JP2009206169A - Plane coil, electric instrument using the same, power supply unit, and non-contact power transmission system - Google Patents

Plane coil, electric instrument using the same, power supply unit, and non-contact power transmission system Download PDF

Info

Publication number
JP2009206169A
JP2009206169A JP2008044714A JP2008044714A JP2009206169A JP 2009206169 A JP2009206169 A JP 2009206169A JP 2008044714 A JP2008044714 A JP 2008044714A JP 2008044714 A JP2008044714 A JP 2008044714A JP 2009206169 A JP2009206169 A JP 2009206169A
Authority
JP
Japan
Prior art keywords
planar coil
power supply
openings
coil
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008044714A
Other languages
Japanese (ja)
Other versions
JP5113554B2 (en
Inventor
Kentaro Kobayashi
健太郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008044714A priority Critical patent/JP5113554B2/en
Publication of JP2009206169A publication Critical patent/JP2009206169A/en
Application granted granted Critical
Publication of JP5113554B2 publication Critical patent/JP5113554B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plane coil which can be made thin while reducing high-frequency loss, to provide an electric instrument using the same, to provide a power supply unit, and to provide a non-contact power transmission system. <P>SOLUTION: Plane coils 20 and 30 are each configured by disposing a flat plate-like conductor portion 4 in a spiral state. Further, a plurality of openings 7 are provided along the longitudinal direction of the conductor portion of the plane coil. The electric instrument includes the plane coil and a load circuit driven according to a voltage induced at the plane coil through electromagnetic induction. The power supply unit includes the plane coil and a high-frequency current supply portion which supplies a high-frequency current to the plane coil. The non-contact power transmission system includes the power supply unit and the electric instrument. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高周波で用いられる平面コイルに関する。そして、このような平面コイルを用いる電気機器、電力供給装置、及び非接触電力伝送システムに関する。   The present invention relates to a planar coil used at a high frequency. And it is related with the electric equipment, electric power supply apparatus, and non-contact electric power transmission system which use such a planar coil.

従来、非接触で電磁誘導により電力を伝送する非接触電力伝送機器において、電力伝送に用いられる一般的なコイルは金属線(銅線)、あるいは金属板(銅板)を巻いて作られている。しかしながら、このような一般的なコイルでは、コイルに高周波電流が流れるときに生じる近接効果などの影響により、高周波損失が発生し、電力伝送効率が低下してしまう。   Conventionally, in a non-contact power transmission device that transmits power by electromagnetic induction without contact, a general coil used for power transmission is made by winding a metal wire (copper wire) or a metal plate (copper plate). However, in such a general coil, a high frequency loss occurs due to an effect such as a proximity effect that occurs when a high frequency current flows through the coil, and power transmission efficiency decreases.

そこで、このような高周波損失を低減するために、コイルにリッツ線を用いた電力電送装置が知られている(例えば、特許文献1参照。)。
特開2006−230032号公報
In order to reduce such high-frequency loss, a power transmission device using a litz wire as a coil is known (see, for example, Patent Document 1).
JP 2006-230032 A

しかしながら、コイルにリッツ線を用いると、コイルの厚みが増大するという、不都合があった。また、コイルの厚みが増大すると、このようなコイルを用いた電気機器や、このような電気機器に非接触で電力を供給する電力供給装置を薄型化することが困難になるという、不都合があった。   However, when a litz wire is used for the coil, there is a disadvantage that the thickness of the coil increases. Further, when the thickness of the coil increases, it is difficult to reduce the thickness of an electric device using such a coil and a power supply device that supplies electric power to such an electric device in a non-contact manner. It was.

本発明は、このような事情に鑑みて為された発明であり、高周波損失を低減しつつ薄型化が可能な平面コイル、及びこれを用いた電気機器、電力供給装置、非接触電力伝送システムを提供することを目的とする。   The present invention has been made in view of such circumstances, and includes a planar coil that can be reduced in thickness while reducing high-frequency loss, and an electric device, a power supply device, and a non-contact power transmission system using the same. The purpose is to provide.

本発明に係る平面コイルは、平板状の導体部が渦巻き状に配置された平面コイルであって、前記導体部の長手方向に沿って、複数の開口部が設けられている。   The planar coil according to the present invention is a planar coil in which flat conductor portions are arranged in a spiral shape, and a plurality of openings are provided along the longitudinal direction of the conductor portions.

この構成によれば、平面コイルの導体部に設けられた複数の開口部によって、導体部上で渦電流ができるスペースが小さくなり、渦電流のループが小さくなる。その結果、渦電流損失が低減されて、平面コイルにおける高周波損失が低減される。また、導体部には、導体部の長手方向、すなわち電流の流れる方向に沿って複数の開口部が設けられているので、複数の開口部によって流れる電流の方向が散乱される結果、近接効果が低減されて、高周波損失が低減される。これにより、平板状の導体部が渦巻き状に配置された薄型の平面コイルにおいて、高周波損失を低減することが出来る。   According to this configuration, the space where the eddy current can be generated on the conductor portion is reduced by the plurality of openings provided in the conductor portion of the planar coil, and the loop of the eddy current is reduced. As a result, eddy current loss is reduced, and high-frequency loss in the planar coil is reduced. Also, since the conductor portion is provided with a plurality of openings along the longitudinal direction of the conductor portion, that is, the direction of current flow, the direction of the current flowing through the plurality of openings is scattered, resulting in a proximity effect. The high frequency loss is reduced. Thereby, high frequency loss can be reduced in a thin planar coil in which flat conductor portions are arranged in a spiral shape.

また、前記複数の開口部は、前記導体部の長手方向に延びる複数の列をなして設けられており、前記複数列のうち隣り合う列の開口部同士が、互い違いに配設されていることが好ましい。   The plurality of openings are provided in a plurality of rows extending in the longitudinal direction of the conductor portion, and adjacent openings in the plurality of rows are alternately arranged. Is preferred.

この構成によれば、複数の列をなす開口部のうち、隣り合う列の開口部同士が、互い違いに配設されていることにより、電流が散乱される程度が増す結果、開口部が互い違いになっていない場合よりも近接効果が低減されて、高周波損失が低減される。   According to this configuration, among the openings formed in a plurality of rows, the openings in adjacent rows are alternately arranged, so that the degree of current scattering is increased, resulting in the openings being staggered. The proximity effect is reduced and the high-frequency loss is reduced as compared with the case where it is not.

