JP2004047692A - Device and method for manufacturing electronic parts - Google Patents

Device and method for manufacturing electronic parts Download PDF

Info

Publication number
JP2004047692A
JP2004047692A JP2002202469A JP2002202469A JP2004047692A JP 2004047692 A JP2004047692 A JP 2004047692A JP 2002202469 A JP2002202469 A JP 2002202469A JP 2002202469 A JP2002202469 A JP 2002202469A JP 2004047692 A JP2004047692 A JP 2004047692A
Authority
JP
Japan
Prior art keywords
electronic component
ultrasonic vibration
electrode
tool
joining tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002202469A
Other languages
Japanese (ja)
Other versions
JP3767812B2 (en
Inventor
Mitsunori Ishizaki
石崎 光範
Yoichi Kitamura
北村 洋一
Takuya Oga
大賀 琢也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002202469A priority Critical patent/JP3767812B2/en
Publication of JP2004047692A publication Critical patent/JP2004047692A/en
Application granted granted Critical
Publication of JP3767812B2 publication Critical patent/JP3767812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • H01L2224/75302Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • H01L2224/75302Shape
    • H01L2224/75303Shape of the pressing surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • H01L2224/75313Removable bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75743Suction holding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75743Suction holding means
    • H01L2224/75745Suction holding means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Abstract

<P>PROBLEM TO BE SOLVED: To provide electronic part manufacturing device/method for bonding a salient electrode and an electrode in a stable state without damaging electronic parts. <P>SOLUTION: The device is provided with a bonding stage 6 to which a second electronic part 2 is fixed, an ultrasonic vibration propagation body 8 propagating ultrasonic vibration to a first electronic part 1 and a bonding tool 4 which is movably supported by a vibration transmission end of the ultrasonic vibration propagation body 8 in a direction similar to an ultrasonic vibration direction, in which an electronic part holding part 4b is formed and the first electronic part 4 is adsorbed and held by an electronic part suction means 4a. The ultrasonic vibration propagation body 8 vibrates the ultrasonic vibration propagation body 8 while the salient electrode 3 is pressed to the electrode 2c, propagates ultrasonic vibration to the first electronic part 1 and connects the second electronic part 2 to the first electronic part 1 while the bonding tool 4 is made to slide in the ultrasonic vibration direction when prescribed bonding power occurs between the salient electrode 3 and the electrode 2c. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、超音波振動を伝搬しながら突起電極と電極とを接合するフリップチップの実装方法およびその装置に関し、特に電子部品を破損させることなく安定した接合強度で電子部品を接合する電子部品製造装置および電子部品製造方法に関するものである。
【0002】
【従来の技術】
多端子で狭ピッチの電極を有する電子部品を実装する手法として、電子部品に超音波振動を伝搬しながら電子部品の電極上に形成した突起電極と電極とを接合する、フリップチップ方式がよく用いられており、例えば”超音波振動によるフリップチップ実装技術の開発”(橋本他、6th Symposium on Microjoining and  Assembly Technology in Electronics、175−178、2000)に記載されている。
【0003】
図21及び図22は従来の電子部品の製造方法および製造装置を示す一部を断面とする側面図である。図21及び図22図において、1は概略矩形平板状の第1の電子部品、1cは第1の電子部品1の表面としての第1の面1aに設けられた電極、2は概略矩形平板状の第2の電子部品、2cは第2の電子部品2の表面としての第1の面2aに設けられた電極、3は第1の電子部品1の電極1c上に設けられた突起電極である。第1の電子部品1と第2の電子部品2の裏面である第2の面1b,2bは平坦な面とされている。また、4は第1の電子部品1を吸着してこれを保持するとともに第1の電子部品1に超音波振動を伝搬する接合ツール、4aは接合ツール4に設けられた真空吸着穴、6は接合ステージ、5は接合ステージ6に設けられた真空吸着穴である。
【0004】
図21は第1の電子部品1を真空吸着穴4aで吸引して接合ツール4の電子部品保持部4bに真空吸着保持し、一方、第2の電子部品2を真空吸着穴5で吸引して第1の面2aを外方に向けて接合ステージ6に固定し、第1の電子部品1の電極1cに形成された突起電極3と、接合ステージ6に真空吸着保持された第2の電子部品2の電極2cとが位置合わせされた状態を示す一部を断面とする側面図である。
【0005】
図22は突起電極3と第2の電子部品2の電極2cとを加圧するとともに、接合ツール4によって第1の電子部品1に矢印Iに示されるように超音波振動が伝搬された状態を示す一部を断面とする側面図である。
第1の電子部品1の突起電極3と第2の電子部品2の電極2cとが位置合わせされた後、接合ツール4が第2の電子部品2の方向であるZ軸方向に移動し、突起電極3を所定の押圧力で電極2cに押圧しながら、接合ツール4が図中矢印Iに示されるように超音波振動を第1の電子部品1に伝搬する。Z軸方向の所定の押圧力とこれに直行するXY平面上の超音波振動によって突起電極3と電極2cとがこすれあい表面の汚れや膜が除去されて両者が固相接合される。
【0006】
図23は従来の電子部品の製造方法および製造装置の別の例を示し、突起電極3と第2の電子部品2の電極2cとを加圧するとともに、接合ツール12によって第1の電子部品1に矢印Jに示されるように超音波振動が伝搬された状態を示す一部を断面とする側面図である。図23において、12は四辺に各々斜面12aが形成され図中下方向に行くにつれて開口部を広げるくぼみ形状の電子部品保持部が形成された内面角錐型の接合ツールである。12bは接合ツール12に設けられた真空吸着穴である。接合ツール12は四辺に各々斜面12aを有する内面角錐型の電子部品保持部に第1の電子部品1を保持して超音波振動を第1の電子部品1に伝搬する。他の構成は図21及び図22に示される従来技術と同じである。
【0007】
【発明が解決しようとする課題】
図21及び図22に示される従来技術では、突起電極3と電極2cとの接合が進行して両者間に働く接合力が増すと、第1の電子部品1に徐々に止まろうとする力が働くのに対して、接合ツール4はそのまま振動を続けるので、接合ツール4と第1の電子部品1の裏面との間で強制的な往復運動(位置ずれ)が生じ、第1の電子部品1の裏面が擦られて破損するといった問題があった。
【0008】
また、第1の電子部品1の第2の面1bに電極等の複数の突起物が形成されている場合は、接合ツール4の電子部品保持面に突起の先端しか接触しないこととなり、接合ツール4と第1の電子部品1との接触面積が減少しすべりが生じやすくなるため、突起電極3に超音波振動を十分伝達することができずに適正な接合強が行われないといった問題や、突起物により接合ツール4が磨耗して接合ツール4の寿命が短くなるといった問題があった。
【0009】
これに対し、図23に示される従来技術では、接合ツール12と第1の電子部品1とのすべりは改善されている。しかしながら、図23に示される従来技術においても、突起電極3と電極2cとの接合が進行して接合力が増した場合、第1の電子部品1に大きな超音波振動が伝搬され続けるので接合部が破損するといった問題があった。
【0010】
さらに、電極数が多く、大きな超音波出力が必要となる場合には、接合中に第1の電子部品1と角錐型接合ツール12の斜面12aとの接触部に過大な荷重が集中して第1の電子部品1を破損させる問題があり、特に化合物半導体のように脆弱な部品への適用には制限があった。
【0011】
この発明は上述のような課題を解決するためになされたもので、電子部品を破損させることなく、突起電極と電極とを安定した状態で接合することができる電子部品製造装置および電子部品製造方法を得ることを目的とする。
【0012】
【課題を解決するための手段】
この発明に係る電子部品製造装置は、第1の面に複数の電極が形成された第2の電子部品を、第1の面を外方に向けて電子部品固定部に固定する接合ステージと、接合ステージに対して移動可能に設けられ、第1の電子部品に超音波振動を伝搬する超音波振動伝搬体と、超音波振動伝搬体の振動伝達端に超音波振動方向と同じ方向に移動可能に支持され、超音波振動伝搬体と反対側の面に電子部品保持部が形成され、第1の面に複数の突起電極が形成され第1の面が第2の電子部品に対向するように電子部品保持部に配置された第1の電子部品を、電子部品保持部に設けられた電子部品吸着手段により吸着して保持する接合ツールとを備え、超音波振動伝搬体は、第1の電子部品の突起電極を第2の電子部品の電極に位置決めし、突起電極を電極に押圧しながら超音波振動伝搬体を振動させて超音波振動を第1の電子部品に伝搬するとともに、突起電極と電極との間に所定の接合力が生じたときに接合ツールを超音波振動方向にすべらせながら第2の電子部品に第1の電子部品を接続する。
【0013】
また、超音波振動伝搬体は、接合ツール吸着手段によって振動伝達端に設けられたすべり面に接合ツールを吸着して超音波振動方向と同じ方向に移動可能に支持する。
【0014】
また、超音波振動伝搬体は、振動伝達端に設けられた弾性体を介して接合ツールを超音波振動方向と同じ方向に移動可能に支持する。
【0015】
また、接合ツールは、概略矩形の第1の電子部品の少なくとも対向する2辺を把持する電子部品把持手段を有し、電子部品吸着手段により吸着しながら電子部品把持手段によって把持して第1の電子部品を電子部品保持部に保持する。
【0016】
また、超音波振動伝搬体に対向する対向面に接合ツールを位置決めする位置合せ爪を有する接合ツールステージをさらに備え、超音波振動伝搬体は、接合ツールステージによって位置決めされた接合ツールを接合ツール吸着手段によってすべり面に吸着する。
【0017】
また、この発明に係る電子部品製造方法は、第1の電子部品に超音波振動を伝搬する超音波振動伝搬体と、超音波振動伝搬体の振動伝達端に超音波振動方向と同じ方向に移動可能に支持され、超音波振動伝搬体と反対側の面に電子部品保持部が形成され、電子部品保持部に設けられた電子部品吸着手段により電子部品保持部に第1の電子部品を保持する接合ツールと、電子部品保持部に対向する面に第2の電子部品を固定する電子部品固定部が設けられた接合ステージとを有する電子部品製造装置を使用する電子部品製造方法であって、第1の面に複数の電極が形成された第2の電子部品を、第1の面を外方に向けて電子部品固定部に固定する第2電子部品固定工程と、第1の面に複数の突起電極が形成された第1の電子部品を、第1の面が第2の電子部品に対向するように電子部品保持部に吸着する第1電子部品吸着工程と、第1の電子部品の突起電極を第2の電子部品の電極に位置決めし、突起電極を電極に押圧しながら超音波振動伝搬体を振動させて超音波振動を第1の電子部品に伝搬するとともに、突起電極と電極との間に所定の接合力が生じたときに接合ツールを超音波振動方向にすべらせながら第2の電子部品に第1の電子部品を接続する電子部品接続工程とを備えている。
【0018】
また、接合ツールは超音波振動伝搬体に設けられた接合ツール吸着手段によって振動伝達端に設けられたすべり面に吸着されて支持され、接合ツールを振動伝達端のすべり面に吸着する接合ツール吸着工程をさらに備えている。
【0019】
また、超音波振動伝搬体に対して接合ツールを所定の位置に位置決めする接合ツール位置決め工程をさらに備え、接合ツール吸着工程は、接合ツール位置決め工程によって位置決めされた接合ツールをすべり面に吸着する。
【0020】
さらに、第1電子部品吸着工程は、概略矩形の第1の電子部品の少なくとも対向する2辺を把持しながら第1の電子部品を電子部品保持部に吸着する。
【0021】
【発明の実施の形態】
実施の形態1.
図1から図8はこの発明の実施の形態1による電子部品製造装置および電子部品製造方法を示す一部を断面とする側面図である。図3において、1は概略矩形の平板状をなし図中下側の第1の面1aに複数の電極1cが形成された第1の電子部品である。第1の電子部品1の各電極1cには後で詳しく述べる突起電極3が設けられている。2は概略矩形の平板状をなし図中上側の第1の面2aに複数の電極2cが形成された第2の電子部品である。第2の電子部品2は電極2cが形成された第1の面2aを外方に向けて接合ステージ6上の電子部品固定部6aに固定されている。接合ステージ6の電子部品固定部6aには、第2の電子部品2を吸着する真空吸着穴5が設けられている。
【0022】
図1において、8は図示しない超音波振動伝搬装置の超音波振動伝搬体である。超音波振動伝搬体8は、接合ツールステージ9及び接合ステージ6に対してX軸、Y軸およびZ軸方向に移動可能とされ且つ第1の電子部品1に超音波振動を伝搬するために例えば片側1μmの振幅の超音波振動をする。超音波振動伝搬体8の図1の下端の振動伝達端には、平坦なすべり面8cが形成されている。また、超音波振動伝搬体8には、第1の電子部品1を吸着する接合ツール吸着手段として真空吸着穴8a、及び後述する接合ツール4を吸着する接合ツール吸着手段として真空吸着穴8bが軸方向に貫通して設けられている。
【0023】
図2において、4は超音波振動伝搬体8の振動伝達端のすべり面8cに真空吸着穴8bによって空気を吸引されて吸着された接合ツールである。接合ツール4の超音波振動伝搬体8に吸着される面と反対側の面には、第1の電子部品1を保持するための電子部品保持部4bが形成されている。電子部品保持部4bは四辺に各々斜面が形成され図中下方向に行くにつれて開口部を広げるくぼみ形状、すなわち、内面角錐型をなしている。接合ツール4の中央部には、真空吸着穴8aに連通して空気を吸引して第1の電子部品1を吸着する電子部品吸着手段としての真空吸着穴4aが穿孔されている。
本実施の形態では、接合ツール4はステンレス鋼にて作製されている。しなしながら、接合ツール4はステンレス鋼に限られるものではなく、例えばセラミックス材料で作製されてもよい。
【0024】
また、図2において、9は接合ツール4を位置決めするための接合ツールステージである。接合ツールステージ9の超音波振動伝搬体8に対向する対向面には、接合ツール4を位置決めするための位置合せ爪10が設けられている。
【0025】
図1は接合ツールステージ9上の接合ツール4と超音波振動伝搬体8とが位置合わせされた状態を示す一部を断面とする側面図である。一連の工程において、まず、接合ツール4が、後で詳しく説明するように、接合ツールステージ9上で超音波振動伝搬体8に対して位置合わせされる。
【0026】
図2は超音波振動伝搬体8の振動伝達端のすべり面8cに接合ツール4が真空吸着穴8bによって吸着される接合ツール吸着工程を示す一部を断面とする側面図である。接合ツール吸着工程においては、接合ツールステージ9上で超音波振動伝搬体8に対して位置合わせされた接合ツール4は、図中下方向であるZ軸方向に移動した超音波振動伝搬体8のすべり面8cに、真空吸着穴8bによって真空吸着保持される。
【0027】
図3は第1の電子部品1を真空吸着穴8aで吸引して接合ツール4の電子部品保持部4bに真空吸着保持する第1電子部品吸着工程と、第2の電子部品2を第1の面2aを外方に向けて電子部品固定部6aに固定する第2電子部品固定工程とを示すとともに、第1の電子部品1の電極1cに形成された突起電極3と、接合ステージ6に真空吸着保持された第2の電子部品2の電極2cとが位置合わせされた状態を示す一部を断面とする側面図である。
【0028】
第1電子部品吸着工程においては、振動伝達端のすべり面8cに接合ツール4を吸着した超音波振動伝搬体8が、例えば接合ステージ6に対して水平方向であるXY平面に移動して、図示しない載置台等に置かれた第1の電子部品1を真空吸着穴8aで吸引して接合ツール4の電子部品保持部4bに真空吸着保持する。
【0029】
第2電子部品固定工程においては、接合ステージ6の電子部品固定部6aに図示しない電子部品載置装置等によって第2の電子部品2が第1の面2aを外方に向けて載置され、真空吸着穴5によって真空吸着されて固定される。
その後、図3に示されるように第1の電子部品1の電極1cに形成された突起電極3と、接合ステージ6に真空吸着保持された第2の電子部品2の電極2cとが位置合わせされる。
【0030】
本実施の形態では、第1の電子部品1としてシリコン材料の半導体素子を用いている。しかしながら、第1の電子部品1として適用される部品は、シリコン材料の半導体素子に限られるものではなく、シリコン・ゲルマニュウムの合体、ヒ化ガリュウム、あるいはリン化インジューム等を材料とする他の半導体素子でもよい。そしてさらには、セラミックス配線基板や樹脂配線基板も適用することができる。
【0031】
本実施の形態で用いたシリコン材料の半導体素子には、直径25μmの金ワイヤの先端を溶融凝固させて直径75μmの金ボールを形成した後、金ボールを電極に接合し、金ボールから金ワイヤを所定の長さ切り離すことで、直径の平均値が97μmの金の突起電極3を12個形成した。ここで、突起電極3は金に限らず、例えば、銅や銀あるいは金合金、銅合金、銀合金で形成してもよい。
【0032】
また、本実施の形態では、第2の電子部品2としてアルミナ配線基板を用いたが、アルミナ配線基板に限らずガラスセラミックスや窒化アルミ等を材料とするセラミックス基板や樹脂基板でもよく、さらにはシリコン,シリコン・ゲルマニュウム,ガリュウム・ヒ素,インジューム・リン等を材料とする半導体素子も適用することができる。
【0033】
図4は突起電極3と第2の電子部品2の電極2cとを加圧するとともに、超音波振動伝搬体8によって接合ツール4に超音波振動が伝搬された状態を示す一部を断面とする側面図である。
第1の電子部品1の突起電極3と第2の電子部品2の電極2cとが位置合わせされた後、超音波振動伝搬体8がZ軸方向に移動し、突起電極3を所定の押圧力で電極2cに押圧しながら、超音波振動伝搬体8が図中矢印Aに示されるように超音波振動を第1の電子部品1に伝搬する。所定の押圧力と超音波振動によって突起電極3と電極2cとがこすれあい表面の汚れや膜が除去されて両者は固相接合される。
【0034】
本実施の形態においては、接合ステージ6を150℃に加熱した状態で、第1の電子部品1であるシリコン材料の半導体素子と第2の電子部品2であるアルミナ配線基板とを1200gfの押圧力で加圧するとともに片側1μmの振幅で60KHzの超音波振動を伝搬した。
【0035】
図5は第1の電子部品1の突起電極3と第2の電子部品の電極2cとの接合が進行した電子部品接続工程を示すとともに、突起電極3と電極2cとの接合力が増加し、接合ツール4に対して超音波振動伝搬体8が矢印B方向にすべった状態を示す一部を断面とする側面図である。
【0036】
電子部品接続工程においては、突起電極3が電極2cに押圧されながら超音波振動が伝搬され、所定の押圧力と超音波振動によって突起電極3と電極2cとが固相接合される。そして、突起電極3と電極2cにとの接合が進行し、突起電極3と電極2cとの接合力が増加し所定の大きさ以上になったとき、接合ツール4は超音波振動伝搬体8のすべり面8cに対してすべり始める。突起電極3と電極2cとの接合力に対してすべり始める摩擦抵抗を調節するには、すべり面8c及びこれに対面して接触する接合ツール4の接触面の滑らかさを適正なものにするとともに、真空吸着穴8bによる真空吸着力を適度に変化させて調節する。
【0037】
本実施の形態においては、片側1μmの振幅で60KHzの超音波振動を0.3秒間伝搬し、金の突起電極3と金の電極2cとをせん断破断荷重70gf/バンプ以上で接合した。このとき、突起電極3と電極2cとの接合が進行して、両者間に働く接合力が所定の値まで増した場合、超音波振動伝搬体8に対して接合ツール4がすべり始め、第1の電子部品1の裏面は破損することがなかった。なお、接合ツール4とすべり面8cとの摩擦抵抗を所定の値とするために、超音波振動の伝搬中は真空吸着穴8bによる接合ツール4の真空吸着を停止した。
【0038】
一方、同じ対象物、すなわち、第1の電子部品1にシリコン材料の半導体素子、第2の電子部品2にアルミナ配線基板を適用して、図5に示す従来の方法で接合した場合、超音波振動の伝搬時間が0.1秒以下では第1の電子部品1の裏面に破損は生じなかったものの、最小のせん断破断荷重が25gf/バンプとなり十分な接合力が得られなかった。また、超音波振動の伝搬時間を0.1秒より長くしてゆくとそれにともない接合力は増したが、第1の電子部品1と接合ツール4の間に位置ずれが生じ第1の電子部品1の裏面が破損した。
【0039】
図6は真空吸着穴8aの真空吸着を停止するとともに真空吸着穴8bで再び接合ツール4を真空吸着保持し、超音波振動伝搬体8を上方に移動させて第1の電子部品1と接合ツール4とを離間させた状態を示す一部を断面とする側面図である。図7は接合ツール4を接合ツールステージ9に置く状態を示す一部を断面とする側面図である。
【0040】
第1の電子部品1の突起電極3と第2の電子部品の電極2cとの接合が終了すると、超音波振動伝搬体8がZ軸で第1の電子部品1と離れる上方向に移動し、その後XY平面内で移動して接合ツールステージ9に向かう、そして再び下降して接合ツールステージ9の所定の位置に接合ツール4を置く、そして真空吸着穴8bの真空吸着を停止し超音波振動伝搬体8は上方に逃げる。
【0041】
図8は両側から位置合せ爪10で接合ツール4を押し、接合ツール4を接合ステージ9の所定の位置に移動させる接合ツール位置決め工程を示す一部を断面とする側面図である。
接合ツール位置決め工程においては、接合ツールステージ9の所定の位置に置かれた接合ツール4は、四方から図中矢印Cのようにスライドして接合ツール4の各面を押す位置合せ爪10によって所定の位置に位置決めされる。その後、工程は図1に示される状態に戻るが、接合ツール4は、超音波振動伝搬体8に対して正確に位置決めされた位置にあり、図2に示される接合ツール吸着工程では、接合ツール4は超音波振動伝搬体8の所定の位置に正確に吸着される。
【0042】
以上のように本実施の形態の電子部品製造装置および電子部品製造方法においては、突起電極3と電極2cとの接合が進行して両者間の接合力が増加しても、接合ツール4と第1の電子部品1の裏面との間で位置ずれが生じないので、第1の電子部品1の裏面が破損することがない。
【0043】
また、さらに、接合ツール4と超音波振動伝搬体8との間にすべりが生じるため、突起電極3と電極2cとの接合がさらに進行して両者間の接合部に大きな超音波振動が加わり続けても接合部が破損することもない。
【0044】
なお、接合ツール4と超音波振動伝搬体8のすべり面8cとの摩擦抵抗をすくなくしてすべりを生じやすくするため、接合ツール4の裏面に凹部を設けてすべり面8cとの接触面積を低減してもよい。さらには、接合中に真空吸着穴8bから逆に空気を吹き付けて接合ツール4と超音波振動伝搬体8との摩擦抵抗を低減してもよい。
【0045】
実施の形態2.
図9から図16はこの発明の実施の形態2による電子部品製造装置および電子部品製造方法を示す一部を断面とする側面図である。図9から図16において、実施の形態1と同一または相当部分には同一符号を付し、その説明を省略する。本実施の形態においては、実施の形態1に対して、接合ツール4が異なったものとなっている。図9から図16において、4dは接合ツール4のスライド部、4cは接合ツール4の真空吸着穴、4fは接合ツール4に設けられた電子部品把持手段としての把持爪、8dは超音波振動伝搬体8の真空吸着穴である。その他の構成は実施の形態1と概略同様である。
【0046】
図9は接合ツールステージ9上の接合ツール4と超音波振動伝搬体8とが位置合わせされた状態を示す一部を断面とする側面図である。接合ツール4は、第1の電子部品1を真空吸着する真空吸着穴4aと、真空吸着穴4c内部の空気圧を可変させることでスライドするスライド部4dを備えている。スライド部4dは接合ツール本体4eに対して進退動可能に設けられている。スライド部4dと接合ツール本体4eの間には、図示しない弾性体が縮設されている。この弾性体により、スライド部4dは、常時は接合ツール本体4eと離れるように付勢されている。そして、真空吸着穴4cによって内部を減圧されて接合ツール本体4eに近づく方向に移動する。接合ツール本体4eとスライド部4dには、それぞれ把持爪4f,4fが突設されている。2つの把持爪4f,4fは互いに近づく方向に移動することで第1の電子部品1を挟んで挟持する。
本実施の形態では、接合ツール4はステンレス鋼で作製されているが、ステンレス鋼に限定されることはなく、例えばセラミックス材料が用いられてもよい。
【0047】
図10は超音波振動伝搬体8の振動伝達端のすべり面8cに接合ツール4が真空吸着穴8bによって吸着される接合ツール吸着工程を示す一部を断面とする側面図である。図11は第1の電子部品1を真空吸着穴8aで吸引して接合ツール4の電子部品保持部4bに真空吸着するとともに、真空吸着穴8dを真空吸引して接合ツール4のスライド部4dをスライドさせ、第1の電子部品1の対向する1対の側面を挟み込んで保持する第1電子部品吸着工程と、第2の電子部品2を第1の面2aを外方に向けて電子部品固定部6aに固定する第2電子部品固定工程とを示すとともに、第1の電子部品1の電極1cに形成された突起電極3と、接合ステージ6に真空吸着保持された第2の電子部品2の電極2cとが位置合わせされた状態を示す一部を断面とする側面図である。
【0048】
第1電子部品吸着工程においては、振動伝達端のすべり面8cに接合ツール4を吸着した超音波振動伝搬体8が、例えば接合ステージ6に対して水平方向であるXY平面内で移動して、図示しない載置台等に置かれた第1の電子部品1を真空吸着穴8aで吸引して接合ツール4の電子部品保持部4bに真空吸着保持する。このとき、同時に真空吸着穴8dから空気を吸引して接合ツール4のスライド部4dをスライドさせ、第1の電子部品1の対向する1対の側面を把持爪4f,4fで挟み込んで保持する。
【0049】
第2電子部品固定工程においては、接合ステージ6の電子部品固定部6aに図示しない電子部品載置装置によって第2の電子部品2が第1の面2aを外方に向けて載置され、真空吸着穴5によって真空吸着されて固定される。
その後、図11に示されるように第1の電子部品1の電極1cに形成された突起電極3と、接合ステージ6に真空吸着保持された第2の電子部品2の電極2cとが位置合わせされる。
【0050】
本実施の形態では、第1の電子部品1としてヒ化ガリュウム材料の半導体素子を用いている。しかしながら、第1の電子部品1として適用される部品は、ヒ化ガリュウム材料の半導体素子に限られるものではなく、シリコン、シリコン・ゲルマニュウムの合体、あるいはリン化インジューム等を材料とする他の半導体素子でもよい。そしてさらには、セラミックス配線基板や樹脂配線基板も適用することができる。
【0051】
本実施の形態で用いたヒ化ガリュウム材料の半導体素子には、直径25μmの金ワイヤの先端を溶融凝固させて直径75μmの金ボールを形成した後、金ボールを電極に接合し、金ボールから金ワイヤを所定の長さ切り離すことで、直径の平均値が97μmの金の突起電極3を30個形成した。ここで、突起電極3は金に限らず、例えば、銅や銀あるいは金合金、銅合金、銀合金で形成してもよい。
【0052】
また、本実施の形態では、第2の電子部品2としてアルミナ配線基板を用いたが、アルミナ配線基板に限らずガラスセラミックスや窒化アルミ等を材料とするセラミックス基板や樹脂基板でもよく、さらにはシリコン,シリコン・ゲルマニュウム,ガリュウム・ヒ素,インジューム・リン等を材料とする半導体素子も適用することができる。
【0053】
図12は突起電極3と第2の電子部品の電極2cとを加圧するとともに、接合ツール4とスライド部4dに挟み込まれた第1の電子部品1に挟持する1対の側面に垂直な方向に超音波振動が伝搬された状態を示す一部を断面とする側面図である。
【0054】
第1の電子部品1の突起電極3と第2の電子部品2の電極2cとが位置合わせされた後、超音波振動伝搬体8がZ軸方向に移動し、突起電極3を所定の押圧力で電極2cに押圧しながら、超音波振動伝搬体8が図中矢印Dに示されるように超音波振動を第1の電子部品1に伝搬する。所定の押圧力と超音波振動によって突起電極3と電極2cとがこすれあい表面の汚れや膜が除去されて固相接合される。
【0055】
本実施の形態においては、超音波振動方向に垂直な2つの側面を接合ツール4で挟み込むことで、突起電極3の数が増して接合に大きな超音波出力が必要となる場合でも、角錐型接合ツールのように第1の電子部品1と接合ツール4との接触部に過大な荷重集中が生じることがなく、化合物半導体のように脆弱な部品でも破損することがない。
【0056】
本実施の形態においては、接合ステージ6を150℃に加熱した状態で、第1の電子部品1であるヒ化ガリュウム材料の半導体素子と第2の電子部品2であるアルミナ配線基板とを2700gfの押圧力で加圧するとともに片側2μmの振幅で60KHzの超音波振動を伝搬した。
【0057】
図13は第1の電子部品1の突起電極3と第2の電子部品の電極2cとの接合が進行した電子部品接続工程を示すとともに、突起電極3と電極2cとの接合力が増加し、接合ツール4に対して超音波振動伝搬体8が矢印E方向にすべった状態を示す一部を断面とする側面図である。
電子部品接続工程においては、突起電極3が電極2cに押圧されながら超音波振動が伝搬され、所定の押圧力と超音波振動によって突起電極3と電極2cとが固相接続される。そして、突起電極3と電極2cにとの接合が進行し、突起電極3と電極2cとの接合力が増加し所定の大きさ以上になったとき、接合ツール4は超音波振動伝搬体8のすべり面8cに対してすべり始める。突起電極3と電極2cとの接合力に対してすべり始める摩擦抵抗を調節するには、すべり面8c及びこれに対向して接触する接合ツール4の接触面の滑らかさを適正なものにするとともに、真空吸着穴8bによる真空吸着力を適度に変化させて調節する。
【0058】
本実施の形態においては、突起電極3を30個形成したが、突起電極3の数が増加すると、これに伴い突起電極3と電極2cとの間に生じる接合力が大きくなる。そのため、両者の接合が十分に進行する前に接合ツール4とすべり面8cとの間ですべりが生じてしまう場合がある。接合が十分に進行する前に接合ツール4がすべり面8cに対してすべると超音波振動が接合部に伝わらず接合が完全に行われない問題が生じる。
【0059】
そこで、本実施の形態では、超音波振動伝搬開始から0.1秒間は真空吸着穴8bで接合ツール4を真空吸着したままとし、超音波振動伝搬体8と接合ツール4とのすべりを防止して接合を進ませた。その後、真空吸着を停止してさらに超音波振動を0.4秒間伝搬した。これにより、素子裏面の破損を生じさせることなく、金の突起電極3とアルミナ配線板の厚さ3μmの金の電極2cとをせん断破断荷重75gf/バンプ以上で接合することができた。
【0060】
本実施の形態では、真空吸着の停止のタイミングは、超音波振動の伝搬時間で得ている。このタイミングは、接合中の超音波振幅,超音波振動子のインピーダンス,荷重等を測定してタイミングを得ることもできる。すなわち、接合が進行するにつれて超音波振幅はしだいに小さくなるので、これを検出しながら接合を行い所定の大きさ以下になったときに、真空吸着を停止するあるいは逆に空気を吹き付けることで接合ツール4と超音波振動伝搬体8との摩擦抵抗を低減してもよい。
また、接合が進行するにつれて超音波インピーダンスしだいに大きくなるので、これを検出しながら接合を行い所定の大きさ以上になったときに、真空吸着を停止するあるいは逆に空気を吹き付けることで接合ツール4と超音波振動伝搬体8との摩擦抵抗を低減してもよい。
さらには、接合が進行するにつれて超音波振動伝搬体8に作用する荷重はしだいに大きくなるので同様の方法でタイミングの制御に用いることができる。
【0061】
図14は真空吸着穴8aの真空吸着を停止するとともに真空吸着穴8bで再び接合ツール4を真空吸着保持し、超音波振動伝搬体8を上方に移動させて第1の電子部品1と接合ツール4とを離間させた状態を示す一部を断面とする側面図である。図15は接合ツール4を接合ツールステージ9に置く状態を示す一部を断面とする側面図である。
【0062】
第1の電子部品1の突起電極3と第2の電子部品の電極2cとの接合が終了すると、超音波振動伝搬体8がZ軸で第1の電子部品1と離れる上方向に移動し、その後XY平面内で移動して接合ツールステージ9に向かう、そして再びZ軸方向に下降して接合ツールステージ9の所定の位置に接合ツール4を置く、そして真空吸着穴8bの真空吸着を停止し超音波振動伝搬体8は上方に逃げる。
【0063】
図16は両側から位置合せ爪10で接合ツール4を押し、接合ツール4を接合ステージ9の所定の位置に移動させる接合ツール位置決め工程を示す一部を断面とする側面図である。
接合ツール位置決め工程においては、接合ツールステージ9の所定の位置に置かれた接合ツール4は、四方から図中矢印Fのようにスライドして接合ツール4の各面を押す位置合せ爪10にて所定の位置に位置決めされる。その後、工程は図9に示される状態に戻るが、接合ツール4は、超音波振動伝搬体8に対して位置決めされた位置にあり、図10に示される接合ツール吸着工程では、接合ツール4は超音波振動伝搬体8の所定の位置に正確に吸着される。
【0064】
以上のように本実施の形態の電子部品製造装置および電子部品製造方法においては、接合ツール4は、概略矩形平板状の第1の電子部品1の対向する2辺を把持する電子部品把持手段としての2つの把持爪4f,4fを有し、真空吸着穴8aによって吸着しながら把持爪4f,4fで把持して第1の電子部品1を電子部品保持部4bに保持する。そのため、接合ツール4と第1の電子部品1の裏面との間に発生する位置ずれをさらに抑制することができ、さらに第1の電子部品1の裏面の破損を防止することがなくなる。
【0065】
尚、本実施の形態においては、把持爪4f,4fを動かす駆動力として気体の圧力を利用したが、他に液体による圧力や電磁力あるいはバネや圧電素子やネジによる圧力を用いても同様の効果が得られる。また、第1の電子部品1の2辺を挟み込んでいるが、電子部品把持手段は、第1の電子部品1と接合ツール4とのすべりを防止することが目的であり、3辺あるいは4辺を把持してもよいことは言うまでもない。
【0066】
実施の形態3.
図17から図20はこの発明の実施の形態3による電子部品製造装置および電子部品製造方法を示す一部を断面とする側面図である。図17から図20において、実施の形態1と同一または相当部分には同一符号を付し、その説明を省略する。図17から図20において、11は超音波振動伝搬体8の振動伝達端に設けられ接合ツール4を超音波振動方向と同じ方向に移動可能に支持する弾性体としてのバネである。バネ11は超音波振動伝搬体8と接合ツール4との間で2方向から接合ツール4を押圧して接合ツール4を所定の位置に配置する。その他の構成は実施の形態1と概略同様である。
【0067】
図17は第1の電子部品1を真空吸着穴8aで吸引して接合ツール4の電子部品保持部4bに真空吸着保持する第1電子部品吸着工程と、第2の電子部品2を第1の面2aを外方に向けて電子部品固定部6aに固定する第2電子部品固定工程とを示すとともに、第1の電子部品1の電極1cに形成された突起電極3と、接合ステージ6に真空吸着保持された第2の電子部品2の電極2cとが位置合わせされた状態を示す一部を断面とする側面図である。
【0068】
第1電子部品吸着工程においては、振動伝達端に接合ツール4を移動可能に支持した超音波振動伝搬体8が接合ステージ6に対して水平方向であるXY平面内で移動して、図示しない載置台に置かれた第1の電子部品1を真空吸着穴8aで吸引して接合ツール4の電子部品保持部4bに真空吸着保持する。
【0069】
第2電子部品固定工程においては、接合ステージ6の電子部品固定部6aに図示しない電子部品載置装置によって第2の電子部品2が第1の面2aを外方に向けて載置され、真空吸着穴5によって真空吸着されて固定される。
その後、図17に示されるように第1の電子部品1の電極1cに形成された突起電極3と、接合ステージ6に真空吸着保持された第2の電子部品2の電極2cとが位置合わせされる。
【0070】
本実施の形態では、接合ツール4はステンレス鋼で作製されている。しなしながら、ステンレス鋼に限られるものではなく、例えばセラミックス材料で作製されてもよい。さらには、実施の形態2のように第1の電子部品1の対向する2辺を把持する手段を有する接合ツールを用いてもよい。
【0071】
本実施の形態では、第1の電子部品1としてヒ化ガリュウム材料の半導体素子を用いている。しかしながら、第1の電子部品1として適用される部品は、ヒ化ガリュウム材料の半導体素子に限られるものではなく、シリコン、シリコン・ゲルマニュウムの合体、あるいはリン化インジューム等を材料とする他の半導体素子でもよい。そしてさらには、セラミックス配線基板や樹脂配線基板も適用することができる。
【0072】
本実施の形態で用いたヒ化ガリュウム材料の半導体素子には、直径25μmの金ワイヤの先端を溶融凝固させて直径75μmの金ボールを形成した後、金ボールを電極に接合し、金ボールから金ワイヤを所定の長さ切り離すことで、直径の平均値が97μmの金の突起電極3を8個形成した。ここで、突起電極3は金に限らず、例えば、銅や銀あるいは金合金、銅合金、銀合金で形成してもよい。
【0073】
また、本実施の形態では、第2の電子部品2としてアルミナ配線基板を用いたが、アルミナ配線基板に限らずガラスセラミックスや窒化アルミ等を材料とするセラミックス基板や樹脂基板でもよく、さらにはシリコン,シリコン・ゲルマニュウム,ガリュウム・ヒ素,インジューム・リン等を材料とする半導体素子も適用することができる。
【0074】
図18は突起電極3と第2の電子部品2の電極2cとを加圧するとともに、超音波振動伝搬体8によって接合ツール4に超音波振動が伝搬された状態を示す一部を断面とする側面図である。
【0075】
第1の電子部品1の突起電極3と第2の電子部品2の電極2cとが位置合わせされた後、超音波振動伝搬体8がZ軸方向に移動し、突起電極3を所定の押圧力で電極2cに押圧しながら、超音波振動伝搬体8が図中矢印Gに示されるように超音波振動を第1の電子部品1に伝搬する。所定の押圧力と超音波振動によって突起電極3と電極2cとはこすれあい表面の汚れや膜が除去されて固相接合される。
【0076】
本実施の形態においては、接合ステージ6を150℃に加熱した状態で、第1の電子部品1であるヒ化ガリュウム材料の半導体素子と第2の電子部品2であるアルミナ配線基板とを800gfの押圧力で加圧するとともに片側0.8μmの振幅で60KHzの超音波振動を伝搬した。
【0077】
図19は第1の電子部品1の突起電極3と第2の電子部品の電極2cとの接合が進行した電子部品接続工程を示すとともに、突起電極3と電極2cとの接合力が増加し、接合ツール4に対して超音波振動伝搬体8が矢印H方向にすべった状態を示す一部を断面とする側面図である。
【0078】
電子部品接続工程においては、突起電極3が電極2cに押圧されながら超音波振動が伝搬され、所定の押圧力と超音波振動によって突起電極3と電極2cとが固相接続される。そして、突起電極3と電極2cにとの接合が進行し、突起電極3と電極2cとの接合力が増加し所定の大きさ以上になったとき、接合ツール4は超音波振動伝搬体8のすべり面8cに対してすべり始める。突起電極3と電極電極2cとの接合力に対してすべり始める摩擦抵抗を調節するには、すべり面8c及びこれに対向して接触する接合ツール4の接触面の滑らかさを適正なものにする。
【0079】
本実施の形態においては、接合ステージ6を150℃に加熱した状態で、第1の電子部品1であるヒ化ガリュウム材料の半導体素子と第2の電子部品2であるアルミナ配線基板とを800gfの押圧力で加圧するとともに片側0.8μmの振幅で60KHzの超音波振動を伝搬した。
【0080】
図20は真空吸着穴8aの真空吸着を停止し、超音波振動伝搬体8を上方に移動させて第1の電子部品1と接合ツール4とを分離した状態を示す一部を断面とする側面図である。
【0081】
以上のように本実施の形態の電子部品製造装置および電子部品製造方法においては、接合ツール4は、弾性体としてのバネ11により支持されて超音波振動伝搬体8の振動伝達端に常時設けられている。そのため、超音波振動伝搬体8に接合ツール4を吸着する接合ツール吸着工程や超音波振動伝搬体8に対して接合ツール4の位置決めを行う接合ツール位置決め工程がなくなり、全体として加工時間が削減され、生産性が向上しコストをさげることができる。
尚、本実施の形態においては、接合条件によって適度な弾性力を有するバネ11を選択することにより適正な接合を行うことができる。
【0082】
【発明の効果】
この発明に係る電子部品製造装置は、第1の面に複数の電極が形成された第2の電子部品を、第1の面を外方に向けて電子部品固定部に固定する接合ステージと、接合ステージに対して移動可能に設けられ、第1の電子部品に超音波振動を伝搬する超音波振動伝搬体と、超音波振動伝搬体の振動伝達端に超音波振動方向と同じ方向に移動可能に支持され、超音波振動伝搬体と反対側の面に電子部品保持部が形成され、第1の面に複数の突起電極が形成され第1の面が第2の電子部品に対向するように電子部品保持部に配置された第1の電子部品を、電子部品保持部に設けられた電子部品吸着手段により吸着して保持する接合ツールとを備え、超音波振動伝搬体は、第1の電子部品の突起電極を第2の電子部品の電極に位置決めし、突起電極を電極に押圧しながら超音波振動伝搬体を振動させて超音波振動を第1の電子部品に伝搬するとともに、突起電極と電極との間に所定の接合力が生じたときに接合ツールを超音波振動方向にすべらせながら第2の電子部品に第1の電子部品を接続する。そのため、第1の電子部品と第2の電子部品の接合中に、接合ツールに対して第1の電子部品が位置ずれを発生することがなくなる。その結果、第1の電子部品を破損させることなく、第1の電子部品と第2の電子部品とを安定した状態で接合することができる。
【0083】
また、超音波振動伝搬体は、接合ツール吸着手段によって振動伝達端に設けられたすべり面に接合ツールを吸着して超音波振動方向と同じ方向に移動可能に支持する。そのため、電子部品吸着手段と同じ駆動源を用いて接合ツールをすべり面に吸着することができ、簡単な構成とすることができるので、コストダウンをすることができる。
【0084】
また、超音波振動伝搬体は、振動伝達端に設けられた弾性体を介して接合ツールを超音波振動方向と同じ方向に移動可能に支持する。そのため、接合ツールに力が働かなくなったとき、弾性体は接合ツールを所定の位置に支持するので、超音波振動伝搬体に対して接合ツールを位置決めする動作は、第1の電子部品から接合ツールを離間させるのみの動作でよく、製造時間を短縮することができるので、コストダウンをすることができる。
【0085】
また、接合ツールは、概略矩形の第1の電子部品の少なくとも対向する2辺を把持する電子部品把持手段を有し、電子部品吸着手段により吸着しながら電子部品把持手段によって把持して第1の電子部品を電子部品保持部に保持する。そのため、第1の電子部品が安定して保持され、接合ツールに対して第1の電子部品がさらに位置ずれを発生することがなくなり、第1の電子部品と第2の電子部品とをさらに安定した状態で接合することができる。
【0086】
また、超音波振動伝搬体に対向する対向面に接合ツールを位置決めする位置合せ爪を有する接合ツールステージをさらに備え、超音波振動伝搬体は、接合ツールステージによって位置決めされた接合ツールを接合ツール吸着手段によってすべり面に吸着する。そのため、超音波振動伝搬体から離脱してしまう接合ツールを簡単な構成で位置決めすることができ、コストダウンをすることができる。
【0087】
また、この発明に係る電子部品製造方法は、第1の電子部品に超音波振動を伝搬する超音波振動伝搬体と、超音波振動伝搬体の振動伝達端に超音波振動方向と同じ方向に移動可能に支持され、超音波振動伝搬体と反対側の面に電子部品保持部が形成され、電子部品保持部に設けられた電子部品吸着手段により電子部品保持部に第1の電子部品を保持する接合ツールと、電子部品保持部に対向する面に第2の電子部品を固定する電子部品固定部が設けられた接合ステージとを有する電子部品製造装置を使用する電子部品製造方法であって、第1の面に複数の電極が形成された第2の電子部品を、第1の面を外方に向けて電子部品固定部に固定する第2電子部品固定工程と、第1の面に複数の突起電極が形成された第1の電子部品を、第1の面が第2の電子部品に対向するように電子部品保持部に吸着する第1電子部品吸着工程と、第1の電子部品の突起電極を第2の電子部品の電極に位置決めし、突起電極を電極に押圧しながら超音波振動伝搬体を振動させて超音波振動を第1の電子部品に伝搬するとともに、突起電極と電極との間に所定の接合力が生じたときに接合ツールを超音波振動方向にすべらせながら第2の電子部品に第1の電子部品を接続する電子部品接続工程とを備えている。そのため、電子部品接続工程において、第1の電子部品と第2の電子部品の接合中に、接合ツールに対して第1の電子部品が位置ずれおこすことがなく、第1の電子部品が破損することがなくなり、第1の電子部品と第2の電子部品とが安定した状態で接合される。
【0088】
また、接合ツールは超音波振動伝搬体に設けられた接合ツール吸着手段によって振動伝達端に設けられたすべり面に吸着されて支持され、接合ツールを振動伝達端のすべり面に吸着する接合ツール吸着工程をさらに備えている。そのため、接合ツール吸着工程では、第1電子部品吸着工程と同じ駆動源の電子部品吸着手段にて接合ツールをすべり面に吸着し、装置を簡単な構成とすることができるので、コストダウンをすることができる。
【0089】
また、超音波振動伝搬体に対して接合ツールを所定の位置に位置決めする接合ツール位置決め工程をさらに備え、接合ツール吸着工程は、接合ツール位置決め工程によって位置決めされた接合ツールをすべり面に吸着する。そのため、超音波振動伝搬体から離脱してしまう接合ツールを簡単な動作にて位置決めすることができる。
【0090】
さらに、第1電子部品吸着工程は、概略矩形の第1の電子部品の少なくとも対向する2辺を把持しながら第1の電子部品を電子部品保持部に吸着する。そのため、電子部品接続工程において、第1の電子部品と第2の電子部品の接合中に、接合ツールに対して第1の電子部品がさらに位置ずれおこすことがなく、第1の電子部品がさらに破損することがなくなり、第1の電子部品と第2の電子部品とがさらに安定した状態で接合される。
【図面の簡単な説明】
【図1】この発明の実施の形態1の接合ツールと超音波振動伝搬体とが位置合わせされた状態を示す一部を断面とする側面図である。
【図2】この発明の実施の形態1のすべり面に接合ツールが吸着される接合ツール吸着工程を示す一部を断面とする側面図である。
【図3】この発明の実施の形態1の第1の電子部品を接合ツールの電子部品保持部に真空吸着保持する第1電子部品吸着工程と、第2の電子部品2を電子部品固定部に固定する第2電子部品固定工程とを示すとともに、第1の電子部品と第2の電子部品とが位置合わせされた状態を示す一部を断面とする側面図である。
【図4】この発明の実施の形態1の突起電極と電極とを加圧するとともに接合ツールに超音波振動が伝搬された状態を示す一部を断面とする側面図である。
【図5】この発明の実施の形態1の突起電極と電極との接合力が増加し接合ツールに対して超音波振動伝搬体がすべった状態を示す一部を断面とする側面図である。
【図6】この発明の実施の形態1の超音波振動伝搬体を上方に移動させて第1の電子部品と接合ツールとを離間させた状態を示す一部を断面とする側面図である。
【図7】この発明の実施の形態1の接合ツールを接合ツールステージに置く状態を示す一部を断面とする側面図である。
【図8】この発明の実施の形態1の位置合せ爪にて接合ツールを位置決めする接合ツール位置決め工程を示す一部を断面とする側面図である。
【図9】この発明の実施の形態2の接合ツールと超音波振動伝搬体とが位置合わせされた状態を示す一部を断面とする側面図である。
【図10】この発明の実施の形態2のすべり面に接合ツールが吸着される接合ツール吸着工程を示す一部を断面とする側面図である。
【図11】この発明の実施の形態2の第1の電子部品を接合ツールの電子部品保持部に真空吸着するとともに第1の電子部品1の対向する1対の側面を挟み込んで保持する第1電子部品吸着工程と、第2の電子部品2を電子部品固定部に固定する第2電子部品固定工程とを示すとともに、第1の電子部品と第2の電子部品とが位置合わせされた状態を示す一部を断面とする側面図である。
【図12】この発明の実施の形態2の突起電極と電極とを加圧するとともに接合ツールに超音波振動が伝搬された状態を示す一部を断面とする側面図である。
【図13】この発明の実施の形態2の突起電極と電極との接合力が増加し接合ツールに対して超音波振動伝搬体がすべった状態を示す一部を断面とする側面図である。
【図14】この発明の実施の形態2の超音波振動伝搬体を上方に移動させて第1の電子部品と接合ツールとを離間させた状態を示す一部を断面とする側面図である。
【図15】この発明の実施の形態2の接合ツールを接合ツールステージに置く状態を示す一部を断面とする側面図である。
【図16】この発明の実施の形態2の位置合せ爪にて接合ツールを位置決めする接合ツール位置決め工程を示す一部を断面とする側面図である。
【図17】この発明の実施の形態3の第1の電子部品を接合ツールの電子部品保持部に真空吸着保持する第1電子部品吸着工程と、第2の電子部品2を電子部品固定部に固定する第2電子部品固定工程とを示すとともに、第1の電子部品と第2の電子部品とが位置合わせされた状態を示す一部を断面とする側面図である。
【図18】この発明の実施の形態3の突起電極と電極とを加圧するとともに接合ツールに超音波振動が伝搬された状態を示す一部を断面とする側面図である。
【図19】この発明の実施の形態3の突起電極と電極との接合力が増加し接合ツールに対して超音波振動伝搬体がすべった状態を示す一部を断面とする側面図である。
【図20】この発明の実施の形態3の超音波振動伝搬体を上方に移動させて第1の電子部品と接合ツールとを離間させた状態を示す一部を断面とする側面図である。
【図21】従来の電子部品の製造方法および製造装置を示し、特に第1の電子部品を真空吸着保持し、第2の電子部品を接合ステージに固定し、さらに両者が位置合わせされた状態を示す一部を断面とする側面図である。
【図22】従来の電子部品の製造方法および製造装置を示し、特に突起電極が電極に加圧されるとともに超音波振動が伝搬された状態を示す一部を断面とする側面図である。
【図23】従来の電子部品の製造方法および製造装置の別の例を示し、特に突起電極が電極に加圧されるとともに超音波振動が伝搬された状態を示す一部を断面とする側面図である。
【符号の説明】
1 第1の電子部品、2 第2の電子部品、2c 電極、3 突起電極、4 接合ツール、4a 真空吸着穴(電子部品吸着手段)、4b 電子部品保持部、4e 接合ツール本体、4d スライド部、4f 把持爪(電子部品把持手段)、6 接合ステージ、6a 電子部品固定部、8 超音波振動伝搬体、8a 真空吸着穴(電子部品吸着手段)、8b 真空吸着穴(接合ツール吸着手段)、8c すべり面、9 接合ツールステージ、10 位置合せ爪、11 バネ(弾性体)。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for mounting a flip chip for bonding a protruding electrode to an electrode while propagating ultrasonic vibration, and particularly to manufacturing an electronic component for bonding an electronic component with a stable bonding strength without damaging the electronic component. The present invention relates to an apparatus and an electronic component manufacturing method.
[0002]
[Prior art]
As a method of mounting an electronic component having a multi-terminal, narrow-pitch electrode, a flip-chip method, in which a projection electrode formed on an electrode of the electronic component is joined to the electrode while transmitting ultrasonic vibration to the electronic component, is often used. For example, it is described in "Development of flip chip mounting technology by ultrasonic vibration" (Hashimoto et al., 6th Symposium on Microjoining and Assembly Technology in Electronics in Electronics, 175-178, 2000).
[0003]
FIG. 21 and FIG. 22 are side views, partly in section, showing a conventional method and apparatus for manufacturing an electronic component. 21 and 22, reference numeral 1 denotes a first electronic component having a substantially rectangular flat plate shape, 1c denotes an electrode provided on a first surface 1a as a surface of the first electronic component 1, and 2 denotes a substantially rectangular flat plate shape. The second electronic component 2c is an electrode provided on the first surface 2a as a surface of the second electronic component 2, and 3 is a protruding electrode provided on the electrode 1c of the first electronic component 1. . The second surfaces 1b and 2b, which are the back surfaces of the first electronic component 1 and the second electronic component 2, are flat surfaces. Reference numeral 4 denotes a joining tool that sucks and holds the first electronic component 1 and propagates ultrasonic vibrations to the first electronic component 1, 4a denotes a vacuum suction hole provided in the joining tool 4, and 6 denotes The joining stages 5 and 5 are vacuum suction holes provided in the joining stage 6.
[0004]
FIG. 21 shows a state in which the first electronic component 1 is sucked by the vacuum suction hole 4a and held in the electronic component holding portion 4b of the joining tool 4 by vacuum suction, while the second electronic component 2 is sucked by the vacuum suction hole 5. The first surface 2a is fixed to the joining stage 6 with the outer surface facing outward, the protruding electrode 3 formed on the electrode 1c of the first electronic component 1, and the second electronic component held by the joining stage 6 by vacuum suction. It is a side view which has a part and which shows the state where 2 electrodes 2c were aligned.
[0005]
FIG. 22 shows a state where the protruding electrode 3 and the electrode 2c of the second electronic component 2 are pressurized, and the ultrasonic vibration is propagated to the first electronic component 1 by the joining tool 4 as shown by an arrow I. It is a side view which makes a part into a cross section.
After the projection electrode 3 of the first electronic component 1 is aligned with the electrode 2c of the second electronic component 2, the joining tool 4 moves in the Z-axis direction which is the direction of the second electronic component 2, and While pressing the electrode 3 against the electrode 2c with a predetermined pressing force, the joining tool 4 propagates the ultrasonic vibration to the first electronic component 1 as shown by the arrow I in the figure. The protruding electrode 3 and the electrode 2c are rubbed by a predetermined pressing force in the Z-axis direction and ultrasonic vibration on the XY plane orthogonal thereto, thereby removing dirt and film on the surface and solid-phase bonding the two.
[0006]
FIG. 23 shows another example of a conventional method and apparatus for manufacturing an electronic component, in which the projecting electrode 3 and the electrode 2c of the second electronic component 2 are pressurized, and the first electronic component 1 is joined to the first electronic component 1 by the joining tool 12. It is a side view which has a part which shows the state where the ultrasonic vibration was propagated as shown by arrow J. In FIG. 23, reference numeral 12 denotes an inner-surface pyramid-type joining tool in which a slope 12a is formed on each of four sides, and a concave-shaped electronic component holding portion is formed, the opening of which is widened downward in the figure. 12b is a vacuum suction hole provided in the joining tool 12. The joining tool 12 holds the first electronic component 1 in an inner-side pyramid-shaped electronic component holding portion having slopes 12 a on four sides, and propagates ultrasonic vibrations to the first electronic component 1. Other configurations are the same as those of the related art shown in FIGS. 21 and 22.
[0007]
[Problems to be solved by the invention]
In the prior art shown in FIGS. 21 and 22, when the bonding between the protruding electrode 3 and the electrode 2c progresses and the bonding force acting between them increases, a force to gradually stop the first electronic component 1 is applied. On the other hand, since the joining tool 4 continues to vibrate as it is, a forced reciprocating motion (position shift) occurs between the joining tool 4 and the back surface of the first electronic component 1, and the first electronic component 1 There was a problem that the back surface was rubbed and damaged.
[0008]
When a plurality of projections such as electrodes are formed on the second surface 1b of the first electronic component 1, only the tips of the projections come into contact with the electronic component holding surface of the joining tool 4, and the joining tool Since the contact area between the first electronic component 4 and the first electronic component 1 is reduced and slippage is likely to occur, there is a problem that ultrasonic vibration cannot be sufficiently transmitted to the protruding electrode 3 and an appropriate bonding strength is not performed. There was a problem that the joining tool 4 was worn by the projections and the life of the joining tool 4 was shortened.
[0009]
On the other hand, in the related art shown in FIG. 23, the slip between the joining tool 12 and the first electronic component 1 is improved. However, also in the prior art shown in FIG. 23, when the bonding between the protruding electrode 3 and the electrode 2c progresses and the bonding force increases, a large ultrasonic vibration continues to be propagated to the first electronic component 1, so that the bonding portion There was a problem that it was damaged.
[0010]
Further, when the number of electrodes is large and a large ultrasonic output is required, an excessive load is concentrated on a contact portion between the first electronic component 1 and the slope 12a of the pyramid-shaped joining tool 12 during joining, and the However, there is a problem that the electronic component 1 may be damaged, and there is a limitation in application to a fragile component such as a compound semiconductor.
[0011]
The present invention has been made to solve the above-described problems, and an electronic component manufacturing apparatus and an electronic component manufacturing method capable of joining a protruding electrode and an electrode in a stable state without damaging the electronic component. The purpose is to obtain.
[0012]
[Means for Solving the Problems]
An electronic component manufacturing apparatus according to the present invention includes: a joining stage for fixing a second electronic component having a plurality of electrodes formed on a first surface to an electronic component fixing portion with the first surface facing outward; An ultrasonic vibration propagator that is provided movably with respect to the bonding stage and propagates ultrasonic vibration to the first electronic component, and is movable in the same direction as the ultrasonic vibration direction to a vibration transmitting end of the ultrasonic vibration propagator. , An electronic component holding portion is formed on a surface opposite to the ultrasonic vibration propagation body, a plurality of protruding electrodes are formed on the first surface, and the first surface is opposed to the second electronic component. A bonding tool for holding the first electronic component disposed in the electronic component holding unit by suction by an electronic component suction unit provided in the electronic component holding unit; Position the projecting electrode of the component on the electrode of the second electronic component, and The ultrasonic vibration propagating body is vibrated while being pressed against the pole to propagate the ultrasonic vibration to the first electronic component, and when a predetermined bonding force is generated between the protruding electrode and the electrode, the bonding tool is ultrasonically driven. The first electronic component is connected to the second electronic component while sliding in the vibration direction.
[0013]
Further, the ultrasonic vibration propagating member adsorbs the joining tool to the slip surface provided at the vibration transmitting end by the joining tool adsorbing means and supports the joining tool so as to be movable in the same direction as the ultrasonic vibration direction.
[0014]
Further, the ultrasonic vibration propagation body supports the joining tool via an elastic body provided at the vibration transmission end so as to be movable in the same direction as the ultrasonic vibration direction.
[0015]
Further, the joining tool has electronic component gripping means for gripping at least two opposing sides of the first electronic component having a substantially rectangular shape. The electronic component is held in the electronic component holding unit.
[0016]
The ultrasonic vibration propagation body further includes a joining tool stage having an alignment claw for positioning the joining tool on a surface facing the ultrasonic vibration propagation body, and the ultrasonic vibration propagation body sucks the joining tool positioned by the welding tool stage. Adsorb to the slip surface by means.
[0017]
Also, in the electronic component manufacturing method according to the present invention, the ultrasonic vibration propagation body that propagates the ultrasonic vibration to the first electronic component, and the vibration transmission end of the ultrasonic vibration propagation body is moved in the same direction as the ultrasonic vibration direction. An electronic component holding portion is formed on the surface opposite to the ultrasonic vibration propagating member, and the first electronic component is held on the electronic component holding portion by electronic component suction means provided on the electronic component holding portion. An electronic component manufacturing method using an electronic component manufacturing apparatus having a joining tool and a joining stage provided with an electronic component fixing portion for fixing a second electronic component on a surface facing the electronic component holding portion, comprising: A second electronic component fixing step of fixing a second electronic component having a plurality of electrodes formed on one surface to an electronic component fixing portion with the first surface facing outward; The first electronic component on which the protruding electrodes are formed is A first electronic component adsorption step of adsorbing the electronic component holding portion so as to face the second electronic component, positioning the protruding electrode of the first electronic component on the electrode of the second electronic component, and pressing the protruding electrode against the electrode While propagating the ultrasonic vibration to the first electronic component by vibrating the ultrasonic vibration propagating body, the joining tool is moved in the ultrasonic vibration direction when a predetermined joining force is generated between the protruding electrode and the electrode. An electronic component connecting step of connecting the first electronic component to the second electronic component while sliding.
[0018]
In addition, the welding tool is sucked and supported on the slip surface provided on the vibration transmitting end by the welding tool sucking means provided on the ultrasonic vibration propagation body, and the welding tool is sucked onto the slip surface of the vibration transmitting end. The method further includes a step.
[0019]
Further, the method further includes a welding tool positioning step of positioning the welding tool at a predetermined position with respect to the ultrasonic vibration propagation body, and the welding tool suction step suctions the welding tool positioned in the welding tool positioning step to the slip surface.
[0020]
Further, in the first electronic component suction step, the first electronic component is suctioned to the electronic component holding portion while holding at least two opposing sides of the substantially rectangular first electronic component.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
1 to 8 are side views showing a part of a cross section showing an electronic component manufacturing apparatus and an electronic component manufacturing method according to a first embodiment of the present invention. In FIG. 3, reference numeral 1 denotes a first electronic component having a substantially rectangular flat plate shape and a plurality of electrodes 1c formed on a first surface 1a on the lower side in the figure. Each electrode 1c of the first electronic component 1 is provided with a protruding electrode 3, which will be described in detail later. Reference numeral 2 denotes a second electronic component which has a substantially rectangular flat plate shape and has a plurality of electrodes 2c formed on an upper first surface 2a in the figure. The second electronic component 2 is fixed to the electronic component fixing portion 6a on the bonding stage 6 with the first surface 2a on which the electrode 2c is formed facing outward. A vacuum suction hole 5 for sucking the second electronic component 2 is provided in the electronic component fixing portion 6 a of the joining stage 6.
[0022]
In FIG. 1, reference numeral 8 denotes an ultrasonic vibration propagation body of an ultrasonic vibration propagation device (not shown). The ultrasonic vibration propagation body 8 is movable in the X-axis, Y-axis, and Z-axis directions with respect to the welding tool stage 9 and the welding stage 6, and transmits ultrasonic vibration to the first electronic component 1. Ultrasonic vibration with an amplitude of 1 μm on one side is performed. A flat sliding surface 8c is formed at the vibration transmission end at the lower end in FIG. 1 of the ultrasonic vibration propagation body 8. The ultrasonic vibration propagating member 8 has a vacuum suction hole 8a as a joining tool suction means for sucking the first electronic component 1 and a vacuum suction hole 8b as a joining tool suction means for sucking a joining tool 4 described later. It is provided penetrating in the direction.
[0023]
In FIG. 2, reference numeral 4 denotes a joining tool in which air is sucked and sucked by a vacuum suction hole 8b on a slip surface 8c of a vibration transmitting end of the ultrasonic vibration propagation body 8. An electronic component holding portion 4b for holding the first electronic component 1 is formed on a surface of the joining tool 4 opposite to a surface that is attracted to the ultrasonic vibration propagation body 8. The electronic component holding portion 4b has a concave shape in which the slope is formed on each of the four sides and the opening is widened downward in the drawing, that is, an inner surface pyramid shape. At the center of the joining tool 4, a vacuum suction hole 4a as an electronic component suction means for sucking air and sucking the first electronic component 1 by communicating with the vacuum suction hole 8a is formed.
In the present embodiment, the joining tool 4 is made of stainless steel. However, the joining tool 4 is not limited to stainless steel, and may be made of, for example, a ceramic material.
[0024]
In FIG. 2, reference numeral 9 denotes a joining tool stage for positioning the joining tool 4. An alignment claw 10 for positioning the welding tool 4 is provided on a surface of the welding tool stage 9 facing the ultrasonic vibration propagation body 8.
[0025]
FIG. 1 is a side view, partly in section, showing a state where the joining tool 4 on the joining tool stage 9 and the ultrasonic vibration propagation body 8 are aligned. In a series of steps, first, the welding tool 4 is positioned on the welding tool stage 9 with respect to the ultrasonic vibration propagation body 8 as described in detail later.
[0026]
FIG. 2 is a side view in partial section showing a joining tool suction step in which the joining tool 4 is sucked by the vacuum suction hole 8b on the slip surface 8c of the vibration transmitting end of the ultrasonic vibration propagation body 8. In the joining tool suction step, the joining tool 4 positioned on the joining tool stage 9 with respect to the ultrasonic vibration propagating member 8 moves the ultrasonic vibration propagating member 8 moved in the Z-axis direction, which is a downward direction in the drawing. The slide surface 8c is held by vacuum suction through a vacuum suction hole 8b.
[0027]
FIG. 3 shows a first electronic component suction step of sucking the first electronic component 1 through the vacuum suction hole 8a and holding the first electronic component 1 in the electronic component holding section 4b of the joining tool 4 by vacuum suction, and a first electronic component suction process. A second electronic component fixing step of fixing the electronic component fixing portion 6a with the surface 2a facing outward is shown, and a vacuum is applied to the projecting electrode 3 formed on the electrode 1c of the first electronic component 1 and the bonding stage 6. FIG. 4 is a side view showing a part of a cross section showing a state in which an electrode 2c of a second electronic component 2 held by suction is aligned.
[0028]
In the first electronic component suctioning step, the ultrasonic vibration propagating body 8 having the bonding tool 4 suctioned to the slip surface 8c of the vibration transmitting end moves to, for example, an XY plane that is horizontal with respect to the bonding stage 6, and is illustrated in FIG. The first electronic component 1 placed on a mounting table or the like that is not to be suctioned is sucked by the vacuum suction hole 8a and held in the electronic component holding portion 4b of the joining tool 4 by vacuum suction.
[0029]
In the second electronic component fixing step, the second electronic component 2 is mounted on the electronic component fixing unit 6a of the bonding stage 6 with the first surface 2a facing outward by an electronic component mounting device (not shown) or the like. Vacuum suction is performed by the vacuum suction hole 5 and fixed.
Thereafter, as shown in FIG. 3, the protruding electrode 3 formed on the electrode 1c of the first electronic component 1 is aligned with the electrode 2c of the second electronic component 2 held by vacuum on the bonding stage 6. You.
[0030]
In the present embodiment, a semiconductor element made of a silicon material is used as the first electronic component 1. However, the component applied as the first electronic component 1 is not limited to a semiconductor element made of a silicon material, and other semiconductors made of a combination of silicon-germanium, gallium arsenide, or indium phosphide are used. An element may be used. Further, a ceramic wiring substrate or a resin wiring substrate can also be applied.
[0031]
In the semiconductor element made of a silicon material used in the present embodiment, the tip of a gold wire having a diameter of 25 μm is melted and solidified to form a gold ball having a diameter of 75 μm. Was cut off by a predetermined length, thereby forming 12 gold projecting electrodes 3 having an average diameter of 97 μm. Here, the protruding electrode 3 is not limited to gold, and may be formed of, for example, copper, silver, a gold alloy, a copper alloy, or a silver alloy.
[0032]
Further, in the present embodiment, an alumina wiring substrate is used as the second electronic component 2. However, the present invention is not limited to the alumina wiring substrate, but may be a ceramic substrate or a resin substrate made of glass ceramics, aluminum nitride, or the like. Semiconductor elements made of silicon, germanium, gallium arsenic, indium phosphorus, or the like can also be applied.
[0033]
FIG. 4 is a side view showing a state in which the ultrasonic vibration is propagated to the joining tool 4 by the ultrasonic vibration propagation body 8 while pressing the protruding electrode 3 and the electrode 2 c of the second electronic component 2. FIG.
After the projection electrode 3 of the first electronic component 1 and the electrode 2c of the second electronic component 2 are aligned, the ultrasonic vibration propagating member 8 moves in the Z-axis direction and presses the projection electrode 3 with a predetermined pressing force. The ultrasonic vibration propagating body 8 propagates the ultrasonic vibration to the first electronic component 1 while pressing the electrode 2c with as shown in FIG. The projection electrode 3 and the electrode 2c are rubbed by a predetermined pressing force and ultrasonic vibration to remove dirt and film on the surface, and the two are solid-phase bonded.
[0034]
In the present embodiment, while the bonding stage 6 is heated to 150 ° C., a pressing force of 1200 gf is applied between the semiconductor element made of a silicon material as the first electronic component 1 and the alumina wiring substrate as the second electronic component 2. And ultrasonic vibration of 60 KHz was propagated at an amplitude of 1 μm on one side.
[0035]
FIG. 5 shows an electronic component connection step in which the joining between the projecting electrode 3 of the first electronic component 1 and the electrode 2c of the second electronic component has progressed, and the joining force between the projecting electrode 3 and the electrode 2c has increased. It is a side view which has a part which shows the state where the ultrasonic vibration propagation body 8 slipped to the joining tool 4 in the arrow B direction.
[0036]
In the electronic component connecting step, ultrasonic vibration is propagated while the protruding electrode 3 is pressed by the electrode 2c, and the protruding electrode 3 and the electrode 2c are solid-phase bonded by a predetermined pressing force and ultrasonic vibration. Then, when the bonding between the protruding electrode 3 and the electrode 2c progresses and the bonding force between the protruding electrode 3 and the electrode 2c increases to a predetermined size or more, the bonding tool 4 moves the ultrasonic vibration propagation body 8 It starts to slide against the slip surface 8c. In order to adjust the frictional resistance at which the protrusion electrode 3 and the electrode 2c start to slide with respect to the bonding force, the slip surface 8c and the smoothness of the contact surface of the welding tool 4 that comes into contact with the slip surface 8c are adjusted. The vacuum suction force of the vacuum suction hole 8b is adjusted by appropriately changing the vacuum suction force.
[0037]
In the present embodiment, the ultrasonic vibration of 60 KHz was propagated at an amplitude of 1 μm on one side for 0.3 seconds, and the gold protruding electrode 3 and the gold electrode 2c were joined with a shear breaking load of 70 gf / bump or more. At this time, when the joining between the protruding electrode 3 and the electrode 2c progresses and the joining force acting between the two increases to a predetermined value, the joining tool 4 starts sliding against the ultrasonic vibration propagation body 8, and the first The back surface of the electronic component 1 was not damaged. In order to set the frictional resistance between the welding tool 4 and the slip surface 8c to a predetermined value, the vacuum suction of the welding tool 4 by the vacuum suction holes 8b was stopped during the propagation of the ultrasonic vibration.
[0038]
On the other hand, when the same object, that is, a semiconductor element made of a silicon material is applied to the first electronic component 1 and an alumina wiring board is applied to the second electronic component 2 and bonded by the conventional method shown in FIG. When the vibration propagation time was 0.1 second or less, no damage occurred on the back surface of the first electronic component 1, but the minimum shear rupture load was 25 gf / bump, and a sufficient bonding force could not be obtained. Further, if the propagation time of the ultrasonic vibration is made longer than 0.1 second, the joining force increases accordingly. However, a displacement occurs between the first electronic component 1 and the joining tool 4 to cause the first electronic component to be displaced. The back of 1 was damaged.
[0039]
FIG. 6 shows that the vacuum suction of the vacuum suction hole 8a is stopped, the joining tool 4 is again vacuum-sucked and held in the vacuum suction hole 8b, and the ultrasonic vibration propagation body 8 is moved upward to join the first electronic component 1 and the joining tool. FIG. 4 is a side view showing a part of a cross section showing a state in which the device is separated from the device; FIG. 7 is a side view partially in section showing a state where the welding tool 4 is placed on the welding tool stage 9.
[0040]
When the joining between the protruding electrode 3 of the first electronic component 1 and the electrode 2c of the second electronic component is completed, the ultrasonic vibration propagation body 8 moves upward in the Z-axis away from the first electronic component 1, After that, the welding tool 4 moves in the XY plane toward the welding tool stage 9 and descends again to place the welding tool 4 at a predetermined position on the welding tool stage 9. Then, the vacuum suction of the vacuum suction hole 8 b is stopped and the ultrasonic vibration is propagated. The body 8 escapes upward.
[0041]
FIG. 8 is a side view partially in section showing a welding tool positioning step of pressing the welding tool 4 from both sides with the positioning claws 10 and moving the welding tool 4 to a predetermined position on the welding stage 9.
In the joining tool positioning step, the joining tool 4 placed at a predetermined position on the joining tool stage 9 is slid from four directions as indicated by an arrow C in the figure to a predetermined position by an alignment claw 10 pushing each surface of the joining tool 4. Is positioned at the position. Thereafter, the process returns to the state shown in FIG. 1, but the joining tool 4 is at a position accurately positioned with respect to the ultrasonic vibration propagation body 8, and in the joining tool suction step shown in FIG. 4 is accurately attracted to a predetermined position of the ultrasonic vibration propagation body 8.
[0042]
As described above, in the electronic component manufacturing apparatus and the electronic component manufacturing method according to the present embodiment, even when the bonding between the protruding electrode 3 and the electrode 2c progresses and the bonding force therebetween increases, the bonding tool 4 and the Since no displacement occurs between the back surface of the first electronic component 1 and the back surface of the first electronic component 1, the back surface of the first electronic component 1 is not damaged.
[0043]
Further, since a slip occurs between the welding tool 4 and the ultrasonic vibration propagating member 8, the bonding between the protruding electrode 3 and the electrode 2c further proceeds, and large ultrasonic vibration continues to be applied to the bonding portion between the two. However, the joint is not damaged.
[0044]
In order to reduce the frictional resistance between the welding tool 4 and the sliding surface 8c of the ultrasonic vibration propagation body 8 and facilitate slipping, a concave portion is provided on the back surface of the welding tool 4 to reduce the contact area with the sliding surface 8c. May be. Furthermore, the frictional resistance between the welding tool 4 and the ultrasonic vibration propagation body 8 may be reduced by blowing air from the vacuum suction hole 8b in reverse during the welding.
[0045]
Embodiment 2 FIG.
9 to 16 are side views, partly in section, showing an electronic component manufacturing apparatus and an electronic component manufacturing method according to Embodiment 2 of the present invention. 9 to 16, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. In the present embodiment, the joining tool 4 is different from the first embodiment. 9 to 16, reference numeral 4d denotes a sliding portion of the joining tool 4; 4c, a vacuum suction hole of the joining tool 4; 4f, a grasping claw as an electronic component grasping means provided on the joining tool 4; It is a vacuum suction hole of the body 8. Other configurations are substantially the same as those of the first embodiment.
[0046]
FIG. 9 is a side view showing a state in which the joining tool 4 and the ultrasonic vibration propagation body 8 on the joining tool stage 9 are aligned with each other with a part in section. The joining tool 4 includes a vacuum suction hole 4a for vacuum-sucking the first electronic component 1, and a slide portion 4d for sliding by changing the air pressure inside the vacuum suction hole 4c. The slide portion 4d is provided so as to be able to move forward and backward with respect to the welding tool body 4e. An elastic body (not shown) is contracted between the slide portion 4d and the joining tool main body 4e. By this elastic body, the slide portion 4d is normally urged away from the joining tool main body 4e. Then, the inside is decompressed by the vacuum suction hole 4c and moves in a direction approaching the joining tool main body 4e. Gripping claws 4f, 4f are provided on the joining tool body 4e and the slide portion 4d, respectively. The two gripping claws 4f, 4f move in a direction approaching each other to sandwich the first electronic component 1 therebetween.
In the present embodiment, the joining tool 4 is made of stainless steel, but is not limited to stainless steel, and for example, a ceramic material may be used.
[0047]
FIG. 10 is a side view in partial section showing a joining tool suction step in which the joining tool 4 is sucked by the vacuum suction hole 8b on the slip surface 8c of the vibration transmission end of the ultrasonic vibration propagation body 8. FIG. 11 shows that the first electronic component 1 is sucked by the vacuum suction hole 8a and vacuum-sucked to the electronic component holding portion 4b of the joining tool 4, and the vacuum portion 8d is vacuum-sucked to slide the slide portion 4d of the joining tool 4. A first electronic component suction step of sliding and holding a pair of opposed side surfaces of the first electronic component 1 therebetween, and fixing the second electronic component 2 with the first surface 2a facing outward; FIG. 4 shows a second electronic component fixing step of fixing to the portion 6 a, and shows a projection electrode 3 formed on the electrode 1 c of the first electronic component 1 and a second electronic component 2 held by vacuum suction on the bonding stage 6. It is a side view which makes a part which shows the state where the electrode 2c was aligned with a cross section.
[0048]
In the first electronic component suctioning step, the ultrasonic vibration propagating member 8 having the bonding tool 4 suctioned to the slip surface 8c of the vibration transmitting end moves in, for example, an XY plane that is horizontal with respect to the bonding stage 6, and The first electronic component 1 placed on a mounting table or the like (not shown) is suctioned by the vacuum suction hole 8a and held in the electronic component holding portion 4b of the joining tool 4 by vacuum suction. At this time, air is simultaneously sucked from the vacuum suction hole 8d to slide the slide portion 4d of the joining tool 4, and the pair of opposing side surfaces of the first electronic component 1 are sandwiched and held by the holding claws 4f, 4f.
[0049]
In the second electronic component fixing step, the second electronic component 2 is mounted on the electronic component fixing unit 6a of the joining stage 6 with the first surface 2a facing outward by an electronic component mounting device (not shown), and the vacuum It is sucked and fixed by the suction hole 5 in vacuum.
Then, as shown in FIG. 11, the protruding electrode 3 formed on the electrode 1c of the first electronic component 1 is aligned with the electrode 2c of the second electronic component 2 held by vacuum on the bonding stage 6. You.
[0050]
In the present embodiment, a gallium arsenide semiconductor element is used as the first electronic component 1. However, the component applied as the first electronic component 1 is not limited to a semiconductor element made of gallium arsenide material, but is a semiconductor made of silicon, a combination of silicon-germanium, or another semiconductor made of phosphide indium or the like. An element may be used. Further, a ceramic wiring substrate or a resin wiring substrate can also be applied.
[0051]
In the semiconductor element of the gallium arsenide material used in the present embodiment, the tip of a gold wire having a diameter of 25 μm is melted and solidified to form a gold ball having a diameter of 75 μm, and the gold ball is joined to an electrode. By cutting the gold wire by a predetermined length, 30 gold projecting electrodes 3 having an average diameter of 97 μm were formed. Here, the protruding electrode 3 is not limited to gold, and may be formed of, for example, copper, silver, a gold alloy, a copper alloy, or a silver alloy.
[0052]
Further, in the present embodiment, an alumina wiring substrate is used as the second electronic component 2. However, the present invention is not limited to the alumina wiring substrate, but may be a ceramic substrate or a resin substrate made of glass ceramics, aluminum nitride, or the like. Semiconductor elements made of silicon, germanium, gallium arsenic, indium phosphorus, or the like can also be applied.
[0053]
FIG. 12 shows a state in which the protruding electrode 3 and the electrode 2c of the second electronic component are pressurized, and a direction perpendicular to a pair of side surfaces sandwiched by the first electronic component 1 sandwiched between the joining tool 4 and the slide portion 4d. It is a side view which has a part which shows the state where the ultrasonic vibration was propagated as a cross section.
[0054]
After the projection electrode 3 of the first electronic component 1 and the electrode 2c of the second electronic component 2 are aligned, the ultrasonic vibration propagating member 8 moves in the Z-axis direction and presses the projection electrode 3 with a predetermined pressing force. The ultrasonic vibration propagating body 8 propagates the ultrasonic vibration to the first electronic component 1 while pressing the electrode 2c with as shown in FIG. The projection electrode 3 and the electrode 2c are rubbed by a predetermined pressing force and ultrasonic vibration, so that dirt and a film on the surface are removed and solid-phase bonding is performed.
[0055]
In the present embodiment, the two side surfaces perpendicular to the ultrasonic vibration direction are sandwiched by the joining tool 4, so that even when the number of the protruding electrodes 3 increases and a large ultrasonic output is required for the joining, the pyramid-shaped joining is performed. Excessive load concentration does not occur at the contact portion between the first electronic component 1 and the joining tool 4 like a tool, and even a fragile component like a compound semiconductor does not break.
[0056]
In the present embodiment, the semiconductor element of the gallium arsenide material as the first electronic component 1 and the alumina wiring substrate as the second electronic component 2 are heated to 2700 gf while the bonding stage 6 is heated to 150 ° C. Ultrasonic vibration of 60 KHz was propagated with an amplitude of 2 μm on one side while applying pressure with a pressing force.
[0057]
FIG. 13 shows an electronic component connection step in which the joining between the projecting electrode 3 of the first electronic component 1 and the electrode 2c of the second electronic component has progressed, and the joining force between the projecting electrode 3 and the electrode 2c has increased. It is a side view which has a part which shows the state where the ultrasonic vibration propagation body 8 slipped to the joining tool 4 in the arrow E direction.
In the electronic component connecting step, ultrasonic vibration is propagated while the protruding electrode 3 is pressed by the electrode 2c, and the protruding electrode 3 and the electrode 2c are solid-phase-connected by a predetermined pressing force and ultrasonic vibration. Then, when the bonding between the protruding electrode 3 and the electrode 2c progresses and the bonding force between the protruding electrode 3 and the electrode 2c increases to a predetermined size or more, the bonding tool 4 moves the ultrasonic vibration propagation body 8 It starts to slide against the slip surface 8c. In order to adjust the frictional resistance at which the protrusion electrode 3 and the electrode 2c start sliding with respect to the bonding force, the slip surface 8c and the smoothness of the contact surface of the welding tool 4 which comes into contact with the slip surface 8c are made appropriate. The vacuum suction force of the vacuum suction hole 8b is adjusted by appropriately changing the vacuum suction force.
[0058]
In the present embodiment, thirty projecting electrodes 3 are formed. However, as the number of projecting electrodes 3 increases, the joining force generated between projecting electrode 3 and electrode 2c increases. Therefore, slip may occur between the joining tool 4 and the slip surface 8c before the joining of the two is sufficiently advanced. If the welding tool 4 slides on the slip surface 8c before the welding is sufficiently advanced, a problem arises in that the ultrasonic vibration is not transmitted to the welding portion and the welding is not completely performed.
[0059]
Therefore, in the present embodiment, the joining tool 4 is kept in vacuum suction at the vacuum suction hole 8b for 0.1 second from the start of ultrasonic vibration propagation, and slip between the ultrasonic vibration propagation body 8 and the joining tool 4 is prevented. And proceeded with joining. Thereafter, the vacuum suction was stopped and ultrasonic vibration was further propagated for 0.4 seconds. As a result, the gold protruding electrode 3 and the 3 μm-thick gold electrode 2c of the alumina wiring board could be joined at a shear breaking load of 75 gf / bump or more without causing damage to the back surface of the element.
[0060]
In the present embodiment, the timing for stopping the vacuum suction is obtained by the propagation time of the ultrasonic vibration. This timing can be obtained by measuring the ultrasonic amplitude during bonding, the impedance of the ultrasonic transducer, the load, and the like. In other words, as the welding progresses, the amplitude of the ultrasonic wave gradually decreases, so the welding is performed while detecting this, and when the ultrasonic wave becomes smaller than a predetermined size, the vacuum suction is stopped or, conversely, the air is blown to join. The frictional resistance between the tool 4 and the ultrasonic vibration propagation body 8 may be reduced.
In addition, since the ultrasonic impedance gradually increases as the welding progresses, welding is performed while detecting the impedance, and when the size exceeds a predetermined value, the vacuum suction is stopped or conversely, air is blown to the welding tool. The frictional resistance between the ultrasonic vibration propagating member 4 and the ultrasonic vibration propagation body 8 may be reduced.
Furthermore, the load acting on the ultrasonic vibration propagation body 8 gradually increases as the welding proceeds, so that the same method can be used to control the timing.
[0061]
FIG. 14 shows that the vacuum suction of the vacuum suction hole 8a is stopped, the joining tool 4 is again vacuum-sucked and held in the vacuum suction hole 8b, and the ultrasonic vibration propagation body 8 is moved upward to connect the first electronic component 1 and the joining tool. FIG. 4 is a side view showing a part of a cross section showing a state in which the device is separated from the device; FIG. 15 is a side view, partly in section, showing a state where the welding tool 4 is placed on the welding tool stage 9.
[0062]
When the joining between the protruding electrode 3 of the first electronic component 1 and the electrode 2c of the second electronic component is completed, the ultrasonic vibration propagation body 8 moves upward in the Z-axis away from the first electronic component 1, Thereafter, the welding tool 4 is moved in the XY plane toward the welding tool stage 9, and is again lowered in the Z-axis direction to place the welding tool 4 at a predetermined position on the welding tool stage 9, and the vacuum suction of the vacuum suction hole 8 b is stopped. The ultrasonic vibration propagation body 8 escapes upward.
[0063]
FIG. 16 is a partial cross-sectional side view showing a joining tool positioning step of pressing the joining tool 4 from both sides with the alignment claws 10 and moving the joining tool 4 to a predetermined position on the joining stage 9.
In the joining tool positioning step, the joining tool 4 placed at a predetermined position on the joining tool stage 9 is slid from four directions as indicated by the arrow F in the drawing, and the positioning claw 10 pushing each surface of the joining tool 4 is used. It is positioned at a predetermined position. Thereafter, the process returns to the state shown in FIG. 9, but the joining tool 4 is located at a position positioned with respect to the ultrasonic vibration propagation body 8, and in the joining tool suction step shown in FIG. The ultrasonic vibration propagating member 8 is accurately attracted to a predetermined position.
[0064]
As described above, in the electronic component manufacturing apparatus and the electronic component manufacturing method according to the present embodiment, the joining tool 4 serves as an electronic component gripping unit that grips two opposing sides of the first electronic component 1 having a substantially rectangular flat plate shape. The first electronic component 1 is held by the electronic component holding portion 4b by being held by the holding claws 4f, 4f while being sucked by the vacuum suction holes 8a. For this reason, it is possible to further suppress the displacement that occurs between the joining tool 4 and the back surface of the first electronic component 1, and it is not necessary to prevent the back surface of the first electronic component 1 from being damaged.
[0065]
In this embodiment, the pressure of gas is used as the driving force for moving the gripping claws 4f, 4f. However, the same applies to the use of pressure by a liquid, electromagnetic force, or pressure by a spring, a piezoelectric element, or a screw. The effect is obtained. Although the two sides of the first electronic component 1 are sandwiched between them, the purpose of the electronic component gripping means is to prevent the first electronic component 1 from slipping between the joining tool 4 and the three or four sides. It is needless to say that the user may grasp the object.
[0066]
Embodiment 3 FIG.
17 to 20 are side views, partly in section, showing an electronic component manufacturing apparatus and an electronic component manufacturing method according to Embodiment 3 of the present invention. 17 to 20, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. 17 to 20, reference numeral 11 denotes a spring as an elastic body provided at the vibration transmitting end of the ultrasonic vibration propagation body 8 and supporting the joining tool 4 so as to be movable in the same direction as the ultrasonic vibration direction. The spring 11 presses the joining tool 4 from two directions between the ultrasonic vibration propagation body 8 and the joining tool 4 to dispose the joining tool 4 at a predetermined position. Other configurations are substantially the same as those of the first embodiment.
[0067]
FIG. 17 shows a first electronic component suction step in which the first electronic component 1 is sucked through the vacuum suction hole 8a and held in the electronic component holding portion 4b of the joining tool 4 by vacuum suction, and the second electronic component 2 is held in the first electronic component holding step. A second electronic component fixing step of fixing the electronic component fixing portion 6a with the surface 2a facing outward is shown, and a vacuum is applied to the projecting electrode 3 formed on the electrode 1c of the first electronic component 1 and the bonding stage 6. FIG. 4 is a side view showing a part of a cross section showing a state in which an electrode 2c of a second electronic component 2 held by suction is aligned.
[0068]
In the first electronic component suction step, the ultrasonic vibration propagating member 8 movably supporting the joining tool 4 at the vibration transmitting end is moved in the XY plane which is horizontal with respect to the joining stage 6, and is mounted on a not-shown mounting stage. The first electronic component 1 placed on the mounting table is sucked by the vacuum suction hole 8a and held by the electronic component holding portion 4b of the joining tool 4 by vacuum suction.
[0069]
In the second electronic component fixing step, the second electronic component 2 is mounted on the electronic component fixing unit 6a of the joining stage 6 with the first surface 2a facing outward by an electronic component mounting device (not shown), and the vacuum It is sucked and fixed by the suction hole 5 in vacuum.
Thereafter, as shown in FIG. 17, the protruding electrode 3 formed on the electrode 1c of the first electronic component 1 is aligned with the electrode 2c of the second electronic component 2 vacuum-held on the bonding stage 6. You.
[0070]
In the present embodiment, the joining tool 4 is made of stainless steel. However, the material is not limited to stainless steel, and may be made of, for example, a ceramic material. Further, a joining tool having means for gripping two opposing sides of the first electronic component 1 as in the second embodiment may be used.
[0071]
In the present embodiment, a gallium arsenide semiconductor element is used as the first electronic component 1. However, the component applied as the first electronic component 1 is not limited to a semiconductor element made of gallium arsenide material, but is a semiconductor made of silicon, a combination of silicon-germanium, or another semiconductor made of phosphide indium or the like. An element may be used. Further, a ceramic wiring substrate or a resin wiring substrate can also be applied.
[0072]
In the semiconductor element of the gallium arsenide material used in the present embodiment, the tip of a gold wire having a diameter of 25 μm is melted and solidified to form a gold ball having a diameter of 75 μm, and the gold ball is joined to an electrode. By cutting the gold wire to a predetermined length, eight gold projecting electrodes 3 having an average diameter of 97 μm were formed. Here, the protruding electrode 3 is not limited to gold, and may be formed of, for example, copper, silver, a gold alloy, a copper alloy, or a silver alloy.
[0073]
Further, in the present embodiment, an alumina wiring substrate is used as the second electronic component 2. However, the present invention is not limited to the alumina wiring substrate, but may be a ceramic substrate or a resin substrate made of glass ceramics, aluminum nitride, or the like. Semiconductor elements made of silicon, germanium, gallium arsenic, indium phosphorus, or the like can also be applied.
[0074]
FIG. 18 is a side view showing a state in which the ultrasonic vibration is propagated to the joining tool 4 by the ultrasonic vibration propagation body 8 while applying pressure to the protruding electrode 3 and the electrode 2 c of the second electronic component 2. FIG.
[0075]
After the projection electrode 3 of the first electronic component 1 and the electrode 2c of the second electronic component 2 are aligned, the ultrasonic vibration propagating member 8 moves in the Z-axis direction and presses the projection electrode 3 with a predetermined pressing force. The ultrasonic vibration propagating body 8 propagates the ultrasonic vibration to the first electronic component 1 while pressing the electrode 2c with as shown in FIG. The projection electrode 3 and the electrode 2c are rubbed by a predetermined pressing force and ultrasonic vibration, so that dirt and a film on the surface are removed and solid-phase bonding is performed.
[0076]
In the present embodiment, with the bonding stage 6 heated to 150 ° C., the gallium arsenide semiconductor device as the first electronic component 1 and the alumina wiring substrate as the second electronic component 2 are weighed 800 gf. Ultrasonic vibration of 60 KHz was propagated with an amplitude of 0.8 μm on one side while applying pressure with a pressing force.
[0077]
FIG. 19 shows an electronic component connection step in which the joining between the projecting electrode 3 of the first electronic component 1 and the electrode 2c of the second electronic component has progressed, and the joining force between the projecting electrode 3 and the electrode 2c has increased. It is a side view which has a part which shows the state where the ultrasonic vibration propagation body 8 slipped in the arrow H direction with respect to the joining tool 4.
[0078]
In the electronic component connecting step, ultrasonic vibration is propagated while the protruding electrode 3 is pressed by the electrode 2c, and the protruding electrode 3 and the electrode 2c are solid-phase-connected by a predetermined pressing force and ultrasonic vibration. Then, when the bonding between the protruding electrode 3 and the electrode 2c progresses and the bonding force between the protruding electrode 3 and the electrode 2c increases to a predetermined size or more, the bonding tool 4 moves the ultrasonic vibration propagation body 8 It starts to slide against the slip surface 8c. In order to adjust the frictional resistance at which slipping starts with respect to the joining force between the protruding electrode 3 and the electrode electrode 2c, the slip surface 8c and the smoothness of the contact surface of the joining tool 4 which comes into contact with the slip surface 8c are made appropriate. .
[0079]
In the present embodiment, with the bonding stage 6 heated to 150 ° C., the gallium arsenide semiconductor device as the first electronic component 1 and the alumina wiring substrate as the second electronic component 2 are weighed 800 gf. Ultrasonic vibration of 60 KHz was propagated with an amplitude of 0.8 μm on one side while applying pressure with a pressing force.
[0080]
FIG. 20 is a partially cutaway side view showing a state where the first electronic component 1 and the joining tool 4 are separated by stopping the vacuum suction of the vacuum suction hole 8a and moving the ultrasonic vibration propagation body 8 upward. FIG.
[0081]
As described above, in the electronic component manufacturing apparatus and the electronic component manufacturing method according to the present embodiment, the joining tool 4 is always provided at the vibration transmission end of the ultrasonic vibration propagation body 8 while being supported by the spring 11 as an elastic body. ing. Therefore, there is no need for a joining tool suction step of attracting the welding tool 4 to the ultrasonic vibration propagation body 8 or a joining tool positioning step of positioning the welding tool 4 with respect to the ultrasonic vibration propagation body 8, thereby reducing the processing time as a whole. Therefore, productivity can be improved and costs can be reduced.
In this embodiment, proper joining can be performed by selecting a spring 11 having an appropriate elastic force according to joining conditions.
[0082]
【The invention's effect】
An electronic component manufacturing apparatus according to the present invention includes: a joining stage for fixing a second electronic component having a plurality of electrodes formed on a first surface to an electronic component fixing portion with the first surface facing outward; An ultrasonic vibration propagator that is provided movably with respect to the bonding stage and propagates ultrasonic vibration to the first electronic component, and is movable in the same direction as the ultrasonic vibration direction to a vibration transmitting end of the ultrasonic vibration propagator. , An electronic component holding portion is formed on a surface opposite to the ultrasonic vibration propagation body, a plurality of protruding electrodes are formed on the first surface, and the first surface is opposed to the second electronic component. A bonding tool for holding the first electronic component disposed in the electronic component holding unit by suction by an electronic component suction unit provided in the electronic component holding unit; Position the projecting electrode of the component on the electrode of the second electronic component, and The ultrasonic vibration propagating body is vibrated while being pressed against the pole to propagate the ultrasonic vibration to the first electronic component, and when a predetermined bonding force is generated between the protruding electrode and the electrode, the bonding tool is ultrasonically driven. The first electronic component is connected to the second electronic component while sliding in the vibration direction. Therefore, during the joining of the first electronic component and the second electronic component, the first electronic component does not shift in position with respect to the joining tool. As a result, the first electronic component and the second electronic component can be joined in a stable state without damaging the first electronic component.
[0083]
Further, the ultrasonic vibration propagating member adsorbs the joining tool to the slip surface provided at the vibration transmitting end by the joining tool adsorbing means and supports the joining tool so as to be movable in the same direction as the ultrasonic vibration direction. Therefore, the joining tool can be attracted to the slip surface by using the same drive source as the electronic component attracting means, and the configuration can be simplified, so that the cost can be reduced.
[0084]
Further, the ultrasonic vibration propagation body supports the joining tool via an elastic body provided at the vibration transmission end so as to be movable in the same direction as the ultrasonic vibration direction. Therefore, when the force is no longer applied to the joining tool, the elastic body supports the joining tool at a predetermined position. Therefore, the operation of positioning the joining tool with respect to the ultrasonic vibration propagation body is performed by first joining the joining tool from the first electronic component. In this case, only an operation of separating the first and the second is sufficient, and the manufacturing time can be reduced, so that the cost can be reduced.
[0085]
Further, the joining tool has electronic component gripping means for gripping at least two opposing sides of the first electronic component having a substantially rectangular shape. The electronic component is held in the electronic component holding unit. Therefore, the first electronic component is stably held, and the first electronic component does not further displace with respect to the joining tool, and the first electronic component and the second electronic component are further stabilized. It can be joined in the state where it was done.
[0086]
The ultrasonic vibration propagation body further includes a joining tool stage having an alignment claw for positioning the joining tool on a surface facing the ultrasonic vibration propagation body, and the ultrasonic vibration propagation body sucks the joining tool positioned by the welding tool stage. Adsorb to the slip surface by means. Therefore, it is possible to position the joining tool which is separated from the ultrasonic vibration propagation body with a simple configuration, and it is possible to reduce the cost.
[0087]
Also, in the electronic component manufacturing method according to the present invention, the ultrasonic vibration propagation body that propagates the ultrasonic vibration to the first electronic component, and the vibration transmission end of the ultrasonic vibration propagation body is moved in the same direction as the ultrasonic vibration direction. An electronic component holding portion is formed on the surface opposite to the ultrasonic vibration propagating member, and the first electronic component is held on the electronic component holding portion by electronic component suction means provided on the electronic component holding portion. An electronic component manufacturing method using an electronic component manufacturing apparatus having a joining tool and a joining stage provided with an electronic component fixing portion for fixing a second electronic component on a surface facing the electronic component holding portion, comprising: A second electronic component fixing step of fixing a second electronic component having a plurality of electrodes formed on one surface to an electronic component fixing portion with the first surface facing outward; The first electronic component on which the protruding electrodes are formed is A first electronic component adsorption step of adsorbing the electronic component holding portion so as to face the second electronic component, positioning the protruding electrode of the first electronic component on the electrode of the second electronic component, and pressing the protruding electrode against the electrode While propagating the ultrasonic vibration to the first electronic component by vibrating the ultrasonic vibration propagating body, the joining tool is moved in the ultrasonic vibration direction when a predetermined joining force is generated between the protruding electrode and the electrode. An electronic component connecting step of connecting the first electronic component to the second electronic component while sliding. Therefore, in the electronic component connecting step, the first electronic component is not displaced with respect to the joining tool during the joining of the first electronic component and the second electronic component, and the first electronic component is damaged. The first electronic component and the second electronic component are joined in a stable state.
[0088]
In addition, the welding tool is sucked and supported on the slip surface provided on the vibration transmitting end by the welding tool sucking means provided on the ultrasonic vibration propagation body, and the welding tool is sucked onto the slip surface of the vibration transmitting end. The method further includes a step. Therefore, in the bonding tool suction step, the bonding tool is suctioned to the slip surface by the electronic component suction means of the same drive source as in the first electronic component suction step, so that the apparatus can have a simple configuration, thereby reducing costs. be able to.
[0089]
Further, the method further includes a welding tool positioning step of positioning the welding tool at a predetermined position with respect to the ultrasonic vibration propagation body, and the welding tool suction step suctions the welding tool positioned in the welding tool positioning step to the slip surface. Therefore, the joining tool that separates from the ultrasonic vibration propagation body can be positioned by a simple operation.
[0090]
Further, in the first electronic component suction step, the first electronic component is suctioned to the electronic component holding portion while holding at least two opposing sides of the substantially rectangular first electronic component. Therefore, in the electronic component connecting step, during the joining of the first electronic component and the second electronic component, the first electronic component is not further displaced with respect to the joining tool, and the first electronic component is further moved. No damage is caused, and the first electronic component and the second electronic component are joined in a more stable state.
[Brief description of the drawings]
FIG. 1 is a side view, partly in section, showing a state where a joining tool and an ultrasonic vibration propagation body according to Embodiment 1 of the present invention are aligned.
FIG. 2 is a side view partially in section showing a welding tool suction step in which the welding tool is suctioned to a slip surface according to the first embodiment of the present invention;
FIG. 3 is a first electronic component suction step of vacuum-holding the first electronic component in the electronic component holding portion of the joining tool according to the first embodiment of the present invention, and the second electronic component 2 is mounted on the electronic component fixing portion. FIG. 10 is a side view showing a second electronic component fixing step of fixing, and a partial cross section showing a state where the first electronic component and the second electronic component are aligned.
FIG. 4 is a side view, partly in section, showing a state where ultrasonic waves are propagated to the joining tool while pressing the protruding electrode and the electrode according to the first embodiment of the present invention.
FIG. 5 is a side view, partly in section, showing a state in which the bonding force between the protruding electrode and the electrode according to Embodiment 1 of the present invention has increased and the ultrasonic vibration propagation body has slipped against the bonding tool.
FIG. 6 is a side view, partly in section, showing a state in which the ultrasonic vibration propagation body according to the first embodiment of the present invention has been moved upward to separate the first electronic component from the joining tool.
FIG. 7 is a side view partially in section showing a state where the welding tool according to the first embodiment of the present invention is placed on the welding tool stage.
FIG. 8 is a side view partially in section showing a joining tool positioning step of positioning the joining tool with the positioning claw according to the first embodiment of the present invention;
FIG. 9 is a side view, partly in section, showing a state where the joining tool and the ultrasonic vibration propagation body according to Embodiment 2 of the present invention are aligned.
FIG. 10 is a side view partially in section showing a welding tool suction step in which a welding tool is sucked on a slip surface according to Embodiment 2 of the present invention;
FIG. 11 illustrates a first electronic component according to a second embodiment of the present invention, in which a first electronic component is vacuum-sucked to an electronic component holding portion of a joining tool, and a pair of opposing side surfaces of the first electronic component 1 are sandwiched and held. An electronic component adsorption process and a second electronic component fixing process of fixing the second electronic component 2 to the electronic component fixing portion are shown, and a state where the first electronic component and the second electronic component are aligned is shown. It is a side view which makes a part shown into a cross section.
FIG. 12 is a side view, partly in section, showing a state where ultrasonic waves are propagated to a joining tool while pressing a protruding electrode and an electrode according to the second embodiment of the present invention.
FIG. 13 is a side view, partly in section, showing a state in which the joining force between the projecting electrode and the electrode according to the second embodiment of the present invention has increased and the ultrasonic vibration propagation body has slipped against the joining tool.
FIG. 14 is a side view, partly in section, showing a state in which an ultrasonic vibration propagation body according to Embodiment 2 of the present invention has been moved upward to separate a first electronic component from a joining tool.
FIG. 15 is a partial cross-sectional side view showing a state where the welding tool according to Embodiment 2 of the present invention is placed on a welding tool stage.
FIG. 16 is a side view partially in section showing a joining tool positioning step of positioning the joining tool with the positioning claw according to the second embodiment of the present invention;
FIG. 17 is a diagram illustrating a first electronic component suction step in which the first electronic component according to the third embodiment of the present invention is vacuum-adsorbed and held in the electronic component holding unit of the joining tool; FIG. 10 is a side view showing a second electronic component fixing step of fixing, and a partial cross section showing a state where the first electronic component and the second electronic component are aligned.
FIG. 18 is a side view, partly in section, showing a state in which ultrasonic waves are propagated to a joining tool while pressing a protruding electrode and an electrode according to the third embodiment of the present invention.
FIG. 19 is a side view, partly in section, showing a state in which the joining force between the protruding electrode and the electrode is increased and the ultrasonic vibration propagation body slides against the joining tool according to the third embodiment of the present invention.
FIG. 20 is a side view, partly in section, showing a state where the ultrasonic vibration propagation body according to Embodiment 3 of the present invention has been moved upward to separate the first electronic component from the joining tool.
FIG. 21 shows a conventional method and apparatus for manufacturing an electronic component, particularly showing a state in which a first electronic component is held by vacuum suction, a second electronic component is fixed to a joining stage, and both are aligned. It is a side view which makes a part shown into a cross section.
FIG. 22 is a side view illustrating a conventional method and apparatus for manufacturing an electronic component, particularly showing a state in which a protruding electrode is pressed against the electrode and ultrasonic vibration is propagated, and a part thereof is shown in cross section.
FIG. 23 is a side view showing another example of a conventional method and apparatus for manufacturing an electronic component, particularly showing a state in which a protruding electrode is pressed against the electrode and ultrasonic vibration is propagated, and a part thereof is shown in cross section. It is.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 first electronic component, 2 second electronic component, 2 c electrode, 3 protruding electrode, 4 joining tool, 4 a vacuum suction hole (electronic component suction means), 4 b electronic component holding section, 4 e joining tool body, 4 d slide section , 4f gripping claw (electronic component gripping means), 6 joining stage, 6a electronic component fixing portion, 8 ultrasonic vibration propagation body, 8a vacuum suction hole (electronic component suction means), 8b vacuum suction hole (joining tool suction means), 8c sliding surface, 9 joining tool stage, 10 positioning claw, 11 spring (elastic body).

Claims (9)

第1の面に複数の電極が形成された第2の電子部品を、該第1の面を外方に向けて前記電子部品固定部に固定する接合ステージと、
前記接合ステージに対して移動可能に設けられ、第1の電子部品に超音波振動を伝搬する超音波振動伝搬体と、
前記超音波振動伝搬体の振動伝達端に超音波振動方向と同じ方向に移動可能に支持され、前記超音波振動伝搬体と反対側の面に電子部品保持部が形成され、第1の面に複数の突起電極が形成され該第1の面が前記第2の電子部品に対向するように前記電子部品保持部に配置された前記第1の電子部品を、該電子部品保持部に設けられた電子部品吸着手段により吸着して保持する接合ツールとを備え、前記超音波振動伝搬体は、前記第1の電子部品の前記突起電極を前記第2の電子部品の前記電極に位置決めし、前記突起電極を前記電極に押圧しながら前記超音波振動伝搬体を振動させて超音波振動を前記第1の電子部品に伝搬するとともに、前記突起電極と前記電極との間に所定の接合力が生じたときに前記接合ツールを超音波振動方向にすべらせながら前記第2の電子部品に前記第1の電子部品を接続する
ことを特徴とする電子部品製造装置。
A joining stage for fixing a second electronic component having a plurality of electrodes formed on a first surface to the electronic component fixing portion with the first surface facing outward;
An ultrasonic vibration propagator that is provided movably with respect to the bonding stage and propagates ultrasonic vibration to the first electronic component;
The vibration transmitting end of the ultrasonic vibration propagation body is movably supported in the same direction as the ultrasonic vibration direction, an electronic component holding portion is formed on a surface opposite to the ultrasonic vibration propagation body, and a first surface is formed. The first electronic component, which is provided in the electronic component holding unit such that a plurality of protruding electrodes are formed and the first surface faces the second electronic component, is provided in the electronic component holding unit. A bonding tool that sucks and holds the electronic component by suction means, wherein the ultrasonic vibration propagation body positions the protruding electrode of the first electronic component on the electrode of the second electronic component, and The ultrasonic vibration propagating body is vibrated while pressing the electrode against the electrode to propagate the ultrasonic vibration to the first electronic component, and a predetermined bonding force is generated between the protruding electrode and the electrode. Sometimes the welding tool is moved in the ultrasonic vibration direction. Electronic component manufacturing apparatus characterized by connecting the first electronic component on the second electronic component with racemate.
前記超音波振動伝搬体は、接合ツール吸着手段によって前記振動伝達端に設けられたすべり面に前記接合ツールを吸着して超音波振動方向と同じ方向に移動可能に支持する
ことを特徴とする請求項1に記載の電子部品製造装置。
The said ultrasonic vibration propagation body adsorb | sucks the said joining tool to the slip surface provided at the said vibration transmission end by the joining tool adsorption | suction means, and supports so that it can move in the same direction as an ultrasonic vibration direction. Item 2. The electronic component manufacturing apparatus according to Item 1.
前記超音波振動伝搬体は、前記振動伝達端に設けられた弾性体を介して前記接合ツールを超音波振動方向と同じ方向に移動可能に支持する
ことを特徴とする請求項1に記載の電子部品製造装置。
2. The electronic device according to claim 1, wherein the ultrasonic vibration propagation body supports the joining tool movably in the same direction as the ultrasonic vibration direction via an elastic body provided at the vibration transmission end. 3. Parts manufacturing equipment.
前記接合ツールは、概略矩形の前記第1の電子部品の少なくとも対向する2辺を把持する電子部品把持手段を有し、前記電子部品吸着手段により吸着しながら前記電子部品把持手段によって把持して前記第1の電子部品を前記電子部品保持部に保持する
ことを特徴とする請求項1から3のいずれかに記載の電子部品製造装置。
The joining tool has electronic component gripping means for gripping at least two opposing sides of the first electronic component having a substantially rectangular shape. The electronic component manufacturing apparatus according to claim 1, wherein the first electronic component is held by the electronic component holding unit.
前記超音波振動伝搬体に対向する対向面に前記接合ツールを位置決めする位置合せ爪を有する接合ツールステージをさらに備え、
前記超音波振動伝搬体は、前記接合ツールステージによって位置決めされた前記接合ツールを前記接合ツール吸着手段によって前記すべり面に吸着する
ことを特徴とする請求項1,2又は4のいずれかに記載の電子部品製造装置。
Further comprising a joining tool stage having an alignment claw for positioning the joining tool on a facing surface facing the ultrasonic vibration propagation body,
5. The ultrasonic vibration propagation body according to claim 1, wherein the welding tool positioned by the welding tool stage is attracted to the slip surface by the welding tool suction means. 6. Electronic component manufacturing equipment.
第1の電子部品に超音波振動を伝搬する超音波振動伝搬体と、
前記超音波振動伝搬体の振動伝達端に超音波振動方向と同じ方向に移動可能に支持され、前記超音波振動伝搬体と反対側の面に電子部品保持部が形成され、該電子部品保持部に設けられた電子部品吸着手段により該電子部品保持部に第1の電子部品を保持する接合ツールと、
前記電子部品保持部に対向する面に第2の電子部品を固定する電子部品固定部が設けられた接合ステージと
を有する電子部品製造装置を使用する電子部品製造方法であって、
第1の面に複数の電極が形成された前記第2の電子部品を、該第1の面を外方に向けて前記電子部品固定部に固定する第2電子部品固定工程と、
第1の面に複数の突起電極が形成された前記第1の電子部品を、該第1の面が前記第2の電子部品に対向するように前記電子部品保持部に吸着する第1電子部品吸着工程と、
前記第1の電子部品の前記突起電極を前記第2の電子部品の前記電極に位置決めし、前記突起電極を前記電極に押圧しながら前記超音波振動伝搬体を振動させて超音波振動を前記第1の電子部品に伝搬するとともに、前記突起電極と前記電極との間に所定の接合力が生じたときに前記接合ツールを超音波振動方向にすべらせながら前記第2の電子部品に前記第1の電子部品を接続する電子部品接続工程と
を備えたことを特徴とする電子部品製造方法。
An ultrasonic vibration propagation body that propagates ultrasonic vibration to the first electronic component;
The vibration transmitting end of the ultrasonic vibration propagation body is movably supported in the same direction as the ultrasonic vibration direction, and an electronic component holding portion is formed on a surface opposite to the ultrasonic vibration propagation body, and the electronic component holding portion A joining tool for holding the first electronic component in the electronic component holding portion by electronic component suction means provided in
An electronic component manufacturing method using an electronic component manufacturing apparatus including: a bonding stage provided with an electronic component fixing unit for fixing a second electronic component on a surface facing the electronic component holding unit;
A second electronic component fixing step of fixing the second electronic component having a plurality of electrodes formed on a first surface to the electronic component fixing portion with the first surface facing outward;
A first electronic component that adsorbs the first electronic component having a plurality of protruding electrodes formed on a first surface to the electronic component holding unit such that the first surface faces the second electronic component; An adsorption step;
Positioning the protruding electrode of the first electronic component on the electrode of the second electronic component, and vibrating the ultrasonic vibration propagating body while pressing the protruding electrode against the electrode to generate ultrasonic vibration The first electronic component and the second electronic component while sliding the bonding tool in the ultrasonic vibration direction when a predetermined bonding force is generated between the protruding electrode and the electrode. And an electronic component connecting step of connecting the electronic components.
前記接合ツールは前記超音波振動伝搬体に設けられた接合ツール吸着手段によって前記振動伝達端に設けられたすべり面に吸着されて支持され、前記接合ツールを前記振動伝達端の前記すべり面に吸着する接合ツール吸着工程をさらに備えた
ことを特徴とする請求項6に記載の電子部品製造方法。
The joining tool is attracted and supported on a slip surface provided at the vibration transmitting end by a joining tool attracting means provided on the ultrasonic vibration propagation body, and the joining tool is attracted to the slip surface of the vibration transmitting end. The electronic component manufacturing method according to claim 6, further comprising a joining tool suction step of performing the bonding tool.
前記超音波振動伝搬体に対して前記接合ツールを所定の位置に位置決めする接合ツール位置決め工程をさらに備え、
前記接合ツール吸着工程は、前記接合ツール位置決め工程によって位置決めされた前記接合ツールを前記すべり面に吸着する
ことを特徴とする請求項7に記載の電子部品製造方法。
Further comprising a welding tool positioning step of positioning the welding tool at a predetermined position with respect to the ultrasonic vibration propagation body,
The method according to claim 7, wherein in the joining tool suction step, the joining tool positioned in the joining tool positioning step is attracted to the slip surface.
前記第1電子部品吸着工程は、概略矩形の前記第1の電子部品の少なくとも対向する2辺を把持しながら前記第1の電子部品を前記電子部品保持部に吸着する
ことを特徴とする請求項6から8のいずれかに記載の電子部品製造方法。
The first electronic component suctioning step, wherein the first electronic component is suctioned to the electronic component holding portion while holding at least two opposing sides of the substantially rectangular first electronic component. An electronic component manufacturing method according to any one of items 6 to 8.
JP2002202469A 2002-07-11 2002-07-11 Electronic component manufacturing apparatus and electronic component manufacturing method Expired - Fee Related JP3767812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002202469A JP3767812B2 (en) 2002-07-11 2002-07-11 Electronic component manufacturing apparatus and electronic component manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002202469A JP3767812B2 (en) 2002-07-11 2002-07-11 Electronic component manufacturing apparatus and electronic component manufacturing method

Publications (2)

Publication Number Publication Date
JP2004047692A true JP2004047692A (en) 2004-02-12
JP3767812B2 JP3767812B2 (en) 2006-04-19

Family

ID=31708642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002202469A Expired - Fee Related JP3767812B2 (en) 2002-07-11 2002-07-11 Electronic component manufacturing apparatus and electronic component manufacturing method

Country Status (1)

Country Link
JP (1) JP3767812B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186325A (en) * 2004-12-02 2006-07-13 Seiko Instruments Inc Ultrasonic vibration bonding device
JP2006351589A (en) * 2005-06-13 2006-12-28 Sony Corp Semiconductor chip, electronic apparatus and its manufacturing method
JP2007019436A (en) * 2005-07-11 2007-01-25 Sony Corp Bonding equipment and method of semiconductor chip
US7424966B2 (en) 2004-11-09 2008-09-16 Fujitsu Limited Method of ultrasonic mounting and ultrasonic mounting apparatus using the same
JP2009231802A (en) * 2008-02-28 2009-10-08 Denso Corp Ultrasonic bonding method
CN102545036A (en) * 2010-12-08 2012-07-04 索尼公司 Laser diode device
WO2013135302A1 (en) * 2012-03-16 2013-09-19 Ev Group E. Thallner Gmbh Pressure transmitting device for bonding chips onto a substrate
CN110024101A (en) * 2016-11-30 2019-07-16 龙云株式会社 Aligning guide, chuck assembly and laminating apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7424966B2 (en) 2004-11-09 2008-09-16 Fujitsu Limited Method of ultrasonic mounting and ultrasonic mounting apparatus using the same
JP2006186325A (en) * 2004-12-02 2006-07-13 Seiko Instruments Inc Ultrasonic vibration bonding device
JP2006351589A (en) * 2005-06-13 2006-12-28 Sony Corp Semiconductor chip, electronic apparatus and its manufacturing method
JP2007019436A (en) * 2005-07-11 2007-01-25 Sony Corp Bonding equipment and method of semiconductor chip
JP4687290B2 (en) * 2005-07-11 2011-05-25 ソニー株式会社 Semiconductor chip bonding apparatus and bonding method
JP2009231802A (en) * 2008-02-28 2009-10-08 Denso Corp Ultrasonic bonding method
CN102545036A (en) * 2010-12-08 2012-07-04 索尼公司 Laser diode device
WO2013135302A1 (en) * 2012-03-16 2013-09-19 Ev Group E. Thallner Gmbh Pressure transmitting device for bonding chips onto a substrate
JP2014534636A (en) * 2012-03-16 2014-12-18 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Pressure transmitter for bonding chips to substrates
US9305813B2 (en) 2012-03-16 2016-04-05 Ev Group E. Thallner Gmbh Pressure transmitting device for bonding chips onto a substrate
CN110024101A (en) * 2016-11-30 2019-07-16 龙云株式会社 Aligning guide, chuck assembly and laminating apparatus
CN110024101B (en) * 2016-11-30 2023-05-02 龙云株式会社 Alignment mechanism, chuck device and laminating device

Also Published As

Publication number Publication date
JP3767812B2 (en) 2006-04-19

Similar Documents

Publication Publication Date Title
JP4338834B2 (en) Semiconductor chip mounting method using ultrasonic vibration
JP2004304066A (en) Method of manufacturing semiconductor device
JP3767812B2 (en) Electronic component manufacturing apparatus and electronic component manufacturing method
JP4412051B2 (en) Electronic component mounting apparatus and electronic component mounting method
JP2005057158A (en) Method and device for expansion
JP5663764B2 (en) Joining device
KR101513226B1 (en) Method for picking-up semiconductor chip using low frequency vibration
JP3487162B2 (en) Bonding tools and bonding equipment
JP4606709B2 (en) Electronic component bonding method and electronic component bonding apparatus
JP2007201108A (en) Device and method for bonding electronic part
JP2007019436A (en) Bonding equipment and method of semiconductor chip
JP4491321B2 (en) Ultrasonic mounting method and ultrasonic mounting apparatus used therefor
JPH1074767A (en) Fine ball bump forming method and device
JP3409683B2 (en) Bonding tool and bonding device for bumped electronic components
JP2014072421A (en) Adsorption head and component placement device
JP2001007160A (en) Part mounting tool, and part mounting method and device using the same
JP2005230845A (en) Ultrasonic joining apparatus, and method for producing electronic device
JPH08203962A (en) Chip positioning equipment, chip stage, and inner lead bonding equipment and method
KR100651152B1 (en) Method and apparatus for bonding electronic components
JP2003059972A (en) Bonding head and bonding apparatus having the same
JP5132988B2 (en) Electronic component mounting equipment
JP4184993B2 (en) Component mounting method and apparatus
JP4589266B2 (en) Semiconductor ultrasonic bonding method
JP2001057376A (en) Bonding device and manufacturing method of substrate
JP2003060339A (en) Method for mounting electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees