JP3767812B2 - Electronic component manufacturing apparatus and electronic component manufacturing method - Google Patents

Electronic component manufacturing apparatus and electronic component manufacturing method Download PDF

Info

Publication number
JP3767812B2
JP3767812B2 JP2002202469A JP2002202469A JP3767812B2 JP 3767812 B2 JP3767812 B2 JP 3767812B2 JP 2002202469 A JP2002202469 A JP 2002202469A JP 2002202469 A JP2002202469 A JP 2002202469A JP 3767812 B2 JP3767812 B2 JP 3767812B2
Authority
JP
Japan
Prior art keywords
electronic component
ultrasonic vibration
electrode
tool
propagating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002202469A
Other languages
Japanese (ja)
Other versions
JP2004047692A (en
Inventor
光範 石崎
洋一 北村
琢也 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002202469A priority Critical patent/JP3767812B2/en
Publication of JP2004047692A publication Critical patent/JP2004047692A/en
Application granted granted Critical
Publication of JP3767812B2 publication Critical patent/JP3767812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • H01L2224/75302Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • H01L2224/75302Shape
    • H01L2224/75303Shape of the pressing surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • H01L2224/75313Removable bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75743Suction holding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75743Suction holding means
    • H01L2224/75745Suction holding means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Description

【0001】
【発明の属する技術分野】
本発明は、超音波振動を伝搬しながら突起電極と電極とを接合するフリップチップの実装方法およびその装置に関し、特に電子部品を破損させることなく安定した接合強度で電子部品を接合する電子部品製造装置および電子部品製造方法に関するものである。
【0002】
【従来の技術】
多端子で狭ピッチの電極を有する電子部品を実装する手法として、電子部品に超音波振動を伝搬しながら電子部品の電極上に形成した突起電極と電極とを接合する、フリップチップ方式がよく用いられており、例えば"超音波振動によるフリップチップ実装技術の開発"(橋本他、6th Symposium on Microjoining and Assembly Technology in Electronics、175-178、2000)に記載されている。
【0003】
図21及び図22は従来の電子部品の製造方法および製造装置を示す一部を断面とする側面図である。図21及び図22において、1は概略矩形平板状の第1の電子部品、1cは第1の電子部品1の表面としての第1の面1aに設けられた電極、2は概略矩形平板状の第2の電子部品、2cは第2の電子部品2の表面としての第1の面2aに設けられた電極、3は第1の電子部品1の電極1c上に設けられた突起電極である。第1の電子部品1と第2の電子部品2の裏面である第2の面1b,2bは平坦な面とされている。また、4は第1の電子部品1を吸着してこれを保持するとともに第1の電子部品1に超音波振動を伝搬する接合ツール、4aは接合ツール4に設けられた真空吸着穴、6は接合ステージ、5は接合ステージ6に設けられた真空吸着穴である。
【0004】
図21は第1の電子部品1を真空吸着穴4aで吸引して接合ツール4の電子部品保持部4bに真空吸着保持し、一方、第2の電子部品2を真空吸着穴5で吸引して第1の面2aを外方に向けて接合ステージ6に固定し、第1の電子部品1の電極1cに形成された突起電極3と、接合ステージ6に真空吸着保持された第2の電子部品2の電極2cとが位置合わせされた状態を示す一部を断面とする側面図である。
【0005】
図22は突起電極3と第2の電子部品2の電極2cとを加圧するとともに、接合ツール4によって第1の電子部品1に矢印Iに示されるように超音波振動が伝搬された状態を示す一部を断面とする側面図である。
第1の電子部品1の突起電極3と第2の電子部品2の電極2cとが位置合わせされた後、接合ツール4が第2の電子部品2の方向であるZ軸方向に移動し、突起電極3を所定の押圧力で電極2cに押圧しながら、接合ツール4が図中矢印Iに示されるように超音波振動を第1の電子部品1に伝搬する。Z軸方向の所定の押圧力とこれに直行するXY平面上の超音波振動によって突起電極3と電極2cとがこすれあい表面の汚れや膜が除去されて両者が固相接合される。
【0006】
図23は従来の電子部品の製造方法および製造装置の別の例を示し、突起電極3と第2の電子部品2の電極2cとを加圧するとともに、接合ツール12によって第1の電子部品1に矢印Jに示されるように超音波振動が伝搬された状態を示す一部を断面とする側面図である。図23において、12は四辺に各々斜面12aが形成され図中下方向に行くにつれて開口部を広げるくぼみ形状の電子部品保持部が形成された内面角錐型の接合ツールである。12bは接合ツール12に設けられた真空吸着穴である。接合ツール12は四辺に各々斜面12aを有する内面角錐型の電子部品保持部に第1の電子部品1を保持して超音波振動を第1の電子部品1に伝搬する。他の構成は図21及び図22に示される従来技術と同じである。
【0007】
【発明が解決しようとする課題】
図21及び図22に示される従来技術では、突起電極3と電極2cとの接合が進行して両者間に働く接合力が増すと、第1の電子部品1に徐々に止まろうとする力が働くのに対して、接合ツール4はそのまま振動を続けるので、接合ツール4と第1の電子部品1の裏面との間で強制的な往復運動(位置ずれ)が生じ、第1の電子部品1の裏面が擦られて破損するといった問題があった。
【0008】
また、第1の電子部品1の第2の面1bに電極等の複数の突起物が形成されている場合は、接合ツール4の電子部品保持面に突起の先端しか接触しないこととなり、接合ツール4と第1の電子部品1との接触面積が減少しすべりが生じやすくなるため、突起電極3に超音波振動を十分伝達することができずに適正な接合が行われないといった問題や、突起物により接合ツール4が磨耗して接合ツール4の寿命が短くなるといった問題があった。
【0009】
これに対し、図23に示される従来技術では、接合ツール12と第1の電子部品1とのすべりは改善されている。しかしながら、図23に示される従来技術においても、突起電極3と電極2cとの接合が進行して接合力が増した場合、第1の電子部品1に大きな超音波振動が伝搬され続けるので接合部が破損するといった問題があった。
【0010】
さらに、電極数が多く、大きな超音波出力が必要となる場合には、接合中に第1の電子部品1と角錐型接合ツール12の斜面12aとの接触部に過大な荷重が集中して第1の電子部品1を破損させる問題があり、特に化合物半導体のように脆弱な部品への適用には制限があった。
【0011】
この発明は上述のような課題を解決するためになされたもので、電子部品を破損させることなく、突起電極と電極とを安定した状態で接合することができる電子部品製造装置および電子部品製造方法を得ることを目的とする。
【0012】
【課題を解決するための手段】
この発明に係る電子部品製造装置は、第1の面に複数の電極が形成された第2の電子部品を、第1の面を外方に向けて電子部品固定部に固定する接合ステージと、接合ステージに対して移動可能に設けられ、第1の電子部品に超音波振動を伝搬する超音波振動伝搬体と、超音波振動伝搬体の振動伝達端に超音波振動方向と同じ方向に移動可能に支持され、超音波振動伝搬体と反対側の面に電子部品保持部が形成され、第1の面に複数の突起電極が形成され第1の面が第2の電子部品に対向するように電子部品保持部に配置された第1の電子部品を、電子部品保持部に設けられた電子部品吸着手段により吸着して保持する接合ツールとを備え、超音波振動伝搬体は、第1の電子部品の突起電極を第2の電子部品の電極に位置決めし、突起電極を電極に押圧しながら超音波振動伝搬体を振動させて超音波振動を第1の電子部品に伝搬するとともに、突起電極と電極との間に所定の接合力が生じたときに接合ツールを超音波振動方向にすべらせながら第2の電子部品に第1の電子部品を接続する。
【0013】
また、超音波振動伝搬体は、接合ツール吸着手段によって振動伝達端に設けられたすべり面に接合ツールを吸着して超音波振動方向と同じ方向に移動可能に支持する。
【0014】
また、超音波振動伝搬体は、振動伝達端に設けられた弾性体を介して接合ツールを超音波振動方向と同じ方向に移動可能に支持する。
【0015】
また、接合ツールは、概略矩形の第1の電子部品の少なくとも対向する2辺を把持する電子部品把持手段を有し、電子部品吸着手段により吸着しながら電子部品把持手段によって把持して第1の電子部品を電子部品保持部に保持する。
【0016】
また、超音波振動伝搬体に対向する対向面に接合ツールを位置決めする位置合せ爪を有する接合ツールステージをさらに備え、超音波振動伝搬体は、接合ツールステージによって位置決めされた接合ツールを接合ツール吸着手段によってすべり面に吸着する。
【0017】
また、この発明に係る電子部品製造方法は、第1の電子部品に超音波振動を伝搬する超音波振動伝搬体と、超音波振動伝搬体の振動伝達端に超音波振動方向と同じ方向に移動可能に支持され、超音波振動伝搬体と反対側の面に電子部品保持部が形成され、電子部品保持部に設けられた電子部品吸着手段により電子部品保持部に第1の電子部品を保持する接合ツールと、電子部品保持部に対向する面に第2の電子部品を固定する電子部品固定部が設けられた接合ステージとを有する電子部品製造装置を使用する電子部品製造方法であって、第1の面に複数の電極が形成された第2の電子部品を、第1の面を外方に向けて電子部品固定部に固定する第2電子部品固定工程と、第1の面に複数の突起電極が形成された第1の電子部品を、第1の面が第2の電子部品に対向するように電子部品保持部に吸着する第1電子部品吸着工程と、第1の電子部品の突起電極を第2の電子部品の電極に位置決めし、突起電極を電極に押圧しながら超音波振動伝搬体を振動させて超音波振動を第1の電子部品に伝搬するとともに、突起電極と電極との間に所定の接合力が生じたときに接合ツールを超音波振動方向にすべらせながら第2の電子部品に第1の電子部品を接続する電子部品接続工程とを備えている。
【0018】
また、接合ツールは超音波振動伝搬体に設けられた接合ツール吸着手段によって振動伝達端に設けられたすべり面に吸着されて支持され、接合ツールを振動伝達端のすべり面に吸着する接合ツール吸着工程をさらに備えている。
【0019】
また、超音波振動伝搬体に対して接合ツールを所定の位置に位置決めする接合ツール位置決め工程をさらに備え、接合ツール吸着工程は、接合ツール位置決め工程によって位置決めされた接合ツールをすべり面に吸着する。
【0020】
さらに、第1電子部品吸着工程は、概略矩形の第1の電子部品の少なくとも対向する2辺を把持しながら第1の電子部品を電子部品保持部に吸着する。
【0021】
【発明の実施の形態】
実施の形態1.
図1から図8はこの発明の実施の形態1による電子部品製造装置および電子部品製造方法を示す一部を断面とする側面図である。図3において、1は概略矩形の平板状をなし図中下側の第1の面1aに複数の電極1cが形成された第1の電子部品である。第1の電子部品1の各電極1cには後で詳しく述べる突起電極3が設けられている。2は概略矩形の平板状をなし図中上側の第1の面2aに複数の電極2cが形成された第2の電子部品である。第2の電子部品2は電極2cが形成された第1の面2aを外方に向けて接合ステージ6上の電子部品固定部6aに固定されている。接合ステージ6の電子部品固定部6aには、第2の電子部品2を吸着する真空吸着穴5が設けられている。
【0022】
図1において、8は図示しない超音波振動伝搬装置の超音波振動伝搬体である。超音波振動伝搬体8は、接合ツールステージ9及び接合ステージ6に対してX軸、Y軸およびZ軸方向に移動可能とされ且つ第1の電子部品1に超音波振動を伝搬するために例えば片側1μmの振幅の超音波振動をする。超音波振動伝搬体8の図1の下端の振動伝達端には、平坦なすべり面8cが形成されている。また、超音波振動伝搬体8には、第1の電子部品1を吸着する接合ツール吸着手段として真空吸着穴8a、及び後述する接合ツール4を吸着する接合ツール吸着手段として真空吸着穴8bが軸方向に貫通して設けられている。
【0023】
図2において、4は超音波振動伝搬体8の振動伝達端のすべり面8cに真空吸着穴8bによって空気を吸引されて吸着された接合ツールである。接合ツール4の超音波振動伝搬体8に吸着される面と反対側の面には、第1の電子部品1を保持するための電子部品保持部4bが形成されている。電子部品保持部4bは四辺に各々斜面が形成され図中下方向に行くにつれて開口部を広げるくぼみ形状、すなわち、内面角錐型をなしている。接合ツール4の中央部には、真空吸着穴8aに連通して空気を吸引して第1の電子部品1を吸着する電子部品吸着手段としての真空吸着穴4aが穿孔されている。
本実施の形態では、接合ツール4はステンレス鋼にて作製されている。ししながら、接合ツール4はステンレス鋼に限られるものではなく、例えばセラミックス材料で作製されてもよい。
【0024】
また、図2において、9は接合ツール4を位置決めするための接合ツールステージである。接合ツールステージ9の超音波振動伝搬体8に対向する対向面には、接合ツール4を位置決めするための位置合せ爪10が設けられている。
【0025】
図1は接合ツールステージ9上の接合ツール4と超音波振動伝搬体8とが位置合わせされた状態を示す一部を断面とする側面図である。一連の工程において、まず、接合ツール4が、後で詳しく説明するように、接合ツールステージ9上で超音波振動伝搬体8に対して位置合わせされる。
【0026】
図2は超音波振動伝搬体8の振動伝達端のすべり面8cに接合ツール4が真空吸着穴8bによって吸着される接合ツール吸着工程を示す一部を断面とする側面図である。接合ツール吸着工程においては、接合ツールステージ9上で超音波振動伝搬体8に対して位置合わせされた接合ツール4は、図中下方向であるZ軸方向に移動した超音波振動伝搬体8のすべり面8cに、真空吸着穴8bによって真空吸着保持される。
【0027】
図3は第1の電子部品1を真空吸着穴8aで吸引して接合ツール4の電子部品保持部4bに真空吸着保持する第1電子部品吸着工程と、第2の電子部品2を第1の面2aを外方に向けて電子部品固定部6aに固定する第2電子部品固定工程とを示すとともに、第1の電子部品1の電極1cに形成された突起電極3と、接合ステージ6に真空吸着保持された第2の電子部品2の電極2cとが位置合わせされた状態を示す一部を断面とする側面図である。
【0028】
第1電子部品吸着工程においては、振動伝達端のすべり面8cに接合ツール4を吸着した超音波振動伝搬体8が、例えば接合ステージ6に対して水平方向であるXY平面に移動して、図示しない載置台等に置かれた第1の電子部品1を真空吸着穴8aで吸引して接合ツール4の電子部品保持部4bに真空吸着保持する。
【0029】
第2電子部品固定工程においては、接合ステージ6の電子部品固定部6aに図示しない電子部品載置装置等によって第2の電子部品2が第1の面2aを外方に向けて載置され、真空吸着穴5によって真空吸着されて固定される。
その後、図3に示されるように第1の電子部品1の電極1cに形成された突起電極3と、接合ステージ6に真空吸着保持された第2の電子部品2の電極2cとが位置合わせされる。
【0030】
本実施の形態では、第1の電子部品1としてシリコン材料の半導体素子を用いている。しかしながら、第1の電子部品1として適用される部品は、シリコン材料の半導体素子に限られるものではなく、シリコン・ゲルマニュウムの合体、ヒ化ガリュウム、あるいはリン化インジューム等を材料とする他の半導体素子でもよい。そしてさらには、セラミックス配線基板や樹脂配線基板も適用することができる。
【0031】
本実施の形態で用いたシリコン材料の半導体素子には、直径25μmの金ワイヤの先端を溶融凝固させて直径75μmの金ボールを形成した後、金ボールを電極に接合し、金ボールから金ワイヤを所定の長さ切り離すことで、直径の平均値が97μmの金の突起電極3を12個形成した。ここで、突起電極3は金に限らず、例えば、銅や銀あるいは金合金、銅合金、銀合金で形成してもよい。
【0032】
また、本実施の形態では、第2の電子部品2としてアルミナ配線基板を用いたが、アルミナ配線基板に限らずガラスセラミックスや窒化アルミ等を材料とするセラミックス基板や樹脂基板でもよく、さらにはシリコン,シリコン・ゲルマニュウム,ガリュウム・ヒ素,インジューム・リン等を材料とする半導体素子も適用することができる。
【0033】
図4は突起電極3と第2の電子部品2の電極2cとを加圧するとともに、超音波振動伝搬体8によって接合ツール4に超音波振動が伝搬された状態を示す一部を断面とする側面図である。
第1の電子部品1の突起電極3と第2の電子部品2の電極2cとが位置合わせされた後、超音波振動伝搬体8がZ軸方向に移動し、突起電極3を所定の押圧力で電極2cに押圧しながら、超音波振動伝搬体8が図中矢印Aに示されるように超音波振動を第1の電子部品1に伝搬する。所定の押圧力と超音波振動によって突起電極3と電極2cとがこすれあい表面の汚れや膜が除去されて両者は固相接合される。
【0034】
本実施の形態においては、接合ステージ6を150℃に加熱した状態で、第1の電子部品1であるシリコン材料の半導体素子と第2の電子部品2であるアルミナ配線基板とを1200gfの押圧力で加圧するとともに片側1μmの振幅で60KHzの超音波振動を伝搬した。
【0035】
図5は第1の電子部品1の突起電極3と第2の電子部品の電極2cとの接合が進行した電子部品接続工程を示すとともに、突起電極3と電極2cとの接合力が増加し、接合ツール4に対して超音波振動伝搬体8が矢印B方向にすべった状態を示す一部を断面とする側面図である。
【0036】
電子部品接続工程においては、突起電極3が電極2cに押圧されながら超音波振動が伝搬され、所定の押圧力と超音波振動によって突起電極3と電極2cとが固相接合される。そして、突起電極3と電極2cにとの接合が進行し、突起電極3と電極2cとの接合力が増加し所定の大きさ以上になったとき、接合ツール4は超音波振動伝搬体8のすべり面8cに対してすべり始める。突起電極3と電極2cとの接合力に対してすべり始める摩擦抵抗を調節するには、すべり面8c及びこれに対面して接触する接合ツール4の接触面の滑らかさを適正なものにするとともに、真空吸着穴8bによる真空吸着力を適度に変化させて調節する。
【0037】
本実施の形態においては、片側1μmの振幅で60KHzの超音波振動を0.3秒間伝搬し、金の突起電極3と金の電極2cとをせん断破断荷重70gf/バンプ以上で接合した。このとき、突起電極3と電極2cとの接合が進行して、両者間に働く接合力が所定の値まで増した場合、超音波振動伝搬体8に対して接合ツール4がすべり始め、第1の電子部品1の裏面は破損することがなかった。なお、接合ツール4とすべり面8cとの摩擦抵抗を所定の値とするために、超音波振動の伝搬中は真空吸着穴8bによる接合ツール4の真空吸着を停止した。
【0038】
一方、同じ対象物、すなわち、第1の電子部品1にシリコン材料の半導体素子、第2の電子部品2にアルミナ配線基板を適用して、図5に示す従来の方法で接合した場合、超音波振動の伝搬時間が0.1秒以下では第1の電子部品1の裏面に破損は生じなかったものの、最小のせん断破断荷重が25gf/バンプとなり十分な接合力が得られなかった。また、超音波振動の伝搬時間を0.1秒より長くしてゆくとそれにともない接合力は増したが、第1の電子部品1と接合ツール4の間に位置ずれが生じ第1の電子部品1の裏面が破損した。
【0039】
図6は真空吸着穴8aの真空吸着を停止するとともに真空吸着穴8bで再び接合ツール4を真空吸着保持し、超音波振動伝搬体8を上方に移動させて第1の電子部品1と接合ツール4とを離間させた状態を示す一部を断面とする側面図である。図7は接合ツール4を接合ツールステージ9に置く状態を示す一部を断面とする側面図である。
【0040】
第1の電子部品1の突起電極3と第2の電子部品の電極2cとの接合が終了すると、超音波振動伝搬体8がZ軸で第1の電子部品1と離れる上方向に移動し、その後XY平面内で移動して接合ツールステージ9に向かう、そして再び下降して接合ツールステージ9の所定の位置に接合ツール4を置く、そして真空吸着穴8bの真空吸着を停止し超音波振動伝搬体8は上方に逃げる。
【0041】
図8は両側から位置合せ爪10で接合ツール4を押し、接合ツール4を接合ステージ9の所定の位置に移動させる接合ツール位置決め工程を示す一部を断面とする側面図である。
接合ツール位置決め工程においては、接合ツールステージ9の所定の位置に置かれた接合ツール4は、四方から図中矢印Cのようにスライドして接合ツール4の各面を押す位置合せ爪10によって所定の位置に位置決めされる。その後、工程は図1に示される状態に戻るが、接合ツール4は、超音波振動伝搬体8に対して正確に位置決めされた位置にあり、図2に示される接合ツール吸着工程では、接合ツール4は超音波振動伝搬体8の所定の位置に正確に吸着される。
【0042】
以上のように本実施の形態の電子部品製造装置および電子部品製造方法においては、突起電極3と電極2cとの接合が進行して両者間の接合力が増加しても、接合ツール4と第1の電子部品1の裏面との間で位置ずれが生じないので、第1の電子部品1の裏面が破損することがない。
【0043】
また、さらに、接合ツール4と超音波振動伝搬体8との間にすべりが生じるため、突起電極3と電極2cとの接合がさらに進行して両者間の接合部に大きな超音波振動が加わり続けても接合部が破損することもない。
【0044】
なお、接合ツール4と超音波振動伝搬体8のすべり面8cとの摩擦抵抗をすくなくしてすべりを生じやすくするため、接合ツール4の裏面に凹部を設けてすべり面8cとの接触面積を低減してもよい。さらには、接合中に真空吸着穴8bから逆に空気を吹き付けて接合ツール4と超音波振動伝搬体8との摩擦抵抗を低減してもよい。
【0045】
実施の形態2.
図9から図16はこの発明の実施の形態2による電子部品製造装置および電子部品製造方法を示す一部を断面とする側面図である。図9から図16において、実施の形態1と同一または相当部分には同一符号を付し、その説明を省略する。本実施の形態においては、実施の形態1に対して、接合ツール4が異なったものとなっている。図9から図16において、4dは接合ツール4のスライド部、4cは接合ツール4の真空吸着穴、4fは接合ツール4に設けられた電子部品把持手段としての把持爪、8dは超音波振動伝搬体8の真空吸着穴である。その他の構成は実施の形態1と概略同様である。
【0046】
図9は接合ツールステージ9上の接合ツール4と超音波振動伝搬体8とが位置合わせされた状態を示す一部を断面とする側面図である。接合ツール4は、第1の電子部品1を真空吸着する真空吸着穴4aと、真空吸着穴4c内部の空気圧を可変させることでスライドするスライド部4dを備えている。スライド部4dは接合ツール本体4eに対して進退動可能に設けられている。スライド部4dと接合ツール本体4eの間には、図示しない弾性体が縮設されている。この弾性体により、スライド部4dは、常時は接合ツール本体4eと離れるように付勢されている。そして、真空吸着穴4cによって内部を減圧されて接合ツール本体4eに近づく方向に移動する。接合ツール本体4eとスライド部4dには、それぞれ把持爪4f,4fが突設されている。2つの把持爪4f,4fは互いに近づく方向に移動することで第1の電子部品1を挟んで挟持する。
本実施の形態では、接合ツール4はステンレス鋼で作製されているが、ステンレス鋼に限定されることはなく、例えばセラミックス材料が用いられてもよい。
【0047】
図10は超音波振動伝搬体8の振動伝達端のすべり面8cに接合ツール4が真空吸着穴8bによって吸着される接合ツール吸着工程を示す一部を断面とする側面図である。図11は第1の電子部品1を真空吸着穴8aで吸引して接合ツール4の電子部品保持部4bに真空吸着するとともに、真空吸着穴8dを真空吸引して接合ツール4のスライド部4dをスライドさせ、第1の電子部品1の対向する1対の側面を挟み込んで保持する第1電子部品吸着工程と、第2の電子部品2を第1の面2aを外方に向けて電子部品固定部6aに固定する第2電子部品固定工程とを示すとともに、第1の電子部品1の電極1cに形成された突起電極3と、接合ステージ6に真空吸着保持された第2の電子部品2の電極2cとが位置合わせされた状態を示す一部を断面とする側面図である。
【0048】
第1電子部品吸着工程においては、振動伝達端のすべり面8cに接合ツール4を吸着した超音波振動伝搬体8が、例えば接合ステージ6に対して水平方向であるXY平面内で移動して、図示しない載置台等に置かれた第1の電子部品1を真空吸着穴8aで吸引して接合ツール4の電子部品保持部4bに真空吸着保持する。このとき、同時に真空吸着穴8dから空気を吸引して接合ツール4のスライド部4dをスライドさせ、第1の電子部品1の対向する1対の側面を把持爪4f,4fで挟み込んで保持する。
【0049】
第2電子部品固定工程においては、接合ステージ6の電子部品固定部6aに図示しない電子部品載置装置によって第2の電子部品2が第1の面2aを外方に向けて載置され、真空吸着穴5によって真空吸着されて固定される。
その後、図11に示されるように第1の電子部品1の電極1cに形成された突起電極3と、接合ステージ6に真空吸着保持された第2の電子部品2の電極2cとが位置合わせされる。
【0050】
本実施の形態では、第1の電子部品1としてヒ化ガリュウム材料の半導体素子を用いている。しかしながら、第1の電子部品1として適用される部品は、ヒ化ガリュウム材料の半導体素子に限られるものではなく、シリコン、シリコン・ゲルマニュウムの合体、あるいはリン化インジューム等を材料とする他の半導体素子でもよい。そしてさらには、セラミックス配線基板や樹脂配線基板も適用することができる。
【0051】
本実施の形態で用いたヒ化ガリュウム材料の半導体素子には、直径25μmの金ワイヤの先端を溶融凝固させて直径75μmの金ボールを形成した後、金ボールを電極に接合し、金ボールから金ワイヤを所定の長さ切り離すことで、直径の平均値が97μmの金の突起電極3を30個形成した。ここで、突起電極3は金に限らず、例えば、銅や銀あるいは金合金、銅合金、銀合金で形成してもよい。
【0052】
また、本実施の形態では、第2の電子部品2としてアルミナ配線基板を用いたが、アルミナ配線基板に限らずガラスセラミックスや窒化アルミ等を材料とするセラミックス基板や樹脂基板でもよく、さらにはシリコン,シリコン・ゲルマニュウム,ガリュウム・ヒ素,インジューム・リン等を材料とする半導体素子も適用することができる。
【0053】
図12は突起電極3と第2の電子部品の電極2cとを加圧するとともに、接合ツール4とスライド部4dに挟み込まれた第1の電子部品1に挟持する1対の側面に垂直な方向に超音波振動が伝搬された状態を示す一部を断面とする側面図である。
【0054】
第1の電子部品1の突起電極3と第2の電子部品2の電極2cとが位置合わせされた後、超音波振動伝搬体8がZ軸方向に移動し、突起電極3を所定の押圧力で電極2cに押圧しながら、超音波振動伝搬体8が図中矢印Dに示されるように超音波振動を第1の電子部品1に伝搬する。所定の押圧力と超音波振動によって突起電極3と電極2cとがこすれあい表面の汚れや膜が除去されて固相接合される。
【0055】
本実施の形態においては、超音波振動方向に垂直な2つの側面を接合ツール4で挟み込むことで、突起電極3の数が増して接合に大きな超音波出力が必要となる場合でも、角錐型接合ツールのように第1の電子部品1と接合ツール4との接触部に過大な荷重集中が生じることがなく、化合物半導体のように脆弱な部品でも破損することがない。
【0056】
本実施の形態においては、接合ステージ6を150℃に加熱した状態で、第1の電子部品1であるヒ化ガリュウム材料の半導体素子と第2の電子部品2であるアルミナ配線基板とを2700gfの押圧力で加圧するとともに片側2μmの振幅で60KHzの超音波振動を伝搬した。
【0057】
図13は第1の電子部品1の突起電極3と第2の電子部品の電極2cとの接合が進行した電子部品接続工程を示すとともに、突起電極3と電極2cとの接合力が増加し、接合ツール4に対して超音波振動伝搬体8が矢印E方向にすべった状態を示す一部を断面とする側面図である。
電子部品接続工程においては、突起電極3が電極2cに押圧されながら超音波振動が伝搬され、所定の押圧力と超音波振動によって突起電極3と電極2cとが固相接続される。そして、突起電極3と電極2cにとの接合が進行し、突起電極3と電極2cとの接合力が増加し所定の大きさ以上になったとき、接合ツール4は超音波振動伝搬体8のすべり面8cに対してすべり始める。突起電極3と電極2cとの接合力に対してすべり始める摩擦抵抗を調節するには、すべり面8c及びこれに対向して接触する接合ツール4の接触面の滑らかさを適正なものにするとともに、真空吸着穴8bによる真空吸着力を適度に変化させて調節する。
【0058】
本実施の形態においては、突起電極3を30個形成したが、突起電極3の数が増加すると、これに伴い突起電極3と電極2cとの間に生じる接合力が大きくなる。そのため、両者の接合が十分に進行する前に接合ツール4とすべり面8cとの間ですべりが生じてしまう場合がある。接合が十分に進行する前に接合ツール4がすべり面8cに対してすべると超音波振動が接合部に伝わらず接合が完全に行われない問題が生じる。
【0059】
そこで、本実施の形態では、超音波振動伝搬開始から0.1秒間は真空吸着穴8bで接合ツール4を真空吸着したままとし、超音波振動伝搬体8と接合ツール4とのすべりを防止して接合を進ませた。その後、真空吸着を停止してさらに超音波振動を0.4秒間伝搬した。これにより、素子裏面の破損を生じさせることなく、金の突起電極3とアルミナ配線板の厚さ3μmの金の電極2cとをせん断破断荷重75gf/バンプ以上で接合することができた。
【0060】
本実施の形態では、真空吸着の停止のタイミングは、超音波振動の伝搬時間で得ている。このタイミングは、接合中の超音波振幅,超音波振動子のインピーダンス,荷重等を測定してタイミングを得ることもできる。すなわち、接合が進行するにつれて超音波振幅はしだいに小さくなるので、これを検出しながら接合を行い所定の大きさ以下になったときに、真空吸着を停止するあるいは逆に空気を吹き付けることで接合ツール4と超音波振動伝搬体8との摩擦抵抗を低減してもよい。
また、接合が進行するにつれて超音波インピーダンスしだいに大きくなるので、これを検出しながら接合を行い所定の大きさ以上になったときに、真空吸着を停止するあるいは逆に空気を吹き付けることで接合ツール4と超音波振動伝搬体8との摩擦抵抗を低減してもよい。
さらには、接合が進行するにつれて超音波振動伝搬体8に作用する荷重はしだいに大きくなるので同様の方法でタイミングの制御に用いることができる。
【0061】
図14は真空吸着穴8aの真空吸着を停止するとともに真空吸着穴8bで再び接合ツール4を真空吸着保持し、超音波振動伝搬体8を上方に移動させて第1の電子部品1と接合ツール4とを離間させた状態を示す一部を断面とする側面図である。図15は接合ツール4を接合ツールステージ9に置く状態を示す一部を断面とする側面図である。
【0062】
第1の電子部品1の突起電極3と第2の電子部品の電極2cとの接合が終了すると、超音波振動伝搬体8がZ軸で第1の電子部品1と離れる上方向に移動し、その後XY平面内で移動して接合ツールステージ9に向かう、そして再びZ軸方向に下降して接合ツールステージ9の所定の位置に接合ツール4を置く、そして真空吸着穴8bの真空吸着を停止し超音波振動伝搬体8は上方に逃げる。
【0063】
図16は両側から位置合せ爪10で接合ツール4を押し、接合ツール4を接合ステージ9の所定の位置に移動させる接合ツール位置決め工程を示す一部を断面とする側面図である。
接合ツール位置決め工程においては、接合ツールステージ9の所定の位置に置かれた接合ツール4は、四方から図中矢印Fのようにスライドして接合ツール4の各面を押す位置合せ爪10にて所定の位置に位置決めされる。その後、工程は図9に示される状態に戻るが、接合ツール4は、超音波振動伝搬体8に対して位置決めされた位置にあり、図10に示される接合ツール吸着工程では、接合ツール4は超音波振動伝搬体8の所定の位置に正確に吸着される。
【0064】
以上のように本実施の形態の電子部品製造装置および電子部品製造方法においては、接合ツール4は、概略矩形平板状の第1の電子部品1の対向する2辺を把持する電子部品把持手段としての2つの把持爪4f,4fを有し、真空吸着穴8aによって吸着しながら把持爪4f,4fで把持して第1の電子部品1を電子部品保持部4bに保持する。そのため、接合ツール4と第1の電子部品1の裏面との間に発生する位置ずれをさらに抑制することができ、さらに第1の電子部品1の裏面の破損を防止することがなくなる。
【0065】
尚、本実施の形態においては、把持爪4f,4fを動かす駆動力として気体の圧力を利用したが、他に液体による圧力や電磁力あるいはバネや圧電素子やネジによる圧力を用いても同様の効果が得られる。また、第1の電子部品1の2辺を挟み込んでいるが、電子部品把持手段は、第1の電子部品1と接合ツール4とのすべりを防止することが目的であり、3辺あるいは4辺を把持してもよいことは言うまでもない。
【0066】
実施の形態3.
図17から図20はこの発明の実施の形態3による電子部品製造装置および電子部品製造方法を示す一部を断面とする側面図である。図17から図20において、実施の形態1と同一または相当部分には同一符号を付し、その説明を省略する。図17から図20において、11は超音波振動伝搬体8の振動伝達端に設けられ接合ツール4を超音波振動方向と同じ方向に移動可能に支持する弾性体としてのバネである。バネ11は超音波振動伝搬体8と接合ツール4との間で2方向から接合ツール4を押圧して接合ツール4を所定の位置に配置する。その他の構成は実施の形態1と概略同様である。
【0067】
図17は第1の電子部品1を真空吸着穴8aで吸引して接合ツール4の電子部品保持部4bに真空吸着保持する第1電子部品吸着工程と、第2の電子部品2を第1の面2aを外方に向けて電子部品固定部6aに固定する第2電子部品固定工程とを示すとともに、第1の電子部品1の電極1cに形成された突起電極3と、接合ステージ6に真空吸着保持された第2の電子部品2の電極2cとが位置合わせされた状態を示す一部を断面とする側面図である。
【0068】
第1電子部品吸着工程においては、振動伝達端に接合ツール4を移動可能に支持した超音波振動伝搬体8が接合ステージ6に対して水平方向であるXY平面内で移動して、図示しない載置台に置かれた第1の電子部品1を真空吸着穴8aで吸引して接合ツール4の電子部品保持部4bに真空吸着保持する。
【0069】
第2電子部品固定工程においては、接合ステージ6の電子部品固定部6aに図示しない電子部品載置装置によって第2の電子部品2が第1の面2aを外方に向けて載置され、真空吸着穴5によって真空吸着されて固定される。
その後、図17に示されるように第1の電子部品1の電極1cに形成された突起電極3と、接合ステージ6に真空吸着保持された第2の電子部品2の電極2cとが位置合わせされる。
【0070】
本実施の形態では、接合ツール4はステンレス鋼で作製されている。しなしながら、ステンレス鋼に限られるものではなく、例えばセラミックス材料で作製されてもよい。さらには、実施の形態2のように第1の電子部品1の対向する2辺を把持する手段を有する接合ツールを用いてもよい。
【0071】
本実施の形態では、第1の電子部品1としてヒ化ガリュウム材料の半導体素子を用いている。しかしながら、第1の電子部品1として適用される部品は、ヒ化ガリュウム材料の半導体素子に限られるものではなく、シリコン、シリコン・ゲルマニュウムの合体、あるいはリン化インジューム等を材料とする他の半導体素子でもよい。そしてさらには、セラミックス配線基板や樹脂配線基板も適用することができる。
【0072】
本実施の形態で用いたヒ化ガリュウム材料の半導体素子には、直径25μmの金ワイヤの先端を溶融凝固させて直径75μmの金ボールを形成した後、金ボールを電極に接合し、金ボールから金ワイヤを所定の長さ切り離すことで、直径の平均値が97μmの金の突起電極3を8個形成した。ここで、突起電極3は金に限らず、例えば、銅や銀あるいは金合金、銅合金、銀合金で形成してもよい。
【0073】
また、本実施の形態では、第2の電子部品2としてアルミナ配線基板を用いたが、アルミナ配線基板に限らずガラスセラミックスや窒化アルミ等を材料とするセラミックス基板や樹脂基板でもよく、さらにはシリコン,シリコン・ゲルマニュウム,ガリュウム・ヒ素,インジューム・リン等を材料とする半導体素子も適用することができる。
【0074】
図18は突起電極3と第2の電子部品2の電極2cとを加圧するとともに、超音波振動伝搬体8によって接合ツール4に超音波振動が伝搬された状態を示す一部を断面とする側面図である。
【0075】
第1の電子部品1の突起電極3と第2の電子部品2の電極2cとが位置合わせされた後、超音波振動伝搬体8がZ軸方向に移動し、突起電極3を所定の押圧力で電極2cに押圧しながら、超音波振動伝搬体8が図中矢印Gに示されるように超音波振動を第1の電子部品1に伝搬する。所定の押圧力と超音波振動によって突起電極3と電極2cとはこすれあい表面の汚れや膜が除去されて固相接合される。
【0076】
本実施の形態においては、接合ステージ6を150℃に加熱した状態で、第1の電子部品1であるヒ化ガリュウム材料の半導体素子と第2の電子部品2であるアルミナ配線基板とを800gfの押圧力で加圧するとともに片側0.8μmの振幅で60KHzの超音波振動を伝搬した。
【0077】
図19は第1の電子部品1の突起電極3と第2の電子部品の電極2cとの接合が進行した電子部品接続工程を示すとともに、突起電極3と電極2cとの接合力が増加し、接合ツール4に対して超音波振動伝搬体8が矢印H方向にすべった状態を示す一部を断面とする側面図である。
【0078】
電子部品接続工程においては、突起電極3が電極2cに押圧されながら超音波振動が伝搬され、所定の押圧力と超音波振動によって突起電極3と電極2cとが固相接続される。そして、突起電極3と電極2cにとの接合が進行し、突起電極3と電極2cとの接合力が増加し所定の大きさ以上になったとき、接合ツール4は超音波振動伝搬体8のすべり面8cに対してすべり始める。突起電極3と電極電極2cとの接合力に対してすべり始める摩擦抵抗を調節するには、すべり面8c及びこれに対向して接触する接合ツール4の接触面の滑らかさを適正なものにする。
【0079】
本実施の形態においては、接合ステージ6を150℃に加熱した状態で、第1の電子部品1であるヒ化ガリュウム材料の半導体素子と第2の電子部品2であるアルミナ配線基板とを800gfの押圧力で加圧するとともに片側0.8μmの振幅で60KHzの超音波振動を伝搬した。
【0080】
図20は真空吸着穴8aの真空吸着を停止し、超音波振動伝搬体8を上方に移動させて第1の電子部品1と接合ツール4とを分離した状態を示す一部を断面とする側面図である。
【0081】
以上のように本実施の形態の電子部品製造装置および電子部品製造方法においては、接合ツール4は、弾性体としてのバネ11により支持されて超音波振動伝搬体8の振動伝達端に常時設けられている。そのため、超音波振動伝搬体8に接合ツール4を吸着する接合ツール吸着工程や超音波振動伝搬体8に対して接合ツール4の位置決めを行う接合ツール位置決め工程がなくなり、全体として加工時間が削減され、生産性が向上しコストをさげることができる。
尚、本実施の形態においては、接合条件によって適度な弾性力を有するバネ11を選択することにより適正な接合を行うことができる。
【0082】
【発明の効果】
この発明に係る電子部品製造装置は、第1の面に複数の電極が形成された第2の電子部品を、第1の面を外方に向けて電子部品固定部に固定する接合ステージと、接合ステージに対して移動可能に設けられ、第1の電子部品に超音波振動を伝搬する超音波振動伝搬体と、超音波振動伝搬体の振動伝達端に超音波振動方向と同じ方向に移動可能に支持され、超音波振動伝搬体と反対側の面に電子部品保持部が形成され、第1の面に複数の突起電極が形成され第1の面が第2の電子部品に対向するように電子部品保持部に配置された第1の電子部品を、電子部品保持部に設けられた電子部品吸着手段により吸着して保持する接合ツールとを備え、超音波振動伝搬体は、第1の電子部品の突起電極を第2の電子部品の電極に位置決めし、突起電極を電極に押圧しながら超音波振動伝搬体を振動させて超音波振動を第1の電子部品に伝搬するとともに、突起電極と電極との間に所定の接合力が生じたときに接合ツールを超音波振動方向にすべらせながら第2の電子部品に第1の電子部品を接続する。そのため、第1の電子部品と第2の電子部品の接合中に、接合ツールに対して第1の電子部品が位置ずれを発生することがなくなる。その結果、第1の電子部品を破損させることなく、第1の電子部品と第2の電子部品とを安定した状態で接合することができる。
【0083】
また、超音波振動伝搬体は、接合ツール吸着手段によって振動伝達端に設けられたすべり面に接合ツールを吸着して超音波振動方向と同じ方向に移動可能に支持する。そのため、電子部品吸着手段と同じ駆動源を用いて接合ツールをすべり面に吸着することができ、簡単な構成とすることができるので、コストダウンをすることができる。
【0084】
また、超音波振動伝搬体は、振動伝達端に設けられた弾性体を介して接合ツールを超音波振動方向と同じ方向に移動可能に支持する。そのため、接合ツールに力が働かなくなったとき、弾性体は接合ツールを所定の位置に支持するので、超音波振動伝搬体に対して接合ツールを位置決めする動作は、第1の電子部品から接合ツールを離間させるのみの動作でよく、製造時間を短縮することができるので、コストダウンをすることができる。
【0085】
また、接合ツールは、概略矩形の第1の電子部品の少なくとも対向する2辺を把持する電子部品把持手段を有し、電子部品吸着手段により吸着しながら電子部品把持手段によって把持して第1の電子部品を電子部品保持部に保持する。そのため、第1の電子部品が安定して保持され、接合ツールに対して第1の電子部品がさらに位置ずれを発生することがなくなり、第1の電子部品と第2の電子部品とをさらに安定した状態で接合することができる。
【0086】
また、超音波振動伝搬体に対向する対向面に接合ツールを位置決めする位置合せ爪を有する接合ツールステージをさらに備え、超音波振動伝搬体は、接合ツールステージによって位置決めされた接合ツールを接合ツール吸着手段によってすべり面に吸着する。そのため、超音波振動伝搬体から離脱してしまう接合ツールを簡単な構成で位置決めすることができ、コストダウンをすることができる。
【0087】
また、この発明に係る電子部品製造方法は、第1の電子部品に超音波振動を伝搬する超音波振動伝搬体と、超音波振動伝搬体の振動伝達端に超音波振動方向と同じ方向に移動可能に支持され、超音波振動伝搬体と反対側の面に電子部品保持部が形成され、電子部品保持部に設けられた電子部品吸着手段により電子部品保持部に第1の電子部品を保持する接合ツールと、電子部品保持部に対向する面に第2の電子部品を固定する電子部品固定部が設けられた接合ステージとを有する電子部品製造装置を使用する電子部品製造方法であって、第1の面に複数の電極が形成された第2の電子部品を、第1の面を外方に向けて電子部品固定部に固定する第2電子部品固定工程と、第1の面に複数の突起電極が形成された第1の電子部品を、第1の面が第2の電子部品に対向するように電子部品保持部に吸着する第1電子部品吸着工程と、第1の電子部品の突起電極を第2の電子部品の電極に位置決めし、突起電極を電極に押圧しながら超音波振動伝搬体を振動させて超音波振動を第1の電子部品に伝搬するとともに、突起電極と電極との間に所定の接合力が生じたときに接合ツールを超音波振動方向にすべらせながら第2の電子部品に第1の電子部品を接続する電子部品接続工程とを備えている。そのため、電子部品接続工程において、第1の電子部品と第2の電子部品の接合中に、接合ツールに対して第1の電子部品が位置ずれおこすことがなく、第1の電子部品が破損することがなくなり、第1の電子部品と第2の電子部品とが安定した状態で接合される。
【0088】
また、接合ツールは超音波振動伝搬体に設けられた接合ツール吸着手段によって振動伝達端に設けられたすべり面に吸着されて支持され、接合ツールを振動伝達端のすべり面に吸着する接合ツール吸着工程をさらに備えている。そのため、接合ツール吸着工程では、第1電子部品吸着工程と同じ駆動源の電子部品吸着手段にて接合ツールをすべり面に吸着し、装置を簡単な構成とすることができるので、コストダウンをすることができる。
【0089】
また、超音波振動伝搬体に対して接合ツールを所定の位置に位置決めする接合ツール位置決め工程をさらに備え、接合ツール吸着工程は、接合ツール位置決め工程によって位置決めされた接合ツールをすべり面に吸着する。そのため、超音波振動伝搬体から離脱してしまう接合ツールを簡単な動作にて位置決めすることができる。
【0090】
さらに、第1電子部品吸着工程は、概略矩形の第1の電子部品の少なくとも対向する2辺を把持しながら第1の電子部品を電子部品保持部に吸着する。そのため、電子部品接続工程において、第1の電子部品と第2の電子部品の接合中に、接合ツールに対して第1の電子部品がさらに位置ずれおこすことがなく、第1の電子部品がさらに破損することがなくなり、第1の電子部品と第2の電子部品とがさらに安定した状態で接合される。
【図面の簡単な説明】
【図1】 この発明の実施の形態1の接合ツールと超音波振動伝搬体とが位置合わせされた状態を示す一部を断面とする側面図である。
【図2】 この発明の実施の形態1のすべり面に接合ツールが吸着される接合ツール吸着工程を示す一部を断面とする側面図である。
【図3】 この発明の実施の形態1の第1の電子部品を接合ツールの電子部品保持部に真空吸着保持する第1電子部品吸着工程と、第2の電子部品2を電子部品固定部に固定する第2電子部品固定工程とを示すとともに、第1の電子部品と第2の電子部品とが位置合わせされた状態を示す一部を断面とする側面図である。
【図4】 この発明の実施の形態1の突起電極と電極とを加圧するとともに接合ツールに超音波振動が伝搬された状態を示す一部を断面とする側面図である。
【図5】 この発明の実施の形態1の突起電極と電極との接合力が増加し接合ツールに対して超音波振動伝搬体がすべった状態を示す一部を断面とする側面図である。
【図6】 この発明の実施の形態1の超音波振動伝搬体を上方に移動させて第1の電子部品と接合ツールとを離間させた状態を示す一部を断面とする側面図である。
【図7】 この発明の実施の形態1の接合ツールを接合ツールステージに置く状態を示す一部を断面とする側面図である。
【図8】 この発明の実施の形態1の位置合せ爪にて接合ツールを位置決めする接合ツール位置決め工程を示す一部を断面とする側面図である。
【図9】 この発明の実施の形態2の接合ツールと超音波振動伝搬体とが位置合わせされた状態を示す一部を断面とする側面図である。
【図10】 この発明の実施の形態2のすべり面に接合ツールが吸着される接合ツール吸着工程を示す一部を断面とする側面図である。
【図11】 この発明の実施の形態2の第1の電子部品を接合ツールの電子部品保持部に真空吸着するとともに第1の電子部品1の対向する1対の側面を挟み込んで保持する第1電子部品吸着工程と、第2の電子部品2を電子部品固定部に固定する第2電子部品固定工程とを示すとともに、第1の電子部品と第2の電子部品とが位置合わせされた状態を示す一部を断面とする側面図である。
【図12】 この発明の実施の形態2の突起電極と電極とを加圧するとともに接合ツールに超音波振動が伝搬された状態を示す一部を断面とする側面図である。
【図13】 この発明の実施の形態2の突起電極と電極との接合力が増加し接合ツールに対して超音波振動伝搬体がすべった状態を示す一部を断面とする側面図である。
【図14】 この発明の実施の形態2の超音波振動伝搬体を上方に移動させて第1の電子部品と接合ツールとを離間させた状態を示す一部を断面とする側面図である。
【図15】 この発明の実施の形態2の接合ツールを接合ツールステージに置く状態を示す一部を断面とする側面図である。
【図16】 この発明の実施の形態2の位置合せ爪にて接合ツールを位置決めする接合ツール位置決め工程を示す一部を断面とする側面図である。
【図17】 この発明の実施の形態3の第1の電子部品を接合ツールの電子部品保持部に真空吸着保持する第1電子部品吸着工程と、第2の電子部品2を電子部品固定部に固定する第2電子部品固定工程とを示すとともに、第1の電子部品と第2の電子部品とが位置合わせされた状態を示す一部を断面とする側面図である。
【図18】 この発明の実施の形態3の突起電極と電極とを加圧するとともに接合ツールに超音波振動が伝搬された状態を示す一部を断面とする側面図である。
【図19】 この発明の実施の形態3の突起電極と電極との接合力が増加し接合ツールに対して超音波振動伝搬体がすべった状態を示す一部を断面とする側面図である。
【図20】 この発明の実施の形態3の超音波振動伝搬体を上方に移動させて第1の電子部品と接合ツールとを離間させた状態を示す一部を断面とする側面図である。
【図21】 従来の電子部品の製造方法および製造装置を示し、特に第1の電子部品を真空吸着保持し、第2の電子部品を接合ステージに固定し、さらに両者が位置合わせされた状態を示す一部を断面とする側面図である。
【図22】 従来の電子部品の製造方法および製造装置を示し、特に突起電極が電極に加圧されるとともに超音波振動が伝搬された状態を示す一部を断面とする側面図である。
【図23】 従来の電子部品の製造方法および製造装置の別の例を示し、特に突起電極が電極に加圧されるとともに超音波振動が伝搬された状態を示す一部を断面とする側面図である。
【符号の説明】
1 第1の電子部品、2 第2の電子部品、2c 電極、3 突起電極、4 接合ツール、4a 真空吸着穴(電子部品吸着手段)、4b 電子部品保持部、4e 接合ツール本体、4d スライド部、4f 把持爪(電子部品把持手段)、6 接合ステージ、6a 電子部品固定部、8 超音波振動伝搬体、8a 真空吸着穴(電子部品吸着手段)、8b 真空吸着穴(接合ツール吸着手段)、8c すべり面、9 接合ツールステージ、10 位置合せ爪、11 バネ(弾性体)。
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a flip chip mounting method and apparatus for bonding a protruding electrode and an electrode while propagating ultrasonic vibrations, and more particularly to manufacturing an electronic component that bonds an electronic component with stable bonding strength without damaging the electronic component. The present invention relates to an apparatus and an electronic component manufacturing method.
[0002]
[Prior art]
As a technique for mounting electronic components with multi-terminal, narrow-pitch electrodes, a flip-chip method is often used, in which ultrasonic vibration is propagated to the electronic components and the protruding electrodes formed on the electrodes of the electronic components are joined to the electrodes. For example, it is described in "Development of flip chip mounting technology by ultrasonic vibration" (Hashimoto et al., 6th Symposium on Microjoining and Assembly Technology in Electronics, 175-178, 2000).
[0003]
21 and 22 are side views, partly in section, showing a conventional method and apparatus for manufacturing an electronic component. 21 and FIG. 1 is a first electronic component having a substantially rectangular flat plate shape, 1c is an electrode provided on the first surface 1a as a surface of the first electronic component 1, and 2 is a second electronic component having a substantially rectangular flat plate shape. Reference numeral 2 c denotes an electrode provided on the first surface 2 a as the surface of the second electronic component 2, and reference numeral 3 denotes a protruding electrode provided on the electrode 1 c of the first electronic component 1. The second surfaces 1b and 2b which are the back surfaces of the first electronic component 1 and the second electronic component 2 are flat surfaces. Reference numeral 4 denotes a bonding tool that sucks and holds the first electronic component 1 and propagates ultrasonic vibrations to the first electronic component 1. Reference numeral 4 a denotes a vacuum suction hole provided in the bonding tool 4. The joining stage 5 is a vacuum suction hole provided in the joining stage 6.
[0004]
In FIG. 21, the first electronic component 1 is sucked through the vacuum suction hole 4a and held in the electronic component holding portion 4b of the welding tool 4 while the second electronic component 2 is sucked through the vacuum suction hole 5. The first surface 2a is fixed to the bonding stage 6 with the outer side facing outward, the protruding electrode 3 formed on the electrode 1c of the first electronic component 1, and the second electronic component held by vacuum bonding on the bonding stage 6 It is a side view which makes a cross section a part which shows the state with which the electrode 2c of 2 was aligned.
[0005]
FIG. 22 shows a state in which ultrasonic vibration is propagated to the first electronic component 1 by the bonding tool 4 as indicated by an arrow I while pressurizing the protruding electrode 3 and the electrode 2c of the second electronic component 2. It is a side view which makes a part a cross section.
After the protruding electrode 3 of the first electronic component 1 and the electrode 2c of the second electronic component 2 are aligned, the welding tool 4 moves in the Z-axis direction, which is the direction of the second electronic component 2, and the protruding While pressing the electrode 3 against the electrode 2c with a predetermined pressing force, the welding tool 4 propagates ultrasonic vibration to the first electronic component 1 as indicated by an arrow I in the figure. The projection electrode 3 and the electrode 2c are rubbed with each other by a predetermined pressing force in the Z-axis direction and ultrasonic vibration on the XY plane perpendicular to the Z-axis direction, and the surface dirt and film are removed, and both are solid-phase bonded.
[0006]
FIG. 23 shows another example of a conventional method and apparatus for manufacturing an electronic component, in which the protruding electrode 3 and the electrode 2c of the second electronic component 2 are pressurized and the first electronic component 1 is applied to the first electronic component 1 by the joining tool 12. It is a side view which makes a section a part which shows the state where ultrasonic vibration was propagated as shown by arrow J. In FIG. 23, reference numeral 12 denotes an inner surface pyramid-shaped joining tool in which inclined surfaces 12a are formed on each of the four sides, and a hollow-shaped electronic component holding portion is formed to widen the opening as it goes downward in the drawing. Reference numeral 12 b denotes a vacuum suction hole provided in the joining tool 12. The welding tool 12 holds the first electronic component 1 in an electronic pyramid-shaped electronic component holding portion having inclined surfaces 12 a on four sides, and propagates ultrasonic vibration to the first electronic component 1. Other configurations are the same as those of the prior art shown in FIGS.
[0007]
[Problems to be solved by the invention]
In the prior art shown in FIG. 21 and FIG. 22, when the bonding between the protruding electrode 3 and the electrode 2 c progresses and the bonding force acting between the two increases, a force that gradually stops the first electronic component 1 works. On the other hand, since the welding tool 4 continues to vibrate as it is, a forced reciprocating motion (position shift) occurs between the welding tool 4 and the back surface of the first electronic component 1. There was a problem that the back surface was rubbed and damaged.
[0008]
Further, when a plurality of protrusions such as electrodes are formed on the second surface 1b of the first electronic component 1, only the tip of the protrusion comes into contact with the electronic component holding surface of the bonding tool 4. Since the contact area between the first electronic component 1 and the first electronic component 1 is reduced and slippage is likely to occur, the ultrasonic vibration cannot be sufficiently transmitted to the protruding electrode 3 and the No joining There is a problem that the joining tool 4 is worn by the projection and the life of the joining tool 4 is shortened.
[0009]
On the other hand, in the prior art shown in FIG. 23, the slip between the joining tool 12 and the first electronic component 1 is improved. However, also in the prior art shown in FIG. 23, when the joining between the protruding electrode 3 and the electrode 2c proceeds and the joining force increases, a large ultrasonic vibration continues to be propagated to the first electronic component 1, so that the joining portion There was a problem that was damaged.
[0010]
Furthermore, when the number of electrodes is large and a large ultrasonic output is required, an excessive load is concentrated on the contact portion between the first electronic component 1 and the inclined surface 12a of the pyramid-shaped joining tool 12 during joining. There is a problem that one electronic component 1 is damaged, and there is a limitation in application to a fragile component such as a compound semiconductor.
[0011]
The present invention has been made to solve the above-described problems, and an electronic component manufacturing apparatus and an electronic component manufacturing method capable of stably joining a protruding electrode and an electrode without damaging the electronic component. The purpose is to obtain.
[0012]
[Means for Solving the Problems]
The electronic component manufacturing apparatus according to the present invention includes a joining stage for fixing the second electronic component having a plurality of electrodes formed on the first surface to the electronic component fixing portion with the first surface facing outward, An ultrasonic vibration propagating body that is provided so as to be movable with respect to the joining stage and propagates ultrasonic vibration to the first electronic component, and can be moved in the same direction as the ultrasonic vibration direction at the vibration transmission end of the ultrasonic vibration propagating body. The electronic component holding portion is formed on the surface opposite to the ultrasonic vibration propagating body, the plurality of protruding electrodes are formed on the first surface, and the first surface faces the second electronic component. A joining tool that holds and holds the first electronic component disposed in the electronic component holding unit by an electronic component suction unit provided in the electronic component holding unit, and the ultrasonic vibration propagating body includes the first electronic component Position the protruding electrode of the component on the electrode of the second electronic component, The ultrasonic vibration propagating body is vibrated while being pressed against the pole to propagate the ultrasonic vibration to the first electronic component, and when a predetermined bonding force is generated between the protruding electrode and the electrode, The first electronic component is connected to the second electronic component while sliding in the vibration direction.
[0013]
Further, the ultrasonic vibration propagating body adsorbs the bonding tool to a sliding surface provided at the vibration transmission end by the bonding tool suction means and supports it so as to be movable in the same direction as the ultrasonic vibration direction.
[0014]
Further, the ultrasonic vibration propagating body supports the joining tool so as to be movable in the same direction as the ultrasonic vibration direction via an elastic body provided at the vibration transmitting end.
[0015]
The joining tool has electronic component gripping means for gripping at least two opposing sides of the first electronic component having a substantially rectangular shape, and is gripped by the electronic component gripping means while being suctioned by the electronic component suction means. The electronic component is held in the electronic component holding unit.
[0016]
The ultrasonic vibration propagator further includes a bonding tool stage having an alignment claw for positioning the bonding tool on a surface facing the ultrasonic vibration propagating body, and the ultrasonic vibration propagating body absorbs the bonding tool positioned by the bonding tool stage. Adsorb to the sliding surface by means.
[0017]
The electronic component manufacturing method according to the present invention includes an ultrasonic vibration propagating body that propagates ultrasonic vibrations to the first electronic component, and the ultrasonic vibration propagating body that moves in the same direction as the ultrasonic vibration direction. An electronic component holding portion is formed on the surface opposite to the ultrasonic vibration propagating body, and the first electronic component is held on the electronic component holding portion by the electronic component suction means provided on the electronic component holding portion. An electronic component manufacturing method using an electronic component manufacturing apparatus having a bonding tool and a bonding stage provided with an electronic component fixing portion that fixes a second electronic component on a surface facing the electronic component holding portion. A second electronic component fixing step in which a second electronic component having a plurality of electrodes formed on one surface is fixed to the electronic component fixing portion with the first surface facing outward; and a plurality of electrodes are formed on the first surface. The first surface on which the protruding electrode is formed has the first surface 1st electronic component adsorption | suction process attracted | sucked to an electronic component holding part so as to oppose 2 electronic components, and the protruding electrode of a 1st electronic component is positioned to the electrode of a 2nd electronic component, and a protruding electrode is pressed on an electrode The ultrasonic vibration propagating body is vibrated while propagating the ultrasonic vibration to the first electronic component, and when a predetermined bonding force is generated between the protruding electrode and the electrode, the bonding tool is moved in the ultrasonic vibration direction. An electronic component connecting step of connecting the first electronic component to the second electronic component while sliding.
[0018]
In addition, the welding tool is sucked and supported by the sliding surface provided at the vibration transmission end by the bonding tool suction means provided on the ultrasonic vibration propagating body, and the welding tool is sucked to the sliding surface at the vibration transmission end. The method further includes a process.
[0019]
The bonding tool positioning step of positioning the bonding tool at a predetermined position with respect to the ultrasonic vibration propagating body is further provided, and the bonding tool suction step sucks the bonding tool positioned by the bonding tool positioning step onto the sliding surface.
[0020]
Further, in the first electronic component adsorption step, the first electronic component is adsorbed to the electronic component holding unit while gripping at least two opposite sides of the substantially rectangular first electronic component.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
1 to 8 are side views, partly in section, showing an electronic component manufacturing apparatus and an electronic component manufacturing method according to Embodiment 1 of the present invention. In FIG. 3, reference numeral 1 denotes a first electronic component having a substantially rectangular flat plate shape and having a plurality of electrodes 1c formed on the lower first surface 1a. Each electrode 1c of the first electronic component 1 is provided with a protruding electrode 3 described in detail later. Reference numeral 2 denotes a second electronic component having a substantially rectangular flat plate shape in which a plurality of electrodes 2c are formed on the first surface 2a on the upper side in the drawing. The second electronic component 2 is fixed to the electronic component fixing portion 6a on the joining stage 6 with the first surface 2a on which the electrode 2c is formed facing outward. A vacuum suction hole 5 for sucking the second electronic component 2 is provided in the electronic component fixing portion 6 a of the joining stage 6.
[0022]
In FIG. 1, 8 is an ultrasonic vibration propagating body of an ultrasonic vibration propagating apparatus (not shown). The ultrasonic vibration propagating body 8 is movable in the X-axis, Y-axis, and Z-axis directions with respect to the bonding tool stage 9 and the bonding stage 6 and transmits ultrasonic vibration to the first electronic component 1, for example. Ultrasonic vibration with an amplitude of 1 μm on one side is performed. A flat sliding surface 8c is formed at the vibration transmitting end of the ultrasonic vibration propagating body 8 at the lower end in FIG. Further, the ultrasonic vibration propagating body 8 has a vacuum suction hole 8a as a bonding tool suction means for sucking the first electronic component 1 and a vacuum suction hole 8b as a bonding tool suction means for sucking a welding tool 4 described later. It is provided penetrating in the direction.
[0023]
In FIG. 2, 4 is a joining tool in which air is sucked and sucked by the vacuum suction hole 8b on the sliding surface 8c of the vibration transmitting end of the ultrasonic vibration propagating body 8. An electronic component holding portion 4 b for holding the first electronic component 1 is formed on the surface of the bonding tool 4 opposite to the surface attracted by the ultrasonic vibration propagating body 8. The electronic component holding part 4b is formed in a concave shape in which slopes are formed on each of the four sides and the opening is expanded in the downward direction in the figure, that is, an inner side pyramid shape. A vacuum suction hole 4a serving as an electronic component suction means for sucking air and sucking the first electronic component 1 through the vacuum suction hole 8a is formed in the center of the welding tool 4.
In the present embodiment, the joining tool 4 is made of stainless steel. Shi Or However, the joining tool 4 is not limited to stainless steel, and may be made of, for example, a ceramic material.
[0024]
In FIG. 2, reference numeral 9 denotes a joining tool stage for positioning the joining tool 4. An alignment claw 10 for positioning the welding tool 4 is provided on the surface of the welding tool stage 9 facing the ultrasonic vibration propagating body 8.
[0025]
FIG. 1 is a side view, partly in section, showing a state in which the welding tool 4 and the ultrasonic vibration propagating body 8 on the welding tool stage 9 are aligned. In the series of steps, first, the welding tool 4 is aligned with the ultrasonic vibration propagating body 8 on the welding tool stage 9 as described in detail later.
[0026]
FIG. 2 is a side view, partly in section, showing a bonding tool suction step in which the welding tool 4 is sucked by the vacuum suction hole 8b on the sliding surface 8c of the vibration transmitting end of the ultrasonic vibration propagating body 8. In the bonding tool adsorption step, the bonding tool 4 aligned with the ultrasonic vibration propagating body 8 on the bonding tool stage 9 is moved by the ultrasonic vibration propagating body 8 moved in the Z-axis direction, which is the downward direction in the figure. The sliding surface 8c is vacuum-sucked and held by the vacuum suction hole 8b.
[0027]
FIG. 3 shows a first electronic component suction step for sucking the first electronic component 1 through the vacuum suction hole 8a and holding it in the electronic component holding portion 4b of the welding tool 4, and the second electronic component 2 in the first electronic component holding portion 4b. The second electronic component fixing step of fixing the surface 2a to the electronic component fixing portion 6a with the surface 2a facing outward is shown, and the protruding electrode 3 formed on the electrode 1c of the first electronic component 1 and the bonding stage 6 are vacuumed It is a side view which makes a cross section a part which shows the state in which the electrode 2c of the 2nd electronic component 2 attracted | sucked and held was aligned.
[0028]
In the first electronic component adsorption process, the ultrasonic vibration propagating body 8 that adsorbs the welding tool 4 to the sliding surface 8c of the vibration transmission end moves to an XY plane that is horizontal to the bonding stage 6, for example, The first electronic component 1 placed on the mounting table or the like that is not to be sucked is sucked through the vacuum suction hole 8 a and held by vacuum suction in the electronic component holding portion 4 b of the bonding tool 4.
[0029]
In the second electronic component fixing step, the second electronic component 2 is placed on the electronic component fixing portion 6a of the joining stage 6 by an electronic component placing device or the like (not shown) with the first surface 2a facing outward, The vacuum suction hole 5 is vacuum-sucked and fixed.
Thereafter, as shown in FIG. 3, the protruding electrode 3 formed on the electrode 1 c of the first electronic component 1 and the electrode 2 c of the second electronic component 2 held by vacuum suction on the bonding stage 6 are aligned. The
[0030]
In the present embodiment, a semiconductor element made of silicon material is used as the first electronic component 1. However, the component applied as the first electronic component 1 is not limited to the semiconductor element made of silicon material, but other semiconductors using silicon-germanium coalescence, gallium arsenide, phosphide indium, or the like. An element may be sufficient. Further, a ceramic wiring board or a resin wiring board can also be applied.
[0031]
In the silicon element semiconductor element used in this embodiment, the tip of a gold wire with a diameter of 25 μm is melted and solidified to form a gold ball with a diameter of 75 μm, and then the gold ball is joined to an electrode. Were separated by a predetermined length to form 12 gold protruding electrodes 3 having an average diameter of 97 μm. Here, the protruding electrode 3 is not limited to gold, and may be formed of, for example, copper, silver, a gold alloy, a copper alloy, or a silver alloy.
[0032]
In the present embodiment, an alumina wiring board is used as the second electronic component 2. However, the present invention is not limited to an alumina wiring board, and may be a ceramic substrate or a resin substrate made of glass ceramics, aluminum nitride, or the like, and silicon. A semiconductor element made of silicon, germanium, gallium arsenic, indium phosphorus, or the like can also be applied.
[0033]
FIG. 4 is a side view in which a part of the projection electrode 3 and the electrode 2c of the second electronic component 2 are pressurized and the ultrasonic vibration is propagated to the welding tool 4 by the ultrasonic vibration propagating body 8 in a cross section. FIG.
After the protruding electrode 3 of the first electronic component 1 and the electrode 2c of the second electronic component 2 are aligned, the ultrasonic vibration propagating body 8 moves in the Z-axis direction, and the protruding electrode 3 is moved to a predetermined pressing force. The ultrasonic vibration propagating body 8 propagates the ultrasonic vibration to the first electronic component 1 as indicated by an arrow A in FIG. The projection electrode 3 and the electrode 2c are rubbed with each other by a predetermined pressing force and ultrasonic vibration to remove the dirt and film on the surface, and both are solid-phase bonded.
[0034]
In the present embodiment, a pressure of 1200 gf is applied between the silicon material semiconductor element as the first electronic component 1 and the alumina wiring substrate as the second electronic component 2 in a state where the bonding stage 6 is heated to 150 ° C. And ultrasonic vibration of 60 KHz was propagated with an amplitude of 1 μm on one side.
[0035]
FIG. 5 shows an electronic component connecting process in which the bonding between the protruding electrode 3 of the first electronic component 1 and the electrode 2c of the second electronic component has progressed, and the bonding force between the protruding electrode 3 and the electrode 2c increases. FIG. 4 is a side view with a part in cross section showing a state in which an ultrasonic vibration propagating body 8 slides in the direction of arrow B with respect to the welding tool 4.
[0036]