また、前記導体部における単位面積あたりの前記複数の開口部の面積比率が、前記渦巻きの中心に近づくほど大きくなるように、当該複数の開口部が設けられていることが好ましい。   Further, it is preferable that the plurality of openings are provided so that an area ratio of the plurality of openings per unit area in the conductor portion increases as the area approaches the center of the spiral.

この構成によれば、平面コイルは、渦巻きの中心に近づくほど磁束密度が高くなる。従って、磁束密度が高くなる位置ほど、導体部における単位面積あたりの開口部の面積比率が大きくなって、導体部上で渦電流ができるスペースが小さくなる結果、渦電流のループが小さくなる。これにより、磁束密度が高く、渦電流が出来易い箇所ほど、渦電流のループが小さくなって渦電流損が低減される一方、磁束密度が低く、渦電流が出来難い箇所ほど、開口部の面積比率が小さくなって、開口部による導体部の導体断面積の減少が抑制される。   According to this configuration, the magnetic flux density of the planar coil increases as it approaches the center of the spiral. Therefore, as the magnetic flux density becomes higher, the area ratio of the opening per unit area in the conductor portion becomes larger, and the space where eddy current can be generated on the conductor portion becomes smaller. As a result, the eddy current loop becomes smaller. As a result, the higher the magnetic flux density and the easier the eddy current is generated, the smaller the eddy current loop is, and the eddy current loss is reduced. A ratio becomes small and the reduction | decrease of the conductor cross-sectional area of the conductor part by an opening part is suppressed.

この結果、磁束密度が小さい箇所では、開口部による導体部の直流抵抗の増大が抑制されて、直流損失が低減される。これにより、平面コイル全体での損失が最も低減されるように、渦電流損の低減と直流抵抗の増大とのバランスをとることが可能となる。   As a result, at a location where the magnetic flux density is small, an increase in the DC resistance of the conductor portion due to the opening is suppressed, and the DC loss is reduced. This makes it possible to balance the reduction in eddy current loss and the increase in DC resistance so that the loss in the entire planar coil is minimized.

また、前記各開口部の大きさが、前記渦巻きの中心に近づくほど大きくされていることが好ましい。   Moreover, it is preferable that the size of each opening is increased as it approaches the center of the spiral.

この構成によれば、各開口部の大きさが、渦巻きの中心に近づくほど大きくなることにより、導体部における単位面積あたりの複数の開口部の面積比率を、渦巻きの中心に近づくほど大きくすることができる。   According to this configuration, by increasing the size of each opening closer to the center of the spiral, the area ratio of the plurality of openings per unit area in the conductor portion is increased toward the center of the spiral. Can do.

また、前記導体部における単位面積あたりの前記複数の開口部の数が、前記渦巻きの中心に近づくほど多くなるように、当該複数の開口部が設けられているようにしてもよい。   Further, the plurality of openings may be provided so that the number of the plurality of openings per unit area in the conductor portion increases toward the center of the spiral.

この構成によれば、導体部における単位面積あたりの前記複数の開口部の数が、前記渦巻きの中心に近づくほど増加することにより、導体部における単位面積あたりの複数の開口部の面積比率を、渦巻きの中心に近づくほど大きくすることができる。また、この構成では、開口部の大きさを変えることで単位面積あたりの開口部の面積比率を変えるよりも、開口部の数を増加させることが容易なので、開口部の数を増加させて導体部に流れる電流を散乱させ易くなる結果、近接効果を低減することが容易になる。   According to this configuration, the area ratio of the plurality of openings per unit area in the conductor portion is increased by increasing the number of the plurality of openings per unit area in the conductor portion toward the center of the spiral. The closer to the center of the spiral, the larger it can be. Also, in this configuration, it is easier to increase the number of openings than changing the area ratio of the openings per unit area by changing the size of the openings. As a result of facilitating scattering of the current flowing through the portion, it is easy to reduce the proximity effect.

また、本発明に係る電気機器は、上述の平面コイルと、電磁誘導によって前記平面コイルに誘起される電圧に基づき駆動される負荷回路とを備える。   An electric apparatus according to the present invention includes the planar coil described above and a load circuit that is driven based on a voltage induced in the planar coil by electromagnetic induction.

この構成によれば、電磁誘導によって平面コイルに誘起される電圧に基づき駆動される負荷回路を備えた電気機器を、巻線コイルより薄い平面コイルを用いることで薄型化しつつ、高周波損失を低減することが可能となる。   According to this configuration, an electric device including a load circuit that is driven based on a voltage induced in a planar coil by electromagnetic induction is thinned by using a planar coil that is thinner than a winding coil, and high-frequency loss is reduced. It becomes possible.

また、本発明に係る電力供給装置は、上述の平面コイルと、前記平面コイルに高周波電流を供給する高周波電流供給部とを備える。   A power supply device according to the present invention includes the above-described planar coil and a high-frequency current supply unit that supplies a high-frequency current to the planar coil.

この構成によれば、平面コイルに高周波電流を供給することで高周波磁界を発生させる電力供給装置を、巻線コイルより薄い平面コイルを用いることで薄型化しつつ、高周波損失を低減することが可能となる。   According to this configuration, it is possible to reduce the high-frequency loss while reducing the thickness of the power supply device that generates a high-frequency magnetic field by supplying a high-frequency current to the planar coil by using a planar coil that is thinner than the winding coil. Become.

また、本発明に係る非接触電力伝送システムは、上述の電気機器と、前記電気機器における平面コイルと対向配置され、当該平面コイルに電磁誘導によって電圧を誘起する電力供給装置とを備える。   In addition, a non-contact power transmission system according to the present invention includes the above-described electrical device and a power supply device that is disposed to face a planar coil in the electrical device and induces a voltage in the planar coil by electromagnetic induction.

この構成によれば、電気機器が備える平面コイルでの高周波損失が低減されるので、電力供給装置からの電磁誘導による非接触電力伝送の効率が向上する。   According to this configuration, since high-frequency loss in the planar coil included in the electrical device is reduced, the efficiency of non-contact power transmission by electromagnetic induction from the power supply device is improved.

