JP2004047849A - Planar magnetic element - Google Patents

Planar magnetic element Download PDF

Info

Publication number
JP2004047849A
JP2004047849A JP2002205093A JP2002205093A JP2004047849A JP 2004047849 A JP2004047849 A JP 2004047849A JP 2002205093 A JP2002205093 A JP 2002205093A JP 2002205093 A JP2002205093 A JP 2002205093A JP 2004047849 A JP2004047849 A JP 2004047849A
Authority
JP
Japan
Prior art keywords
planar
coil
magnetic element
ferrite
coil pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002205093A
Other languages
Japanese (ja)
Other versions
JP4043306B2 (en
Inventor
Yasutaka Fukuda
福田 泰隆
Kazuhiko Echizenya
越前谷 一彦
Hideaki Kohiki
小日置 英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Mineral Co Ltd
Original Assignee
JFE Steel Corp
Kawatetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kawatetsu Mining Co Ltd filed Critical JFE Steel Corp
Priority to JP2002205093A priority Critical patent/JP4043306B2/en
Publication of JP2004047849A publication Critical patent/JP2004047849A/en
Application granted granted Critical
Publication of JP4043306B2 publication Critical patent/JP4043306B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a planar magnetic element whose power loss is smaller than usual, even if a high-frequency current is made to flow through the element. <P>SOLUTION: The plane magnetic element is composed of a circular or rectangular spiral planar coil and a ferrite magnetic layer which is deposited on the top surface and undersurface of all the planar coil and fills a gap between the coil pattern. The innermost and outermost parts of the coil pattern are divided widthwise into two or more. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、平面磁気素子に係わり、特に電力損失が小さい平面磁気素子に関するものである。
【0002】
【従来の技術】
近年、携帯機器やノートパソコン等のように、電池で駆動される携帯機器の利用が進んでいる。このような携帯機器に対しては、従来から、より一層の小型・軽量化が望まれており、最近ではこれらに加えて、マルチメディア化への対応、すなわち通信機能や表示機能の充実、あるいは画像データを含む大量情報の高速化処理等の高機能化が求められている。これらの要求は、電池からの単一電圧を、CPUやLCDモジュール、通信用パワーアンプ等の様々な搭載デバイスが必要とする各々の電圧レベルに的確に変換できる小型電源の需要を増加させた。そのため、電子機器の小型・軽量化と高機能化とを両立させるべく、電源に搭載されるトランスやインダクタ等の磁気素子についても、その小型・薄型化を進めることが重要な課題となっている。
【0003】
このような状況下で、従来、前記電源には焼結フェライトコアにコイルを巻いたトランス、インダクタが搭載されてきたが、これらは、いずれも薄型化が困難で、電源の薄型化を阻害してきた。そこで、磁気素子の一層の小型・軽量化を図るため、平面コイルの上下をフェライト磁性層で挟み、かつ、コイル・パターン(コイル線ともいう)間の隙間をフェライトで埋めた構造の平面磁気素子が提案された(例えば、特開2001−244123号公報、特開2001−244124号公報参照)。
【0004】
それは、基板上に下部フェライト層を印刷法等で形成し、その上にコイル・パターンをメッキ法等で形成した後、コイル・パターン間の隙間及び上部のフェライトを印刷法で形成して平面磁気素子としたものである。このような構成とすることで、磁気素子の薄型化に成功した。
【0005】
【発明が解決しようとする課題】
しかしながら、上記平面磁気素子では、例えば、1MHz以上の高周波領域で使用すると、電力損失が大きくなるという問題があった。そこで、本発明は、かかる事情を鑑み、1MHz以上の高周波領域での電力損失を低減可能な平面磁気素子を提供することを目的としている。
【0006】
【課題を解決するための手段】
発明者らは、上記目的を達成するため鋭意検討し、磁気素子中のコイルでは高周波が均一に流れず、局部的に電流密度の大きな箇所が発生していることを見出した。具体的には、図5及び図6に示すように、次の2箇所である。
1)コイル・パターンの最外周ターンの外側5、最内周ターンの内側6
2)さらに、コイル・パターンのスパイラルが矩形の場合には、コイルのコーナ部の内側7
そこで、この不均一性を解消するため、コイルの最外周ターン、最内周ターンを幅方向で2分割以上とすること(図1〜4参照)、及びスパイラルが矩形の場合には、さらにコーナ部の内側に沿った長さを少なくとも直角に折れるよりも短くする、具体的にはコーナ部にRを付けたり,直線で所謂「ショート・カット」する等の構造(図2、図3参照)にするのが良いことを見出し、本発明を完成させた。なお、この場合、コイル・パターンの外側に沿ったコーナも同様にRやショート・カットにするのが良い。
【0007】
すなわち、本発明は、円形状又は矩形状のスパイラルで形成される平面コイルと、該平面コイル全体の上下部及びコイル・パターン間を埋めるフェライト磁性層とからなる平面磁気素子において、前記スパイライルの最内周及び最外周に相当するコイル・パターンを、幅方向で2分割以上としてなることを特徴とする平面磁気素子である。また、本発明は、矩形状のスパイラルで形成される平面コイルと、該平面コイル全体の上下部及びコイル・パターンを埋めるフェライト磁性層とからなる平面磁気素子において、前記コイル・パターンのコーナ部を面取り形状としてなることを特徴とする平面磁気素子である。この場合、前記面取り形状がRを付けたり,直線状又は折れ線状であることが好ましい。また、前記矩形状のスパイラルで形成された平面コイルは、そのコイル・パターンのコーナ部を面取り形状とするのが一層良い。さらに、前記フェライト磁性層の少なくとも一つの外表面に非磁性基板を取り付けても良い。加えて、前記フェライトがNiZn系であることが好ましい。
【0008】
本発明によれば、高周波電流を流しても、電流密度の偏りが解消できるようになる。その結果、平面磁気素子の電力損失が従来より抑制でき、携帯機器に有効な小型電源に搭載される磁気素子が提供できるようになる。
【0009】
【発明の実施の形態】
以下、図面を参照して、本発明の実施の形態を具体的に説明する。
【0010】
まず、本発明の対象は、図1(b)に横断面で示すように、基板1上に、高周波電流が流され、円形状又は矩形状のスパイラルで形成される平面コイル・パターン2と、該平面コイル・パターン全体の上下部及びコイル・パターン間の隙間を埋めるフェライト磁性層31,32とからなる平面磁気素子4である。そして、本発明に係る平面磁気素子の平面コイル・パターンが出現する面で切断した平断面を図1(a)に示すが、一つ目の発明は、前記スパイラルの最内周及び最外周に相当するコイル・パターン2を、幅方向で2分割以上としたことである(図1では、2分割の場合を示す)。この場合、分割した部分のパターン幅をa及びb,未分割部分のパターン幅をcとすると、c=a+bで,a≦b<cの関係がある。高周波電流を流した時、パターン幅を細分化すると、電流の均一性が向上するからである。トータルのコイル・パターン断面積は同じにしているので、抵抗による電力損失は減少する。また、分割部分は、均一な幅でも良く、図1のaをより狭くしても良い。
【0011】
なお、原理的には、分割数は2つ以上であれば如何なる数でも良い。しかしながら、実際には、分割数が多くなると、分割した部分の隙間を確保する必要があるので、コイル・パターン2の幅が広がり、平面磁気素子4の面積が大きくなる。従って、実用上では、その分割数は、2〜3程度が好ましい。
【0012】
二つ目の本発明は、コイル・パターンのスパイラルが矩形状の場合に、特にコーナ部の内側に沿った長さを少なくとも直角に折れるよりも短い面取り構造とすることである。具体的には、コーナ部の内側にRをつけたり、直線、もしくは多段の折れ線でショート・カットさせる構造である。この場合、コイル・パターンの外側に沿ったコーナ部分も、同様にするとパターン間の間隙が同一になり、一層良い。図2に、Rをつけた場合、図3に直線にした場合の例を示す。電流は、なるべく短い距離を流れようとするが、コーナ部をこのような形状にすると、電流の不均一性が小さくなるからである。また、本発明では、かかる形状とする範囲は特に限定しないが、実用的には、コーナ部からコイル・パターン幅の1/2〜2倍であるのが良い。
【0013】
また、本発明では、電気的に絶縁された平面コイルを2つ以上隣接配置しても良い。そのようにすると、トランスとしての機能を発揮するからである。さらに、本発明に係る前記平面磁気素子は、フェライト磁性層を基板上に形成しても良い。それにより、素子の機械的強度が大きくなり、使用時の信頼性が高まるからである。その際、基板の材質としては、非磁性基板が好適なので、Si、Al(アルミナ)を用いるのが良い。加えて、本発明では、フェライト磁性層に使用するフェライトには、絶縁体であるNiZn系フェライトが好適である。コイル・パターン間を埋めるフェライト磁性層は、フェライト磁性粉と樹脂バインダとの混合物をスクリーン印刷法などで刷り込むが、NiZn系フェライトであると、電気絶縁層を別途に考える必要がなく、容易に充填ができるからである。
【0014】
本発明におけるフェライトとしては、絶縁体であるNiZn系フェライト、中でも焼成温度が低くて済むNiCuZn系フェライトがとりわけ有利に適合する。それに含有させる組成の代表例を以下に示す。
Fe:40〜50mol%
Feが40mol%に満たないとフェライトの透磁率低下にともなうインダクタンスの劣化が著しい。逆に50mol%を超えると、Fe2+イオンの存在により電気抵抗が急激に低下して、高周波領域で使用する場合に渦電流の発生によりフェライトコアの損失が急増する。従って、Feは40〜50mol%程度とすることが好ましい。
NiO:15〜50mol%
NiOが15mol%に満たないと実用上必要なキュリー温度を得ることができず、逆に50mol%を超えると、異相が析出し、磁気特性が低下するので、NiOは15〜50mol%程度とすることが好ましい。
ZnO:15〜35mol%
ZnOは、インダクタンスとキュリー温度に大きな影響を与える。キュリー温度は、磁気素子の耐熱性を決定づける重要なパラメータである。ZnOが15mol%に満たないと、キュリー温度は高いもののインタクタンスが低下し、一方35mol%を超えると、インダクタンスは高いものの、キュリー温度が低下する。従って、ZnOは15〜35mol%程度とすることが好ましい。
CuO:0〜20mol%
CuOは、焼成温度を低減するのに有用な成分である。しかしながら、20mol%を超えると、焼成温度は低下するもののインダクタンスの劣化を招くので、含有させる場合には、CuOは20mol%以下とすることが好ましい。
Bi:O〜10mol%
Biは、CuOと同じく、焼成温度を低下する効果がある。しかしながら、10mol%を超えると、焼成温度は低下するものの、インダクタンスが劣化するため、含有させる場合には10mol%以下で含有させることが好ましい。MnO:0〜20mol%、MgO:0〜20mol%
MnO及びMgOは、いずれも、インダクタンスを増加する効果を有する成分であるが、20mol%を超えると、飽和磁化の低下を招くので、含有させる場合には、20mol%以下で含有させることが好ましい。
【0015】
以上、好適フェライトとして、NiZn系(NiCuZn系)フェライトの成分について説明したが、これ以外のフェライトであっても、NiZn系(NiCuZn系)フェライトと同等の特性を持つものであれば、いずれもが使用できるのは言うまでもない。
【0016】
次に、本発明に係る平面磁気素子の製造方法を、手順に従い、代表的な例で説明するが、その製造は、これに限定されるものではない。
【0017】
(1)まず、Si基板上に、NiZn系のフェライトペーストをスクリーン印刷し、焼成して40μmの厚みのフェライト磁性層を形成する。この場合、基板を省略しても良いし、予め用意したフェライト焼結基板を磁性層基板として用いても良い。
【0018】
(2)このフェライト磁性層の上に、平滑層としてのポリイミド樹脂を塗布し、さらに下地としてのCuシード層を0.5μmの厚みで成膜する。
【0019】
(3)そのシード層の上に、レジストを塗布し、平面コイル・パターンを所望のスパイラル形状及びターン数で露光・現像し、レジスト・フレームを形成する。つまり、コイル・パターンは、必要に応じて、分割したり、コーナ部にRをつける。また、2つのコイル・パターンを互いに隣接配置しても良い。
【0020】
(4)該レジスト・フレーム内に、電気めっきでCuを析出させる。
【0021】
(5)引き続いて、レジストを剥離した後、エッチングによって不要なCuシード層を除去する。
【0022】
(6)NiZn系のフェライト磁性粉末をエポキシ樹脂に混ぜたぺ一ストを、スクリーン印刷法にて、コイル・パターンの間および上部に充填し、熱硬化させる。
【0023】
【実施例】
フェライトとして、Fe/ZnO/NiOが49/23/28(mol%)の組成のものを用い、平面磁気素子を製造した。
【0024】
まず、Si基板上に、上記の組成になるフェライト・ペーストを印刷後、1000℃で焼成して下部フェライト磁性層を形成した。その焼成後の厚みは40μmである。この層上に、ポリイミド樹脂をスピンコートによって厚みが3μmになるように成膜した後、全面にCuをシード層として0.5μmの厚みに無電解めっき法で成膜する。そのシード層上に、レジストを塗布、露光、現像処理して矩形スパイラル形状のレジスト・フレームを形成した。この後、電気Cuメッキを析出した。次に、レジストを剥離した後、不要なシード層部分をエッチングした。完成したコイル導体部は、厚み80μm,14ターンである。
【0025】
スパイラル形状のレジスト・フレームの形成に際し、本発明に係るコイル形状になるようにしたが、その内容は、以下の通りである。
(本発明例1)
14ターンのコイル・パターンのうち、最内周と最外周の1ターンにそれぞれ20μmのスペースを設けて2分割した。すなわち、パターン幅/スペース/パターン幅=25/20/20(μm)とした。残りの12ターンは、パターン幅=25μm、スペース=20μmとした。つまり、平面コイルの最内周及び最外周のみを2分割した。
(本発明例2)
Si基板上に下部フェライト磁性層を設けたものの代わりに、フェライト焼結基板(40μm)を用いた以外は、上記の本発明例1と同様の平面磁気素子とした。
(本発明例3)
コイル・パターンを本発明例1と同じにし、且つコーナー部に、その内側及び外側ともに半径50μmのRを付けた平面磁気素子を製造した。つまり、平面コイルの最内周及び最外周のみを2分割し、且つコイルのコーナー部にRを付けた。
(本発明例4)
コイル・パターンを幅=50μm、スペース=20μmとし、コイル・パターンのコーナー部に、その内側及び外側ともに半径50μmのRを付けた平面磁気素子を製造した。つまり、コイル・パターンのコーナー部のみにRを付けた。
(比較例1)
14ターン分ともにパターン幅/スペース=50/20(μm)で、コーナー部分は直角とした。
【0026】
最後の工程として、フェライト粉末を含むエポキシ樹脂ぺ一スト(フェライト粉末の体積率60%)を、スクリーン印刷にて、コイル・パターン間及び上部層を印刷し、熱硬化させた。
【0027】
かくして得られた各平面磁気素子に、5メガヘルツの高周波電流を流し、インダクタンスL及びQ値を測定した。その結果を表1に示す。
【0028】
なお、Q値は交流損失の指標となるもので、次式で表される。
【0029】
Q=(2πfL)/Rs
ここで、f:周波数(Hz)
L:コイルのインダクタンス
Rs:直列等価抵抗
ここに、直列等価抵抗は、コイル直流抵抗(Rdc)とコイル及び磁性体の交流損失(Rac)である。なお、Q値が大きいほど、電力損失が小さい。
【0030】
【表1】

Figure 2004047849
【0031】
表1より、本発明に係る平面磁気素子は、従来素子である比較例1に比べ、Q値が大きくなっているので、本発明による効果で、電力損失が低減したことが明らかである。
【0032】
【発明の効果】
以上述べたように、本発明により、高周波電流を流しても、従来より電力損失の小さい平面磁気素子が提供されるようになる。その結果、携帯機器に有効な小型電源が製造できるようになる。
【図面の簡単な説明】
【図1】(a)は、本発明に係る平面磁気素子の矩形スパイラル状の平面コイル・パターンを示す平断面であり、(b)は、A−A矢視の断面図である。
【図2】(a)は、矩形スパイラル状の平面コイル・パターンのコーナ部にRを付けた例を示す平断面図であり、(b)はそのコーナー部の拡大図である。
【図3】(a)は、矩形スパイラル状の平面コイルのコーナー部を直線でショート・カットした例を示す平断面図であり、(b)はそのコーナー部の拡大図である。
【図4】円形スパイラル状の平面コイルを示す平断面図である。
【図5】
従来の矩形スパイラル状の平面コイルに生じる電流密度の偏りを示す平断面図である。
【図6】
従来の円形スパイラル状の平面コイルに生じる電流密度の偏りを示す平断面図である。
【符号の説明】
1 基板
2 平面コイル・パターン(コイル・パターン)
31:上部フェライト磁性層
32:下部フェライト磁性層
4 平面磁気素子
5 平面コイル・パターンの最外周部外側
6 平面コイル・パターンの最内周部内側
7 コーナー部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a planar magnetic element, and more particularly to a planar magnetic element with small power loss.
[0002]
[Prior art]
2. Description of the Related Art In recent years, portable devices driven by batteries, such as portable devices and notebook computers, have been increasingly used. For such portable devices, further reduction in size and weight has been desired, and recently, in addition to these, support for multimedia, that is, enhancement of communication functions and display functions, or There is a demand for advanced functions such as high-speed processing of a large amount of information including image data. These demands have increased the demand for small power supplies that can accurately convert a single voltage from a battery to each voltage level required by various on-board devices such as CPUs, LCD modules, and communication power amplifiers. For this reason, it is important to reduce the size and thickness of magnetic elements, such as transformers and inductors, mounted on a power supply in order to achieve both small size, light weight, and high functionality of electronic devices. .
[0003]
Under such circumstances, conventionally, the power supply has been equipped with a transformer and an inductor each having a coil wound around a sintered ferrite core, but these are all difficult to reduce in thickness, and hinder the reduction in thickness of the power supply. Was. Therefore, in order to further reduce the size and weight of the magnetic element, a planar magnetic element having a structure in which the upper and lower surfaces of a planar coil are sandwiched between ferrite magnetic layers and the gap between coil patterns (also called coil wires) is filled with ferrite. (See, for example, JP-A-2001-244123 and JP-A-2001-244124).
[0004]
It consists of forming a lower ferrite layer on a substrate by a printing method, forming a coil pattern on it by plating, etc., and then forming a gap between the coil patterns and the upper ferrite by a printing method. It is an element. With such a configuration, the thickness of the magnetic element has been successfully reduced.
[0005]
[Problems to be solved by the invention]
However, the above-mentioned planar magnetic element has a problem that the power loss becomes large when used in a high frequency region of, for example, 1 MHz or more. In view of such circumstances, an object of the present invention is to provide a planar magnetic element that can reduce power loss in a high-frequency region of 1 MHz or more.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and have found that a high frequency does not flow uniformly in a coil in a magnetic element, and a portion having a large current density is locally generated. Specifically, as shown in FIG. 5 and FIG. 6, there are the following two places.
1) Outside 5 of the outermost turns of the coil pattern, inside 6 of the innermost turns.
2) Furthermore, when the spiral of the coil pattern is rectangular, the inside of the coil corner 7
Therefore, in order to eliminate this non-uniformity, the outermost turn and the innermost turn of the coil should be divided into two or more in the width direction (see FIGS. 1 to 4). A structure in which the length along the inside of the part is shorter than at least a right angle, specifically, a structure in which a corner is rounded or a so-called "short cut" is made in a straight line (see FIGS. 2 and 3) The present invention was completed. In this case, the corners along the outer side of the coil pattern are also preferably made R or short cut.
[0007]
That is, the present invention provides a planar magnetic element comprising a planar coil formed of a circular or rectangular spiral, and a ferrite magnetic layer filling the upper and lower portions of the entire planar coil and the space between the coil patterns. A planar magnetic element wherein a coil pattern corresponding to an innermost circumference and an outermost circumference is divided into two or more in a width direction. Further, the present invention provides a planar magnetic element comprising a planar coil formed of a rectangular spiral, and upper and lower portions of the entire planar coil and a ferrite magnetic layer filling the coil pattern, wherein a corner portion of the coil pattern is formed. A planar magnetic element having a chamfered shape. In this case, it is preferable that the chamfered shape is rounded or linear or polygonal. Further, in the planar coil formed by the rectangular spiral, it is more preferable that the corner portion of the coil pattern has a chamfered shape. Further, a non-magnetic substrate may be attached to at least one outer surface of the ferrite magnetic layer. In addition, the ferrite is preferably NiZn-based.
[0008]
ADVANTAGE OF THE INVENTION According to this invention, even if a high-frequency current flows, the bias of current density can be eliminated. As a result, the power loss of the planar magnetic element can be suppressed more than before, and a magnetic element mounted on a small power supply that is effective for portable equipment can be provided.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
[0010]
First, the object of the present invention is to provide a planar coil pattern 2 formed by a circular or rectangular spiral on which a high-frequency current flows on a substrate 1 as shown in a cross section in FIG. The planar magnetic element 4 includes upper and lower portions of the entire planar coil pattern and ferrite magnetic layers 31 and 32 filling gaps between the coil patterns. FIG. 1A shows a plane cross section of the plane magnetic element according to the present invention, which is cut along the plane where the plane coil pattern appears. That is, the corresponding coil pattern 2 is divided into two or more in the width direction (FIG. 1 shows the case of two divisions). In this case, if the pattern width of the divided portion is a and b and the pattern width of the undivided portion is c, there is a relationship of c = a + b and a ≦ b <c. This is because, when a high-frequency current is passed, if the pattern width is subdivided, the uniformity of the current is improved. Since the total coil pattern cross-sectional area is the same, the power loss due to the resistance is reduced. Further, the divided portion may have a uniform width, and may have a smaller width in FIG.
[0011]
Note that, in principle, any number may be used as long as the number of divisions is two or more. However, in practice, when the number of divisions increases, it is necessary to secure a gap between the divided parts, so that the width of the coil pattern 2 increases and the area of the planar magnetic element 4 increases. Therefore, in practice, the number of divisions is preferably about 2 to 3.
[0012]
A second aspect of the present invention is to provide a chamfered structure in which the length along the inside of the corner portion is shorter than at least a right angle when the spiral of the coil pattern is rectangular. Specifically, it has a structure in which an R is provided inside the corner portion, or a short cut is made with a straight line or a multi-stage broken line. In this case, the corners along the outer side of the coil pattern are also similar, so that the gap between the patterns is the same, which is even better. FIG. 2 shows an example in which R is added, and FIG. This is because the current tends to flow as short as possible, but when the corners are formed in such a shape, the non-uniformity of the current is reduced. Further, in the present invention, the range of such a shape is not particularly limited, but practically, it is preferable that the width is 1/2 to 2 times the coil pattern width from the corner portion.
[0013]
In the present invention, two or more electrically insulated planar coils may be arranged adjacent to each other. In that case, the function as a transformer is exhibited. Further, in the planar magnetic element according to the present invention, a ferrite magnetic layer may be formed on a substrate. Thereby, the mechanical strength of the element increases, and the reliability during use increases. At this time, since a non-magnetic substrate is suitable as the material of the substrate, it is preferable to use Si or Al 2 O 3 (alumina). In addition, in the present invention, the ferrite used for the ferrite magnetic layer is preferably a NiZn-based ferrite which is an insulator. The ferrite magnetic layer that fills the space between the coil and the pattern is printed with a mixture of ferrite magnetic powder and a resin binder by screen printing, etc. Because it can be.
[0014]
As the ferrite in the present invention, NiZn-based ferrite, which is an insulator, particularly NiCuZn-based ferrite which requires a low firing temperature is particularly suitable. Representative examples of the composition to be contained therein are shown below.
Fe 2 O 3: 40~50mol%
If the content of Fe 2 O 3 is less than 40 mol%, the inductance is significantly deteriorated due to the decrease in the magnetic permeability of the ferrite. Conversely, if it exceeds 50 mol%, the electric resistance sharply decreases due to the presence of Fe 2+ ions, and when used in a high frequency region, the loss of the ferrite core sharply increases due to generation of eddy current. Therefore, the content of Fe 2 O 3 is preferably about 40 to 50 mol%.
NiO: 15 to 50 mol%
If NiO is less than 15 mol%, a Curie temperature required for practical use cannot be obtained. Conversely, if it exceeds 50 mol%, a hetero phase is precipitated and magnetic properties are deteriorated. Therefore, NiO is about 15 to 50 mol%. Is preferred.
ZnO: 15 to 35 mol%
ZnO has a large effect on inductance and Curie temperature. The Curie temperature is an important parameter that determines the heat resistance of a magnetic element. If ZnO is less than 15 mol%, the Curie temperature is high but the inductance is reduced, while if it exceeds 35 mol%, the inductance is high but the Curie temperature is lowered. Therefore, it is preferable that ZnO be about 15 to 35 mol%.
CuO: 0 to 20 mol%
CuO is a component useful for reducing the firing temperature. However, when the content exceeds 20 mol%, the firing temperature is lowered, but the inductance is deteriorated. Therefore, when it is contained, it is preferable that CuO is set to 20 mol% or less.
Bi 2 O 3 : O to 10 mol%
Bi 2 O 3 has the effect of lowering the firing temperature, similarly to CuO. However, when the content exceeds 10 mol%, the firing temperature is lowered, but the inductance is deteriorated. Therefore, when it is contained, it is preferable to contain it at 10 mol% or less. MnO: 0 to 20 mol%, MgO: 0 to 20 mol%
Both MnO and MgO are components having an effect of increasing the inductance. However, if the content exceeds 20 mol%, the saturation magnetization is reduced. Therefore, when it is contained, it is preferable that the content is 20 mol% or less.
[0015]
As described above, the components of NiZn-based (NiCuZn-based) ferrite have been described as preferred ferrites. It goes without saying that it can be used.
[0016]
Next, a method of manufacturing a planar magnetic element according to the present invention will be described with reference to a typical example according to a procedure, but the manufacturing is not limited thereto.
[0017]
(1) First, a NiZn-based ferrite paste is screen-printed on a Si substrate and baked to form a ferrite magnetic layer having a thickness of 40 μm. In this case, the substrate may be omitted, or a ferrite sintered substrate prepared in advance may be used as the magnetic layer substrate.
[0018]
(2) On this ferrite magnetic layer, a polyimide resin as a smoothing layer is applied, and a Cu seed layer as a base is formed with a thickness of 0.5 μm.
[0019]
(3) A resist is applied on the seed layer, and the planar coil pattern is exposed and developed in a desired spiral shape and number of turns to form a resist frame. In other words, the coil pattern is divided or the corners are rounded as necessary. Further, two coil patterns may be arranged adjacent to each other.
[0020]
(4) Cu is deposited in the resist frame by electroplating.
[0021]
(5) Subsequently, after removing the resist, an unnecessary Cu seed layer is removed by etching.
[0022]
(6) A paste obtained by mixing a NiZn-based ferrite magnetic powder with an epoxy resin is filled into and between the coil patterns by a screen printing method, and thermally cured.
[0023]
【Example】
A planar magnetic element was manufactured using ferrite having a composition of Fe 2 O 3 / ZnO / NiO of 49/23/28 (mol%).
[0024]
First, a ferrite paste having the above composition was printed on a Si substrate and fired at 1000 ° C. to form a lower ferrite magnetic layer. The thickness after firing is 40 μm. After a polyimide resin is formed on this layer by spin coating so as to have a thickness of 3 μm, a film is formed on the entire surface to a thickness of 0.5 μm by electroless plating using Cu as a seed layer. A resist was applied, exposed, and developed on the seed layer to form a rectangular spiral resist frame. Thereafter, electric Cu plating was deposited. Next, after removing the resist, unnecessary seed layer portions were etched. The completed coil conductor has a thickness of 80 μm and 14 turns.
[0025]
The spiral resist frame is formed into the coil shape according to the present invention when formed, and the contents are as follows.
(Example 1 of the present invention)
In the 14-turn coil pattern, a space of 20 μm was provided in each of the innermost and outermost turns, and the coil pattern was divided into two. That is, pattern width / space / pattern width = 25/20/20 (μm). For the remaining 12 turns, the pattern width was 25 μm and the space was 20 μm. That is, only the innermost circumference and the outermost circumference of the planar coil were divided into two.
(Example 2 of the present invention)
A planar magnetic element similar to that of Example 1 of the present invention described above except that a ferrite sintered substrate (40 μm) was used instead of the lower ferrite magnetic layer provided on the Si substrate.
(Example 3 of the present invention)
A planar magnetic element having the same coil pattern as that of Example 1 of the present invention and having Rs with a radius of 50 μm inside and outside the corners was manufactured. That is, only the innermost circumference and the outermost circumference of the planar coil were divided into two, and the corners of the coil were rounded.
(Example 4 of the present invention)
A planar magnetic element was manufactured in which the coil pattern had a width of 50 μm and a space of 20 μm, and the corners of the coil pattern were provided with R having a radius of 50 μm both inside and outside. That is, R was added only to the corners of the coil pattern.
(Comparative Example 1)
The pattern width / space was 50/20 (μm) for all 14 turns, and the corner was a right angle.
[0026]
As the last step, an epoxy resin paste containing ferrite powder (volume ratio of ferrite powder: 60%) was printed by screen printing between coil patterns and the upper layer, and was thermally cured.
[0027]
A high-frequency current of 5 MHz was applied to each of the planar magnetic elements thus obtained, and the inductances L and Q values were measured. Table 1 shows the results.
[0028]
The Q value is an index of the AC loss, and is represented by the following equation.
[0029]
Q = (2πfL) / Rs
Here, f: frequency (Hz)
L: coil inductance Rs: series equivalent resistance Here, the series equivalent resistance is the coil DC resistance (Rdc) and the AC loss (Rac) of the coil and the magnetic material. The power loss is smaller as the Q value is larger.
[0030]
[Table 1]
Figure 2004047849
[0031]
From Table 1, it is clear that the planar magnetic element according to the present invention has a larger Q value than that of Comparative Example 1 which is a conventional element, so that the power loss is reduced by the effect of the present invention.
[0032]
【The invention's effect】
As described above, according to the present invention, even when a high-frequency current is supplied, a planar magnetic element having a smaller power loss than a conventional one is provided. As a result, a small power supply effective for a portable device can be manufactured.
[Brief description of the drawings]
FIG. 1A is a plan view showing a rectangular spiral planar coil pattern of a planar magnetic element according to the present invention, and FIG. 1B is a sectional view taken along line AA.
FIG. 2A is a plan sectional view showing an example in which a corner portion of a rectangular spiral planar coil pattern is rounded, and FIG. 2B is an enlarged view of a corner thereof.
3A is a plan sectional view showing an example in which a corner of a rectangular spiral planar coil is short-cut with a straight line, and FIG. 3B is an enlarged view of the corner.
FIG. 4 is a plan sectional view showing a circular spiral planar coil.
FIG. 5
FIG. 10 is a plan sectional view showing a current density bias generated in a conventional rectangular spiral planar coil.
FIG. 6
FIG. 9 is a plan sectional view showing a bias of current density generated in a conventional circular spiral planar coil.
[Explanation of symbols]
1 board 2 plane coil pattern (coil pattern)
31: Upper ferrite magnetic layer 32: Lower ferrite magnetic layer 4 Planar magnetic element 5 Outermost perimeter of planar coil pattern 6 Innermost perimeter of planar coil pattern 7 Corner

Claims (6)

円形状又は矩形状のスパイラルで形成される平面コイルと、該平面コイル全体の上下部及びコイル・パターン間を埋めるフェライト磁性層とからなる平面磁気素子において、
前記スパイライルの最内周及び最外周に相当するコイル・パターンを、幅方向で2分割以上としてなることを特徴とする平面磁気素子。
In a planar magnetic element including a planar coil formed of a circular or rectangular spiral, and a ferrite magnetic layer filling the upper and lower portions of the entire planar coil and a coil pattern,
A planar magnetic element, wherein a coil pattern corresponding to an innermost circumference and an outermost circumference of the spiral is divided into two or more in a width direction.
矩形状のスパイラルで形成される平面コイルと、該平面コイル全体の上下部及びコイル・パターンを埋めるフェライト磁性層とからなる平面磁気素子において、
前記コイル・パターンのコーナ部を面取り形状としてなることを特徴とする平面磁気素子。
In a planar magnetic element comprising a planar coil formed of a rectangular spiral, and a ferrite magnetic layer filling the upper and lower portions of the entire planar coil and the coil pattern,
A planar magnetic element, wherein a corner portion of the coil pattern has a chamfered shape.
前記面取り形状がRを付けたり,直線状又は折れ線状であることを特徴とする請求項2記載の平面磁気素子。The planar magnetic element according to claim 2, wherein the chamfered shape is rounded, linear, or polygonal. 前記矩形状のスパイラルで形成された平面コイルは、そのコイル・パターンのコーナ部を面取り形状としてなることを特徴とする請求項1記載の平面磁気素子。2. The planar magnetic element according to claim 1, wherein the planar coil formed by the rectangular spiral has a chamfered shape at a corner portion of the coil pattern. 前記フェライト磁性層の少なくとも一つの外表面に非磁性基板を取り付けたことを特徴とする請求項1〜4のいずれかに記載の平面磁気素子。5. The planar magnetic element according to claim 1, wherein a non-magnetic substrate is attached to at least one outer surface of the ferrite magnetic layer. 前記フェライトがNiZn系であることを特徴とする請求項1〜5のいずれかに記載の平面磁気素子。The planar magnetic element according to claim 1, wherein the ferrite is a NiZn-based ferrite.
JP2002205093A 2002-07-15 2002-07-15 Planar magnetic element Expired - Lifetime JP4043306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002205093A JP4043306B2 (en) 2002-07-15 2002-07-15 Planar magnetic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002205093A JP4043306B2 (en) 2002-07-15 2002-07-15 Planar magnetic element

Publications (2)

Publication Number Publication Date
JP2004047849A true JP2004047849A (en) 2004-02-12
JP4043306B2 JP4043306B2 (en) 2008-02-06

Family

ID=31710484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002205093A Expired - Lifetime JP4043306B2 (en) 2002-07-15 2002-07-15 Planar magnetic element

Country Status (1)

Country Link
JP (1) JP4043306B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141201A (en) * 2006-11-29 2008-06-19 Holy Loyalty Internatl Co Ltd Coil unit
JP2008141202A (en) * 2006-11-29 2008-06-19 Ud Tech Kk Coil device
US7446632B2 (en) 2005-03-31 2008-11-04 Tdk Corporation Common mode choke coil
JP2009206169A (en) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd Plane coil, electric instrument using the same, power supply unit, and non-contact power transmission system
JP2009264992A (en) * 2008-04-28 2009-11-12 Shinshu Univ Induction type proximity sensor
JP2011049220A (en) * 2009-08-25 2011-03-10 Sanken Electric Co Ltd Coil apparatus
JP2012235079A (en) * 2011-04-27 2012-11-29 Samsung Electro-Mechanics Co Ltd Contactless power transmission device and electronic device having the same
JP2013008859A (en) * 2011-06-24 2013-01-10 Asahi Kasei Electronics Co Ltd Coil for wireless power feeding/receiving and unit using the same
WO2013046533A1 (en) * 2011-09-30 2013-04-04 パナソニック 株式会社 Planar coil and coil module, power reception apparatus, and contactless power transmission apparatus provided with same
US9245675B2 (en) 2013-11-18 2016-01-26 National Synchrotron Radiation Research Center Generating apparatus of a pulsed magnetic field
KR20170004834A (en) 2015-07-03 2017-01-11 삼성전기주식회사 A wireless power receiving device, and an apparatus comprising the same
US9991744B2 (en) 2015-07-03 2018-06-05 Samsung Electro-Mechanics Co., Ltd. Wireless power receiving device and apparatus including the same
JP2018156992A (en) * 2017-03-15 2018-10-04 Tdk株式会社 Coil component and method for manufacturing the same
JP2019003993A (en) * 2017-06-13 2019-01-10 Tdk株式会社 Coil component
JP2019091879A (en) * 2017-11-13 2019-06-13 Tdk株式会社 Coil component
WO2019188287A1 (en) * 2018-03-28 2019-10-03 株式会社村田製作所 Resin multilayer substrate, actuator, and resin multilayer substrate production method
CN111584183A (en) * 2019-02-15 2020-08-25 株式会社村田制作所 Inductor component
US10937589B2 (en) 2017-03-29 2021-03-02 Tdk Corporation Coil component and method of manufacturing the same
JP2021097188A (en) * 2019-12-19 2021-06-24 三安ジャパンテクノロジー株式会社 Spiral inductor and passive integrated circuit
WO2022220617A1 (en) * 2021-04-15 2022-10-20 엘지이노텍 주식회사 Camera actuator, and camera device and optical device comprising same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121241A (en) * 1991-10-28 1993-05-18 Matsushita Electric Ind Co Ltd Inductance part and its manufacture
JPH05121239A (en) * 1991-10-28 1993-05-18 Matsushita Electric Ind Co Ltd Inductance part and its manufacture
JPH07249524A (en) * 1994-03-14 1995-09-26 Matsushita Electric Ind Co Ltd Inductor device formed of circuit board
JPH08203736A (en) * 1995-01-30 1996-08-09 Murata Mfg Co Ltd Coil device with core
JPH0997718A (en) * 1995-09-29 1997-04-08 Nec Kansai Ltd Thin film transformer and its manufacturing method
JPH10208940A (en) * 1997-01-26 1998-08-07 T I F:Kk Inductor element
JP2000150238A (en) * 1998-11-13 2000-05-30 Alps Electric Co Ltd Planar magnetic element and manufacture of the planar magnetic element
JP2000357612A (en) * 1999-04-13 2000-12-26 Alps Electric Co Ltd Inductive element
JP2001244123A (en) * 2000-02-28 2001-09-07 Kawatetsu Mining Co Ltd Surface-mounted planar magnetic element and method of manufacturing
JP2001244124A (en) * 2000-02-28 2001-09-07 Kawasaki Steel Corp Planar magnetic element and switching power supply
WO2001082317A1 (en) * 1998-07-06 2001-11-01 Midcom, Inc. Multi-layer transformer having electrical connection in a magnetic core
JP2001319813A (en) * 2000-05-10 2001-11-16 Alps Electric Co Ltd Inductive element
JP2003037011A (en) * 2001-07-23 2003-02-07 Sumitomo Electric Ind Ltd Thin wire body and wire-forming method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121239A (en) * 1991-10-28 1993-05-18 Matsushita Electric Ind Co Ltd Inductance part and its manufacture
JPH05121241A (en) * 1991-10-28 1993-05-18 Matsushita Electric Ind Co Ltd Inductance part and its manufacture
JPH07249524A (en) * 1994-03-14 1995-09-26 Matsushita Electric Ind Co Ltd Inductor device formed of circuit board
JPH08203736A (en) * 1995-01-30 1996-08-09 Murata Mfg Co Ltd Coil device with core
JPH0997718A (en) * 1995-09-29 1997-04-08 Nec Kansai Ltd Thin film transformer and its manufacturing method
JPH10208940A (en) * 1997-01-26 1998-08-07 T I F:Kk Inductor element
WO2001082317A1 (en) * 1998-07-06 2001-11-01 Midcom, Inc. Multi-layer transformer having electrical connection in a magnetic core
JP2000150238A (en) * 1998-11-13 2000-05-30 Alps Electric Co Ltd Planar magnetic element and manufacture of the planar magnetic element
JP2000357612A (en) * 1999-04-13 2000-12-26 Alps Electric Co Ltd Inductive element
JP2001244123A (en) * 2000-02-28 2001-09-07 Kawatetsu Mining Co Ltd Surface-mounted planar magnetic element and method of manufacturing
JP2001244124A (en) * 2000-02-28 2001-09-07 Kawasaki Steel Corp Planar magnetic element and switching power supply
JP2001319813A (en) * 2000-05-10 2001-11-16 Alps Electric Co Ltd Inductive element
JP2003037011A (en) * 2001-07-23 2003-02-07 Sumitomo Electric Ind Ltd Thin wire body and wire-forming method

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446632B2 (en) 2005-03-31 2008-11-04 Tdk Corporation Common mode choke coil
JP2008141201A (en) * 2006-11-29 2008-06-19 Holy Loyalty Internatl Co Ltd Coil unit
JP2008141202A (en) * 2006-11-29 2008-06-19 Ud Tech Kk Coil device
JP2009206169A (en) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd Plane coil, electric instrument using the same, power supply unit, and non-contact power transmission system
JP2009264992A (en) * 2008-04-28 2009-11-12 Shinshu Univ Induction type proximity sensor
JP2011049220A (en) * 2009-08-25 2011-03-10 Sanken Electric Co Ltd Coil apparatus
JP2012235079A (en) * 2011-04-27 2012-11-29 Samsung Electro-Mechanics Co Ltd Contactless power transmission device and electronic device having the same
JP2013008859A (en) * 2011-06-24 2013-01-10 Asahi Kasei Electronics Co Ltd Coil for wireless power feeding/receiving and unit using the same
WO2013046533A1 (en) * 2011-09-30 2013-04-04 パナソニック 株式会社 Planar coil and coil module, power reception apparatus, and contactless power transmission apparatus provided with same
US9245675B2 (en) 2013-11-18 2016-01-26 National Synchrotron Radiation Research Center Generating apparatus of a pulsed magnetic field
KR20170004834A (en) 2015-07-03 2017-01-11 삼성전기주식회사 A wireless power receiving device, and an apparatus comprising the same
US9991744B2 (en) 2015-07-03 2018-06-05 Samsung Electro-Mechanics Co., Ltd. Wireless power receiving device and apparatus including the same
JP2018156992A (en) * 2017-03-15 2018-10-04 Tdk株式会社 Coil component and method for manufacturing the same
US10937589B2 (en) 2017-03-29 2021-03-02 Tdk Corporation Coil component and method of manufacturing the same
JP2019003993A (en) * 2017-06-13 2019-01-10 Tdk株式会社 Coil component
JP2019091879A (en) * 2017-11-13 2019-06-13 Tdk株式会社 Coil component
JP7176264B2 (en) 2017-11-13 2022-11-22 Tdk株式会社 coil parts
JPWO2019188287A1 (en) * 2018-03-28 2020-10-01 株式会社村田製作所 How to manufacture resin multilayer boards, actuators, and resin multilayer boards
WO2019188287A1 (en) * 2018-03-28 2019-10-03 株式会社村田製作所 Resin multilayer substrate, actuator, and resin multilayer substrate production method
US11289965B2 (en) 2018-03-28 2022-03-29 Murata Manufacturing Co., Ltd. Resin multilayer substrate, actuator, and method of manufacturing resin multilayer substrate
CN111584183A (en) * 2019-02-15 2020-08-25 株式会社村田制作所 Inductor component
JP2020136392A (en) * 2019-02-15 2020-08-31 株式会社村田製作所 Inductor component
CN111584183B (en) * 2019-02-15 2022-11-22 株式会社村田制作所 Inductor component
JP7176435B2 (en) 2019-02-15 2022-11-22 株式会社村田製作所 inductor components
US11837395B2 (en) 2019-02-15 2023-12-05 Murata Manufacturing Co., Ltd. Inductor component
JP2021097188A (en) * 2019-12-19 2021-06-24 三安ジャパンテクノロジー株式会社 Spiral inductor and passive integrated circuit
JP7430376B2 (en) 2019-12-19 2024-02-13 三安ジャパンテクノロジー株式会社 Spiral inductors and passive integrated circuits
WO2022220617A1 (en) * 2021-04-15 2022-10-20 엘지이노텍 주식회사 Camera actuator, and camera device and optical device comprising same

Also Published As

Publication number Publication date
JP4043306B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
JP4043306B2 (en) Planar magnetic element
CN105097187B (en) Chip electronic component and for installing the plate of the chip electronic component
US7345563B2 (en) Embedded inductor for semiconductor device circuit
KR101462806B1 (en) Inductor and Manufacturing Method for the Same
KR101580709B1 (en) Chip inductor
Djuric et al. Design, modeling, and analysis of a compact planar transformer
JP2002299138A (en) Planar magnetic element for noncontact charger
JP2002158112A (en) Fine element of type such as minute inductor and minute transformer
JP4711593B2 (en) Planar magnetic element
JP4420586B2 (en) Planar magnetic element and switching power supply
KR20190045749A (en) Coil component and manufacturing method for the same
JP3628579B2 (en) Planar magnetic element and switching power supply
JP2003173921A (en) Planar magnetic element for non-contact charger
JP2003017322A (en) Plane magnetic element
US9041506B2 (en) Multilayer inductor and method of manufacturing the same
JP2003332163A (en) Flat magnetic element
JP2002222712A (en) Lc composite device
JP2004128130A (en) Coil component and its manufacturing method
JP2003133136A (en) Magnetic part and its manufacturing method
JP2002299122A (en) Planar magnetic element
JP2002299120A (en) Planar magnetic element
JP2003234216A (en) Flat magnetic element
JP2002299121A (en) Planar magnetic element
JP2004111545A (en) Flat magnetic element
Shirakawa et al. Thin film inductor with multilayer magnetic core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4043306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term