In the electronic component connecting step, ultrasonic vibration is propagated while the protruding electrode 3 is pressed against the electrode 2c, and the protruding electrode 3 and the electrode 2c are solid-phase bonded by a predetermined pressing force and ultrasonic vibration. Then, when the bonding between the protruding electrode 3 and the electrode 2c proceeds and the bonding force between the protruding electrode 3 and the electrode 2c increases and becomes greater than a predetermined size, the bonding tool 4 moves the ultrasonic vibration propagating body 8 The sliding starts on the sliding surface 8c. In order to adjust the frictional resistance that starts to slide with respect to the bonding force between the protruding electrode 3 and the electrode 2c, the smoothness of the sliding surface 8c and the contact surface of the bonding tool 4 that contacts and contacts the sliding surface 8c is made appropriate. The vacuum suction force by the vacuum suction hole 8b is adjusted by changing it appropriately.
[0037]
In this embodiment, ultrasonic vibration of 60 KHz with an amplitude of 1 μm on one side was propagated for 0.3 seconds, and the gold protruding electrode 3 and the gold electrode 2c were joined at a shear breaking load of 70 gf / bump or more. At this time, when the bonding between the protruding electrode 3 and the electrode 2c proceeds and the bonding force acting between the two increases to a predetermined value, the bonding tool 4 starts to slide against the ultrasonic vibration propagating body 8, and the first The back surface of the electronic component 1 was not damaged. In order to set the frictional resistance between the welding tool 4 and the sliding surface 8c to a predetermined value, the vacuum suction of the welding tool 4 by the vacuum suction hole 8b was stopped during the propagation of the ultrasonic vibration.
[0038]
On the other hand, when the same object, i.e., a semiconductor element made of silicon material is applied to the first electronic component 1 and an alumina wiring substrate is applied to the second electronic component 2 and bonded by the conventional method shown in FIG. When the vibration propagation time was 0.1 seconds or less, the back surface of the first electronic component 1 was not damaged, but the minimum shear fracture load was 25 gf / bump, and a sufficient bonding force was not obtained. Further, when the propagation time of the ultrasonic vibration is made longer than 0.1 seconds, the bonding force increases accordingly, but a positional shift occurs between the first electronic component 1 and the bonding tool 4 and the first electronic component. 1 was damaged.
[0039]
FIG. 6 shows that the vacuum suction of the vacuum suction hole 8a is stopped and the welding tool 4 is held again by vacuum suction in the vacuum suction hole 8b, and the ultrasonic vibration propagating body 8 is moved upward to move the first electronic component 1 and the welding tool. It is a side view which makes a part the cross section which shows the state which separated 4 from. FIG. 7 is a side view, partly in section, showing a state in which the welding tool 4 is placed on the welding tool stage 9.
[0040]
When the joining of the protruding electrode 3 of the first electronic component 1 and the electrode 2c of the second electronic component is completed, the ultrasonic vibration propagating body 8 moves in the upward direction away from the first electronic component 1 along the Z axis, After that, it moves in the XY plane and moves toward the welding tool stage 9, and descends again to place the welding tool 4 at a predetermined position of the welding tool stage 9, and stops the vacuum suction of the vacuum suction hole 8b to propagate ultrasonic vibration. The body 8 escapes upward.
[0041]
FIG. 8 is a side view, partly in section, showing a joining tool positioning step in which the joining tool 4 is pushed from both sides with the alignment claw 10 and the joining tool 4 is moved to a predetermined position on the joining stage 9.
In the joining tool positioning step, the joining tool 4 placed at a predetermined position on the joining tool stage 9 is slid from four directions as indicated by an arrow C in the figure and is aligned by an alignment claw 10 that presses each surface of the joining tool 4. It is positioned at the position. Thereafter, the process returns to the state shown in FIG. 1, but the welding tool 4 is at a position accurately positioned with respect to the ultrasonic vibration propagating body 8. In the welding tool adsorption process shown in FIG. 4 is accurately attracted to a predetermined position of the ultrasonic vibration propagating body 8.
[0042]
As described above, in the electronic component manufacturing apparatus and the electronic component manufacturing method of the present embodiment, even if the bonding between the protruding electrode 3 and the electrode 2c proceeds and the bonding force between the two increases, Since no displacement occurs between the back surface of the first electronic component 1, the back surface of the first electronic component 1 is not damaged.
[0043]
Furthermore, since slip occurs between the bonding tool 4 and the ultrasonic vibration propagating body 8, the bonding between the protruding electrode 3 and the electrode 2c further proceeds, and large ultrasonic vibration continues to be applied to the bonding portion between the two. However, the joint is not damaged.
[0044]
In addition, in order to reduce the frictional resistance between the welding tool 4 and the sliding surface 8c of the ultrasonic vibration propagating body 8 and easily cause the sliding, a recess is provided on the back surface of the welding tool 4 to reduce the contact area with the sliding surface 8c. May be. Further, the frictional resistance between the welding tool 4 and the ultrasonic vibration propagating body 8 may be reduced by blowing air from the vacuum suction hole 8b during the bonding.
[0045]
Embodiment 2. FIG.
9 to 16 are side views, partly in section, showing an electronic component manufacturing apparatus and electronic component manufacturing method according to Embodiment 2 of the present invention. 9 to 16, the same reference numerals are given to the same or corresponding parts as those in the first embodiment, and the description thereof is omitted. In the present embodiment, the welding tool 4 is different from the first embodiment. 9 to 16, 4d is a slide portion of the welding tool 4, 4c is a vacuum suction hole of the welding tool 4, 4f is a gripping claw as an electronic component gripping means provided in the welding tool 4, and 8d is ultrasonic vibration propagation. It is a vacuum suction hole of the body 8. Other configurations are substantially the same as those in the first embodiment.
[0046]
FIG. 9 is a side view, partly in section, showing a state in which the welding tool 4 and the ultrasonic vibration propagating body 8 on the welding tool stage 9 are aligned. The joining tool 4 includes a vacuum suction hole 4a that vacuum-sucks the first electronic component 1 and a slide portion 4d that slides by changing the air pressure inside the vacuum suction hole 4c. The slide part 4d is provided so as to be movable back and forth with respect to the welding tool body 4e. An elastic body (not shown) is provided between the slide portion 4d and the joining tool body 4e. Due to this elastic body, the slide portion 4d is normally urged away from the welding tool body 4e. Then, the inside is depressurized by the vacuum suction hole 4c and moves in a direction approaching the welding tool body 4e. Holding claws 4f and 4f project from the joining tool main body 4e and the slide portion 4d, respectively. The two gripping claws 4f and 4f move in a direction approaching each other to sandwich the first electronic component 1 therebetween.
In the present embodiment, the joining tool 4 is made of stainless steel, but is not limited to stainless steel, and for example, a ceramic material may be used.
[0047]
FIG. 10 is a side view, partly in section, showing a bonding tool suction step in which the welding tool 4 is sucked by the vacuum suction hole 8b on the sliding surface 8c at the vibration transmitting end of the ultrasonic vibration propagating body 8. FIG. 11 shows that the first electronic component 1 is sucked by the vacuum suction hole 8a and vacuum-sucked to the electronic component holding part 4b of the bonding tool 4, and the vacuum suction hole 8d is vacuum-sucked so that the slide part 4d of the bonding tool 4 is pulled. A first electronic component adsorption step of sliding and holding a pair of opposing side surfaces of the first electronic component 1 and fixing the second electronic component 2 with the first surface 2a facing outward The second electronic component fixing step for fixing to the part 6a is shown, and the protruding electrode 3 formed on the electrode 1c of the first electronic component 1 and the second electronic component 2 held by vacuum bonding on the joining stage 6 are shown. It is a side view which makes a section a part which shows the state where electrode 2c was aligned.
[0048]
In the first electronic component adsorption process, the ultrasonic vibration propagating body 8 that adsorbs the welding tool 4 to the sliding surface 8c of the vibration transmission end moves in an XY plane that is horizontal to the bonding stage 6, for example, The first electronic component 1 placed on a mounting table or the like (not shown) is sucked through the vacuum suction hole 8a and held by vacuum suction on the electronic component holding portion 4b of the welding tool 4. At this time, air is simultaneously sucked from the vacuum suction hole 8d to slide the slide portion 4d of the bonding tool 4, and the pair of opposing side surfaces of the first electronic component 1 are sandwiched and held by the gripping claws 4f and 4f.
[0049]
In the second electronic component fixing step, the second electronic component 2 is placed on the electronic component fixing portion 6a of the joining stage 6 by an electronic component placing device (not shown) with the first surface 2a facing outward, and is vacuumed. The suction holes 5 are vacuum-sucked and fixed.
After that, as shown in FIG. 11, the protruding electrode 3 formed on the electrode 1 c of the first electronic component 1 and the electrode 2 c of the second electronic component 2 held by vacuum suction on the bonding stage 6 are aligned. The
[0050]
In the present embodiment, a semiconductor element made of a gallium arsenide material is used as the first electronic component 1. However, the component applied as the first electronic component 1 is not limited to a semiconductor element made of gallium arsenide material, but other semiconductors made of silicon, silicon-germanium coalescence, phosphide indium, or the like. An element may be sufficient. Further, a ceramic wiring board or a resin wiring board can also be applied.
[0051]
In the semiconductor element of the gallium arsenide material used in this embodiment, the tip of a gold wire with a diameter of 25 μm is melted and solidified to form a gold ball with a diameter of 75 μm, and then the gold ball is joined to an electrode. Thirty gold protruding electrodes 3 having an average diameter of 97 μm were formed by cutting the gold wire by a predetermined length. Here, the protruding electrode 3 is not limited to gold, and may be formed of, for example, copper, silver, a gold alloy, a copper alloy, or a silver alloy.
[0052]
In the present embodiment, an alumina wiring board is used as the second electronic component 2. However, the present invention is not limited to an alumina wiring board, and may be a ceramic substrate or a resin substrate made of glass ceramics, aluminum nitride, or the like, and silicon. A semiconductor element made of silicon, germanium, gallium arsenic, indium phosphorus, or the like can also be applied.
[0053]
12 pressurizes the protruding electrode 3 and the electrode 2c of the second electronic component, and in a direction perpendicular to the pair of side surfaces sandwiched between the first electronic component 1 sandwiched between the joining tool 4 and the slide portion 4d. It is a side view which makes a part a section which shows the state where ultrasonic vibration was propagated.
[0054]
After the protruding electrode 3 of the first electronic component 1 and the electrode 2c of the second electronic component 2 are aligned, the ultrasonic vibration propagating body 8 moves in the Z-axis direction, and the protruding electrode 3 is moved to a predetermined pressing force. The ultrasonic vibration propagating body 8 propagates the ultrasonic vibration to the first electronic component 1 as indicated by the arrow D in FIG. The projection electrode 3 and the electrode 2c are rubbed with each other by a predetermined pressing force and ultrasonic vibration, and the surface dirt and film are removed and solid phase bonding is performed.
[0055]
In the present embodiment, the two side surfaces perpendicular to the ultrasonic vibration direction are sandwiched between the bonding tools 4, so that even when the number of protruding electrodes 3 increases and a large ultrasonic output is required for bonding, pyramid bonding is performed. An excessive load concentration does not occur at the contact portion between the first electronic component 1 and the joining tool 4 as in the tool, and even a fragile component such as a compound semiconductor is not damaged.
[0056]
In the present embodiment, 2700 gf of the semiconductor element of the gallium arsenide material that is the first electronic component 1 and the alumina wiring substrate that is the second electronic component 2 in a state where the bonding stage 6 is heated to 150 ° C. While pressing with a pressing force, ultrasonic vibration of 60 KHz was propagated with an amplitude of 2 μm on one side.
[0057]
FIG. 13 shows an electronic component connecting step in which the bonding between the protruding electrode 3 of the first electronic component 1 and the electrode 2c of the second electronic component has progressed, and the bonding force between the protruding electrode 3 and the electrode 2c increases. FIG. 5 is a side view with a part in cross section showing a state in which an ultrasonic vibration propagating body 8 slides in the direction of arrow E with respect to the welding tool 4.
In the electronic component connecting step, ultrasonic vibration is propagated while the protruding electrode 3 is pressed against the electrode 2c, and the protruding electrode 3 and the electrode 2c are solid-phase connected by a predetermined pressing force and ultrasonic vibration. Then, when the bonding between the protruding electrode 3 and the electrode 2c proceeds and the bonding force between the protruding electrode 3 and the electrode 2c increases and becomes greater than a predetermined size, the bonding tool 4 moves the ultrasonic vibration propagating body 8 The sliding starts on the sliding surface 8c. In order to adjust the frictional resistance that starts to slide with respect to the bonding force between the protruding electrode 3 and the electrode 2c, the smoothness of the sliding surface 8c and the contact surface of the bonding tool 4 that faces the sliding surface 8c is made appropriate. The vacuum suction force by the vacuum suction hole 8b is adjusted by changing it appropriately.
[0058]
In the present embodiment, 30 protruding electrodes 3 are formed. However, as the number of protruding electrodes 3 increases, the bonding force generated between the protruding electrodes 3 and the electrodes 2c increases accordingly. Therefore, there is a case where slip occurs between the joining tool 4 and the sliding surface 8c before the joining of the two sufficiently proceeds. If the welding tool 4 slides with respect to the sliding surface 8c before the bonding is sufficiently advanced, there arises a problem that the ultrasonic vibration is not transmitted to the bonded portion and the bonding is not performed completely.
[0059]
Therefore, in the present embodiment, the welding tool 4 remains vacuum-sucked by the vacuum suction hole 8b for 0.1 second from the start of ultrasonic vibration propagation to prevent the ultrasonic vibration propagating body 8 and the welding tool 4 from slipping. And joined. Then, vacuum adsorption was stopped and ultrasonic vibration was further propagated for 0.4 seconds. As a result, the gold protruding electrode 3 and the gold electrode 2c having a thickness of 3 μm on the alumina wiring board could be joined at a shear breaking load of 75 gf / bump or more without causing damage to the back surface of the element.
[0060]
In the present embodiment, the vacuum suction stop timing is obtained by the propagation time of the ultrasonic vibration. This timing can also be obtained by measuring the ultrasonic amplitude during bonding, the impedance of the ultrasonic transducer, the load, and the like. That is, as the welding progresses, the ultrasonic amplitude gradually decreases, and when joining is performed while detecting this, the vacuum suction is stopped or the air is blown on the contrary when the joining becomes below a predetermined size. The frictional resistance between the tool 4 and the ultrasonic vibration propagating body 8 may be reduced.
Also, as the bonding progresses, the ultrasonic impedance But Since it gradually increases, when joining is performed while detecting this, and when the size exceeds a predetermined size, the vacuum suction is stopped or air is blown in reverse, so that the joining tool 4 and the ultrasonic vibration propagating body 8 The frictional resistance may be reduced.
Furthermore, since the load acting on the ultrasonic vibration propagating body 8 gradually increases as the joining proceeds, it can be used for timing control in the same manner.
[0061]
FIG. 14 shows that the vacuum suction of the vacuum suction hole 8a is stopped and the welding tool 4 is held again by vacuum suction in the vacuum suction hole 8b, and the ultrasonic vibration propagating body 8 is moved upward to move the first electronic component 1 and the welding tool. It is a side view which makes a part the cross section which shows the state which separated 4 from. FIG. 15 is a side view, partly in section, showing a state in which the welding tool 4 is placed on the welding tool stage 9.
[0062]
When the joining of the protruding electrode 3 of the first electronic component 1 and the electrode 2c of the second electronic component is completed, the ultrasonic vibration propagating body 8 moves in the upward direction away from the first electronic component 1 along the Z axis, After that, it moves in the XY plane and moves toward the welding tool stage 9, and descends again in the Z-axis direction to place the welding tool 4 at a predetermined position of the welding tool stage 9, and stops vacuum suction of the vacuum suction hole 8b. The ultrasonic vibration propagating body 8 escapes upward.
[0063]
FIG. 16 is a side view, partly in section, showing a joining tool positioning step in which the joining tool 4 is pushed from both sides with the alignment claw 10 and the joining tool 4 is moved to a predetermined position on the joining stage 9.
In the joining tool positioning step, the joining tool 4 placed at a predetermined position of the joining tool stage 9 is slid from four directions as indicated by an arrow F in the figure by the alignment claws 10 that press each surface of the joining tool 4. It is positioned at a predetermined position. Thereafter, the process returns to the state shown in FIG. 9, but the welding tool 4 is in a position positioned with respect to the ultrasonic vibration propagating body 8. In the welding tool adsorption process shown in FIG. 10, the welding tool 4 is The ultrasonic vibration propagating body 8 is accurately adsorbed at a predetermined position.
[0064]
As described above, in the electronic component manufacturing apparatus and the electronic component manufacturing method of the present embodiment, the joining tool 4 serves as an electronic component gripping unit that grips two opposing sides of the first electronic component 1 having a substantially rectangular flat plate shape. The first electronic component 1 is held by the electronic component holding portion 4b by being gripped by the gripping claws 4f and 4f while being sucked by the vacuum suction hole 8a. Therefore, it is possible to further suppress the positional deviation that occurs between the welding tool 4 and the back surface of the first electronic component 1, and further prevent the back surface of the first electronic component 1 from being damaged.
[0065]
In this embodiment, the gas pressure is used as the driving force for moving the gripping claws 4f, 4f. However, the same applies even if pressure by liquid, electromagnetic force, or pressure by spring, piezoelectric element or screw is used. An effect is obtained. Further, although the two sides of the first electronic component 1 are sandwiched, the purpose of the electronic component gripping means is to prevent the first electronic component 1 and the welding tool 4 from slipping, and the three sides or four sides. Needless to say, it may be held.
[0066]
Embodiment 3 FIG.
17 to 20 are side views, partly in section, showing an electronic component manufacturing apparatus and electronic component manufacturing method according to Embodiment 3 of the present invention. 17 to 20, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. 17 to 20, reference numeral 11 denotes a spring as an elastic body that is provided at the vibration transmission end of the ultrasonic vibration propagating body 8 and supports the welding tool 4 so as to be movable in the same direction as the ultrasonic vibration direction. The spring 11 presses the joining tool 4 from two directions between the ultrasonic vibration propagating body 8 and the joining tool 4 to place the joining tool 4 at a predetermined position. Other configurations are substantially the same as those in the first embodiment.
[0067]
FIG. 17 shows a first electronic component suction step for sucking the first electronic component 1 through the vacuum suction hole 8a and holding it by vacuum suction in the electronic component holding portion 4b of the welding tool 4, and the second electronic component 2 as the first electronic component. The second electronic component fixing step of fixing the surface 2a to the electronic component fixing portion 6a with the surface 2a facing outward is shown, and the protruding electrode 3 formed on the electrode 1c of the first electronic component 1 and the bonding stage 6 are vacuumed It is a side view which makes a cross section a part which shows the state in which the electrode 2c of the 2nd electronic component 2 attracted | sucked and held was aligned.
[0068]
In the first electronic component adsorption step, the ultrasonic vibration propagating body 8 that supports the welding tool 4 so as to be movable at the vibration transmission end moves in an XY plane that is horizontal with respect to the bonding stage 6, and is not shown. The first electronic component 1 placed on the pedestal is sucked through the vacuum suction hole 8a and held by vacuum suction on the electronic component holding portion 4b of the welding tool 4.
[0069]
In the second electronic component fixing step, the second electronic component 2 is placed on the electronic component fixing portion 6a of the joining stage 6 by an electronic component placing device (not shown) with the first surface 2a facing outward, and is vacuumed. The suction holes 5 are vacuum-sucked and fixed.
After that, as shown in FIG. 17, the protruding electrode 3 formed on the electrode 1 c of the first electronic component 1 and the electrode 2 c of the second electronic component 2 held in vacuum by the bonding stage 6 are aligned. The
[0070]
In the present embodiment, the joining tool 4 is made of stainless steel. However, it is not limited to stainless steel, and may be made of a ceramic material, for example. Furthermore, a joining tool having means for gripping two opposing sides of the first electronic component 1 as in the second embodiment may be used.
[0071]
In the present embodiment, a semiconductor element made of a gallium arsenide material is used as the first electronic component 1. However, the component applied as the first electronic component 1 is not limited to a semiconductor element made of gallium arsenide material, but other semiconductors made of silicon, silicon-germanium coalescence, phosphide indium, or the like. An element may be sufficient. Further, a ceramic wiring board or a resin wiring board can also be applied.
[0072]
In the semiconductor element of the gallium arsenide material used in this embodiment, the tip of a gold wire with a diameter of 25 μm is melted and solidified to form a gold ball with a diameter of 75 μm, and then the gold ball is joined to an electrode. Eight gold protruding electrodes 3 having an average diameter of 97 μm were formed by cutting the gold wire by a predetermined length. Here, the protruding electrode 3 is not limited to gold, and may be formed of, for example, copper, silver, a gold alloy, a copper alloy, or a silver alloy.
[0073]
In the present embodiment, an alumina wiring board is used as the second electronic component 2. However, the present invention is not limited to an alumina wiring board, and may be a ceramic substrate or a resin substrate made of glass ceramics, aluminum nitride, or the like, and silicon. A semiconductor element made of silicon, germanium, gallium arsenic, indium phosphorus, or the like can also be applied.
[0074]
FIG. 18 is a side view in which a part of the projection electrode 3 and the electrode 2 c of the second electronic component 2 are pressed and a part of the ultrasonic vibration propagating body 8 is propagated to the welding tool 4 by the ultrasonic vibration propagating body 8. FIG.
[0075]
After the protruding electrode 3 of the first electronic component 1 and the electrode 2c of the second electronic component 2 are aligned, the ultrasonic vibration propagating body 8 moves in the Z-axis direction, and the protruding electrode 3 is moved to a predetermined pressing force. The ultrasonic vibration propagating body 8 propagates the ultrasonic vibration to the first electronic component 1 as indicated by the arrow G in FIG. The protruding electrode 3 and the electrode 2c are rubbed with each other with a predetermined pressing force and ultrasonic vibration, and the dirt and film on the surface are removed and solid phase bonding is performed.
[0076]
In the present embodiment, 800 gf of the semiconductor element of the gallium arsenide material that is the first electronic component 1 and the alumina wiring board that is the second electronic component 2 in a state where the bonding stage 6 is heated to 150 ° C. While being pressurized with a pressing force, 60 KHz ultrasonic vibration was propagated with an amplitude of 0.8 μm on one side.
[0077]
FIG. 19 shows an electronic component connecting step in which the bonding between the protruding electrode 3 of the first electronic component 1 and the electrode 2c of the second electronic component has progressed, and the bonding force between the protruding electrode 3 and the electrode 2c increases. FIG. 6 is a side view in which a part of the ultrasonic vibration propagating body 8 is slid in the direction of an arrow H with respect to the welding tool 4 with a cross section as a part.
[0078]
In the electronic component connecting step, ultrasonic vibration is propagated while the protruding electrode 3 is pressed against the electrode 2c, and the protruding electrode 3 and the electrode 2c are solid-phase connected by a predetermined pressing force and ultrasonic vibration. Then, when the bonding between the protruding electrode 3 and the electrode 2c proceeds and the bonding force between the protruding electrode 3 and the electrode 2c increases and becomes greater than a predetermined size, the bonding tool 4 moves the ultrasonic vibration propagating body 8 The sliding starts on the sliding surface 8c. In order to adjust the frictional resistance that starts to slide with respect to the bonding force between the protruding electrode 3 and the electrode electrode 2c, the smoothness of the sliding surface 8c and the contact surface of the bonding tool 4 that faces the sliding surface 8c is made appropriate. .
[0079]
In the present embodiment, 800 gf of the semiconductor element of the gallium arsenide material that is the first electronic component 1 and the alumina wiring board that is the second electronic component 2 in a state where the bonding stage 6 is heated to 150 ° C. While being pressurized with a pressing force, 60 KHz ultrasonic vibration was propagated with an amplitude of 0.8 μm on one side.
[0080]
FIG. 20 is a side view with a partial cross section showing a state in which the vacuum suction of the vacuum suction hole 8a is stopped and the ultrasonic vibration propagating body 8 is moved upward to separate the first electronic component 1 and the welding tool 4. FIG.
[0081]
As described above, in the electronic component manufacturing apparatus and the electronic component manufacturing method of the present embodiment, the joining tool 4 is supported by the spring 11 as an elastic body and is always provided at the vibration transmitting end of the ultrasonic vibration propagating body 8. ing. Therefore, there is no bonding tool adsorption process for adsorbing the bonding tool 4 to the ultrasonic vibration propagating body 8 and the bonding tool positioning process for positioning the bonding tool 4 with respect to the ultrasonic vibration propagating body 8, and the processing time is reduced as a whole. , Productivity can be improved and costs can be reduced.
In the present embodiment, proper joining can be performed by selecting the spring 11 having an appropriate elastic force depending on the joining conditions.
[0082]
【The invention's effect】
The electronic component manufacturing apparatus according to the present invention includes a joining stage for fixing the second electronic component having a plurality of electrodes formed on the first surface to the electronic component fixing portion with the first surface facing outward, An ultrasonic vibration propagating body that is provided so as to be movable with respect to the joining stage and propagates ultrasonic vibration to the first electronic component, and can be moved in the same direction as the ultrasonic vibration direction at the vibration transmission end of the ultrasonic vibration propagating body. The electronic component holding portion is formed on the surface opposite to the ultrasonic vibration propagating body, the plurality of protruding electrodes are formed on the first surface, and the first surface faces the second electronic component. A joining tool that holds and holds the first electronic component disposed in the electronic component holding unit by an electronic component suction unit provided in the electronic component holding unit, and the ultrasonic vibration propagating body includes the first electronic component Position the protruding electrode of the component on the electrode of the second electronic component, The ultrasonic vibration propagating body is vibrated while being pressed against the pole to propagate the ultrasonic vibration to the first electronic component, and when a predetermined bonding force is generated between the protruding electrode and the electrode, The first electronic component is connected to the second electronic component while sliding in the vibration direction. Therefore, during the joining of the first electronic component and the second electronic component, the first electronic component will not be displaced with respect to the joining tool. As a result, the first electronic component and the second electronic component can be joined in a stable state without damaging the first electronic component.
[0083]
Further, the ultrasonic vibration propagating body adsorbs the bonding tool to a sliding surface provided at the vibration transmission end by the bonding tool suction means and supports it so as to be movable in the same direction as the ultrasonic vibration direction. For this reason, the joining tool can be sucked onto the sliding surface using the same drive source as the electronic component sucking means, and the structure can be simplified, so that the cost can be reduced.
[0084]
Further, the ultrasonic vibration propagating body supports the joining tool so as to be movable in the same direction as the ultrasonic vibration direction via an elastic body provided at the vibration transmitting end. Therefore, when the force is not applied to the joining tool, the elastic body supports the joining tool at a predetermined position. Therefore, the operation of positioning the joining tool with respect to the ultrasonic vibration propagating body is performed from the first electronic component to the joining tool. The operation can be performed only by separating them, and the manufacturing time can be shortened, so that the cost can be reduced.
[0085]
The joining tool has electronic component gripping means for gripping at least two opposing sides of the first electronic component having a substantially rectangular shape, and is gripped by the electronic component gripping means while being suctioned by the electronic component suction means. The electronic component is held in the electronic component holding unit. Therefore, the first electronic component is stably held, the first electronic component is not further displaced with respect to the joining tool, and the first electronic component and the second electronic component are further stabilized. It can be joined in the state.
[0086]
The ultrasonic vibration propagator further includes a bonding tool stage having an alignment claw for positioning the bonding tool on a surface facing the ultrasonic vibration propagating body, and the ultrasonic vibration propagating body absorbs the bonding tool positioned by the bonding tool stage. Adsorb to the sliding surface by means. Therefore, it is possible to position the joining tool that is detached from the ultrasonic vibration propagating body with a simple configuration, and to reduce the cost.
[0087]
The electronic component manufacturing method according to the present invention includes an ultrasonic vibration propagating body that propagates ultrasonic vibrations to the first electronic component, and the ultrasonic vibration propagating body that moves in the same direction as the ultrasonic vibration direction. An electronic component holding portion is formed on the surface opposite to the ultrasonic vibration propagating body, and the first electronic component is held on the electronic component holding portion by the electronic component suction means provided on the electronic component holding portion. An electronic component manufacturing method using an electronic component manufacturing apparatus having a bonding tool and a bonding stage provided with an electronic component fixing portion that fixes a second electronic component on a surface facing the electronic component holding portion. A second electronic component fixing step in which a second electronic component having a plurality of electrodes formed on one surface is fixed to the electronic component fixing portion with the first surface facing outward; and a plurality of electrodes are formed on the first surface. The first surface on which the protruding electrode is formed has the first surface 1st electronic component adsorption | suction process attracted | sucked to an electronic component holding part so as to oppose 2 electronic components, and the protruding electrode of a 1st electronic component is positioned to the electrode of a 2nd electronic component, and a protruding electrode is pressed on an electrode The ultrasonic vibration propagating body is vibrated while propagating the ultrasonic vibration to the first electronic component, and when a predetermined bonding force is generated between the protruding electrode and the electrode, the bonding tool is moved in the ultrasonic vibration direction. An electronic component connecting step of connecting the first electronic component to the second electronic component while sliding. Therefore, in the electronic component connecting step, the first electronic component is not displaced with respect to the bonding tool during the bonding of the first electronic component and the second electronic component, and the first electronic component is damaged. The first electronic component and the second electronic component are joined in a stable state.
[0088]
In addition, the welding tool is sucked and supported by the sliding surface provided at the vibration transmission end by the bonding tool suction means provided on the ultrasonic vibration propagating body, and the welding tool is sucked to the sliding surface at the vibration transmission end. The method further includes a process. Therefore, in the joining tool suction step, the joining tool can be sucked to the sliding surface by the electronic component suction means of the same drive source as in the first electronic component suction step, and the apparatus can be configured in a simple manner, thereby reducing the cost. be able to.
[0089]
The bonding tool positioning step of positioning the bonding tool at a predetermined position with respect to the ultrasonic vibration propagating body is further provided, and the bonding tool suction step sucks the bonding tool positioned by the bonding tool positioning step onto the sliding surface. Therefore, it is possible to position the joining tool that is detached from the ultrasonic vibration propagating body with a simple operation.
[0090]
Further, in the first electronic component adsorption step, the first electronic component is adsorbed to the electronic component holding unit while gripping at least two opposite sides of the substantially rectangular first electronic component. Therefore, in the electronic component connecting step, the first electronic component is further displaced with respect to the bonding tool during the bonding of the first electronic component and the second electronic component. The The first electronic component is not damaged further, and the first electronic component and the second electronic component are joined in a more stable state.
[Brief description of the drawings]
FIG. 1 is a side view, partly in section, showing a state in which a welding tool and an ultrasonic vibration propagating body according to Embodiment 1 of the present invention are aligned.
FIG. 2 is a side view, partly in cross section, showing a joining tool suction step in which the joining tool is sucked onto the sliding surface according to the first embodiment of the present invention.
FIG. 3 shows a first electronic component suction step in which the first electronic component according to the first embodiment of the present invention is vacuum-sucked and held in the electronic component holding part of the joining tool; and the second electronic component 2 is used as the electronic part fixing part. It is a side view which makes the cross section a part which shows the state where the 1st electronic component and the 2nd electronic component were aligned while showing the 2nd electronic component fixing process to fix.
FIG. 4 is a side view, partly in section, showing a state in which ultrasonic waves are propagated to the welding tool while pressing the protruding electrodes and electrodes according to the first embodiment of the present invention.
FIG. 5 is a side view, partly in section, showing a state where the bonding force between the protruding electrode and the electrode according to the first embodiment of the present invention is increased and the ultrasonic vibration propagating body has slipped with respect to the bonding tool.
FIG. 6 is a side view, partly in section, showing a state where the ultrasonic vibration propagating body according to the first embodiment of the present invention is moved upward to separate the first electronic component and the welding tool.
FIG. 7 is a side view, partly in section, showing a state where the welding tool according to the first embodiment of the present invention is placed on the welding tool stage.
FIG. 8 is a side view, partly in section, showing a joining tool positioning step for positioning the joining tool with the alignment pawl according to the first embodiment of the present invention.
FIG. 9 is a side view, partly in cross section, showing a state in which a welding tool and an ultrasonic vibration propagating body according to Embodiment 2 of the present invention are aligned.
FIG. 10 is a side view, partly in section, showing a welding tool suction process in which a welding tool is sucked onto a sliding surface according to a second embodiment of the present invention.
11 is a view showing a first electronic component according to a second embodiment of the present invention, in which a first electronic component is vacuum-sucked to an electronic component holding portion of a welding tool and a pair of opposing side surfaces of the first electronic component 1 are sandwiched and held. The electronic component adsorption step and the second electronic component fixing step for fixing the second electronic component 2 to the electronic component fixing portion are shown, and the first electronic component and the second electronic component are aligned. It is a side view which makes a part to show a section.
FIG. 12 is a side view, partly in section, showing a state where ultrasonic waves are propagated to the welding tool while pressing the protruding electrodes and electrodes according to the second embodiment of the present invention.
FIG. 13 is a side view, partly in section, showing a state where the bonding force between the protruding electrode and the electrode according to Embodiment 2 of the present invention is increased and the ultrasonic vibration propagating body has slipped with respect to the bonding tool.
FIG. 14 is a side view, partly in section, showing a state in which the ultrasonic vibration propagating body according to Embodiment 2 of the present invention is moved upward to separate the first electronic component and the welding tool.
FIG. 15 is a side view, partly in section, showing a state in which the welding tool according to the second embodiment of the present invention is placed on the welding tool stage.
FIG. 16 is a side view, partly in section, showing a joining tool positioning step for positioning the joining tool with the alignment claws of Embodiment 2 of the present invention.
FIG. 17 shows a first electronic component suction step in which the first electronic component according to the third embodiment of the present invention is vacuum-sucked and held in the electronic component holding part of the joining tool; and the second electronic component 2 is used as the electronic part fixing part. It is a side view which makes the cross section a part which shows the state where the 1st electronic component and the 2nd electronic component were aligned while showing the 2nd electronic component fixing process to fix.
FIG. 18 is a side view, partly in section, showing a state where ultrasonic waves are propagated to the welding tool while pressing the protruding electrodes and electrodes according to the third embodiment of the present invention.
FIG. 19 is a side view, partly in section, showing a state where the bonding force between the protruding electrode and the electrode according to Embodiment 3 of the present invention has increased and the ultrasonic vibration propagating body has slipped with respect to the bonding tool.
FIG. 20 is a side view, partly in cross section, showing a state where the ultrasonic vibration propagating body of Embodiment 3 of the present invention is moved upward to separate the first electronic component and the welding tool.
FIG. 21 shows a conventional method and apparatus for manufacturing an electronic component, in particular, a state in which the first electronic component is held by vacuum suction, the second electronic component is fixed to the joining stage, and both are aligned. It is a side view which makes a part to show a section.
FIG. 22 is a side view showing a conventional electronic component manufacturing method and apparatus, and in particular, a cross-sectional view partially showing a state in which a protruding electrode is pressed against an electrode and ultrasonic vibration is propagated.
FIG. 23 shows another example of a conventional method and apparatus for manufacturing an electronic component, and in particular, a side view with a part in cross section showing a state in which a protruding electrode is pressed against the electrode and ultrasonic vibration is propagated It is.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st electronic component, 2nd 2nd electronic component, 2c electrode, 3 protruding electrode, 4 joining tool, 4a vacuum suction hole (electronic component adsorption means), 4b electronic component holding part, 4e joining tool main body, 4d slide part 4f gripping claws (electronic component gripping means), 6 joining stage, 6a electronic component fixing part, 8 ultrasonic vibration propagating body, 8a vacuum suction hole (electronic component suction means), 8b vacuum suction hole (joining tool suction means), 8c Sliding surface, 9 Joining tool stage, 10 Alignment claw, 11 Spring (elastic body).

Claims (9)

第1の面に複数の電極が形成された第2の電子部品を、該第1の面を外方に向けて電子部品固定部に固定する接合ステージと、
前記接合ステージに対して移動可能に設けられ、第1の電子部品に超音波振動を伝搬する超音波振動伝搬体と、
前記超音波振動伝搬体の振動伝達端に超音波振動方向と同じ方向に移動可能に支持され、前記超音波振動伝搬体と反対側の面に電子部品保持部が形成され、第1の面に複数の突起電極が形成され該第1の面が前記第2の電子部品に対向するように前記電子部品保持部に配置された前記第1の電子部品を、該電子部品保持部に設けられた電子部品吸着手段により吸着して保持する接合ツールとを備え、 前記超音波振動伝搬体は、前記第1の電子部品の前記突起電極を前記第2の電子部品の前記電極に位置決めし、前記突起電極を前記電極に押圧しながら前記超音波振動伝搬体を振動させて超音波振動を前記第1の電子部品に伝搬するとともに、前記突起電極と前記電極との間に所定の接合力が生じたときに前記接合ツールを超音波振動方向にすべらせながら前記第2の電子部品に前記第1の電子部品を接続する
ことを特徴とする電子部品製造装置。
A bonding stage for fixing the second electronic component having a plurality of electrodes formed on the first surface to the electronic component fixing portion with the first surface facing outward;
An ultrasonic vibration propagating body that is movably provided with respect to the joining stage and propagates ultrasonic vibration to the first electronic component;
The ultrasonic vibration propagating body is supported at the vibration transmission end so as to be movable in the same direction as the ultrasonic vibration direction, and an electronic component holding portion is formed on the surface opposite to the ultrasonic vibration propagating body. The electronic component holding portion is provided with the first electronic component disposed on the electronic component holding portion such that a plurality of protruding electrodes are formed and the first surface faces the second electronic component. A bonding tool that is sucked and held by an electronic component suction means, wherein the ultrasonic vibration propagating body positions the protruding electrode of the first electronic component on the electrode of the second electronic component, and The ultrasonic vibration propagating body is vibrated while pressing the electrode against the electrode to propagate the ultrasonic vibration to the first electronic component, and a predetermined bonding force is generated between the protruding electrode and the electrode. Sometimes the welding tool is in the direction of ultrasonic vibration The electronic component manufacturing apparatus, wherein the first electronic component is connected to the second electronic component while sliding.
前記超音波振動伝搬体は、接合ツール吸着手段によって前記振動伝達端に設けられたすべり面に前記接合ツールを吸着して超音波振動方向と同じ方向に移動可能に支持する
ことを特徴とする請求項1に記載の電子部品製造装置。
The ultrasonic vibration propagating body adsorbs the bonding tool to a sliding surface provided at the vibration transmission end by a bonding tool suction means and supports the ultrasonic wave propagation body so as to be movable in the same direction as the ultrasonic vibration direction. Item 2. The electronic component manufacturing apparatus according to Item 1.
前記超音波振動伝搬体は、前記振動伝達端に設けられた弾性体を介して前記接合ツールを超音波振動方向と同じ方向に移動可能に支持する
ことを特徴とする請求項1に記載の電子部品製造装置。
2. The electron according to claim 1, wherein the ultrasonic vibration propagating body supports the joining tool so as to be movable in the same direction as the ultrasonic vibration direction via an elastic body provided at the vibration transmitting end. Parts manufacturing equipment.
前記接合ツールは、概略矩形の前記第1の電子部品の少なくとも対向する2辺を把持する電子部品把持手段を有し、前記電子部品吸着手段により吸着しながら前記電子部品把持手段によって把持して前記第1の電子部品を前記電子部品保持部に保持する
ことを特徴とする請求項1から3のいずれかに記載の電子部品製造装置。
The joining tool has electronic component gripping means for gripping at least two opposing sides of the first electronic component having a substantially rectangular shape, and is gripped by the electronic component gripping means while being suctioned by the electronic component suction means. The electronic component manufacturing apparatus according to any one of claims 1 to 3, wherein the first electronic component is held by the electronic component holding unit.
前記超音波振動伝搬体に対向する対向面に前記接合ツールを位置決めする位置合せ爪を有する接合ツールステージをさらに備え、
前記超音波振動伝搬体は、前記接合ツールステージによって位置決めされた前記接合ツールを前記接合ツール吸着手段によって前記すべり面に吸着する
ことを特徴とする請求項1,2又は4のいずれかに記載の電子部品製造装置。
A bonding tool stage having an alignment claw for positioning the bonding tool on a surface facing the ultrasonic vibration propagating body;
The ultrasonic vibration propagating body adsorbs the bonding tool positioned by the bonding tool stage to the sliding surface by the bonding tool adsorption means. Electronic component manufacturing equipment.
第1の電子部品に超音波振動を伝搬する超音波振動伝搬体と、
前記超音波振動伝搬体の振動伝達端に超音波振動方向と同じ方向に移動可能に支持され、前記超音波振動伝搬体と反対側の面に電子部品保持部が形成され、該電子部品保持部に設けられた電子部品吸着手段により該電子部品保持部に第1の電子部品を保持する接合ツールと、
前記電子部品保持部に対向する面に第2の電子部品を固定する電子部品固定部が設けられた接合ステージと
を有する電子部品製造装置を使用する電子部品製造方法であって、
第1の面に複数の電極が形成された前記第2の電子部品を、該第1の面を外方に向けて前記電子部品固定部に固定する第2電子部品固定工程と、
第1の面に複数の突起電極が形成された前記第1の電子部品を、該第1の面が前記第2の電子部品に対向するように前記電子部品保持部に吸着する第1電子部品吸着工程と、
前記第1の電子部品の前記突起電極を前記第2の電子部品の前記電極に位置決めし、前記突起電極を前記電極に押圧しながら前記超音波振動伝搬体を振動させて超音波振動を前記第1の電子部品に伝搬するとともに、前記突起電極と前記電極との間に所定の接合力が生じたときに前記接合ツールを超音波振動方向にすべらせながら前記第2の電子部品に前記第1の電子部品を接続する電子部品接続工程と
を備えたことを特徴とする電子部品製造方法。
An ultrasonic vibration propagating body that propagates ultrasonic vibration to the first electronic component;
The ultrasonic vibration propagating body is supported at the vibration transmission end so as to be movable in the same direction as the ultrasonic vibration direction, and an electronic component holding portion is formed on the surface opposite to the ultrasonic vibration propagating body. A joining tool for holding the first electronic component in the electronic component holding portion by the electronic component suction means provided in
An electronic component manufacturing method using an electronic component manufacturing apparatus, comprising: a joining stage provided with an electronic component fixing portion that fixes a second electronic component on a surface facing the electronic component holding portion;
A second electronic component fixing step of fixing the second electronic component having a plurality of electrodes formed on the first surface to the electronic component fixing portion with the first surface facing outward;
A first electronic component that adsorbs the first electronic component having a plurality of protruding electrodes formed on the first surface to the electronic component holding portion so that the first surface faces the second electronic component. An adsorption process;
The protruding electrode of the first electronic component is positioned on the electrode of the second electronic component, and the ultrasonic vibration propagating body is vibrated while pressing the protruding electrode against the electrode, thereby causing ultrasonic vibration to occur. The first electronic component is transmitted to the second electronic component while sliding to the ultrasonic vibration direction when a predetermined bonding force is generated between the protruding electrode and the electrode. An electronic component manufacturing method comprising: an electronic component connecting step for connecting the electronic components.
前記接合ツールは前記超音波振動伝搬体に設けられた接合ツール吸着手段によって前記振動伝達端に設けられたすべり面に吸着されて支持され、前記接合ツールを前記振動伝達端の前記すべり面に吸着する接合ツール吸着工程をさらに備えた
ことを特徴とする請求項6に記載の電子部品製造方法。
The welding tool is sucked and supported by a sliding surface provided at the vibration transmission end by a bonding tool suction means provided at the ultrasonic vibration propagating body, and the welding tool is sucked by the sliding surface at the vibration transmission end. The electronic component manufacturing method according to claim 6, further comprising a bonding tool suction step.
前記超音波振動伝搬体に対して前記接合ツールを所定の位置に位置決めする接合ツール位置決め工程をさらに備え、
前記接合ツール吸着工程は、前記接合ツール位置決め工程によって位置決めされた前記接合ツールを前記すべり面に吸着する
ことを特徴とする請求項7に記載の電子部品製造方法。
A bonding tool positioning step of positioning the bonding tool at a predetermined position with respect to the ultrasonic vibration propagating body,
The electronic component manufacturing method according to claim 7, wherein the bonding tool adsorption step adsorbs the bonding tool positioned by the bonding tool positioning step to the sliding surface.
前記第1電子部品吸着工程は、概略矩形の前記第1の電子部品の少なくとも対向する2辺を把持しながら前記第1の電子部品を前記電子部品保持部に吸着する
ことを特徴とする請求項6から8のいずれかに記載の電子部品製造方法。
The said 1st electronic component adsorption | suction process adsorb | sucks the said 1st electronic component to the said electronic component holding | maintenance part, hold | gripping at least 2 sides which the said 1st electronic component of a substantially rectangular shape opposes. The electronic component manufacturing method according to any one of 6 to 8.
JP2002202469A 2002-07-11 2002-07-11 Electronic component manufacturing apparatus and electronic component manufacturing method Expired - Fee Related JP3767812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002202469A JP3767812B2 (en) 2002-07-11 2002-07-11 Electronic component manufacturing apparatus and electronic component manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002202469A JP3767812B2 (en) 2002-07-11 2002-07-11 Electronic component manufacturing apparatus and electronic component manufacturing method

Publications (2)

Publication Number Publication Date
JP2004047692A JP2004047692A (en) 2004-02-12
JP3767812B2 true JP3767812B2 (en) 2006-04-19

Family

ID=31708642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002202469A Expired - Fee Related JP3767812B2 (en) 2002-07-11 2002-07-11 Electronic component manufacturing apparatus and electronic component manufacturing method

Country Status (1)

Country Link
JP (1) JP3767812B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104303281A (en) * 2012-03-16 2015-01-21 Ev集团E·索尔纳有限责任公司 Pressure transmitting device for bonding chips onto a substrate

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135249A (en) 2004-11-09 2006-05-25 Fujitsu Ltd Ultrasonic packaging method and ultrasonic packaging apparatus used for the same
JP4787603B2 (en) * 2004-12-02 2011-10-05 セイコーインスツル株式会社 Ultrasonic vibration bonding apparatus and ultrasonic vibration bonding method
JP2006351589A (en) * 2005-06-13 2006-12-28 Sony Corp Semiconductor chip, electronic apparatus and its manufacturing method
JP4687290B2 (en) * 2005-07-11 2011-05-25 ソニー株式会社 Semiconductor chip bonding apparatus and bonding method
JP5018760B2 (en) * 2008-02-28 2012-09-05 株式会社デンソー Ultrasonic bonding method
JP5138023B2 (en) * 2010-12-08 2013-02-06 ソニー株式会社 Semiconductor laser element
JP6810585B2 (en) * 2016-11-30 2021-01-06 タツモ株式会社 Chuck device and laminating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104303281A (en) * 2012-03-16 2015-01-21 Ev集团E·索尔纳有限责任公司 Pressure transmitting device for bonding chips onto a substrate
CN104303281B (en) * 2012-03-16 2017-03-08 Ev 集团 E·索尔纳有限责任公司 For chip being engaged the pressure transmission equipment of substrate

Also Published As

Publication number Publication date
JP2004047692A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
JP4338834B2 (en) Semiconductor chip mounting method using ultrasonic vibration
JP3767812B2 (en) Electronic component manufacturing apparatus and electronic component manufacturing method
JP4299469B2 (en) Ultrasonic bonding equipment
JP5663764B2 (en) Joining device
JP4687290B2 (en) Semiconductor chip bonding apparatus and bonding method
JP3487162B2 (en) Bonding tools and bonding equipment
JP4423165B2 (en) Ultrasonic mounting method for electronic components
JP2007201108A (en) Device and method for bonding electronic part
JP4491321B2 (en) Ultrasonic mounting method and ultrasonic mounting apparatus used therefor
JP4634227B2 (en) Electronic component mounting apparatus and mounting method
JP2001007160A (en) Part mounting tool, and part mounting method and device using the same
JP6379447B2 (en) IC chip mounting method
JPH1074767A (en) Fine ball bump forming method and device
JP3409683B2 (en) Bonding tool and bonding device for bumped electronic components
JP4764189B2 (en) Ultrasonic bonding apparatus and semiconductor device manufacturing method
KR100651152B1 (en) Method and apparatus for bonding electronic components
JP3996820B2 (en) Bonding method
JP2001057376A (en) Bonding device and manufacturing method of substrate
JP3058141B2 (en) Semiconductor device mounting method and device
JP4184993B2 (en) Component mounting method and apparatus
JP2001223226A (en) Die bonding method and die bonding device
JP2004336071A (en) Part mounting tool and method and device of mounting part using the same
JP5132988B2 (en) Electronic component mounting equipment
JP4815309B2 (en) Ultrasonic mounting tool and electronic component mounting apparatus
JP4589266B2 (en) Semiconductor ultrasonic bonding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees