe 30 includes one in which the inner surface of the concrete portion 32 is surface-coated (inner lining) with a synthetic resin or the like, or one in which concrete is exposed on the inner surface.
[0046]
In the inside of such a synthetic steel pipe 30, during the horizontal hole excavation, the above-mentioned sending and discharging mud pipes (slurry pipes) 71, 71, the drawing steel rods 72, 72, and further, the drive control of the excavating conductor 10 from the starting shaft side. Power lines, control signal lines, hydraulic pipes, and the like.
[0047]
Specifically, the synthetic steel pipe 30 is successively added behind the last synthetic steel pipe 30 at the starting shaft each time the excavated conductor 10 digs for a predetermined distance. , 71 are connected by pipe fittings 74, 74, and the pull-out steel bars 72, 72 are connected by couplers 73, 73.
[0048]
Further, a guide beam for ensuring the straightness of excavation irradiated from the guide beam irradiator 44 in the starting shaft passes through the synthetic steel pipe 30 and in a substantially central region of the cross section of the pipe. For this reason, in each of the synthetic steel pipes 30, the above-described feed / discharge mud pipes 71, 71 and the drawing steel rods 72, 72 are arranged so that a gap for passing the guide beam can be secured in a substantially central region of the pipe cross section. A support body 60 that stably supports the position is attached.
[0049]
FIG. 7 is a perspective view showing a use state of the support body 60 in which a part of the synthetic steel pipe is cut away, and FIG. 8 is a cross-sectional view of the inside of the synthetic steel pipe 30.
[0050]
The support body 60 has an arc shape substantially along the inner peripheral surface of the synthetic steel pipe 30, and includes an arc-shaped frame body 61 extending from the inner bottom to the left and right sides in the synthetic steel pipe 30. At the center in the left-right direction of the arc-shaped frame 61, a feeding and discharging pipe holding metal fitting 62 is detachably attached by a thumb screw 63. The arc-shaped frame 61 and the feed / discharge pipe holding member 62 form a feed / discharge pipe supporting portion 64 that sandwiches and supports the feed / discharge pipes 71 from above and below. The mud pipes 71 are supported by the mud pipe support 64 near the lower inner wall of the synthetic steel pipe 30.
[0051]
Further, steel bar support portions 65, 65 for supporting the drawing steel bars 72, 72 are provided at the left and right end portions of the arc-shaped frame 61, respectively. The steel bar supporting portions 65 support the drawing steel bars 72 near the inner walls on both left and right sides of the synthetic steel pipe 30.
[0052]
As described above, the arc-shaped frame 61 functions as a connecting portion that connects the feeding / discharging pipe supporting portion 64 and the steel rod supporting portions 65, 65 while positioning them at predetermined positions. Further, protection contact portions 66, 66 made of a soft material such as a synthetic resin are provided below the arc-shaped frame body 61 at a position in contact with the inner wall surface obliquely below the left and right in the synthetic steel pipe 30. , Mounted with screws. The support body 60 is positioned in the synthetic steel pipe 30 without damaging the inner surface of the synthetic steel pipe 30 by contacting the inner surfaces of the synthetic steel pipe 30 at the protection contact portions 66, 66.
[0053]
According to such a support body 60, the feeding / discharging pipes 71, 71 and the drawing steel rods 72, 72 in the synthetic steel pipe 30 are stably positioned near the inner wall of the pipe. Power lines, control signal lines, hydraulic lines, and the like are also provided in the synthetic steel tube 30. These lines are generally flexible, and therefore, are provided with the sending / discharging pipes 71, 71 and the drawing steel rods 72, 72. It can be easily positioned in the vicinity of the inner wall by winding around. In this way, when the pipes and the like disposed in the synthetic steel pipe 30 are positioned near the inner wall thereof, the inner diameter is smaller than that of the steel pipe used for the steel pipe sheath because the concrete section 32 is provided. Although the synthetic steel pipe 30 is easily occupied by a mud pipe or the like, a central area of the pipe can be secured as a void.
[0054]
As a result, as shown by a virtual target 19 in FIG. 8, a region through which the guide beam passes is illuminated with the guide beam in the central portion of the tube that has become the void, and the excavated conductor 10 travels straight in the digging direction. Sex determination and correction can be easily and reliably performed.
[0055]
According to the connection structure using the connection pipe 20 as described above, the difference in the pipe type between the steel pipe and the synthetic steel pipe is overcome while using the side hole excavator supposed to perform the steel pipe sheathing method. Instead, a high load-bearing one-step propulsion method using synthetic steel pipes can be realized, and by implementing a high load-bearing one-step method using synthetic steel pipes, the main pipe after propulsion such as a steel pipe sheath pipe method can be realized. The insertion step, the filling step, and the welding work of the steel pipe connection are not required, so that the construction period can be shortened and the construction cost can be reduced.
[0056]
Moreover, according to the support body 60 as described above, while using a synthetic steel pipe having a small inner diameter, a gap is secured at the center thereof to enable use of the guide beam, and straight excavation can be reliably realized. .
[0057]
As described above, the present invention has been described based on one embodiment, but the present invention is not limited to the above, and it goes without saying that various modifications may be made without departing from the scope of the invention.
[0058]
【The invention's effect】
As described above, according to the connection structure of the excavated conductor and the synthetic steel pipe in the horizontal hole excavator according to the present invention, while using a horizontal hole excavator that is assumed to perform a steel pipe sheathing method, a pipe called a steel pipe and a synthetic steel pipe is used. Overcoming the differences between types, realizing a high-load-bearing one-step propulsion method using synthetic steel pipes instead of steel pipes, eliminating the need for main pipe insertion and filling processes after excavation and welding work for steel pipe connections. It is possible to shorten the period and reduce the construction cost.
[0059]
In addition, according to the support body in the lateral hole excavator, it is possible to irradiate a guide beam that guides the excavation target direction to the central portion of the cross section of the synthetic steel pipe as a gap, thereby enabling the straightness of the excavation direction to be improved. Determination and correction can be performed easily and reliably.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of the overall configuration of a lateral excavation machine according to an embodiment of the present invention.
FIG. 2 is a partially cutaway perspective view of the main body of the lateral excavation machine.
FIG. 3 is a longitudinal sectional view of a connecting pipe and a synthetic steel pipe.
FIG. 4 is a detailed longitudinal sectional view of a connecting pipe.
FIG. 5 is a rear rear perspective view of a connection pipe.
FIG. 6 is a partially cutaway perspective view of a synthetic steel pipe.
FIG. 7 is a perspective view showing a use state of the support body.
FIG. 8 is a sectional view showing an internal state of the synthetic steel pipe.
[Explanation of symbols]
10 Excavation destination conductor 18 Feeding / discharging pipe 181 Sending / discharging pipe port 19 Target 20 Connecting pipe 211 Bolt hole (front side connection part)
214 fitting hole 22 seal part 23 collar (rear connection part)
24 Steel rod attachment part 25 Feeding and discharging mud connecting pipe 30 Synthetic steel pipe 31 Steel pipe outer shell part 32 Concrete part 33 Insertion part 34 Seal part 35 Insertion receiving part 36 Detent stopper 37 Fitting hole 40 Propulsion unit 41 Propulsion frame 42 Propulsion jack 43 Pusher fitting 44 Guide beam irradiator 60 Support body 61 Arc-shaped frame (connection part)
62 Sludge pipe holding fitting 63 Thumb screw 64 Sludge pipe support part 65 Steel rod support part 66 Protection contact part 71 Sludge pipe (slurry pipe)
72 Steel bar for drawing

Claims (2)

地中で土砂や岩石を掘削する掘削先導体の後側に鋼管を順次溶接して接続しながら、これを発進立坑に設置した推進ジャッキで押して掘進する横穴掘進機において、
鋼管外殻の内側にコンクリートが遠心成型され、各管の後部に後続する管の前部を挿入することで順次接続可能であるとともに、各管の前部に設けられた回り止め突起体が先行する各管の後部に設けられた嵌合孔に嵌合することで各管が相対回転不能に接続される合成鋼管を、前記鋼管に代えて施工するために前記掘削先導体と前記合成鋼管とを接続する接続構造であって、
前記掘削先導体と前記合成鋼管との間に配置される接続管と、
前記接続管の前面側に設けられ、前記掘削先導体の後面と相対回転不能かつ離間不能に接続される前側接続部と、
前記接続管の後面側に設けられ、前記合成鋼管の前部が挿入されることで該合成鋼管と接続される後側接続部と、
前記接続管の後面側に設けられ、前記後側接続部で接続された前記合成鋼管の前部に設けられた前記回り止め突起体が嵌合されることで、該合成鋼管と相対回転不能に接続する嵌合孔と、
前記接続管の内部に設けられ、順次接続される前記合成鋼管の内側を通って発進立坑に至る引抜き用鋼棒の前端部を固定する取付部と、
前記接続管の内部に設けられ、前記掘削先導体から掘削土砂を水流とともに排出するべく、該掘削先導体の後面の送排泥管口と順次接続された前記合成鋼管内を貫くように発進立坑まで接続される送排泥管とを接続する送排泥連絡管と、
を備えたことを特徴とする横穴掘進機における先導体と合成鋼管との接続構造。
While welding and connecting steel pipes sequentially to the back of the excavated conductor to excavate earth and sand and rocks in the ground, pushing this with a propulsion jack installed in the starting shaft and excavating it,
Concrete is centrifugally molded inside the outer shell of the steel pipe, which can be connected sequentially by inserting the front part of the succeeding pipe into the rear part of each pipe, and the detent projections provided at the front part of each pipe lead. The excavated conductor and the synthetic steel pipe are used to construct a synthetic steel pipe to which the respective pipes are connected to each other so as to be relatively non-rotatable by being fitted into a fitting hole provided at a rear portion of each pipe. Connection structure for connecting
A connection pipe disposed between the excavated conductor and the synthetic steel pipe,
A front connection portion provided on the front side of the connection pipe and connected to the rear surface of the excavation destination conductor so as to be relatively non-rotatable and non-separable,
A rear connection portion provided on a rear surface side of the connection pipe and connected to the synthetic steel pipe by inserting a front portion of the synthetic steel pipe,
The detents provided on the rear side of the connection pipe and provided on the front part of the synthetic steel pipe connected at the rear connection part are fitted to prevent relative rotation with the synthetic steel pipe. A mating hole to be connected;
An attachment portion that is provided inside the connection pipe and fixes a front end of a drawing steel rod that reaches the starting shaft through the inside of the synthetic steel pipe that is sequentially connected,
A starting shaft is provided inside the connecting pipe and penetrates through the synthetic steel pipe which is sequentially connected to a feed and discharge mud pipe opening on the rear surface of the excavating conductor so as to discharge excavated earth and sand from the excavating conductor together with a water flow. A mud pipe connecting the mud pipe connected to the
A connection structure between a leading conductor and a synthetic steel pipe in a horizontal hole excavator, comprising:
地中で土砂や岩石を掘削する掘削先導体の後側に鋼管を順次溶接して接続しながら、これを発進立坑に設置した推進ジャッキで押して掘進する横穴掘進機において、
鋼管外殻の内側にコンクリートが遠心成型され、各管の後部に後続する管の前部を挿入することで順次接続可能であるとともに、各管の前部に設けられた回り止め突起体が先行する各管の後部に設けられた嵌合孔に嵌合することで各管が相対回転不能に接続される合成鋼管を、前記鋼管に代えて施工するために順次接続される前記合成鋼管の内側に配設されるサポート体であって、
前記合成鋼管内を貫いて配設される引抜き用鋼棒および送排泥管をそれぞれ支持する支持部と、
前記各支持部をそれぞれ前記合成鋼管の下方および側方の内側壁近傍に保持するように前記各支持部を連結する連結部と、
前記合成鋼管内の下方および側方の内側壁との接触部分に設けられた合成樹脂からなる保護当たり部と、
を備えたことを特徴とする横穴掘進機におけるサポート体。
While welding and connecting steel pipes sequentially to the back of the excavated conductor to excavate earth and sand and rocks in the ground, pushing this with a propulsion jack installed in the starting shaft and excavating it,
Concrete is centrifugally molded inside the outer shell of the steel pipe, which can be connected sequentially by inserting the front part of the succeeding pipe into the rear part of each pipe, and the detent projections provided at the front part of each pipe lead. The synthetic steel pipes to which the respective pipes are connected to each other so as to be relatively non-rotatable by fitting into fitting holes provided at the rear portion of the respective pipes, the inside of the synthetic steel pipes which are sequentially connected in place of the steel pipes for construction. A support body disposed in the
A support portion for supporting a drawing steel rod and a feeding / discharging pipe each disposed through the synthetic steel pipe;
A connecting portion that connects the support portions so as to hold the support portions near the lower and side inner walls of the synthetic steel pipe,
A protection contact portion made of a synthetic resin provided at a contact portion with the lower and side inner walls in the synthetic steel pipe,
A support body for a horizontal hole excavator, comprising:
JP2002211925A 2002-07-22 2002-07-22 Connection structure between the drilling conductor and the synthetic steel pipe in the horizontal hole excavator Expired - Fee Related JP3834273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002211925A JP3834273B2 (en) 2002-07-22 2002-07-22 Connection structure between the drilling conductor and the synthetic steel pipe in the horizontal hole excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002211925A JP3834273B2 (en) 2002-07-22 2002-07-22 Connection structure between the drilling conductor and the synthetic steel pipe in the horizontal hole excavator

Publications (2)

Publication Number Publication Date
JP2004052384A true JP2004052384A (en) 2004-02-19
JP3834273B2 JP3834273B2 (en) 2006-10-18

Family

ID=31934991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002211925A Expired - Fee Related JP3834273B2 (en) 2002-07-22 2002-07-22 Connection structure between the drilling conductor and the synthetic steel pipe in the horizontal hole excavator

Country Status (1)

Country Link
JP (1) JP3834273B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113503398A (en) * 2021-08-04 2021-10-15 江苏阔景建设工程有限公司 Trenchless pipeline and construction method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113503398A (en) * 2021-08-04 2021-10-15 江苏阔景建设工程有限公司 Trenchless pipeline and construction method thereof

Also Published As

Publication number Publication date
JP3834273B2 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
WO1994020730A1 (en) Double wall pipe for propulsion technique and construction of pipe end of leading pipe
JP2004052384A (en) Connecting structure of boring guider and synthetic steel pipe in tunnel boring machine
JP2007040018A (en) Tunnel structure for branch section or junction section of underground passage and its execution method
JP2008082068A (en) Backing preventing device
JP3170215B2 (en) Pipe burial method
JP4047478B2 (en) Thrust transmission device
JP4410404B2 (en) Propulsion device
JP4266851B2 (en) Propulsion drilling rig
JP6132672B2 (en) Existing pipe renewal method
JP5657472B2 (en) Muddy water type reconstruction propulsion device
JP2006291649A (en) Construction method for underground structure
JP3350647B2 (en) Slim lining method for small diameter tunnels
JP3640805B2 (en) Pipe propulsion machine
JP7389698B2 (en) Formation method of starting port and starting port structure
JP3088980B2 (en) Branch shield excavation method and shield excavator capable of branch excavation
JP4731463B2 (en) Tunnel excavator and tunnel excavation method
JP3145345B2 (en) Method of laying vacuum sewer pipe and composite pipe for vacuum sewer pipe
JP3526406B2 (en) Protective cover and storage method for cable / hose for advanced equipment of small-diameter pipeline propulsion machine
JP5161948B2 (en) Promotion method
JP2010071056A (en) Tunnel excavator
KR101669329B1 (en) Concrete gravity dam its application daemche drilling rigs method
KR20000003269A (en) Wedge shaped settling device and method of preventing collapse of excavation wall surface
KR101778201B1 (en) Propulsion method to lift boring machine in water
JP2009144468A (en) Cruciform start vertical shaft structure
JP2016020608A (en) Reconstruction propulsion unit and propulsion unit for underground pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060721

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

S633 Written request for registration of reclamation of name

Free format text: JAPANESE INTERMEDIATE CODE: R313633

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees