JP2004049939A - シリコン含有排ガスの触媒燃焼式浄化装置 - Google Patents

シリコン含有排ガスの触媒燃焼式浄化装置 Download PDF

Info

Publication number
JP2004049939A
JP2004049939A JP2002206890A JP2002206890A JP2004049939A JP 2004049939 A JP2004049939 A JP 2004049939A JP 2002206890 A JP2002206890 A JP 2002206890A JP 2002206890 A JP2002206890 A JP 2002206890A JP 2004049939 A JP2004049939 A JP 2004049939A
Authority
JP
Japan
Prior art keywords
catalyst layer
combustion catalyst
exhaust gas
flow path
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002206890A
Other languages
English (en)
Inventor
Satoshi Kurose
黒瀬 聡
Yasuyoshi Kato
加藤 泰良
Masatoshi Fujisawa
藤澤 雅敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2002206890A priority Critical patent/JP2004049939A/ja
Publication of JP2004049939A publication Critical patent/JP2004049939A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

【課題】有機シリコンを含む排ガスを触媒燃焼させる場合に、シリコンが燃焼触媒層の表面に付着するのを回避する。
【解決手段】蓄熱槽10に連通路22を介して連通される燃焼触媒層12と、蓄熱槽14に連通路23を介して連通される燃焼触媒層16と、2つの蓄熱槽を排ガスの供給流路36と燃焼ガスの排出流路37とに交互に切り替えて連通される給排流路切替弁18と、2つの燃焼触媒層12、16に連通する加熱室17と、連通路22、23から分岐され、各連通路と加熱室とを連結する2つのバイパス流路20、24と、各連通路22、23を対応する燃焼触媒層12、16とバイパス流路20、24のいずれか一方に連通させる2つの流路切替弁26、28とを備えて構成する。
【選択図】  図1

