JP2004043949A - Heat-resistant ferritic stainless steel superior in oxidation resistance - Google Patents

Heat-resistant ferritic stainless steel superior in oxidation resistance Download PDF

Info

Publication number
JP2004043949A
JP2004043949A JP2002340489A JP2002340489A JP2004043949A JP 2004043949 A JP2004043949 A JP 2004043949A JP 2002340489 A JP2002340489 A JP 2002340489A JP 2002340489 A JP2002340489 A JP 2002340489A JP 2004043949 A JP2004043949 A JP 2004043949A
Authority
JP
Japan
Prior art keywords
less
oxidation resistance
stainless steel
steel
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002340489A
Other languages
Japanese (ja)
Other versions
JP3958672B2 (en
Inventor
Yoshiharu Inoue
井上 宜治
Masao Kikuchi
菊池 正夫
Satoshi Akamatsu
赤松 聡
Naoto Ono
小野 直人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002340489A priority Critical patent/JP3958672B2/en
Publication of JP2004043949A publication Critical patent/JP2004043949A/en
Application granted granted Critical
Publication of JP3958672B2 publication Critical patent/JP3958672B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-resistant ferritic stainless steel superior in oxidation resistance. <P>SOLUTION: This ferritic stainless steel comprises, by mass%, 0.003-0.02% C, 0.02% or less N, 0.03% or less C+N, 0.4% or more but less than 0.8% Si, and 0.4-0.8% Mn, while satisfying 0.8×Si ≤ Mn, 0.04% or less P, 0.02% or less S, 13% or more but less than 16% Cr, 1.0-3.0% Mo, 0.3-1.0% Nb, 0.01% or less Ti, and the balance Fe with unavoidable impurities; has a tensile strength of 22 N/mm<SP>2</SP>or higher at 950°C; and has an oxidized scale in an exfoliating quantity of 0.5 mg/cm<SP>2</SP>or less in an oxidation test in air at 950°C for 200 hours. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、耐酸化性に優れた耐熱フェライト系ステンレス鋼に関し、特に、マフラー、エキゾーストマニホールド等の自動車排気系部材に用いられる耐熱フェライト系ステンレス鋼に関するものである。
【0002】
【従来の技術】
環境問題の高まりから、自動車の燃費向上、ひいては軽量化が強く望まれている。また、排気ガスの浄化も切望されている。これらのことを背景として、自動車用排気系部材にはステンレス鋼が用いられている。最も高温にさらされる部材の1つであるエキゾーストマニホールドは、最高1000℃程度までの昇温、降温の繰り返しを受けるため、スケール剥離の少ない良好な耐酸化性と高い高温強度が必要とされている。
【0003】
エキゾーストマニホールドは、かつては鋳鉄製であったが、エンジン性能の向上、車体軽量化の要請からフェライト系ステンレス鋼への変換が図られた。しかし、従来の430系(16−18Cr)系のフェライト系ステンレス鋼では耐酸化性や高温強度が充分でないので、エキゾーストマニホールド材料に適用し得る新鋼種の開発が進められてきた。
例えば下記特許文献1に、Cr:17−20%、Mo:1.0%以下を含有する耐高温酸化性、高温強度等に優れたフェライト系ステンレス鋼が開示されている。開示されているデータから見て、このステンレス鋼の対応温度は900℃と考えられ、当時としては十分なものであった。
【0004】
【特許文献1】
特開昭64−8254号公報
【0005】
しかし近年、さらにエキゾーストマニホールドの使用温度の高温化が進展し、対応温度が950℃となる鋼種の開発が行われている。例えば下記特許文献2及び特許文献3には、16%以上のCrを含有するステンレス鋼が開示されている。現在では、950℃対応のエキゾーストマニホールド材としては、SUS444(19Cr−2Mo)系などのフェライト系ステンレス鋼が用いられている。
【0006】
【特許文献2】
特開平6−100900号公報
【特許文献3】
特開平10−88285号公報
【0007】
しかしながら、SUS444は19Crベースであるため高価であり、自動車製造コスト削減のために、SUS444系に匹敵する耐酸化性および高温強度をもつ比較的安価な材料が求められている。
【0008】
これに対して、下記特許文献4には、Cr含有量が16%未満で、1000℃で100時間加熱した後の酸化増量およびスケール剥離量が少ないフェライト系ステンレス鋼が開示されている。しかし、この鋼は、高温強度向上に必須であるMoを含有しないために、950℃での高温強度が不十分であった。さらに、Si含有量が比較的多いため、950℃で200時間加熱した後の耐スケール剥離性が不十分であった。なお該文献において、スケール剥離量は、酸化試験後の冷却中に試料表面から自然に剥離した酸化スケールを収集して、その重量を計測して試料の表面積で除したものであり、スケールの剥離量を過少評価している可能性がある。
【0009】
【特許文献4】
特開平11−256287号公報
【0010】
また下記特許文献5には、断続加熱時の耐スケール剥離性に優れたフェライト系ステンレス鋼が開示されている。しかしこの鋼は、950℃で30分加熱した後冷却する処理を300回繰り返す断続加熱後の耐スケール剥離性には優れるものの、断続加熱よりもさらに厳しい条件である、950℃で200時間連続加熱した後の耐スケール剥離性は若干低下した。
【0011】
【特許文献5】
特開2000−178693号公報
【0012】
【発明が解決しようとする課題】
本発明の目的は、自動車排気系部材、特にエキゾーストマニホールド用として有用な高温強度に優れ、かつ酸化スケール剥離の少なく、比較的安価な耐熱フェライト系ステンレス鋼を提供するものである。
【0013】
【課題を解決するための手段】
本発明者らは、自動車排気系部材、特に最高温度が1000℃程度に達するエキゾーストマニホールド用部材として、最適な特性をもつものを検討してきた。その中で、低コスト化を図るために14Cr系をベースに、高温強度、耐酸化性の向上を試みた。高温強度の向上を図るには、鋼中にMoやNbの添加が有効であり、耐酸化性の向上にSi,Mnの添加が有効である。またMoは耐酸化性の向上にも有効である。
【0014】
耐酸化性を向上させる元素のうち、Siは、表面偏析してFeの拡散を抑制し、良好なCr2 3 皮膜の形成を促進する効果があるとされている。特にCr量が少ないために良好なCr2 3 皮膜が形成しにくい17%Cr未満の系において有効である。しかし、Si添加によってCr2 3 皮膜の密着性が悪くなり、酸化スケールの剥離が起こりやすくなる。反対にMnは、酸化増量を増加させる効果を持つが、スケール剥離を防止する元素である。これらのことは従来から明らかになっており、耐酸化性を要求される場合はこの2つの元素が添加されてきた。しかし、その添加量については充分な検討がされてこなかった。
【0015】
本発明者らは、耐酸化性に対する検討を行ってきた結果、900℃以上での14Cr系での耐酸化性については、Si,Mn量の微妙な量的関係で大きな変化が現れること、および加工性、耐食性向上のために、鋼中のC,Nを炭窒化物として固定するために添加するTi,Nbの影響により、その量的関係が変化することを見出した。Nb単独添加の場合、最適なSiとMn量の組み合わせは、ともに1%未満であり、MnがSiの等量以上添加される場合である。この時が、SUS444系に匹敵する極めて良好な耐酸化性が得られる。
【0016】
Ti単独添加およびTi−Nb複合添加の場合、Si,Mn量が1%未満の場合は、スケール剥離性が極めて劣化する。これはTiにより酸化が促進されるからであると考えている。Si,Mn量を1%以上とすることにより、このスケール剥離性はかなり改善されるが、その耐酸化性はNb単独添加の場合の最適組成には及ばない。したがって、C,N固定のための元素はNbが好ましいことがわかった。
【0017】
一方、Tiは鋼中のC,Nを炭窒化物として固定する能力が高く、Tiの添加により焼鈍時に固溶C,N量が減少して再結晶温度が低下するため、焼鈍温度を低下させることが可能になる。また、Tiの添加により加工性が向上する、あるいは加工性を劣化させずに熱延板焼鈍の省略が可能になるなど、Tiは極めて有用な元素である。
【0018】
そこで本発明者は、スケール剥離性を劣化させずにTiを添加し得る可能性について検討するため、14Cr−Si−Mn−Mo−Nb−Ti系ステンレス鋼のスケール剥離性に及ぼすTiの影響を詳細に調査した。その結果、Tiを0.01%以下に制限することによりスケール剥離性が極めて良好になり、また、Tiを0.01超〜0.1%未満添加しても耐酸化性、特にスケールの耐剥離性の劣化が小さいことを見出した。
【0019】
Ti添加によるスケール剥離性の劣化の原因はTiの表面偏析である。従って、Ti添加量を0.01%以下に制限するとTiの固溶量が非常に少なくなるためにTiの表面偏析は極めて小さくなり、耐スケール剥離性が著しく向上したと考えられる。また、Tiを0.1%未満添加しても、TiがNbより強力な炭窒化物形成元素であるため、Tiはほとんど固溶せずに(Ti,Nb)(C,N)として析出し、Tiの表面偏析に起因するスケール剥離性の劣化が抑制されたと考えられる。
【0020】
以上の結果から、高温で高強度、かつ耐酸化性が良好で比較的安価なステンレス鋼として、14Cr−Si−Mn−Mo−Nb(−Ti)系が最適であることを見出し、耐酸化性、高温強度等の特性が充分得られるように厳密な成分範囲を規定して、発明の完成に至った。
【0021】
すなわち、本発明の要旨は下記のとおりである。
(1)質量%で、
C :0.003〜0.02%、 N :0.02%以下、
C+N:0.03%以下、    Si:0.4〜0.8%未満、
Mn:0.4〜0.8%、ただし、0.8×Si≦Mn、
P :0.04%以下、     S :0.02%以下、
Cr:13〜16%未満、    Mo:1.0%〜3.0%、
Nb:0.3〜1.0%、    Ti:0.01%以下
を含有し、残部Feおよび不可避的不純物からなり、かつ、950℃での引張り強度が22N/mm2 以上で、950℃、200時間での大気中酸化試験で酸化スケールの剥離量が0.5mg/cm2 以下であることを特徴とする、耐酸化性に優れた耐熱フェライト系ステンレス鋼。
(2)質量%で、
C :0.003〜0.02%、 N :0.02%以下、
C+N:0.03%以下、    Si:0.4〜0.8%未満、
Mn:0.4〜0.8%、ただし、0.8×Si≦Mn、
P :0.04%以下、     S :0.02%以下、
Cr:13〜16%未満、    Mo:1.0%〜3.0%、
Nb:0.3〜1.0%、    Ti:3×(C+N)〜0.1%未満
を含有し、残部Feおよび不可避的不純物からなり、かつ、950℃での引張り強度が22N/mm2 以上で、950℃、200時間での大気中酸化試験で酸化スケールの剥離量が0.5mg/cm2 以下であることを特徴とする、耐酸化性に優れた耐熱フェライト系ステンレス鋼。
(3)質量%でさらに、
W :0.1〜2.0%、を含有し、W+Mo:1.0〜3.0%を満たすことを特徴とする、前記(1)または(2)記載の耐酸化性に優れた耐熱フェライト系ステンレス鋼。
(4)質量%でさらに、REM:0.001〜0.05%を含有することを特徴とする、前記(1)〜(3)のいずれか1項に記載の耐酸化性に優れた耐熱フェライト系ステンレス鋼。
【0022】
【発明の実施の形態】
本発明の実施形態と限定条件について詳細に説明する。
Cは、鋼中に含まれる不可避的不純物であるが、含有量が0.02%を超えると加工性が低下する。一方、0.003%未満にすることは精錬上コストアップが大きくなるため、0.003%を下限とした。
【0023】
Nは、鋼中に含まれる不可避的不純物であるが、Cと同様に含有量が0.02%を超えると加工性、溶接性が低下する。したがってN含有量の上限を0.02%以下とした。
【0024】
さらに、C+N量を0.03%超にすると加工性が低下するため、0.03%以下を上限とした。本発明では、C,Nを炭窒化物として固定するためにNbを用いているが、Nbは高温強度を高めるために固溶Nbとして必須であり、できるだけC+Nは低いほうが良く、0.02%以下がさらに好ましい。
【0025】
Siは、耐酸化性を向上させる元素であり、特にCr含有量が16%未満の場合、健全なCr2 3 スケールを形成するためには、0.4%以上の添加が必須である。しかし、SiはCr2 3 皮膜と母相との密着性を阻害する原因であり、0.8%以上の添加によりスケールが剥離しやすくなる。したがって、Si含有量を、0.4〜0.8%未満の範囲とした。
【0026】
Mnは、鋼中に不可避的に含まれる成分であるが、耐酸化性に関しての挙動は複雑である。Mn単独の効果としては、酸化増量を増加させるが、Si共存下においてはスケールの剥離性を改善する効果がある。そのため、0.4〜0.8%を添加し、かつ、0.8×Si≦Mnを満たすことが必要である。さらにスケールの剥離性を改善するには、Si≦Mnを満たすことが好ましい。
Si,Mnをこのように極めて限定することにより、14%程度のCr含有量でSUS444並みに耐酸化性を有することが可能となった。
【0027】
Pは、鋼中に不可避的に含まれる成分であるが、0.04%を超えて含有すると溶接性が低下するため、0.04%を上限とした。
【0028】
Sは、鋼中に不可避的に含まれる成分であるが、0.02%を超えて含有するとMnSの形成元素で耐食性を低下させるので、0.02%を上限とした。
【0029】
Crは、保護性のあるCr2 3 皮膜を形成し耐酸化性を向上させる元素である。高温で使用されることから最低13%は必要である。また、16%以上の添加により加工性が低下するため、Cr含有量の上限を16%未満とした。
【0030】
Moは、高温強度を確保するために必要な元素である。また耐酸化性を向上させる効果もある。しかし、過剰に添加すると加工性を劣化させる。そのため、1.0〜3.0%の範囲で添加することが必要である。
【0031】
Nbは、高温強度を確保するために必要な元素であるばかりでなく、鋼中のC,Nを炭窒化物として固定するためにも必須である。またTiと異なり、耐酸化性を劣化させない。Nb含有量が0.3%未満であるとC,Nの固定にほとんど消費され高温強度への効果がなくなる。一方、Nb含有量が1%を超えると加工性を劣化させる。したがって、Nb含有量を0.3〜1%の範囲とした。
【0032】
Tiは、C,Nを炭窒化物として固定するためには非常に有効な元素であるが、低CrでSi,Mnと共存する場合、酸化スケールの剥離性を極めて促進させることが明らかになった。そのため、Tiは有害元素としてできるだけ低いほうがよく、0.01%以下とし、0%とすることが最も好ましい。
また、TiはC,Nを炭窒化物として固定し、Nb炭窒化物の析出を抑制して高温強度の低下を防止し、焼鈍温度を低下させ、加工性の向上にも有効な元素である。この効果は、Ti含有量が3×(C+N)%未満では不充分であるが、0.1%以上であると、Tiの固溶量が増加して表面偏析を生じるため、スケール剥離性が劣化する。したがって、耐スケール剥離性加工性の向上が必要とされる場合には、Ti量は3×(C+N)〜0.1%未満の範囲としても良い。
【0033】
Wは高温強度を高める元素であり、その効果を発現するには、0.1%以上の添加が必要である。また、2%を超えると耐高温塩害性を劣化させるので、2%を上限とした。
また、WはMoとの複合添加となるが、W+Moの合計量が3%を超えると加工性の劣化が著しく好ましくない。W+Moの下限は、Moの下限である1%以上である。したがって、W+Moの範囲は1〜3%が好ましい。
【0034】
耐酸化性をさらに向上させるために、REMを添加しても良い。REMの添加量は、0.001%未満では安定した効果が得られず、0.05%を超えると熱間加工性が劣化する。したがって、REMの添加量を0.001〜0.05%の範囲とした。REMはYと希土類元素であり、それぞれの元素を1種または2種以上で添加しても良く、ミッシュメタルのような混合物の形で添加しても良い。
【0035】
自動車の燃費向上、高出力化により、排ガス温度が950℃前後まで上昇してきていることから、950℃での性能が指標として最適であり、自動車排気系部材としての必要性から、高温強度として、950℃での引張り強度は22N/mm2 以上が好ましい。
さらに耐酸化性は、950℃、200時間の大気中連続酸化試験でスケール剥離量が0.5mg/cm2 超であると、スケール剥離によって金属表面が露出しやすくなり、異常酸化等が起きやすくなる。したがって、950℃、200時間の大気中連続酸化試験によるスケール剥離量は、0.5mg/cm2 以下とした。さらに、スケール剥離によって金属表面が露出することが極めて少なく、使用中の耐酸化性を劣化させることのない、さらに好ましい範囲は、0.1mg/cm2 以下であり、最も好ましいのは剥離しない0mg/cm2 の場合である。
【0036】
なお、スケール剥離量の測定は以下の方法で行う。
試験片の形状は、1片20mmの正方形で、表面および側面を研磨し、#400仕上げとする。試験前に重量測定を行った試験片(該試験片の重量を酸化前試験片重量という)を、大気中で950℃に加熱した炉内に挿入し、200時間経過後、炉から取り出し、直ちに、予め空の状態で重量を測定した蓋付の金属容器(該金属容器の重量を空容器重量という)に収納し空冷する。
まず、金属容器ごと重量測定を行う(容器入り酸化後試験片重量という)。次に試験片を金属容器から取りだし、試験片のみの重量測定を行う(酸化後試験片重量という)。重量の測定結果から、スケール剥離量は、容器入り酸化後試験片重量より酸化後試験片重量および空容器重量を減じて、試験片表面積で除した値で評価する。
【0037】
この測定方法によれば、950℃の炉から試験片を取り出した直後は高温であるためスケールは剥離せず、空冷中にスケールが金属容器内で剥離するため、スケールが金属容器外に飛散しない。すなわち、剥離したスケールは全て金属容器内に残る。従って、容器入り酸化後試験片重量から酸化後試験片重量および空容器重量を減じることにより、正確にスケール剥離量を測定することが可能である。
【0038】
【実施例】
(実施例1)
表1に示す化学成分を有する鋼塊を溶製し、1100〜1250℃に加熱して熱延を行い、板厚5mmの熱延板を得た。その後、熱延板を900〜1100℃の範囲に加熱して60s保持する熱延板焼鈍を行った。さらに、冷延を行って2mm厚の冷延板にした後、900〜1100℃に加熱して、60s保持する最終焼鈍を行い、ふっ酸にて酸洗を行って得た鋼板を供試鋼とした。
【0039】
常温の引張試験は、JIS Z 2241に準拠して行い、高温引張試験は、JIS G 0567に準拠して行った。また、酸化試験は、大気中で行った。試験片の形状は、1片20mmの正方形で、表面および側面を研磨し、#400仕上げとした。酸化増量および剥離量の評価方法は以下のように行った。試験前に重量測定を行った試験片を、950℃に加熱した炉内に挿入し、200時間経過後、炉から取り出し、直ちに、予め空の状態で重量を測定した蓋付の金属容器に収納し空冷する。
【0040】
まず、金属容器ごと重量測定を行い、次に試験片を金属容器より取りだし、試験片のみの重量測定を行った。重量の測定結果から酸化増量およびスケール剥離量を以下のようにして算出した。酸化増量は、容器入り酸化試験片重量より酸化前試験片重量および空容器重量を減じて差し引き、試験片表面積で除した値で評価した。スケール剥離量は、容器入り酸化後試験片重量より酸化後試験片重量および空容器重量を減じて、試験片表面積で除した値で評価した。
【0041】
表2に、常温引張試験結果と、950℃での高温引張試験結果を示す。引張り方向は全て圧延方向である。また、950℃×200時間の大気中酸化試験の結果も表2に示す。
【0042】
本発明例であるA鋼からG鋼は、950℃での引張り強度が22N/mm2 以上であり、かつ、酸化試験での酸化スケールの剥離量は、0.5mg/cm2 以下であるか、剥離がみられず、優れた特性を示していることがわかる。また常温での伸びも30%以上あり、加工性も充分である。
【0043】
これらに対して、比較例である、H鋼はTi添加のため耐酸化性が悪く、0.5mg/cm2 超のスケール剥離が見られ、I鋼はSi、Mn量が少ないため、H鋼同様に剥離が見られる。さらにJ鋼は、Moが少ないため、高温強度が不足すると共に、耐酸化性も悪くなっている。またK鋼は、SUS444に相当する鋼である。本発明鋼をこの鋼と比較すると、高温強度と耐酸化性はSUS444とほぼ同等であり、加工性が優れていることがわかる。
【0044】
【表1】

Figure 2004043949
【0045】
【表2】
Figure 2004043949
【0046】
(実施例2)
表3に示す化学成分を有する鋼塊を溶製し、実施例1と同様にして板厚2mmの供試鋼を製造した。一部の鋼板の製造において熱延板焼鈍を省略した。また、常温の引張試験および高温引張試験ならびに酸化増量および剥離量の評価は、実施例1と同様にして行った。これらの試験結果を表4に示す。
【0047】
表4において、L〜R鋼およびM’鋼は本発明鋼であり、950℃での引張り強度が22MPa以上であり、常温の伸びも30%を超えており、かつ酸化試験でのスケール剥離も少ない。これらの鋼は、表2に示したA〜G鋼に比べてTiの含有量が多く、伸びが向上している。
【0048】
L鋼とM鋼は、Tiを除く成分がほぼ同一であり、L鋼はTi無添加、M鋼は、Ti:0.07%添加である。Ti添加であるM鋼の最終焼鈍は、L鋼の最終焼鈍温度1050℃と比べて50℃低い1000℃で行ったが、両鋼の耐酸化性および高温特性は、ほぼ同等である。
さらに、M鋼と同じ組成の鋼を、熱延板焼鈍を省略し、それ以外の製造条件をM鋼と同等としたM’鋼は、L鋼およびM鋼とほぼ同じ特性を得ることができた。従って、Tiの添加により、焼鈍温度の低下および熱延板焼鈍の省略によっても、特性がほとんど損なわれないことから、製造コストの低下が可能である。
【0049】
これらに対して、S、TおよびU鋼は、成分が本発明の範囲外の比較例である。S鋼はTi含有量が本発明の範囲よりも多い0.12%であるため、REMを0.005%添加してもなお耐スケール剥離性が悪く、スケールの剥離量が多い。またT鋼は、Si,Mn量が本発明の範囲よりも少ないため、スケールの剥離量が多い。さらにU鋼は、Moが本発明の範囲よりも少ないため、高温強度が不足し、耐スケール剥離性も低下している。
【0050】
【表3】
Figure 2004043949
【0051】
【表4】
Figure 2004043949
【0052】
【発明の効果】
本発明により、自動車排気系部材、特にエキゾーストマニホールド用として有用な高温強度に優れ、かつ酸化スケール剥離が少なく、比較的安価な耐熱フェライト系ステンレス鋼を提供することができ、製造者のみならず本鋼を利用する者にとっても多大な利益を得ることができ、工業的価値は極めて高い。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat-resistant ferritic stainless steel having excellent oxidation resistance, and more particularly to a heat-resistant ferritic stainless steel used for automobile exhaust system members such as a muffler and an exhaust manifold.
[0002]
[Prior art]
Due to increasing environmental issues, there is a strong demand for improved fuel economy and, consequently, reduced weight of automobiles. Further, purification of exhaust gas is also eagerly desired. Against this background, stainless steel is used for exhaust system members for automobiles. The exhaust manifold, which is one of the members exposed to the highest temperatures, is required to have good oxidation resistance with little scale peeling and high high-temperature strength because it undergoes repeated temperature rise and fall to a maximum of about 1000 ° C. .
[0003]
Exhaust manifolds were once made of cast iron, but have been converted to ferritic stainless steel in response to demands for improved engine performance and reduced body weight. However, since conventional 430 (16-18Cr) ferritic stainless steels do not have sufficient oxidation resistance and high-temperature strength, development of new steels applicable to exhaust manifold materials has been promoted.
For example, Patent Literature 1 below discloses a ferritic stainless steel containing 17 to 20% of Cr and 1.0% or less of Mo and having excellent high-temperature oxidation resistance and high-temperature strength. Based on the disclosed data, the corresponding temperature of this stainless steel was considered to be 900 ° C., which was sufficient at that time.
[0004]
[Patent Document 1]
JP-A-64-8254
However, in recent years, the use temperature of the exhaust manifold has been further increased, and steel types having a corresponding temperature of 950 ° C. have been developed. For example, Patent Literatures 2 and 3 disclose stainless steels containing 16% or more of Cr. At present, ferrite stainless steel such as SUS444 (19Cr-2Mo) is used as an exhaust manifold material corresponding to 950 ° C.
[0006]
[Patent Document 2]
JP-A-6-100900 [Patent Document 3]
JP-A-10-88285
However, SUS444 is expensive since it is based on 19Cr, and relatively inexpensive materials having oxidation resistance and high-temperature strength comparable to those of SUS444 are demanded in order to reduce automobile manufacturing costs.
[0008]
On the other hand, Patent Literature 4 below discloses a ferritic stainless steel having a Cr content of less than 16% and having a small increase in oxidation and a small amount of scale peeling after heating at 1000 ° C. for 100 hours. However, since this steel does not contain Mo which is essential for improving the high-temperature strength, the high-temperature strength at 950 ° C. was insufficient. Furthermore, since the Si content was relatively large, the scale peeling resistance after heating at 950 ° C. for 200 hours was insufficient. In this document, the scale peeling amount is obtained by collecting the oxidized scale spontaneously peeled off from the sample surface during cooling after the oxidation test, measuring the weight thereof, and dividing the weight by the surface area of the sample. You may have underestimated the quantity.
[0009]
[Patent Document 4]
JP-A-11-256287
Patent Literature 5 below discloses a ferritic stainless steel having excellent scale peel resistance during intermittent heating. However, although this steel is excellent in scale peeling resistance after intermittent heating, in which heating at 950 ° C. for 30 minutes and then cooling is repeated 300 times, it is a more severe condition than intermittent heating: continuous heating at 950 ° C. for 200 hours. After this, the scale peeling resistance was slightly reduced.
[0011]
[Patent Document 5]
Japanese Patent Application Laid-Open No. 2000-178693
[Problems to be solved by the invention]
An object of the present invention is to provide a relatively inexpensive heat-resistant ferritic stainless steel which has excellent high-temperature strength useful for automobile exhaust system members, particularly for exhaust manifolds, has little oxide scale peeling, and is relatively inexpensive.
[0013]
[Means for Solving the Problems]
The present inventors have studied a member having optimal characteristics as a member for an automobile exhaust system, particularly a member for an exhaust manifold having a maximum temperature of about 1000 ° C. Among them, in order to reduce the cost, an attempt was made to improve the high temperature strength and the oxidation resistance based on the 14Cr system. In order to improve the high-temperature strength, it is effective to add Mo or Nb to the steel, and to add oxidation resistance to Si or Mn. Mo is also effective in improving oxidation resistance.
[0014]
Among the elements that improve the oxidation resistance, Si is said to have the effect of segregating the surface to suppress the diffusion of Fe and to promote the formation of a good Cr 2 O 3 film. Particularly, it is effective in a system of less than 17% Cr in which a good Cr 2 O 3 film is hardly formed due to a small amount of Cr. However, the adhesion of the Cr 2 O 3 film is deteriorated by the addition of Si, and the oxide scale is easily peeled. Conversely, Mn is an element that has the effect of increasing oxidative weight gain but prevents scale exfoliation. These facts have been clarified in the past, and when oxidation resistance is required, these two elements have been added. However, no sufficient study has been made on the amount of addition.
[0015]
The present inventors have studied the oxidation resistance. As a result, the oxidation resistance of the 14Cr system at 900 ° C. or more shows a great change due to the delicate quantitative relationship between the amounts of Si and Mn. It has been found that, in order to improve workability and corrosion resistance, the quantitative relationship changes due to the influence of Ti and Nb added to fix C and N in steel as carbonitride. In the case of adding Nb alone, the optimum combination of the amounts of Si and Mn is less than 1%, and Mn is added in an amount equal to or more than the same amount of Si. At this time, extremely good oxidation resistance comparable to that of the SUS444 series is obtained.
[0016]
In the case of adding Ti alone or adding Ti-Nb composite, when the amounts of Si and Mn are less than 1%, the scale peelability is extremely deteriorated. It is considered that this is because oxidation is promoted by Ti. By setting the amounts of Si and Mn to 1% or more, the scale releasability is considerably improved, but the oxidation resistance is not as high as the optimum composition when Nb alone is added. Therefore, it was found that Nb is preferable as an element for fixing C and N.
[0017]
On the other hand, Ti has a high ability to fix C and N in steel as carbonitride, and the addition of Ti reduces the amount of dissolved C and N during annealing to lower the recrystallization temperature, thereby lowering the annealing temperature. It becomes possible. Further, Ti is an extremely useful element, for example, the workability is improved by the addition of Ti, or the hot rolled sheet annealing can be omitted without deteriorating the workability.
[0018]
Therefore, the present inventor examined the effect of Ti on the scale peelability of 14Cr-Si-Mn-Mo-Nb-Ti stainless steel in order to examine the possibility of adding Ti without deteriorating the scale peelability. Investigated in detail. As a result, by limiting the Ti content to 0.01% or less, the scale releasability becomes extremely good, and even if Ti is added in an amount of more than 0.01 to less than 0.1%, the oxidation resistance, particularly the scale resistance, is increased. It has been found that the deterioration of the releasability is small.
[0019]
The cause of deterioration of the scale peelability due to the addition of Ti is the surface segregation of Ti. Therefore, it is considered that if the amount of Ti is limited to 0.01% or less, the amount of solid solution of Ti becomes extremely small, so that the surface segregation of Ti becomes extremely small, and the scale peeling resistance is remarkably improved. Even if Ti is added in less than 0.1%, since Ti is a carbonitride forming element stronger than Nb, Ti hardly forms a solid solution and precipitates as (Ti, Nb) (C, N). It is considered that the deterioration of the scale releasability due to the surface segregation of Ti and Ti was suppressed.
[0020]
From the above results, it has been found that 14Cr-Si-Mn-Mo-Nb (-Ti) is the most suitable as a relatively inexpensive stainless steel with high strength at high temperature and good oxidation resistance. The present invention was completed by defining a strict component range so as to sufficiently obtain properties such as high-temperature strength.
[0021]
That is, the gist of the present invention is as follows.
(1) In mass%,
C: 0.003 to 0.02%, N: 0.02% or less,
C + N: 0.03% or less, Si: 0.4 to less than 0.8%,
Mn: 0.4 to 0.8%, provided that 0.8 × Si ≦ Mn;
P: 0.04% or less, S: 0.02% or less,
Cr: less than 13 to 16%, Mo: 1.0% to 3.0%,
Nb: 0.3 to 1.0%, Ti: 0.01% or less, the balance consisting of Fe and inevitable impurities, and a tensile strength at 950 ° C. of 22 N / mm 2 or more, 950 ° C., A heat-resistant ferritic stainless steel excellent in oxidation resistance, characterized in that the amount of oxide scale peeled in an air oxidation test in 200 hours is 0.5 mg / cm 2 or less.
(2) In mass%,
C: 0.003 to 0.02%, N: 0.02% or less,
C + N: 0.03% or less, Si: 0.4 to less than 0.8%,
Mn: 0.4 to 0.8%, provided that 0.8 × Si ≦ Mn;
P: 0.04% or less, S: 0.02% or less,
Cr: less than 13 to 16%, Mo: 1.0% to 3.0%,
Nb: 0.3 to 1.0%, Ti: 3 × (C + N) to less than 0.1%, the balance being Fe and unavoidable impurities, and a tensile strength at 950 ° C. of 22 N / mm 2 As described above, a heat-resistant ferritic stainless steel excellent in oxidation resistance, characterized in that the amount of oxide scale peeled in an atmospheric oxidation test at 950 ° C. for 200 hours is 0.5 mg / cm 2 or less.
(3) In mass%,
W: 0.1 to 2.0%, and W + Mo: 1.0 to 3.0%, wherein the heat resistance is excellent in oxidation resistance according to the above (1) or (2). Ferritic stainless steel.
(4) Heat resistance excellent in oxidation resistance according to any one of the above (1) to (3), further containing REM: 0.001 to 0.05% by mass%. Ferritic stainless steel.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
The embodiment of the present invention and the limiting conditions will be described in detail.
C is an unavoidable impurity contained in steel, but if the content exceeds 0.02%, the workability is reduced. On the other hand, if the content is less than 0.003%, the cost increases in refining, so the lower limit is made 0.003%.
[0023]
N is an inevitable impurity contained in steel, but when the content exceeds 0.02% as in C, workability and weldability deteriorate. Therefore, the upper limit of the N content is set to 0.02% or less.
[0024]
Further, when the amount of C + N exceeds 0.03%, the workability deteriorates. Therefore, the upper limit is made 0.03% or less. In the present invention, Nb is used to fix C and N as carbonitrides. However, Nb is essential as solid-solution Nb in order to increase high-temperature strength. The following are more preferred.
[0025]
Si is an element that improves oxidation resistance. In particular, when the Cr content is less than 16%, in order to form a sound Cr 2 O 3 scale, addition of 0.4% or more is essential. However, Si is a cause of inhibiting the adhesion between the Cr 2 O 3 film and the matrix, and the addition of 0.8% or more makes the scale easy to peel off. Therefore, the Si content is set in the range of 0.4 to less than 0.8%.
[0026]
Mn is a component unavoidably contained in steel, but its behavior with respect to oxidation resistance is complicated. The effect of Mn alone is to increase the amount of oxidation increase, but has the effect of improving the peelability of the scale in the presence of Si. Therefore, it is necessary to add 0.4 to 0.8% and satisfy 0.8 × Si ≦ Mn. In order to further improve the peelability of the scale, it is preferable to satisfy Si ≦ Mn.
By extremely limiting Si and Mn in this way, it became possible to have oxidation resistance comparable to SUS444 with a Cr content of about 14%.
[0027]
P is a component that is inevitably contained in steel, but if it exceeds 0.04%, the weldability decreases, so 0.04% was made the upper limit.
[0028]
S is a component inevitably contained in steel, but if contained in excess of 0.02%, the MnS-forming element lowers the corrosion resistance, so the upper limit was made 0.02%.
[0029]
Cr is an element that forms a protective Cr 2 O 3 film and improves oxidation resistance. A minimum of 13% is required because it is used at high temperatures. Further, since the addition of 16% or more lowers the workability, the upper limit of the Cr content is set to less than 16%.
[0030]
Mo is an element necessary for ensuring high-temperature strength. It also has the effect of improving oxidation resistance. However, excessive addition deteriorates workability. Therefore, it is necessary to add it in the range of 1.0 to 3.0%.
[0031]
Nb is not only an element necessary for ensuring high-temperature strength, but also essential for fixing C and N in steel as carbonitride. Also, unlike Ti, it does not deteriorate oxidation resistance. If the Nb content is less than 0.3%, it is almost consumed for fixing C and N, and has no effect on high-temperature strength. On the other hand, if the Nb content exceeds 1%, the workability deteriorates. Therefore, the Nb content is set in the range of 0.3 to 1%.
[0032]
Ti is a very effective element for fixing C and N as carbonitrides. However, when it is low in Cr and coexists with Si and Mn, it is evident that it greatly promotes the exfoliation of oxide scale. Was. Therefore, it is better that Ti is as low as a harmful element, and it is most preferably 0.01% or less, and most preferably 0%.
Further, Ti is an element that fixes C and N as carbonitrides, suppresses precipitation of Nb carbonitride, prevents a decrease in high-temperature strength, lowers annealing temperature, and is effective in improving workability. . This effect is insufficient if the Ti content is less than 3 × (C + N)%, but if it is 0.1% or more, the amount of solid solution of Ti increases and surface segregation occurs. to degrade. Therefore, in the case where improvement in scale peeling resistance and workability is required, the amount of Ti may be in the range of 3 × (C + N) to less than 0.1%.
[0033]
W is an element that enhances high-temperature strength, and it is necessary to add 0.1% or more to exhibit its effect. On the other hand, if it exceeds 2%, the high-temperature salt damage resistance is degraded, so the upper limit is 2%.
Further, W is added in combination with Mo. However, if the total amount of W + Mo exceeds 3%, the deterioration of workability is extremely undesirable. The lower limit of W + Mo is 1% or more, which is the lower limit of Mo. Therefore, the range of W + Mo is preferably 1 to 3%.
[0034]
REM may be added to further improve the oxidation resistance. If the amount of REM is less than 0.001%, a stable effect cannot be obtained, and if it exceeds 0.05%, the hot workability deteriorates. Therefore, the amount of REM added was set in the range of 0.001 to 0.05%. REM is Y and a rare earth element, and one or more of these elements may be added, or may be added in the form of a mixture such as misch metal.
[0035]
Exhaust gas temperature has been increasing to around 950 ° C due to improvement of fuel efficiency and high output of automobiles. Therefore, performance at 950 ° C is optimal as an index. The tensile strength at 950 ° C. is preferably 22 N / mm 2 or more.
Further, as for the oxidation resistance, when the scale peeling amount is more than 0.5 mg / cm 2 in a continuous oxidation test in the air at 950 ° C. for 200 hours, the metal surface is easily exposed due to the scale peeling, and abnormal oxidation is easily caused. Become. Therefore, the amount of scale peeling by the continuous oxidation test in air at 950 ° C. for 200 hours was set to 0.5 mg / cm 2 or less. Further, the surface of the metal is hardly exposed by scale peeling, and the oxidation resistance during use is not deteriorated. A more preferred range is 0.1 mg / cm 2 or less, and the most preferred range is 0 mg which does not peel. / Cm 2 .
[0036]
The scale peeling amount is measured by the following method.
The shape of the test piece is a square of 20 mm per piece, and its surface and side surfaces are polished to a # 400 finish. A test piece whose weight was measured before the test (the weight of the test piece is referred to as a pre-oxidation test piece weight) was inserted into a furnace heated to 950 ° C. in the atmosphere. Then, it is stored in a metal container with a lid whose weight has been previously measured in an empty state (the weight of the metal container is referred to as an empty container weight) and air-cooled.
First, the weight of each metal container is measured (referred to as the weight of the test piece after oxidation in the container). Next, the test piece is taken out of the metal container, and the weight of the test piece alone is measured (referred to as the test piece weight after oxidation). From the weight measurement results, the scale peeling amount is evaluated by subtracting the weight of the oxidized test specimen and the weight of the empty container from the weight of the oxidized test specimen in the container, and dividing by the surface area of the test specimen.
[0037]
According to this measurement method, the scale does not peel off immediately after the test piece is taken out of the furnace at 950 ° C. because the temperature is high, and the scale does not peel off inside the metal container during air cooling, so that the scale does not scatter outside the metal container. . That is, all of the peeled scale remains in the metal container. Therefore, by subtracting the weight of the oxidized test specimen and the weight of the empty container from the weight of the oxidized test specimen in the container, the scale peeling amount can be accurately measured.
[0038]
【Example】
(Example 1)
A steel ingot having the chemical components shown in Table 1 was melted, and hot-rolled by heating to 1100 to 1250 ° C to obtain a hot-rolled sheet having a thickness of 5 mm. Thereafter, the hot-rolled sheet was heated to a temperature in the range of 900 to 1100 ° C. and subjected to hot-rolling sheet annealing for 60 seconds. Furthermore, after performing cold rolling to a cold-rolled sheet having a thickness of 2 mm, the sheet was heated to 900 to 1100 ° C., subjected to final annealing for 60 s, and pickled with hydrofluoric acid. And
[0039]
The normal temperature tensile test was performed in accordance with JIS Z 2241, and the high temperature tensile test was performed in accordance with JIS G 0567. The oxidation test was performed in the atmosphere. The shape of the test piece was a square of 20 mm per piece, and the surface and side surfaces were polished to finish # 400. The evaluation method of the amount of oxidation increase and the amount of peeling was performed as follows. The test specimen whose weight was measured before the test was inserted into a furnace heated to 950 ° C., and after 200 hours, was taken out of the furnace and immediately stored in an empty metal container with a lid that had been weighed in advance. And air-cool.
[0040]
First, the weight of each metal container was measured, then the test piece was taken out of the metal container, and the weight of the test piece alone was measured. From the measurement results of the weight, the oxidation increase and the scale peeling amount were calculated as follows. The increase in oxidation was evaluated by subtracting the weight of the test specimen before oxidation and the weight of the empty container from the weight of the oxidation test specimen in a container, and dividing the result by the surface area of the test specimen. The scale peeling amount was evaluated by subtracting the weight of the oxidized test specimen and the weight of the empty container from the weight of the oxidized test specimen in the container, and dividing by the surface area of the test specimen.
[0041]
Table 2 shows the results of the normal-temperature tensile test and the results of the high-temperature tensile test at 950 ° C. The tensile directions are all rolling directions. Table 2 also shows the results of an atmospheric oxidation test at 950 ° C for 200 hours.
[0042]
Steel A to Steel G, which are examples of the present invention, have a tensile strength at 950 ° C. of 22 N / mm 2 or more, and an amount of oxide scale peeled in an oxidation test of 0.5 mg / cm 2 or less. It can be seen that no exfoliation was observed, indicating excellent characteristics. Further, the elongation at room temperature is 30% or more, and the workability is sufficient.
[0043]
On the other hand, the H steel, which is a comparative example, has poor oxidation resistance due to the addition of Ti, shows scale peeling of more than 0.5 mg / cm 2 , and the I steel has a small amount of Si and Mn. Peeling is also seen. Furthermore, since the steel J has a small amount of Mo, the high-temperature strength is insufficient and the oxidation resistance is also poor. K steel is steel corresponding to SUS444. When the steel of the present invention is compared with this steel, the high-temperature strength and the oxidation resistance are almost equivalent to SUS444, and it is understood that the workability is excellent.
[0044]
[Table 1]
Figure 2004043949
[0045]
[Table 2]
Figure 2004043949
[0046]
(Example 2)
A steel ingot having the chemical components shown in Table 3 was melted, and a test steel having a thickness of 2 mm was manufactured in the same manner as in Example 1. Hot rolled sheet annealing was omitted in the production of some steel sheets. The tensile test at normal temperature and the tensile test at high temperature, and the evaluation of the increase in oxidation and the amount of peeling were performed in the same manner as in Example 1. Table 4 shows the test results.
[0047]
In Table 4, L to R steels and M 'steels are steels of the present invention, and have a tensile strength at 950 ° C. of 22 MPa or more, an elongation at room temperature of more than 30%, and a scale peeling in an oxidation test. Few. These steels have a higher Ti content and improved elongation than the A to G steels shown in Table 2.
[0048]
The components except for Ti are almost the same for L steel and M steel. For L steel, no Ti is added, and for M steel, 0.07% of Ti is added. The final annealing of the M steel with Ti addition was performed at 1000 ° C., which is 50 ° C. lower than the final annealing temperature of 1050 ° C. of the L steel, but the oxidation resistance and high temperature properties of both steels are almost the same.
Further, the steel having the same composition as the M steel, the hot rolled sheet annealing is omitted, and the other manufacturing conditions are the same as those of the M steel, so that the M 'steel can obtain substantially the same properties as the L steel and the M steel. Was. Accordingly, by adding Ti, even if the annealing temperature is lowered and the omission of hot-rolled sheet annealing is omitted, the characteristics are hardly impaired, so that the production cost can be reduced.
[0049]
On the other hand, S, T and U steels are comparative examples whose components are outside the scope of the present invention. Since the S steel has a Ti content of 0.12%, which is larger than the range of the present invention, even if REM is added in an amount of 0.005%, the scale peeling resistance is still poor, and the scale peeling amount is large. In addition, the T steel has a large amount of scale peeling since the amounts of Si and Mn are smaller than the range of the present invention. Further, since the U steel has less Mo than the range of the present invention, the high temperature strength is insufficient and the scale peeling resistance is also reduced.
[0050]
[Table 3]
Figure 2004043949
[0051]
[Table 4]
Figure 2004043949
[0052]
【The invention's effect】
According to the present invention, it is possible to provide a relatively inexpensive heat-resistant ferritic stainless steel having excellent high-temperature strength useful for automobile exhaust system members, particularly for exhaust manifolds, and having little oxide scale peeling, and relatively inexpensive. Great benefits can also be obtained for those who use steel, and the industrial value is extremely high.

Claims (4)

質量%で、
C :0.003〜0.02%、
N :0.02%以下、
C+N:0.03%以下、
Si:0.4〜0.8%未満、
Mn:0.4〜0.8%、
ただし、0.8×Si≦Mn、
P :0.04%以下、
S :0.02%以下、
Cr:13〜16%未満、
Mo:1.0%〜3.0%、
Nb:0.3〜1.0%、
Ti:0.01%以下
を含有し、残部Feおよび不可避的不純物からなり、950℃での引張り強度が22N/mm2 以上で、950℃、200時間での大気中酸化試験で酸化スケールの剥離量が0.5mg/cm2 以下であることを特徴とする、耐酸化性に優れた耐熱フェライト系ステンレス鋼。
In mass%,
C: 0.003-0.02%,
N: 0.02% or less,
C + N: 0.03% or less,
Si: less than 0.4 to 0.8%,
Mn: 0.4-0.8%,
However, 0.8 × Si ≦ Mn,
P: 0.04% or less,
S: 0.02% or less,
Cr: less than 13 to 16%,
Mo: 1.0% to 3.0%,
Nb: 0.3 to 1.0%,
Ti: 0.01% or less, the balance consisting of Fe and unavoidable impurities, tensile strength at 950 ° C. of 22 N / mm 2 or more, and peeling of oxide scale by an atmospheric oxidation test at 950 ° C. for 200 hours A heat-resistant ferritic stainless steel excellent in oxidation resistance, characterized in that the amount is 0.5 mg / cm 2 or less.
質量%で、
C :0.003〜0.02%、
N :0.02%以下、
C+N:0.03%以下、
Si:0.4〜0.8%未満、
Mn:0.4〜0.8%、
ただし、0.8×Si≦Mn、
P :0.04%以下、
S :0.02%以下、
Cr:13〜16%未満、
Mo:1.0%〜3.0%、
Nb:0.3〜1.0%、
Ti:3×(C+N)〜0.1%未満
を含有し、残部Feおよび不可避的不純物からなり、950℃での引張り強度が22N/mm2 以上で、950℃、200時間での大気中酸化試験で酸化スケールの剥離量が0.5mg/cm2 以下であることを特徴とする、耐酸化性に優れた耐熱フェライト系ステンレス鋼。
In mass%,
C: 0.003-0.02%,
N: 0.02% or less,
C + N: 0.03% or less,
Si: less than 0.4 to 0.8%,
Mn: 0.4-0.8%,
However, 0.8 × Si ≦ Mn,
P: 0.04% or less,
S: 0.02% or less,
Cr: less than 13 to 16%,
Mo: 1.0% to 3.0%,
Nb: 0.3 to 1.0%,
Ti: containing 3 × (C + N) to less than 0.1%, the balance consisting of Fe and unavoidable impurities, a tensile strength at 950 ° C. of 22 N / mm 2 or more, and oxidation in the air at 950 ° C. for 200 hours A heat-resistant ferritic stainless steel excellent in oxidation resistance, characterized in that an amount of oxide scale peeled in a test is 0.5 mg / cm 2 or less.
質量%でさらに、
W :0.1〜2.0%
を含有し、W+Mo:1.0〜3.0%
を満たすことを特徴とする、請求項1または2記載の耐酸化性に優れた耐熱フェライト系ステンレス鋼。
In mass%,
W: 0.1 to 2.0%
, W + Mo: 1.0 to 3.0%
The heat-resistant ferritic stainless steel having excellent oxidation resistance according to claim 1 or 2, wherein
質量%でさらに、
REM:0.001〜0.05%
を含有することを特徴とする、請求項1〜3のいずれか1項に記載の耐酸化性に優れた耐熱フェライト系ステンレス鋼。
In mass%,
REM: 0.001-0.05%
The heat-resistant ferritic stainless steel excellent in oxidation resistance according to any one of claims 1 to 3, wherein the ferritic stainless steel has excellent oxidation resistance.
JP2002340489A 2002-05-20 2002-11-25 Heat-resistant ferritic stainless steel with excellent oxidation resistance Expired - Lifetime JP3958672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002340489A JP3958672B2 (en) 2002-05-20 2002-11-25 Heat-resistant ferritic stainless steel with excellent oxidation resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002144992 2002-05-20
JP2002340489A JP3958672B2 (en) 2002-05-20 2002-11-25 Heat-resistant ferritic stainless steel with excellent oxidation resistance

Publications (2)

Publication Number Publication Date
JP2004043949A true JP2004043949A (en) 2004-02-12
JP3958672B2 JP3958672B2 (en) 2007-08-15

Family

ID=31719552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002340489A Expired - Lifetime JP3958672B2 (en) 2002-05-20 2002-11-25 Heat-resistant ferritic stainless steel with excellent oxidation resistance

Country Status (1)

Country Link
JP (1) JP3958672B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021505771A (en) * 2017-12-11 2021-02-18 ポスコPosco Ferritic stainless steel with excellent high-temperature oxidation resistance and its manufacturing method
JP2022501505A (en) * 2018-09-19 2022-01-06 ポスコPosco Ferritic stainless steel with excellent workability and high-temperature strength and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021505771A (en) * 2017-12-11 2021-02-18 ポスコPosco Ferritic stainless steel with excellent high-temperature oxidation resistance and its manufacturing method
US11339460B2 (en) 2017-12-11 2022-05-24 Posco Ferritic stainless steel having excellent high-temperature oxidation resistance, and manufacturing method therefor
JP2022501505A (en) * 2018-09-19 2022-01-06 ポスコPosco Ferritic stainless steel with excellent workability and high-temperature strength and its manufacturing method
JP7271658B2 (en) 2018-09-19 2023-05-11 ポスコ カンパニー リミテッド Ferritic stainless steel with excellent workability and high-temperature strength, and method for producing the same
US12043875B2 (en) 2018-09-19 2024-07-23 Posco Co., Ltd Ferrite-based stainless steel having excellent processability and high-temperature strength and method for manufacturing same

Also Published As

Publication number Publication date
JP3958672B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
JP5546911B2 (en) Ferritic stainless steel sheet with excellent heat resistance and workability
JP5274074B2 (en) Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
JP5141296B2 (en) Ferritic stainless steel with excellent high temperature strength and toughness
JP5709875B2 (en) Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
JP2008285693A (en) Ferritic stainless steel sheet having superior thermal fatigue resistance for component of automotive exhaust system
JP5540637B2 (en) Ferritic stainless steel with excellent heat resistance
WO2011111871A1 (en) Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
JP5125600B2 (en) Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability
JP4312653B2 (en) Ferritic stainless steel excellent in heat resistance and workability and method for producing the same
KR20060045409A (en) Ferrite stainless steel for automobile exhaust system member superior in thermal fatigue strength
JP4185425B2 (en) Ferritic steel sheet with improved formability and high temperature strength, high temperature oxidation resistance and low temperature toughness at the same time
JP4105962B2 (en) Sulfuric acid dew-point corrosion steel cold-rolled steel sheet for air preheater heat transfer element and manufacturing method thereof
JP2004218013A (en) Ferritic stainless steel for equipment in automobile exhaust system
JP4518834B2 (en) Manufacturing method of heat-resistant ferritic stainless steel sheet with excellent workability
JP7278079B2 (en) Cold-rolled stainless steel sheet, hot-rolled stainless steel sheet, and method for manufacturing hot-rolled stainless steel sheet
JPH09256113A (en) Ferritic stainless steel for automobile exhaust system equipment
JP2001262234A (en) Method for producing ferritic stainless steel sheet for automotive exhaust system excellent in deep drawability
JP3958672B2 (en) Heat-resistant ferritic stainless steel with excellent oxidation resistance
JP4614787B2 (en) Ferritic stainless steel sheet excellent in workability and heat resistance and method for producing the same
JP7251996B2 (en) Al-containing ferritic stainless steel sheet and method for producing the same
JP4259151B2 (en) Heat resistant material
JP6841150B2 (en) Ferritic stainless steel sheet for heat-resistant members
JPH06100990A (en) Ferritic stainless steel excellent in strength at high temperature
JP2005200746A (en) Ferritic stainless steel for automobile exhaust system member
JPH10204588A (en) Ferritic stainless steel sheet excellent in workability and roping characteristic, and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3958672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term