また、前記電力供給装置は、上述の電力供給装置であり、前記電気機器と前記電力供給装置とは、前記電気機器における平面コイルと前記電力供給装置における平面コイルとが対向配置されることが好ましい。   Further, the power supply device is the above-described power supply device, and it is preferable that the electric device and the power supply device are arranged so that a planar coil in the electric device and a planar coil in the power supply device are opposed to each other. .

この構成によれば、電力供給装置のコイルを薄型の平面コイルにしつつ高周波損失を低減することができるので、電力供給装置を小型化することが容易である。   According to this configuration, it is possible to reduce high-frequency loss while making the coil of the power supply device a thin planar coil, and it is easy to reduce the size of the power supply device.

このような構成の平面コイルは、高周波損失を低減しつつ薄型化が可能である。また、このような構成の電気機器、電力供給装置、及び非接触電力伝送システムは、このような平面コイルを用いることにより、小型化することが容易である。   The planar coil having such a configuration can be thinned while reducing high-frequency loss. In addition, the electric device, the power supply device, and the non-contact power transmission system having such a configuration can be easily downsized by using such a planar coil.

以下、本発明に係る実施形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。   Embodiments according to the present invention will be described below with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted.

(第1実施形態)
図1は、本発明の第1実施形態に係る平面コイルを用いた電気機器、電力供給装置、及び非接触電力伝送システムの構成の一例を示すブロック図である。図1に示す非接触電力伝送システム1は、電気機器2と電力供給装置3とを備えている。
(First embodiment)
FIG. 1 is a block diagram showing an example of the configuration of an electric device, a power supply device, and a non-contact power transmission system using a planar coil according to the first embodiment of the present invention. A non-contact power transmission system 1 illustrated in FIG. 1 includes an electrical device 2 and a power supply device 3.

電力供給装置3は、電気機器2へ電磁誘導により非接触で電力を供給する給電装置である。電力供給装置3は、例えば、接続端子31,32、直流電源回路33、インバータ回路34(高周波電流供給部)、及び平面コイル30を備えている。接続端子31,32には、例えば商用交流電源100が接続される。   The power supply device 3 is a power supply device that supplies power to the electrical equipment 2 in a contactless manner by electromagnetic induction. The power supply device 3 includes, for example, connection terminals 31 and 32, a DC power supply circuit 33, an inverter circuit 34 (high-frequency current supply unit), and a planar coil 30. For example, a commercial AC power supply 100 is connected to the connection terminals 31 and 32.

直流電源回路33は、例えばスイッチング電源回路により構成されており、接続端子31,32で受電された交流電圧を直流電圧に変換してインバータ回路34へ供給する。インバータ回路34は、直流電源回路33から出力された直流電圧をチョッピングして高周波電流を生成し、平面コイル30へ供給する。平面コイル30は、インバータ回路34から供給された高周波電流に応じて高周波磁界を生じる。   The DC power supply circuit 33 is configured by, for example, a switching power supply circuit, converts the AC voltage received at the connection terminals 31 and 32 into a DC voltage, and supplies the DC voltage to the inverter circuit 34. The inverter circuit 34 chops the DC voltage output from the DC power supply circuit 33 to generate a high-frequency current, and supplies it to the planar coil 30. The planar coil 30 generates a high frequency magnetic field according to the high frequency current supplied from the inverter circuit 34.

なお、電力供給装置3は、商用交流電源100に接続されて、固定設備として使用されることが多いため、小型化のニーズが電気機器2ほど高くない。従って、平面コイル30の代わりに巻線コイルを用いてもよいが、平面コイル30は、後述するようにプレス加工等、安価な製造方法を用いて製造することが容易であるため、平面コイル30を用いることにより、巻線コイルよりコストの低減が容易となる。   In addition, since the power supply device 3 is often connected to the commercial AC power supply 100 and used as a fixed facility, the need for downsizing is not as high as that of the electric device 2. Accordingly, a winding coil may be used instead of the planar coil 30, but the planar coil 30 can be easily manufactured by using an inexpensive manufacturing method such as pressing as described later. By using, it becomes easier to reduce the cost than the winding coil.

電気機器2は、例えば携帯電話器や電気ひげそり器等、電力供給装置3から非接触で電力供給を受け、その電力に基づき動作する機器である。電気機器2は、例えば、平面コイル20、充電回路21、二次電池22、及び負荷回路23を備えている。   The electric device 2 is a device that receives power supply from the power supply device 3 in a non-contact manner, such as a mobile phone or an electric shaver, and operates based on the power. The electric device 2 includes, for example, a planar coil 20, a charging circuit 21, a secondary battery 22, and a load circuit 23.

電力供給装置3と電気機器2とは、対向配置されることにより、平面コイル30と平面コイル20とが近接して対向するように、それぞれ平面コイル30と平面コイル20とが配設されている。そして、平面コイル20には、平面コイル30により生じた高周波磁界による電磁誘導で、誘導電圧が生じるようになっている。   By arranging the power supply device 3 and the electric device 2 to face each other, the planar coil 30 and the planar coil 20 are arranged so that the planar coil 30 and the planar coil 20 face each other in close proximity. . An induced voltage is generated in the planar coil 20 by electromagnetic induction caused by a high-frequency magnetic field generated by the planar coil 30.

充電回路21は、例えばスイッチング電源回路や二次電池22の充電制御を行う制御回路等を備えて構成されている。そして、充電回路21は、平面コイル20に生じた交流誘導電圧から、二次電池22の充電電流、電圧を生成し、二次電池22を充電する。二次電池22には、負荷回路23が接続されている。   The charging circuit 21 includes, for example, a switching power supply circuit, a control circuit that performs charging control of the secondary battery 22, and the like. Then, the charging circuit 21 generates a charging current and voltage for the secondary battery 22 from the AC induced voltage generated in the planar coil 20, and charges the secondary battery 22. A load circuit 23 is connected to the secondary battery 22.