Description

【0001】
【発明の属する技術分野】
本発明は、有機シリコン化合物を含む排ガスの触媒燃焼式浄化装置に関する。
【0002】
【従来の技術】
工場や化学プラントなどから排出される排ガスには、人体に悪影響を及ぼす有害物質たとえば有機化合物や炭化水素が含まれている場合がある。このような排ガス中の有害物質を除去して排ガスを浄化する装置として、吸着剤で吸着する吸着式浄化装置や、バーナなどで直接燃焼する直接燃焼式浄化装置や、燃焼触媒層などで酸化燃焼させる触媒燃焼式浄化装置などが知られている。このうち、触媒燃焼式浄化装置は、有害物質を比較的低温から酸化できるため、ランニングコストを抑制できるので、一般に広く利用されている。特に、特開平9−253448号や特開平10−99647号に提案されている蓄熱式交番触媒燃焼装置は、排ガスを燃焼触媒層で酸化させて有害物質を除去して浄化した後、浄化された排ガスの熱を蓄熱槽に一定期間蓄えておき、その蓄熱で未処理の排ガスを燃焼触媒層に導入する前に予熱して燃焼熱を有効利用することにより、さらにランニングコストを低減するようにしている。そして、連続運転可能にするため、排ガスの流れに沿って第1の蓄熱槽、第1の燃焼触媒層、第2の燃焼触媒層、第2の蓄熱層を順次配設し、排ガスの流れを交互に切り替えて運転するようにしている。
【0003】
【発明が解決しようとする課題】
ところで、触媒燃焼式浄化装置を用いる場合、排ガスに有機シリコン化合物が含まれていると、有機シリコン化合物が触媒表面に付着して触媒が劣化し、触媒性能を低下させて排ガスの浄化効率を低下させることがある。
【0004】
そこで、従来の蓄熱式交番触媒燃焼装置では、二つの燃焼触媒層の間にバーナにより排ガスを加熱する加熱室を設け、燃焼触媒層に導かれる排ガスの温度を上昇させてシリコンが触媒表面に付着するのを防止するようにしている。
【0005】
しかしながら、蓄熱槽で予熱された排ガス温度が有機シリコン化合物を触媒燃焼させる温度まで達しない場合があり、そのまま有機シリコン化合物が触媒表面に付着してしまうおそれがある。したがって、触媒量を増やしたり、交換回数を多くして耐久性を高めざるを得ないことから、ランニングコストが高くなるという問題がある。
【0006】
本発明の課題は、有機シリコン化合物を含む排ガスを触媒燃焼させる場合に、有機シリコン化合物が燃焼触媒の表面に付着するのを抑制できる触媒燃焼式浄化装置を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するため、実験により燃焼触媒層に流入する排ガスの入口温度を変えて触媒の耐久性を比較した結果、例えば貴金属を担持したゼオライト触媒の場合、排ガスの入口温度が260℃以上の場合、触媒の劣化速度が小さいという知見を得た。すなわち、ゼオライトの分子篩効果により、有機シリコンは触媒の細孔内に入らないので、触媒の耐久性が高い。しかし、260℃未満の場合は、触媒表面への付着量が増加して、反応物質(活性成分)のガスの拡散を阻害してしまうため、徐々に触媒の活性が低下して劣化することが判明した。一方、排ガスの入口温度が高くなりすぎると、触媒の比表面積の減少によって劣化することから燃焼触媒層に流入する排ガスの入口温度を抑える必要がある。
【0008】
このような知見に鑑み、本発明のシリコン含有排ガスの触媒燃焼浄化装置は、第1の蓄熱槽と、第1の蓄熱槽に第1の連通路を介して連通される第1の燃焼触媒層と、第2の蓄熱槽と、第2の蓄熱槽に第2の連通路を介して連通される第2の燃焼触媒層と、第1と第2の蓄熱槽を排ガスの供給流路と燃焼ガスの排出流路とに交互に切り替えて連通される給排流路切替弁と、第1と第2の燃焼触媒層に連通する加熱室と、第1の連通路から分岐され、該第1の連通路と前記加熱室とを連結する第1のバイパス流路と、第2の連通路から分岐され、該第2の連通路と前記加熱室とを連結する第2のバイパス流路と、第1の連通路を前記第1の燃焼触媒層と第1のバイパス流路のいずれか一方に連通させる第1の流路切替弁と、第2の連通路を前記第1の燃焼触媒層と第2のバイパス流路のいずれか一方に連通させる第2の流路切替弁とを備えてなることを特徴とする。
【0009】
このように構成することにより、排ガスに有機シリコン化合物が含有している場合に、蓄熱槽で予熱された排ガスの温度が低い場合は、第1または第2の流路切替弁を第1または第2のバイパス流路側に切り替え、燃焼触媒層を迂回させて排ガスを蓄熱槽から加熱室に直接導入するようにできる。その結果、燃焼触媒表面に有機シリコン化合物が付着するのを防ぐことができる。また、加熱室に導入された排ガスはバーナにより加熱され、有機シリコン化合物を燃焼触媒層で燃焼するのに必要な温度に昇温され、2段目の燃焼触媒層で触媒表面に付着することなく燃焼される。したがって、燃焼触媒層の表面にシリコンが付着するのを回避し、長い時間に渡って触媒の分解率を維持することができる。
【0010】
この場合において、蓄熱槽から燃焼触媒層に導入される排ガスの温度を計測する手段を設け、その温度が設定値未満の場合は、流路切替弁をバイパス流路側に切り替えて燃焼触媒層をバイパスさせ、その温度が設定値以上の場合は流路切替弁を燃焼触媒層側に切り替える制御装置を設けることが好ましい。この設定温度は、有機シリコン化合物を燃焼浄化するために必要な温度、例えば260℃に設定することができる。逆に、蓄熱槽から排出される排ガスの温度が設定温度以上の場合は、流路切替弁を燃焼触媒側に切り替えて排ガスを触媒燃焼により浄化させるとともに、加熱室に設けられたバーナを停止して排ガスの温度上昇を抑える。これにより、触媒の比表面積の減少による劣化を防止する。また、燃焼触媒層の入口排ガス温度は、260〜500℃の範囲に制御することが好ましい。
【0011】
また、第1または第2の燃焼触媒層にゼオライトを用いることが好ましい。たとえば、モルデナイト、フェリエライト、ZSM−5などを用いることが好ましい。これを用いれば、ゼオライトの分子ふるい効果によって、排ガス中のシリコンが燃焼触媒層の細孔内に入るのを防げるので、細孔内にシリコンが付着するのを回避できる。また、ゼオライトの細孔内に担持させる活性成分として貴金属、たとえば、白金、パラジウム、ロジウムなどを用いることが好ましい。これを用いれば、高い酸化活性を得ることができる。このとき、細孔内に担持する活性成分は、高活性であれば遷移金属でもよい。
【0012】
【発明の実施の形態】
本発明の実施の形態を図面に基づいて説明する。図1は、本発明を適用した蓄熱交番式の触媒燃焼式浄化装置の一実施形態を示す系統図である。図に示すとおり、本実施形態は、第1と第2の蓄熱槽10、14にそれぞれ第1と第2の連通路22、23を介して連通された第1と第2の燃焼触媒層12、16と、それら第1と第2の燃焼触媒層12、16に連通された加熱室17が設置されて構成されている。また、第1の燃焼触媒層12を迂回して第1の連通路22と加熱室17とを連通する第1のバイパス流路20が設けられている。そして、連通路22に、蓄熱槽10から排出される排ガスを燃焼触媒層12に通流させるか、バイパス流路20に通流させるかを切り替える流路切替弁26が設けられている。同様に、第2の燃焼触媒層16を迂回する第2のバイパス流路24が設けられ、連通路23に流路切替弁28が設けられている。一方、第1及び第2の蓄熱槽10、14に連結された給排流路切替弁18は、供給流路36を介して供給されるシリコン含有排ガスをいずれか一方の蓄熱槽10、14に供給し、他方の蓄熱槽10、14から排出される浄化ガスを排出流路37を介して排出するようになっている。
【0013】
加熱室17には、バーナ19が設けられている。バーナ19は、制御弁21を介して燃料タンク25に接続されている。
【0014】
第1の蓄熱槽10と第1の連通路22との境界部に温度計測器30が設けられている。同様に、第2の蓄熱槽14と第2の連通路23との境界部に温度計測器32が設けられている。これらの温度計測器30、32は制御装置34に接続され、制御装置34は流路切替弁26、28と制御弁21を制御するようになっている。
【0015】
このように構成される蓄熱式交番触媒燃焼装置の動作について説明する。まず、シリコンを含む排ガスは、供給流路36から例えば蓄熱槽10に導入され、予熱される。予熱された排ガス中の有害物質は、燃焼触媒層12を通過する際に触媒により燃焼されて浄化され、加熱室17のバーナ19でさらに加熱される。加熱室17で加熱された排ガスは燃焼触媒層16に導かれ、さらに燃焼されて浄化される。燃焼触媒層16から排出する浄化されたガスは、蓄熱槽14で熱回収され、排出流路37から排出される。
【0016】
この処理を所定時間おこなった後、給排流路切替弁18を切り替えて、蓄熱槽10を排出流路37に、蓄熱槽14を供給流路36に連通することにより、シリコン含有ガスを蓄熱槽14に導入して予熱する。予熱された排ガスは、燃焼触媒層16に導かれ触媒によって燃焼されて浄化される。その後、加熱室17のバーナ19で加熱され、さらに燃焼触媒層12に導かれて燃焼される。触媒燃焼層12から排出される浄化されたガスは、蓄熱槽10を通過することにより熱回収されて、排出流路37から排出される。
【0017】
このように、給排流路切替弁18によって、シリコン含有排ガスは、蓄熱槽10と蓄熱槽14に順次交互に供給されて処理される(図示黒矢印及び白矢印)。
【0018】
このような動作において、シリコン含有排ガスが初めに導入される蓄熱槽の温度が低いと、燃焼触媒層に流入され排ガスの温度が十分に昇温されず、例えば、シリコンが触媒燃焼する温度(例えば260℃以上)にまで上昇しない場合がある。この場合、シリコンが燃焼触媒の表面に付着して触媒が劣化し、他の有害物質の触媒燃焼を妨げることになる。そこで、本実施形態では、温度計測器30、32により燃焼触媒層12、16に導入される排ガスの温度を計測し、計測温度が設定温度(例えば260℃)未満の場合は、制御装置34から流路切替弁26または切替弁28に切替指令を出力し、蓄熱槽10または蓄熱槽14から流出される排ガスを、バイパス流路20またはバイパス流路24に流して燃焼触媒層12または燃焼触媒層16を迂回させて加熱室17に導き、加熱して次の燃焼触媒層16または12に流入して浄化する。この場合、制御装置34は、制御弁21を開いて燃料タンク25からバーナ19に燃料を供給し、バーナ19を点火して、排ガスを加熱するようにする。このようにして、バーナ19によって昇温された排ガスは、燃焼触媒層16または燃焼触媒層12に導入され、排ガス中の有機シリコン化合物を含む有害物質は、触媒燃焼により浄化される。
【0019】
一方、温度計測器30、32により計測された燃焼触媒層12、16に導入される排ガスの温度が設定値以上の場合は、流路切替弁26、28を燃焼触媒層側に切り替えて2段の燃焼触媒層12、16により排ガスを処理する。このとき、制御弁21を閉じてバーナ19による加熱を停止するようにすることが望ましい。
【0020】
このように、本実施形態によれば、燃焼触媒層12、16を通過する排ガスの温度を、有機シリコン化合物を浄化するために必要な温度、例えば260℃より常に高くできるので、確実にシリコンを触媒燃焼することができる。また、蓄熱槽から排出される排ガスの温度が設定温度以上の場合は、流路切替弁を燃焼触媒側に切り替えるとともに、加熱室17に設けられたバーナ19を停止して排ガスの温度上昇を抑えることにより、触媒の比表面積の減少による劣化を防止できる。したがって、シリコンが燃焼触媒層12、16の触媒表面に付着するのを回避でき、長い時間に渡って高い分解率を維持できる。
【0021】
【実施例】
以下、燃焼触媒層に関し、実施例、比較例に基づき説明する。
【0022】
【実施例1】
まず、モルデナイト粉末(東ソー社製HSZ−650、SiO/Al=23)50gに対し、重量割合で白金Ptが0.5%になるように塩化白金酸水溶液(エヌ・イー・ケムキャット社製、lot.No100170)を加えて蒸発乾固した後、それを550℃で2時間焼成してPt−モルデナイト触媒を得た。これをシリカゾルと水でスラリ化し、ペーパハニカム(ニチアス社製)にコーティングした後、2時間風乾し、120℃で2時間乾燥し、さらに500℃で2時間焼成することによって、ハニカム形状のPt−モルデナイト触媒を得た。
【0023】
このPt−モルデナイト触媒を反応管の中に入れ燃焼触媒層とし、それに、有機シリコンとベンゼンを含んだガスを供給した。ここで、供給ガスの温度は燃焼触媒層の入口で300℃になるように設定した。ガスを供給してから20時間後の燃焼触媒層の性能、つまり分解率を測定した。このとき用いた供給ガスの試験条件を次の表1に示す。
【0024】
【表1】
Figure 2004049939
【実施例2】
供給ガスの温度を燃焼触媒層の入口で350℃に設定したこと以外は、実施例1と同じ方法で燃焼触媒層の分解率を測定した。
【0025】
【比較例1】
供給ガスの温度を燃焼触媒層の入口で250℃に設定したこと以外は、実施例1と同じ方法で燃焼触媒層の分解率を測定した。
【0026】
【比較例2】
供給ガスの温度を燃焼触媒層の入口で500℃に設定したこと以外は、実施例1と同じ方法で燃焼触媒層の分解率を測定した。
【0027】
【比較例3】
モルデナイト粉末の代わりにTiO粉末(Millennium社製、G5)を用いてPt−TiO触媒を得たこと以外は、実施例1と同じ方法で燃焼触媒層の分解率を測定した。
【0028】
上記実施例1、2及び比較例1〜3で得られた分解率を次の表2に示す。
【0029】
【表2】
Figure 2004049939
表2に示すように、実施例1、2は、比較例1〜3に比べて、20時間後の分解率の劣化する速度が小さい。このことから、燃焼触媒層の入口における供給ガスの温度が260℃以上で500℃以下の範囲にある場合は、その温度範囲にない場合に比べて、劣化速度が小さいため、長い時間に渡って燃焼触媒層の触媒性能を維持できることが分かる。すなわち、供給ガスの温度が260℃以上であると、ゼオライトの分子ふるい効果によって、排ガス中のシリコンが燃焼触媒層の細孔内に入るのを防げるので、細孔内にシリコンが付着するのを回避できるから、燃焼触媒層の耐久性が向上する。一方、その温度が260℃未満であると、触媒表面などへの付着量が増加して反応物質ガスの拡散が阻害されるため、燃焼触媒層の活性が劣化する。それゆえ、燃焼触媒層の入口における供給ガスの温度を260℃以上、つまり有機シリコンが触媒表面に付着しない温度以上であって、かつ500℃以下、つまり比表面積が減少しない温度以下に維持できれば、燃焼触媒層の劣化を抑制でき、燃焼触媒層の交換頻度を減少できる。
【0030】
【発明の効果】
以上述べたとおり、本発明によれば、有機シリコンを含む排ガスを浄化する場合に、シリコンが燃焼触媒層の触媒表面に付着するのを回避でき、長い時間に渡って高い分解率を維持できる。
【図面の簡単な説明】
【図1】図1は、本発明を適用した触媒燃焼式浄化装置の一実施形態を示す系統構成図である。
【符号の説明】
10、14 蓄熱槽
12、16 燃焼触媒層
17 加熱室
20、24 バイパス流路
22、23 連通路
26、28 流路切替弁
30、32 温度計測器
34 制御装置

Claims (2)

  1. 第1の蓄熱槽と、第1の蓄熱槽に第1の連通路を介して連通される第1の燃焼触媒層と、第2の蓄熱槽と、第2の蓄熱槽に第2の連通路を介して連通される第2の燃焼触媒層と、第1と第2の蓄熱槽を排ガスの供給流路と燃焼ガスの排出流路とに交互に切り替えて連通される給排流路切替弁と、第1と第2の燃焼触媒層に連通する加熱室と、
    第1の連通路から分岐され、該第1の連通路と前記加熱室とを連結する第1のバイパス流路と、第2の連通路から分岐され、該第2の連通路と前記加熱室とを連結する第2のバイパス流路と、
    第1の連通路を前記第1の燃焼触媒層と第1のバイパス流路のいずれか一方に連通させる第1の流路切替弁と、第2の連通路を前記第1の燃焼触媒層と第2のバイパス流路のいずれか一方に連通させる第2の流路切替弁とを備えてなるシリコン含有排ガスの触媒燃焼式浄化装置。
  2. 第1の蓄熱槽と第1の燃焼触媒層の間に第1の温度計測手段を設け、第2の蓄熱槽と第2の燃焼触媒層の間に第2の温度計測手段を設け、
    第1の温度計測値が設定値以上の場合は、第1の流路切替弁を切り替えて第1の連通路を第1の燃焼触媒層に連通させ、第1の温度計測値が設定値未満の場合は、第1の流路切替弁を切り替えて第1の連通路を第1のバイパス流路に連通させ、
    第2の温度計測値が設定値以上の場合は、第2の流路切替弁を切り替えて第2の連通路を第2の燃焼触媒層に連通させ、第2の温度計測値が設定値未満の場合は、第2の流路切替弁を切り替えて第2の連通路を第2のバイパス流路に連通させる制御装置を設けたことを特徴とする請求項1に記載のシリコン含有排ガスの触媒燃焼式浄化装置。
JP2002206890A 2002-07-16 2002-07-16 シリコン含有排ガスの触媒燃焼式浄化装置 Pending JP2004049939A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002206890A JP2004049939A (ja) 2002-07-16 2002-07-16 シリコン含有排ガスの触媒燃焼式浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002206890A JP2004049939A (ja) 2002-07-16 2002-07-16 シリコン含有排ガスの触媒燃焼式浄化装置

Publications (1)

Publication Number Publication Date
JP2004049939A true JP2004049939A (ja) 2004-02-19

Family

ID=31931490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002206890A Pending JP2004049939A (ja) 2002-07-16 2002-07-16 シリコン含有排ガスの触媒燃焼式浄化装置

Country Status (1)

Country Link
JP (1) JP2004049939A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105586A (ja) * 2004-09-30 2006-04-20 Babcock Power Environmental Inc 再生選択触媒還元により、燃焼ガスから物質を除去するシステムおよび方法
JP2009063210A (ja) * 2007-09-05 2009-03-26 Chubu Electric Power Co Inc 揮発性有機化合物の処理装置
CN101206027B (zh) * 2006-12-21 2010-12-15 中国科学院工程热物理研究所 低浓度瓦斯气切换催化反应稳定运行的方法
US8124017B2 (en) 2004-09-30 2012-02-28 Babcock Power Environmental Inc. Systems and methods for high efficiency regenerative selective catalytic reduction
CN106439867A (zh) * 2016-11-21 2017-02-22 北京神雾环境能源科技集团股份有限公司 蓄热式催化燃烧装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105586A (ja) * 2004-09-30 2006-04-20 Babcock Power Environmental Inc 再生選択触媒還元により、燃焼ガスから物質を除去するシステムおよび方法
US8124017B2 (en) 2004-09-30 2012-02-28 Babcock Power Environmental Inc. Systems and methods for high efficiency regenerative selective catalytic reduction
US8318115B2 (en) 2004-09-30 2012-11-27 Babcock Power Environmental, Inc. Systems and methods for high efficiency regenerative selective catalytic reduction
CN101206027B (zh) * 2006-12-21 2010-12-15 中国科学院工程热物理研究所 低浓度瓦斯气切换催化反应稳定运行的方法
JP2009063210A (ja) * 2007-09-05 2009-03-26 Chubu Electric Power Co Inc 揮発性有機化合物の処理装置
CN106439867A (zh) * 2016-11-21 2017-02-22 北京神雾环境能源科技集团股份有限公司 蓄热式催化燃烧装置

Similar Documents

Publication Publication Date Title
CN101594925B (zh) 可热再生的一氧化氮吸附剂
BRPI0706870A2 (pt) Aparelho para a purificação de gás de exaustão e método para a purificação de gás de exaustão utilizando o aparelho para a purificação do gás de exaustão
KR100723871B1 (ko) 도장공정의 휘발성 유기화합물 제거 장치
US5284638A (en) System and method for removing hydrocarbons from gaseous mixtures using multiple adsorbing agents
JP5973249B2 (ja) 有機溶剤含有ガス処理システム
WO2004076037B1 (en) Method of removing nitrogen oxides from the exhaust gas of a lean-burn internal combustion engine and exhaust-gas purification system therefor
JP2008522822A (ja) 光触媒の保護方法
JPH06198136A (ja) 排気ガスの転化方法および装置
JP2009057922A (ja) 排ガス浄化装置
JP5270912B2 (ja) 触媒酸化処理装置および触媒酸化処理方法
JPH10267248A (ja) 触媒式排ガス処理装置
JP2004049939A (ja) シリコン含有排ガスの触媒燃焼式浄化装置
JPH07102957A (ja) 排ガス浄化装置と方法
KR20100106385A (ko) 연소 시스템 배기물로부터 no₂를 감소시키기 위한 프로세스
JP2003080029A (ja) 排ガス浄化システムおよび排ガス浄化方法
JP2000045751A (ja) 内燃機関の排気浄化装置
JP2017155643A (ja) NOx浄化装置、およびNOx浄化装置の製造方法
JP2002180822A (ja) 排気ガス浄化装置
JP2007327460A (ja) 排ガス浄化装置
JP4735979B2 (ja) 排ガス浄化装置及び排ガス浄化方法
JP4141722B2 (ja) シリコン含有排ガスの浄化方法
WO2024084893A1 (ja) 排ガス処理システム
JP2002239346A (ja) 排気ガス浄化装置および製造方法
JP2004066126A (ja) シリコン含有排ガスの浄化用触媒
JP2004041989A (ja) シリコン含有排ガスの浄化方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080610