負荷回路23は、平面コイル20に生じた誘導電圧に基づき二次電池22に蓄えられた電力で駆動される負荷回路である。負荷回路23は、例えば携帯電話機における無線回路、液晶表示回路、デジタルカメラ、及びこれらの制御回路等であってもよく、例えば電気ひげそり器におけるモータであってもよく、その他種々の電気回路であってもよい。   The load circuit 23 is a load circuit that is driven by the electric power stored in the secondary battery 22 based on the induced voltage generated in the planar coil 20. The load circuit 23 may be, for example, a wireless circuit in a mobile phone, a liquid crystal display circuit, a digital camera, and a control circuit thereof, and may be, for example, a motor in an electric shaver or other various electric circuits. May be.

図2は、図1に示す平面コイル20,30の構成の一例を示す平面図である。図2に示す平面コイル20,30は、例えば平板状の導体部4が渦巻き状に配置されて構成されている。導体部4の巻始めと巻き終わりには、リード部5,6が取り付けられている。なお、図2では、導体部4が円状に巻かれている例を示したが、円状の渦巻きにする例に限られず、例えば六角や四角等、角状の渦巻きにしてもよい。   FIG. 2 is a plan view showing an example of the configuration of the planar coils 20 and 30 shown in FIG. The planar coils 20 and 30 shown in FIG. 2 are configured by, for example, flat conductor portions 4 arranged in a spiral shape. Lead portions 5 and 6 are attached to the beginning and end of winding of the conductor portion 4. 2 shows an example in which the conductor part 4 is wound in a circular shape, but the present invention is not limited to a circular spiral, and may be a rectangular spiral such as a hexagon or a square.

また、導体部4には、長手方向に沿って、複数の開口部7が設けられている。導体部4及び開口部7は、例えば金属板を、プレスによる打ち抜き、エッチング、あるいはレーザ加工することにより、形成されている。特に、平面コイル20,30をプレスによる打ち抜きで形成することとすれば、巻線コイルより安価に製造することが容易である。   The conductor portion 4 is provided with a plurality of openings 7 along the longitudinal direction. The conductor part 4 and the opening part 7 are formed, for example, by stamping a metal plate, etching, or laser processing. In particular, if the planar coils 20 and 30 are formed by stamping with a press, it is easier to manufacture at a lower cost than a wound coil.

なお、例えば図3に示すように、プリント配線基板の製造プロセスを用いて、例えばガラスエポキシやポリイミドの基板8の表面に、導体部4、開口部7、及びリード部6を形成するようにしてもよい。また、導体部4の巻始めは、スルーホール51を介して基板8の裏面に形成された図略のリード部に接続されるようにしてもよい。   For example, as shown in FIG. 3, the conductor portion 4, the opening portion 7, and the lead portion 6 are formed on the surface of the substrate 8 made of, for example, glass epoxy or polyimide by using a printed wiring board manufacturing process. Also good. Further, the winding start of the conductor portion 4 may be connected to an unillustrated lead portion formed on the back surface of the substrate 8 through the through hole 51.

図4は、図2に示す導体部4の拡大図である。図4に示すように、開口部7は、例えば導体部4の線幅に対して10〜50%程度の直径の円に形成されている。なお、開口部7は、円形に限られず、例えば図5に示すように、一辺が導体部4の線幅に対して10〜50%程度の四角形等の多角形であってもよく、その他の形状であってもよい。また、導体部4に対して四角形等の開口部7が配置される方向も限定されない。   FIG. 4 is an enlarged view of the conductor portion 4 shown in FIG. As shown in FIG. 4, the opening 7 is formed in a circle having a diameter of about 10 to 50% with respect to the line width of the conductor 4, for example. The opening 7 is not limited to a circle, and for example, as shown in FIG. 5, one side may be a polygon such as a rectangle having a side width of about 10 to 50% with respect to the line width of the conductor 4. It may be a shape. Further, the direction in which the opening 7 such as a quadrangle is arranged with respect to the conductor 4 is not limited.

図6は、図1に示す平面コイル20の動作を説明するための概念図である。図6に示す平面コイル20は、図2に示す平面コイル20のX−X断面を示している。図6に示す電力供給装置3aは、図1に示す電力供給装置3において、平面コイル30の代わりに巻線コイル30aを備えた例を示している。図6に示すように、電気機器2と電力供給装置3aとが対向配置されると、平面コイル20と巻線コイル30aとが、電気機器2の筐体の壁25と電力供給装置3aの筐体の壁35とを間に挟んで対向配置される。   FIG. 6 is a conceptual diagram for explaining the operation of the planar coil 20 shown in FIG. The planar coil 20 shown in FIG. 6 has shown the XX cross section of the planar coil 20 shown in FIG. A power supply device 3a shown in FIG. 6 shows an example in which a winding coil 30a is provided instead of the planar coil 30 in the power supply device 3 shown in FIG. As shown in FIG. 6, when the electric device 2 and the power supply device 3a are arranged to face each other, the planar coil 20 and the winding coil 30a are connected to the wall 25 of the casing of the electric device 2 and the casing of the power supply device 3a. The body wall 35 is placed opposite to the body wall 35.

平面コイル20は、磁性体層9で覆われており、巻線コイル30aには、鉄芯36がはめ込まれている。そして、巻線コイル30aに高周波電流が流れると、巻線コイル30aで生じた磁束が鉄芯36及び磁性体層9を流れて平面コイル20に誘導電圧が誘起される。なお、鉄芯36及び磁性体層9は必ずしも必要ではないが、鉄芯36及び磁性体層9を設けることにより、巻線コイル30aと平面コイル20との磁気結合が強化されて、巻線コイル30aから平面コイル20への電力伝送効率が向上する。   The planar coil 20 is covered with the magnetic layer 9, and an iron core 36 is fitted in the winding coil 30a. When a high frequency current flows through the winding coil 30a, the magnetic flux generated in the winding coil 30a flows through the iron core 36 and the magnetic layer 9, and an induced voltage is induced in the planar coil 20. Although the iron core 36 and the magnetic layer 9 are not necessarily required, the provision of the iron core 36 and the magnetic layer 9 enhances the magnetic coupling between the winding coil 30a and the planar coil 20, and the winding coil. The power transmission efficiency from 30a to the planar coil 20 is improved.

図6に示すように、平面コイル20の方が、巻線コイル30aより薄い。このように、電気機器2において、例えばリッツ線を用いた巻線コイルを用いる場合に比べて平面コイル20を用いることにより、コイルを薄型にすることができるので、電気機器2を薄型化することが容易となる。   As shown in FIG. 6, the planar coil 20 is thinner than the winding coil 30a. Thus, in the electric equipment 2, for example, the coil can be thinned by using the planar coil 20 as compared with the case where a winding coil using a litz wire is used, so that the electric equipment 2 can be thinned. Becomes easy.

また、平面コイル20の導体部4には、図4や図5に示すように開口部7が設けられているので、導体部4上で渦電流ができるスペースが小さくなり、渦電流のループが小さくなる。その結果、渦電流損失が低減されて、平面コイル20における高周波損失が低減される。   Moreover, since the opening part 7 is provided in the conductor part 4 of the planar coil 20 as shown in FIG.4 and FIG.5, the space which can produce an eddy current on the conductor part 4 becomes small, and the loop of an eddy current is produced. Get smaller. As a result, eddy current loss is reduced, and high-frequency loss in the planar coil 20 is reduced.

また、板状の導体を高周波電流が流れると、平行して流れる交流電流相互間での電磁相互作用により、見かけ上の交流抵抗が増大する近接効果が生じる。しかし、導体部4には、導体部4の長手方向、すなわち電流の流れる方向に沿って複数の開口部7が設けられているので、複数の開口部7によって流れる電流の方向が散乱される結果、近接効果が低減されて、高周波損失が低減される。   Further, when a high-frequency current flows through the plate-like conductor, a proximity effect is generated in which an apparent AC resistance increases due to electromagnetic interaction between AC currents flowing in parallel. However, since the conductor portion 4 is provided with a plurality of openings 7 along the longitudinal direction of the conductor portion 4, that is, the direction of current flow, the direction of the current flowing through the plurality of openings 7 is scattered. The proximity effect is reduced and the high-frequency loss is reduced.

なお、例えば図7(a)に示すように、導体部4の長手方向に沿って、複数列、例えば開口部7aの列と開口部7bの列との2列設けるようにしてもよい。さらに、開口部7aと開口部7bとが互い違いになるように配設されることが好ましい。また、図7(b)に示すように、例えば開口部7aの列と開口部7bの列と開口部7cの列との3列設け、開口部7a,7b,7cのうち少なくとも隣接する列の開口部同士が互い違いになるように配設されてもよい。また、図7(c)に示すように、開口部7dが導体部4の側部に届いて、導体部4の側部が分断されていてもよい。   For example, as shown in FIG. 7A, a plurality of rows, for example, two rows of the row of the opening 7 a and the row of the opening 7 b may be provided along the longitudinal direction of the conductor portion 4. Furthermore, it is preferable that the openings 7a and the openings 7b are arranged alternately. Further, as shown in FIG. 7B, for example, three rows of a row of openings 7a, a row of openings 7b, and a row of openings 7c are provided, and at least adjacent rows of the openings 7a, 7b, 7c are provided. You may arrange | position so that opening parts may become alternate. Moreover, as shown in FIG.7 (c), the opening part 7d may reach the side part of the conductor part 4, and the side part of the conductor part 4 may be parted.

このように、導体部4の長手方向に沿って複数の開口部7が互い違いに設けられることにより、電流が散乱される程度が増す結果、開口部7が互い違いになっていない場合よりも近接効果が低減されて、高周波損失が低減される。   As described above, the plurality of openings 7 are alternately provided along the longitudinal direction of the conductor part 4, and as a result, the degree of current scattering is increased. As a result, the proximity effect is greater than when the openings 7 are not staggered. Is reduced, and high-frequency loss is reduced.

なお、図8(a)、図8(b)、図8(c)、図8(d)に示すように、開口部7,7a,7b,7c,7dは、四角形等の多角形であってもよく、その他の形状であってもよい。また、導体部4に対して四角形等の開口部7が配置される方向も限定されない。   As shown in FIGS. 8A, 8B, 8C, and 8D, the openings 7, 7a, 7b, 7c, and 7d are polygons such as a quadrangle. It may be any other shape. Further, the direction in which the opening 7 such as a quadrangle is arranged with respect to the conductor 4 is not limited.

(第2実施形態)
次に、本発明の第2実施形態に係る平面コイル20a,30bを用いた電気機器2a、電力供給装置3a、及び非接触電力伝送システム1aについて説明する。本発明の第2実施形態に係る電気機器2a、電力供給装置3a、及び非接触電力伝送システム1aの構成は、図1で示される。
(Second Embodiment)
Next, the electric equipment 2a, the power supply device 3a, and the non-contact power transmission system 1a using the planar coils 20a and 30b according to the second embodiment of the present invention will be described. The configuration of the electric device 2a, the power supply device 3a, and the non-contact power transmission system 1a according to the second embodiment of the present invention is shown in FIG.

図1に示す非接触電力伝送システム1aは、電気機器2、及び電力供給装置3の代わりに電気機器2a、及び電力供給装置3aを備える点で非接触電力伝送システム1とは異なる。また、図1に示す電気機器2aは、電気機器2とは、平面コイル20の代わりに平面コイル20aを備える点で異なる。そして、図1に示す電力供給装置3aは、電力供給装置3とは、平面コイル30の代わりに平面コイル30bを備える点で異なる。   The non-contact power transmission system 1a shown in FIG. 1 is different from the non-contact power transmission system 1 in that an electric device 2a and a power supply device 3a are provided instead of the electric device 2 and the power supply device 3. Moreover, the electric device 2a shown in FIG. 1 is different from the electric device 2 in that a flat coil 20a is provided instead of the flat coil 20. 1 is different from the power supply device 3 in that a planar coil 30b is provided instead of the planar coil 30.

その他の構成は図1に示す非接触電力伝送システム1と同様であるのでその説明を省略し、以下本実施形態の特徴的な点について説明する。   Since the other configuration is the same as that of the non-contact power transmission system 1 shown in FIG. 1, the description thereof will be omitted, and the characteristic points of the present embodiment will be described below.

図9、図10は、平面コイル20a,30aの構成の一例を説明するための説明図である。図10(a)は平面コイル20a,30aの外周部における開口部7を示し、図10(b)は平面コイル20a,30aの中央部における開口部7を示し、図10(c)は平面コイル20a,30aの内周部における開口部7を示している。   9 and 10 are explanatory diagrams for explaining an example of the configuration of the planar coils 20a and 30a. 10A shows the opening 7 in the outer periphery of the planar coils 20a and 30a, FIG. 10B shows the opening 7 in the center of the planar coils 20a and 30a, and FIG. 10C shows the planar coil. The opening part 7 in the inner peripheral part of 20a, 30a is shown.

そして、開口部7の大きさが、平面コイル20a,30aの中心に近づくほど大きくされて、導体部4における単位面積あたりの開口部7の面積比率が、渦巻きの中心に近づくほど大きくなるようにされている。例えば、平面コイル20a,30aの外周部では、開口部7の面積比率が0%以上30%未満にされており(図10(a))、平面コイル20a,30aの外周部には、開口部7を必ずしも設けなくてもよい。また、平面コイル20a,30aの中央部では、開口部7の面積比率が30%以上50%未満にされており(図10(b))、平面コイル20a,30aの内周部では、開口部7の面積比率が50%以上〜70%未満にされている(図10(c))。   The size of the opening 7 is increased as it approaches the center of the planar coils 20a, 30a, and the area ratio of the opening 7 per unit area in the conductor 4 is increased as it approaches the center of the spiral. Has been. For example, in the outer periphery of the planar coils 20a and 30a, the area ratio of the opening 7 is set to 0% or more and less than 30% (FIG. 10A), and the outer periphery of the planar coils 20a and 30a includes an opening. 7 is not necessarily provided. Further, the area ratio of the opening 7 is set to 30% or more and less than 50% at the center of the planar coils 20a and 30a (FIG. 10B), and the opening is formed at the inner periphery of the planar coils 20a and 30a. The area ratio of 7 is 50% or more and less than 70% (FIG. 10C).

平面コイル20a,30aは、渦巻きの中心に近づくほど磁束密度が高くなる。従って、磁束密度が高くなる位置ほど、導体部4における単位面積あたりの開口部7の面積比率が大きくなって、導体部4上で渦電流ができるスペースが小さくなる結果、渦電流のループが小さくなる。これにより、磁束密度が高く、渦電流が出来易い箇所ほど、渦電流のループが小さくなって渦電流損が低減される一方、磁束密度が低く、渦電流が出来難い箇所ほど、開口部7の面積比率が小さくなって、開口部7による導体部4の導体断面積の減少が抑制される。   The planar coils 20a and 30a have higher magnetic flux density as they approach the center of the spiral. Therefore, as the magnetic flux density becomes higher, the area ratio of the opening 7 per unit area in the conductor 4 becomes larger, and the space where eddy current can be generated on the conductor 4 becomes smaller. As a result, the eddy current loop becomes smaller. Become. As a result, the portion where the magnetic flux density is high and the eddy current is easily generated reduces the eddy current loss by reducing the eddy current loop, while the portion where the magnetic flux density is low and the eddy current is difficult to generate is An area ratio becomes small and the reduction | decrease of the conductor cross-sectional area of the conductor part 4 by the opening part 7 is suppressed.

この結果、磁束密度が小さい箇所では、開口部7による導体部4の直流抵抗の増大が抑制されて、直流損失が低減される。これにより、平面コイル20a,30a全体での損失が最も低減されるように、渦電流損の低減と直流抵抗の増大とのバランスをとることが可能となる。   As a result, at a location where the magnetic flux density is small, an increase in the DC resistance of the conductor portion 4 by the opening 7 is suppressed, and the DC loss is reduced. This makes it possible to balance the reduction in eddy current loss and the increase in DC resistance so that the loss in the entire planar coils 20a and 30a is minimized.

なお、例えば図11に示すように、開口部7の大きさは変えずに、例えば平面コイル20a,30aの外周部では図11(a)、平面コイル20a,30aの中央部では図11(b)、平面コイル20a,30aの内周部では図11(c)にそれぞれ示すように、渦巻きの中心に近づくほど導体部4における単位面積あたりの開口部7の数が多くなるように、開口部7を設けることで、導体部4における単位面積あたりの開口部7の面積比率が、渦巻きの中心に近づくほど大きくなるようにしてもよい。   For example, as shown in FIG. 11, without changing the size of the opening 7, for example, the outer periphery of the planar coils 20a and 30a is FIG. 11 (a), and the central portion of the planar coils 20a and 30a is FIG. ) In the inner peripheral portions of the planar coils 20a and 30a, as shown in FIG. 11C, the opening portions are formed so that the number of the opening portions 7 per unit area in the conductor portion 4 increases as the spiral center is approached. By providing 7, the area ratio of the opening 7 per unit area in the conductor part 4 may be increased as it approaches the center of the spiral.

これにより、磁束密度が高く、渦電流が出来易い箇所ほど、渦電流のループが小さくなって渦電流損が低減される一方、磁束密度が低く、渦電流が出来難い箇所ほど、開口部7の面積比率が小さくなって、開口部7による導体部4の導体断面積の減少が抑制される。   As a result, the portion where the magnetic flux density is high and the eddy current is easily generated reduces the eddy current loss by reducing the eddy current loop, while the portion where the magnetic flux density is low and the eddy current is difficult to generate is An area ratio becomes small and the reduction | decrease of the conductor cross-sectional area of the conductor part 4 by the opening part 7 is suppressed.

この結果、磁束密度が小さい箇所では、開口部7による導体部4の直流抵抗の増大が抑制されて、直流損失が低減される。これにより、平面コイル20a,30a全体での損失が最も低減されるように、渦電流損の低減と直流抵抗の増大とのバランスをとることが可能となる。   As a result, at a location where the magnetic flux density is small, an increase in the DC resistance of the conductor portion 4 by the opening 7 is suppressed, and the DC loss is reduced. This makes it possible to balance the reduction in eddy current loss and the increase in DC resistance so that the loss in the entire planar coils 20a and 30a is minimized.

さらに、開口部7の大きさを変えることで単位面積あたりの開口部7の面積比率を変えるよりも、開口部7の数を増加させることが容易なので、開口部7の数を増加させて導体部4に流れる電流を散乱させ易くなる結果、近接効果を低減することが容易になる。   Furthermore, since it is easier to increase the number of openings 7 than to change the area ratio of the openings 7 per unit area by changing the size of the openings 7, the number of openings 7 can be increased to increase the number of conductors. As a result of facilitating scattering of the current flowing through the portion 4, it becomes easy to reduce the proximity effect.

なお、図10、図11においても、開口部7は、四角形等の多角形であってもよく、その他の形状であってもよい。また、導体部4に対して四角形等の開口部7が配置される方向も限定されない。   10 and 11, the opening 7 may be a polygon such as a quadrangle or other shapes. Further, the direction in which the opening 7 such as a quadrangle is arranged with respect to the conductor 4 is not limited.

本発明の第1実施形態に係る平面コイルを用いた電気機器、電力供給装置、及び非接触電力伝送システムの構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the electric equipment using the planar coil which concerns on 1st Embodiment of this invention, an electric power supply apparatus, and a non-contact electric power transmission system. 図1に示す平面コイルの構成の一例を示す平面図である。It is a top view which shows an example of a structure of the planar coil shown in FIG. 図2に示す平面コイルの変形例を示す平面図である。It is a top view which shows the modification of the planar coil shown in FIG. 図2に示す導体部の拡大図である。It is an enlarged view of the conductor part shown in FIG. 図4に示す開口部の変形例を示す拡大図である。It is an enlarged view which shows the modification of the opening part shown in FIG. 図1に示す平面コイルの動作を説明するための概念図である。It is a conceptual diagram for demonstrating operation | movement of the planar coil shown in FIG. 図4に示す開口部の他の変形例を示す拡大図である。It is an enlarged view which shows the other modification of the opening part shown in FIG. 図7に示す開口部の他の変形例を示す拡大図である。It is an enlarged view which shows the other modification of the opening part shown in FIG. 本発明の第2実施形態に係る平面コイルの構成の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of a structure of the planar coil which concerns on 2nd Embodiment of this invention. 図9に示す平面コイルの導体部の拡大図である。(a)は平面コイルの外周部における開口部を示し、(b)は平面コイルの中央部における開口部を示し、(c)は平面コイルの内周部における開口部を示している。It is an enlarged view of the conductor part of the planar coil shown in FIG. (A) shows the opening in the outer periphery of the planar coil, (b) shows the opening in the center of the planar coil, and (c) shows the opening in the inner periphery of the planar coil. 図10に示す開口部の変形例を示す拡大図である。(a)は平面コイルの外周部における開口部を示し、(b)は平面コイルの中央部における開口部を示し、(c)は平面コイルの内周部における開口部を示している。It is an enlarged view which shows the modification of the opening part shown in FIG. (A) shows the opening in the outer periphery of the planar coil, (b) shows the opening in the center of the planar coil, and (c) shows the opening in the inner periphery of the planar coil.

符号の説明Explanation of symbols

1,1a 非接触電力伝送システム
2,2a 電気機器
3,3a 電力供給装置
4 導体部
7,7a,7b,7c,7d 開口部
8 基板
9 磁性体層
20,20a 平面コイル
21 充電回路
22 二次電池
23 負荷回路
30,30b 平面コイル
30a 巻線コイル
33 直流電源回路
34 インバータ回路
36 鉄芯
DESCRIPTION OF SYMBOLS 1,1a Non-contact electric power transmission system 2,2a Electric equipment 3,3a Power supply device 4 Conductor part 7,7a, 7b, 7c, 7d Opening part 8 Board | substrate 9 Magnetic body layer 20, 20a Planar coil 21 Charging circuit 22 Secondary Battery 23 Load circuit 30, 30b Planar coil 30a Winding coil 33 DC power supply circuit 34 Inverter circuit 36 Iron core

Claims (9)

平板状の導体部が渦巻き状に配置された平面コイルであって、
前記導体部の長手方向に沿って、複数の開口部が設けられていること
を特徴とする平面コイル。
A planar coil in which flat conductor portions are arranged in a spiral shape,
A planar coil comprising a plurality of openings along the longitudinal direction of the conductor.
前記複数の開口部は、前記導体部の長手方向に延びる複数の列をなして設けられており、
前記複数列のうち隣り合う列の開口部同士が、互い違いに配設されていること
を特徴とする請求項1記載の平面コイル。
The plurality of openings are provided in a plurality of rows extending in the longitudinal direction of the conductor portion,
The planar coil according to claim 1, wherein openings in adjacent rows of the plurality of rows are alternately arranged.
前記導体部における単位面積あたりの前記複数の開口部の面積比率が、前記渦巻きの中心に近づくほど大きくなるように、当該複数の開口部が設けられていること
を特徴とする請求項1又は2記載の平面コイル。
The plurality of openings are provided such that an area ratio of the plurality of openings per unit area in the conductor portion increases as the area approaches the center of the spiral. The described planar coil.
前記各開口部の大きさが、前記渦巻きの中心に近づくほど大きくされていること
を特徴とする請求項3記載の平面コイル。
The planar coil according to claim 3, wherein the size of each of the openings is increased toward the center of the spiral.
前記導体部における単位面積あたりの前記複数の開口部の数が、前記渦巻きの中心に近づくほど多くなるように、当該複数の開口部が設けられていること
を特徴とする請求項3記載の平面コイル。
4. The plane according to claim 3, wherein the plurality of openings are provided so that the number of the plurality of openings per unit area in the conductor portion increases toward the center of the spiral. coil.
請求項1〜5のいずれか1項に記載の平面コイルと、
電磁誘導によって前記平面コイルに誘起される電圧に基づき駆動される負荷回路と
を備えることを特徴とする電気機器。
A planar coil according to any one of claims 1 to 5,
An electric device comprising: a load circuit driven based on a voltage induced in the planar coil by electromagnetic induction.
請求項1〜5のいずれか1項に記載の平面コイルと、
前記平面コイルに高周波電流を供給する高周波電流供給部と
を備えることを特徴とする電力供給装置。
A planar coil according to any one of claims 1 to 5,
A power supply device comprising: a high-frequency current supply unit that supplies a high-frequency current to the planar coil.
請求項6記載の電気機器と、
前記電気機器における平面コイルと対向配置され、当該平面コイルに電磁誘導によって電圧を誘起する電力供給装置と
を備えることを特徴とする非接触電力伝送システム。
An electrical device according to claim 6;
A non-contact power transmission system comprising: a power supply device arranged to face a planar coil in the electric device and inducing a voltage in the planar coil by electromagnetic induction.
前記電力供給装置は、請求項7に記載の電力供給装置であり、
前記電気機器と前記電力供給装置とは、前記電気機器における平面コイルと前記電力供給装置における平面コイルとが対向配置されること
を特徴とする請求項8記載の非接触電力伝送システム。
The power supply device is the power supply device according to claim 7,
The non-contact power transmission system according to claim 8, wherein the electrical device and the power supply device are configured such that a planar coil in the electrical device and a planar coil in the power supply device are opposed to each other.
JP2008044714A 2008-02-26 2008-02-26 Planar coil, electric device using the same, power supply device, non-contact power transmission system Expired - Fee Related JP5113554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008044714A JP5113554B2 (en) 2008-02-26 2008-02-26 Planar coil, electric device using the same, power supply device, non-contact power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008044714A JP5113554B2 (en) 2008-02-26 2008-02-26 Planar coil, electric device using the same, power supply device, non-contact power transmission system

Publications (2)

Publication Number Publication Date
JP2009206169A true JP2009206169A (en) 2009-09-10
JP5113554B2 JP5113554B2 (en) 2013-01-09

Family

ID=41148176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008044714A Expired - Fee Related JP5113554B2 (en) 2008-02-26 2008-02-26 Planar coil, electric device using the same, power supply device, non-contact power transmission system

Country Status (1)

Country Link
JP (1) JP5113554B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251455A (en) * 2012-06-01 2013-12-12 Ibiden Co Ltd Electromagnetic coil
JP2019079870A (en) * 2017-10-23 2019-05-23 国立大学法人信州大学 Transmission coil component for non-contact power supply, method of manufacturing the same, and non-contact power supply device
JP2020178034A (en) * 2019-04-18 2020-10-29 国立大学法人信州大学 Non-contact power supply transmission coil unit, manufacturing method thereof, and non-contact power supply device
US10937589B2 (en) 2017-03-29 2021-03-02 Tdk Corporation Coil component and method of manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203736A (en) * 1995-01-30 1996-08-09 Murata Mfg Co Ltd Coil device with core
JPH08203739A (en) * 1995-01-30 1996-08-09 Murata Mfg Co Ltd Air-core coil device
JP2001319813A (en) * 2000-05-10 2001-11-16 Alps Electric Co Ltd Inductive element
JP2004047849A (en) * 2002-07-15 2004-02-12 Jfe Steel Kk Planar magnetic element
JP2004080023A (en) * 2002-07-30 2004-03-11 Sumitomo Special Metals Co Ltd Multilayer inductor
JP2005252272A (en) * 2005-03-11 2005-09-15 Fujitsu Ltd Inductance element formed on semiconductor substrate
JP2006230032A (en) * 2005-02-15 2006-08-31 Noboru Daiho Power transmitter and power transmissison method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203736A (en) * 1995-01-30 1996-08-09 Murata Mfg Co Ltd Coil device with core
JPH08203739A (en) * 1995-01-30 1996-08-09 Murata Mfg Co Ltd Air-core coil device
JP2001319813A (en) * 2000-05-10 2001-11-16 Alps Electric Co Ltd Inductive element
JP2004047849A (en) * 2002-07-15 2004-02-12 Jfe Steel Kk Planar magnetic element
JP2004080023A (en) * 2002-07-30 2004-03-11 Sumitomo Special Metals Co Ltd Multilayer inductor
JP2006230032A (en) * 2005-02-15 2006-08-31 Noboru Daiho Power transmitter and power transmissison method
JP2005252272A (en) * 2005-03-11 2005-09-15 Fujitsu Ltd Inductance element formed on semiconductor substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251455A (en) * 2012-06-01 2013-12-12 Ibiden Co Ltd Electromagnetic coil
US10937589B2 (en) 2017-03-29 2021-03-02 Tdk Corporation Coil component and method of manufacturing the same
JP2019079870A (en) * 2017-10-23 2019-05-23 国立大学法人信州大学 Transmission coil component for non-contact power supply, method of manufacturing the same, and non-contact power supply device
JP7082785B2 (en) 2017-10-23 2022-06-09 国立大学法人信州大学 Transmission coil parts for non-contact power supply, their manufacturing method, and non-contact power supply equipment
JP2020178034A (en) * 2019-04-18 2020-10-29 国立大学法人信州大学 Non-contact power supply transmission coil unit, manufacturing method thereof, and non-contact power supply device

Also Published As

Publication number Publication date
JP5113554B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
KR101248499B1 (en) Plane coil
KR101452093B1 (en) Thin film coil, shield part including the same, and contactless power transmission device having the shield part
US9876396B2 (en) Wireless power transmitting apparatus and wireless power transmission system
EP2980949A1 (en) Thin-film coil component and charging apparatus and method for manufacturing the component
JP2010284059A (en) Noncontact power transmission apparatus
CN210723371U (en) Antenna device and electronic apparatus
JP2008210998A (en) Reactor element with air gap
JP2008136311A (en) Composite planar coil
EP2693454A1 (en) Power-receiving coil, power-reception device, and contactless power-transmission system
JP2008263740A (en) Transmission transformer of noncontact power transmission system
JP5113554B2 (en) Planar coil, electric device using the same, power supply device, non-contact power transmission system
JP2008021788A (en) Multilayer inductor
JP5646688B2 (en) Contactless power supply system
JP4900525B1 (en) Non-contact charging module, transmitting-side non-contact charging device and receiving-side non-contact charging device provided with the same
TW201008031A (en) Loop antenna device with large opening area
JP2009038297A (en) Semiconductor device
JPH11176676A (en) Small-sized noncontact transmitter
EP1429352A1 (en) Electrical device and method of producing the same
JP2012175897A (en) Planar coil for non-contact power transmission apparatus
KR20180132205A (en) wireless power transfer module
JP2011114085A (en) Magnetic wire material and inductor
KR20180017409A (en) Inductor
JPWO2017221321A1 (en) Inductor
JP6540081B2 (en) Coil and magnetic core
JP2019179904A (en) Coil unit, wireless power transmission device, wireless power reception device, and wireless power transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees