JP6841150B2 - Ferritic stainless steel sheet for heat-resistant members - Google Patents

Ferritic stainless steel sheet for heat-resistant members Download PDF

Info

Publication number
JP6841150B2
JP6841150B2 JP2017090419A JP2017090419A JP6841150B2 JP 6841150 B2 JP6841150 B2 JP 6841150B2 JP 2017090419 A JP2017090419 A JP 2017090419A JP 2017090419 A JP2017090419 A JP 2017090419A JP 6841150 B2 JP6841150 B2 JP 6841150B2
Authority
JP
Japan
Prior art keywords
heat
stainless steel
steel sheet
less
resistant members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017090419A
Other languages
Japanese (ja)
Other versions
JP2018188687A (en
Inventor
文崇 市川
文崇 市川
木村 謙
謙 木村
井上 宜治
宜治 井上
眞市 田村
眞市 田村
祐司 小山
祐司 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017090419A priority Critical patent/JP6841150B2/en
Publication of JP2018188687A publication Critical patent/JP2018188687A/en
Application granted granted Critical
Publication of JP6841150B2 publication Critical patent/JP6841150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐熱部材用フェライト系ステンレス鋼板に関する。 The present invention relates to a ferritic stainless steel sheet for heat-resistant members.

自動車の排気系部材(例えばエキゾーストマニホールドやマフラー等)といった耐熱部材には、高温での耐酸化性や耐腐食性に優れるステンレス鋼が用いられる。近年、内燃機関の燃焼効率を向上するために排ガスの温度が上昇する傾向にあり、より耐熱性が高い排気系部材が求められている。 Stainless steel, which has excellent oxidation resistance and corrosion resistance at high temperatures, is used for heat-resistant members such as automobile exhaust system members (for example, exhaust manifolds and mufflers). In recent years, the temperature of exhaust gas tends to rise in order to improve the combustion efficiency of an internal combustion engine, and an exhaust system member having higher heat resistance is required.

自動車の排気系部材の耐熱性を向上させるには、排気系部材の素材であるステンレス鋼自体の耐熱性を向上させる方法と、排気系部材の構造を改良する手法がある。近年求められている高い使用温度に適応させるためには、これら2つの手法を組み合わせて開発を進める必要がある。そのため、排気系部材に用いられるステンレス鋼には、より高い耐熱性と、排気系部材の構造設計の自由度を拡げるための高い加工性の両立が求められている。 In order to improve the heat resistance of the exhaust system member of an automobile, there are a method of improving the heat resistance of stainless steel itself, which is a material of the exhaust system member, and a method of improving the structure of the exhaust system member. In order to adapt to the high operating temperature required in recent years, it is necessary to proceed with development by combining these two methods. Therefore, the stainless steel used for the exhaust system member is required to have both higher heat resistance and high workability for expanding the degree of freedom in structural design of the exhaust system member.

従来より、耐熱材として用いられるフェライト系ステンレス鋼は、Nbの添加により高温強度を向上させるものが多い。しかし、Nbの添加により母相自体が硬化し、十分な加工性を得ることが困難であった。このため、Nbを含有するフェライト系耐熱ステンレス鋼の加工性、特に伸びやr値等を向上させる開発が進められてきた。 Conventionally, many ferrite-based stainless steels used as heat-resistant materials improve high-temperature strength by adding Nb. However, it was difficult to obtain sufficient processability because the matrix itself was cured by the addition of Nb. Therefore, development has been promoted to improve the workability of the ferrite heat-resistant stainless steel containing Nb, particularly the elongation and the r value.

特許文献1には、質量%で、C:0.005%以下、N:0.012%以下を含み、TiおよびNbのいずれか一方または双方をC/12+N/14<Ti/48+Nb/93となる条件を満足するように含有するフェライト系ステンレス鋼を、熱間仕上圧延する際に1050℃から900℃の温度範囲で少なくとも全圧下率が70%以上の圧延を摩擦係数0.2以下で行い、900℃以上の温度で仕上げ、その後750℃以上で巻き取った後、通常の冷間圧延および焼鈍を施すことにより、耐リジング性に優れ、異方性が小さい深絞り用フェライト系ステンレス鋼板を製造する方法が開示されている。 Patent Document 1 contains C: 0.005% or less and N: 0.012% or less in mass%, and either or both of Ti and Nb are C / 12 + N / 14 <Ti / 48 + Nb / 93. When ferritic stainless steel contained so as to satisfy the above conditions is hot-finished, rolling is performed in a temperature range of 1050 ° C to 900 ° C with a total rolling reduction of at least 70% or more with a friction coefficient of 0.2 or less. After finishing at a temperature of 900 ° C or higher and then winding at 750 ° C or higher, normal cold rolling and annealing are performed to obtain a ferritic stainless steel sheet for deep drawing with excellent rigging resistance and low anisotropy. The method of manufacture is disclosed.

特許文献2には、Crを10〜20質量%含有する鋼であって、板厚方向断面内の最表層から板厚の1/4までの領域において、{111}方位結晶粒と{554}方位結晶粒の存在比率N1と{100}方位結晶粒と{110}方位粒の存在比率N2がN1/N2≧3.0を満足する、加工性に優れる排気部品用フェライト系ステンレス鋼板が開示されている。{111}方位結晶粒、{554}方位結晶粒、{100}方位結晶粒および{110}方位結晶粒とは、それぞれの結晶粒の<111>方向、<554>方向、<100>方向および<110>方向が圧延面に対して垂直な方向と15°以内にある結晶粒である。 Patent Document 2 describes a steel containing 10 to 20% by mass of Cr, with {111} oriented crystal grains and {554} in the region from the outermost layer to 1/4 of the plate thickness in the cross-sectional thickness direction. Disclosed is a ferrite-based stainless steel sheet for exhaust parts, which has excellent workability, in which the abundance ratio N1 of the azimuth crystal grains and the abundance ratio N2 of the {100} azimuth crystal grains and {110} azimuth grains satisfy N1 / N2 ≧ 3.0. ing. The {111} oriented crystal grains, {554} oriented crystal grains, {100} oriented crystal grains, and {110} oriented crystal grains are the <111> direction, <554> direction, <100> direction, and the respective crystal grains. <110> Crystal grains whose direction is perpendicular to the rolling surface and within 15 °.

特開平8−311542号公報Japanese Unexamined Patent Publication No. 8-31152 特開2006−233278号公報Japanese Unexamined Patent Publication No. 2006-23278

これらの従来の技術によれば、伸びおよびr値自体はある程度向上できる。その一方で、r値の異方性Δrは、構造が複雑化した近年の自動車排気系等の耐熱部材用フェライト系ステンレス鋼板に求められる異方性Δr:0.1以下の水準を達成できるものは殆ど存在しない。このため、耐熱部材用フェライト系ステンレス鋼板を深絞り加工等で目的の形状に成形する場合、耳(イヤリングとも呼ばれ、被圧延材材の圧延方向および圧延直角方向の材料特性の違いにより発生する)の発生が大きく、成形時の歩留まりが低下する。このため、従来の耐熱部材用フェライト系ステンレス鋼板では、常温での加工性と高温強度とを両立することが困難であった。 According to these conventional techniques, the elongation and the r-value itself can be improved to some extent. On the other hand, the anisotropy Δr of the r value can achieve the level of anisotropy Δr: 0.1 or less required for ferritic stainless steel sheets for heat-resistant members such as automobile exhaust systems in recent years whose structure has become complicated. Almost does not exist. For this reason, when a ferritic stainless steel sheet for heat-resistant members is formed into a desired shape by deep drawing or the like, it is generated due to the difference in material properties between the rolling direction and the rolling perpendicular direction of the material to be rolled, which is also called an ear (also called an earring). ) Is large, and the yield during molding decreases. For this reason, it has been difficult for conventional ferritic stainless steel sheets for heat-resistant members to have both workability at room temperature and high-temperature strength.

本発明の目的は、r値の異方性Δrが小さく、常温での加工性と高温強度を高次元で両立できる耐熱部材用フェライト系ステンレス鋼板を提供することである。 An object of the present invention is to provide a ferritic stainless steel sheet for heat-resistant members, which has a small r-value anisotropy Δr and can achieve both workability at room temperature and high-temperature strength at a high level.

本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、熱間圧延時の加熱温度およびコイル巻取温度を変化させ、かつ、熱延板焼鈍を省略する方法で製造した冷延焼鈍板は、r値こそ低いものの、その異方性Δrが非常に小さく、深絞り加工時に耳が形成され難いことを知見した。本発明は、このような新規な知見に基づくものであり、以下に列記の通りである。 As a result of diligent studies to solve the above problems, the present inventors have made cold products by changing the heating temperature and coil winding temperature during hot rolling and omitting the annealing of hot rolled sheets. It was found that although the annealed plate has a low r value, its anisotropy Δr is very small, and it is difficult for ears to be formed during deep drawing. The present invention is based on such novel findings and is as listed below.

(1)化学組成が、質量%で、C:0.001〜0.02%、Si:0.2%超3.0%以下、Mn:0.20〜1.0%、P:0.01〜0.08%、S:0.0001〜0.0100%、Cr:10〜20%、Nb:0.32%超1.0%以下、Al:0.0005〜0.500%、N:0.005〜0.02%、Ni:0〜1%、Mo:0〜3.0%、Cu:0〜1%、Ti:0〜0.2%、V:0〜0.5%、B:0〜0.0050%を含有し、残部がFeおよび不純物であり、
金属組織として、真円換算の結晶粒径が20μm以下のフェライト結晶粒の面積率が3.0〜15.0%であり、
機械特性として、下記(1)式により定義されるr値の異方性Δrが0.1以下であり、かつ、圧延方向を長手方向とする試験片を用いた700℃引張試験における0.2%耐力が75MPa以上である、耐熱部材用フェライト系ステンレス鋼板。
Δr=|(r+r90)/2−r45| ・・・・・(1)
(1) The chemical composition is C: 0.001 to 0.02%, Si: more than 0.2% and 3.0% or less, Mn: 0.25 to 1.0%, P: 0. 01 to 0.08%, S: 0.0001 to 0.0100%, Cr: 10 to 20%, Nb: more than 0.32% and 1.0% or less, Al: 0.0005 to 0.500%, N : 0.005 to 0.02%, Ni: 0 to 1%, Mo: 0 to 3.0%, Cu: 0 to 1%, Ti: 0 to 0.2%, V: 0 to 0.5% , B: Contains 0-0.0050%, the balance is Fe and impurities,
As a metal structure, the area ratio of ferrite crystal grains having a crystal grain size of 20 μm or less in terms of a perfect circle is 3.0 to 15.0%.
As mechanical properties, the anisotropy Δr of the r value defined by the following equation (1) is 0.1 or less, and 0.2 in a 700 ° C. tensile test using a test piece whose rolling direction is the longitudinal direction. Ferritic stainless steel sheet for heat-resistant members with a% yield strength of 75 MPa or more.
Δr = | (r 0 + r 90 ) / 2-r 45 | ... (1)

(1)式において、r、r45およびr90は、耐熱部材用フェライト系ステンレス鋼板の圧延方向、圧延方向に対して45°の方向および、圧延直角方向をそれぞれ長手方向とする試験片を用いて常温で引張試験を行い、それぞれの方向について下記(2)式に従って求めたr値である。
r=ln(W/W)/ln(t/t) ・・・・・(2)
(2)式において、Wおよびt、ならびに、Wおよびtは、それぞれ、引張塑性変形後の試験片の幅および板厚、ならびに、引張塑性変形前の試験片の幅および板厚である。
In the formula (1), r 0 , r 45 and r 90 are test pieces having the rolling direction of the ferrite-based stainless steel sheet for heat-resistant members, the direction of 45 ° with respect to the rolling direction, and the direction perpendicular to the rolling as the longitudinal direction, respectively. It is an r value obtained by performing a tensile test at room temperature using the product in accordance with the following equation (2) in each direction.
r = ln (W / W 0 ) / ln (t / t 0 ) ... (2)
In equation (2), W and t, and W 0 and t 0 are the width and plate thickness of the test piece after tensile plastic deformation and the width and plate thickness of the test piece before tensile plastic deformation, respectively. ..

(2)Ni:0.01〜1質量%を含有する、1項に記載の耐熱部材用フェライト系ステンレス鋼板。 (2) The ferrite-based stainless steel sheet for heat-resistant members according to Item 1, which contains Ni: 0.01 to 1% by mass.

(3)質量%で、Mo:0.03〜3.0%、Cu:0.01〜1%、およびTi:0.01〜0.2%の1種以上を含有する、1または2項に記載の耐熱部材用フェライト系ステンレス鋼板。 (3) Item 1 or 2 containing one or more of Mo: 0.03 to 3.0%, Cu: 0.01 to 1%, and Ti: 0.01 to 0.2% in mass%. Ferritic stainless steel sheet for heat-resistant members described in.

(4)V:0.01〜0.5質量%を含有する、1〜3項のいずれかに記載の耐熱部材用フェライト系ステンレス鋼板。 (4) The ferrite-based stainless steel sheet for heat-resistant members according to any one of Items 1 to 3, which contains V: 0.01 to 0.5% by mass.

(5)B:0.0001〜0.0050%質量を含有する、1〜4項のいずれかに記載の耐熱部材用フェライト系ステンレス鋼板。 (5) The ferrite-based stainless steel sheet for heat-resistant members according to any one of Items 1 to 4, which contains B: 0.0001 to 0.0050% by mass.

本発明により、r値の異方性Δrが小さく、常温での優れた加工性と高温強度を高次元で兼ね備える耐熱部材用フェライト系ステンレス鋼板を提供できる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a ferritic stainless steel sheet for heat-resistant members, which has a small r-value anisotropy Δr and has excellent workability at room temperature and high-temperature strength at a high level.

本発明を説明する。以降の説明では、化学組成に関する「%」は特に断りがない限り「質量%」を意味する。 The present invention will be described. In the following description, "%" regarding the chemical composition means "mass%" unless otherwise specified.

1.本発明に係る耐熱部材用フェライト系ステンレス鋼板
(1)化学組成
はじめに必須元素を説明する。
1. 1. Ferritic stainless steel sheet for heat-resistant members according to the present invention (1) Chemical composition First, essential elements will be described.

(1−1)C:0.001〜0.02%
Cは、熱間圧延時、コイル巻取時および焼鈍時にNbやTi等と炭窒化物を形成してピン止め効果により結晶粒成長を抑制し、真円換算の結晶粒径が20μm以下の帯状細粒組織の形成に寄与する。したがって、C含有量は、0.001%以上であり、好ましくは0.003%以上である。
(1-1) C: 0.001 to 0.02%
C forms a carbonitride with Nb, Ti, etc. during hot rolling, coil winding, and annealing to suppress crystal grain growth due to the pinning effect, and has a strip-shaped crystal grain size of 20 μm or less in terms of perfect circle. Contributes to the formation of fine grain structure. Therefore, the C content is 0.001% or more, preferably 0.003% or more.

一方、C含有量が0.02%を越えると、耐熱部材用フェライト系ステンレス鋼板の成形性および耐食性を劣化させ、かつ高温強度の低下をもたらす。したがって、C含有量は、0.02%以下であり、好ましくは0.01%以下である。 On the other hand, when the C content exceeds 0.02%, the moldability and corrosion resistance of the ferrite stainless steel sheet for heat-resistant members are deteriorated, and the high-temperature strength is lowered. Therefore, the C content is 0.02% or less, preferably 0.01% or less.

(1−2)Si:0.2%超3.0%以下
Siは、精錬の際に脱酸剤として有用であるとともに、耐熱部材用フェライト系ステンレス鋼板の高温強度および耐酸化性を改善する。耐熱部材用フェライト系ステンレス鋼板の700℃周辺の高温強度は、Si含有量の増加とともに向上し、この効果はSi含有量が0.2%を超えると発現する。したがって、Si含有量は、0.2%超であり、耐熱部材用フェライト系ステンレス鋼板の耐酸化性および常温での加工性を高めるために好ましくは0.5%以上である。
(1-2) Si: More than 0.2% and 3.0% or less Si is useful as a deoxidizer in refining and improves high temperature strength and oxidation resistance of ferrite stainless steel sheets for heat-resistant members. .. The high-temperature strength of the ferrite-based stainless steel sheet for heat-resistant members around 700 ° C. improves as the Si content increases, and this effect is exhibited when the Si content exceeds 0.2%. Therefore, the Si content is more than 0.2%, and is preferably 0.5% or more in order to improve the oxidation resistance and workability at room temperature of the ferritic stainless steel sheet for heat-resistant members.

一方、Si含有量が3.0%を越えると、耐熱部材用フェライト系ステンレス鋼板の常温での加工性を低下させる。したがって、Si含有量は、3.0%以下であり、耐熱部材用フェライト系ステンレス鋼板の耐酸化性を高めるために好ましくは2.0%以下である。 On the other hand, when the Si content exceeds 3.0%, the workability of the ferrite stainless steel sheet for heat-resistant members at room temperature is lowered. Therefore, the Si content is 3.0% or less, and is preferably 2.0% or less in order to enhance the oxidation resistance of the ferrite stainless steel sheet for heat-resistant members.

(1−3)Mn:0.2〜1.0%
Mnは、精錬の際に脱酸剤として添加され、また耐熱部材用フェライト系ステンレス鋼板の中温域での高温強度の上昇に寄与する。また、Mnは、長時間使用中にMn系酸化物を耐熱部材用フェライト系ステンレス鋼板の表層に形成し、耐熱部材用フェライト系ステンレス鋼板のスケール密着性の維持や異常酸化の抑制に寄与する。したがって、Mn含有量は、0.2%以上であり、耐熱部材用フェライト系ステンレス鋼板の高温延性やスケール密着性を高めるために好ましくは0.22%以上である。
(1-3) Mn: 0.2 to 1.0%
Mn is added as a deoxidizer during refining and also contributes to an increase in high-temperature strength in a medium temperature range of a ferrite stainless steel sheet for heat-resistant members. Further, Mn forms an Mn-based oxide on the surface layer of the ferritic stainless steel sheet for heat-resistant members during long-term use, and contributes to maintaining the scale adhesion of the ferritic stainless steel sheet for heat-resistant members and suppressing abnormal oxidation. Therefore, the Mn content is 0.2% or more, and is preferably 0.22% or more in order to improve the high temperature ductility and scale adhesion of the ferrite stainless steel sheet for heat-resistant members.

一方、Mn含有量が1.0%を超えると、耐熱部材用フェライト系ステンレス鋼板の常温での加工性を低下させ、さらに、MnSの生成により耐食性が劣化する。したがって、Mn含有量は、1.0%以下であり、耐熱部材用フェライト系ステンレス鋼板の高温延性を高めるために好ましくは0.5%以下である。 On the other hand, if the Mn content exceeds 1.0%, the processability of the ferrite stainless steel sheet for heat-resistant members at room temperature is lowered, and further, the corrosion resistance is deteriorated due to the formation of MnS. Therefore, the Mn content is 1.0% or less, and preferably 0.5% or less in order to enhance the high temperature ductility of the ferrite stainless steel sheet for heat-resistant members.

(1−4)P:0.01〜0.08%
Pは、MnやSiと同様に、固溶強化元素であり、耐熱部材用フェライト系ステンレス鋼板の常温での加工性を確保するために、P含有量は、0.08%以下であり、耐熱部材用フェライト系ステンレス鋼板の耐食性を勘案すると好ましくは0.06%以下である。
(1-4) P: 0.01 to 0.08%
Like Mn and Si, P is a solid solution strengthening element, and the P content is 0.08% or less in order to ensure the workability of ferrite stainless steel sheets for heat-resistant members at room temperature, and heat resistance. Considering the corrosion resistance of the ferrite stainless steel sheet for members, it is preferably 0.06% or less.

一方、P含有量を過度に低減することは精錬コストの増加につながり、かつFeTiP等の結晶粒成長のピン止めに寄与すると考えられる析出物の生成を抑制する。したがって、P含有量は、0.01%以上であり、耐熱部材用フェライト系ステンレス鋼板の製造コストと帯状細粒組織の形成を勘案すると好ましくは0.015%以上である。 On the other hand, excessively reducing the P content leads to an increase in refining cost and suppresses the formation of precipitates which are considered to contribute to pinning of crystal grain growth such as FeTiP. Therefore, the P content is 0.01% or more, and is preferably 0.015% or more in consideration of the manufacturing cost of the ferritic stainless steel sheet for heat-resistant members and the formation of the strip-shaped fine grain structure.

(1−5)S:0.0001〜0.0100%
Sは、耐熱部材用フェライト系ステンレス鋼板の熱間加工性や耐食性に対して有害な元素であり、原料に不可避的に含まれる不純物である。このため、S含有量は低いことが好ましい。したがって、S含有量は、0.0100%以下であり、耐熱部材用フェライトステンレス鋼板の熱間加工性と耐食性を勘案すると好ましくは0.0050%以下である。
(1-5) S: 0.0001 to 0.0100%
S is an element harmful to the hot workability and corrosion resistance of the ferrite stainless steel sheet for heat-resistant members, and is an impurity inevitably contained in the raw material. Therefore, the S content is preferably low. Therefore, the S content is 0.0100% or less, and is preferably 0.0050% or less in consideration of the hot workability and corrosion resistance of the ferrite stainless steel sheet for heat-resistant members.

一方、S含有量を過度に低減することは精錬工程での脱硫負荷の増大につながり、精錬コストが著しく増大する。したがって、S含有量は、0.0001%以上であり、耐熱部材用フェライト系ステンレス鋼板の製造コストを勘案すると好ましくは0.0003%以上である。 On the other hand, excessively reducing the S content leads to an increase in the desulfurization load in the refining step, and the refining cost increases remarkably. Therefore, the S content is 0.0001% or more, and is preferably 0.0003% or more in consideration of the manufacturing cost of the ferritic stainless steel sheet for heat-resistant members.

(1−6)Cr:10〜20%
Cr含有量は、耐熱部材用フェライト系ステンレス鋼板の耐食性の観点から、10%以上であり、耐熱部材用フェライト系ステンレス鋼板の耐酸化性と高温強度を確保するために好ましくは11%以上である。
(1-6) Cr: 10 to 20%
The Cr content is 10% or more from the viewpoint of corrosion resistance of the ferritic stainless steel sheet for heat-resistant members, and preferably 11% or more in order to secure the oxidation resistance and high-temperature strength of the ferritic stainless steel sheet for heat-resistant members. ..

一方、Cr含有量が20%を越えると、耐熱部材用フェライト系ステンレス鋼板の靱性の劣化により製造性が悪くなる他、材質も劣化する。したがって、Cr含有量は、20%以下であり、耐熱部材用フェライト系ステンレス鋼板の常温での加工性を確保するために好ましくは18%以下である。 On the other hand, if the Cr content exceeds 20%, the toughness of the ferrite-based stainless steel sheet for heat-resistant members deteriorates, resulting in poor manufacturability and deterioration of the material. Therefore, the Cr content is 20% or less, and preferably 18% or less in order to ensure the workability of the ferrite stainless steel sheet for heat-resistant members at room temperature.

(1−7)Nb:0.32%超1.0%以下
Nbは、母相の固溶強化および炭窒化物等による析出強化により、耐熱部材用フェライト系ステンレス鋼板の高温強度を向上させる。また、Crは、CやNと炭窒化物を形成してピン止め効果により結晶粒成長を抑制し、真円換算の結晶粒径が20μm以下の帯状細粒組織の形成に寄与する。したがって、Nb含有量は、0.32%超であり、帯状細粒組織の形成や高温強度を勘案すると好ましくは0.35%以上である。
(1-7) Nb: More than 0.32% and 1.0% or less Nb improves the high-temperature strength of the ferritic stainless steel sheet for heat-resistant members by strengthening the solid solution of the matrix phase and strengthening the precipitation with carbonitride or the like. Further, Cr forms a carbonitride with C and N, suppresses crystal grain growth by a pinning effect, and contributes to the formation of a band-shaped fine grain structure having a crystal grain size of 20 μm or less in terms of a perfect circle. Therefore, the Nb content is more than 0.32%, and is preferably 0.35% or more in consideration of the formation of the strip-shaped fine grain structure and the high temperature strength.

一方、Nb含有量が1.0%を越えると、耐熱部材用フェライト系ステンレス鋼板の製造性や常温での加工性を低下させる。したがって、Nb含有量は、1.0%以下であり、製造性や常温での加工性を勘案すると好ましくは0.70%以下である。 On the other hand, when the Nb content exceeds 1.0%, the manufacturability of the ferrite-based stainless steel sheet for heat-resistant members and the workability at room temperature are lowered. Therefore, the Nb content is 1.0% or less, and is preferably 0.70% or less in consideration of manufacturability and processability at room temperature.

(1−8)Al:0.0005〜0.500%
Alは、脱酸元素として添加される場合があり、その作用は0.0005%の含有量から発現する。したがって、Al含有量は、0.0005%以上であり、耐熱部材用フェライト系ステンレス鋼板の製造性を勘案すると好ましくは0.001%以上である。
(1-8) Al: 0.0005 to 0.500%
Al may be added as a deoxidizing element and its action is manifested from a content of 0.0005%. Therefore, the Al content is 0.0005% or more, and is preferably 0.001% or more in consideration of the manufacturability of the ferritic stainless steel sheet for heat-resistant members.

一方、Al含有量が0.500%を越えると、耐熱部材用フェライト系ステンレス鋼板の常温での加工性の低下、溶接性および表面品質の劣化、耐酸化性の劣化などを生じる。したがって、Al含有量は、0.500%以下であり、耐熱部材用フェライト系ステンレス鋼板の常温での加工性や表面疵の発生、溶接性を勘案すると好ましくは0.2%以下である。 On the other hand, if the Al content exceeds 0.500%, the workability of the ferrite stainless steel sheet for heat-resistant members at room temperature is deteriorated, the weldability and surface quality are deteriorated, and the oxidation resistance is deteriorated. Therefore, the Al content is 0.500% or less, and is preferably 0.2% or less in consideration of the workability of the ferrite stainless steel sheet for heat-resistant members at room temperature, the occurrence of surface defects, and the weldability.

(1−9)N:0.005〜0.02%
Nは、Cと同様に、熱間圧延時、コイル巻取時および焼鈍時にNbやTi等と炭窒化物を形成してピン止め効果により結晶粒成長を抑制し、真円換算の結晶粒径が20μm以下の帯状細粒組織の形成に寄与する。したがって、N含有量は、0.005%以上であり、帯状細粒組織の形成と高温強度を考慮すると好ましくは0.007%以上である。
(1-9) N: 0.005 to 0.02%
Similar to C, N forms a carbonitride with Nb, Ti, etc. during hot rolling, coil winding, and annealing to suppress grain growth by the pinning effect, and the crystal grain size is converted to a perfect circle. Contributes to the formation of strip-shaped fine grain structures of 20 μm or less. Therefore, the N content is 0.005% or more, and preferably 0.007% or more in consideration of the formation of the strip-shaped fine grain structure and the high temperature strength.

一方、N含有量が0.02%を超えると、耐熱部材用フェライト系ステンレス鋼板の成形性と耐食性を劣化させ、かつ高温強度の低下をもたらす。したがって、N含有量は、0.02%以下であり、常温での成形性と耐食性を勘案すると好ましくは0.010%以下である。
次に、必要に応じて含有してもよい任意元素を説明する。
On the other hand, when the N content exceeds 0.02%, the moldability and corrosion resistance of the ferrite stainless steel sheet for heat-resistant members are deteriorated, and the high-temperature strength is lowered. Therefore, the N content is 0.02% or less, preferably 0.010% or less in consideration of moldability and corrosion resistance at room temperature.
Next, arbitrary elements that may be contained as needed will be described.

(1−10)Ni:1%以下
Niは、耐熱部材用フェライト系ステンレス鋼板の靭性と耐食性を向上させる元素である。しかし、Ni含有量が1%を超えるとオーステナイト相が生成し、耐熱部材用フェライト系ステンレス鋼板の深絞り性が低下する。したがって、Ni含有量は、1%以下であり、好ましくは0.5%以下である。Ni含有によるこの効果を確実に得るためには、Ni含有量は好ましくは0.01%以上である。
(1-10) Ni: 1% or less Ni is an element that improves the toughness and corrosion resistance of ferrite stainless steel sheets for heat-resistant members. However, if the Ni content exceeds 1%, an austenite phase is formed, and the deep drawing property of the ferritic stainless steel sheet for heat-resistant members is lowered. Therefore, the Ni content is 1% or less, preferably 0.5% or less. In order to surely obtain this effect due to the Ni content, the Ni content is preferably 0.01% or more.

(1−11)Mo:3.0%以下、Cu:1%以下およびTi:0.2%以下からなる群から選ばれた1種または2種以上
Moは、耐熱部材用フェライト系ステンレス鋼板の耐食性を向上させるとともに、固溶することにより高温強度を向上する。しかし、Mo含有量が3.0%を超えると有害な化合物相が析出する。したがって、Mo含有量は、3.0%以下であり、好ましくは2.0%以下である。Mo含有によるこの効果を確実に得るためには、Mo含有量は好ましくは0.03%以上である。
(1-11) One or more selected from the group consisting of Mo: 3.0% or less, Cu: 1% or less, and Ti: 0.2% or less Mo is a ferritic stainless steel sheet for heat-resistant members. In addition to improving corrosion resistance, high temperature strength is improved by solid solution. However, if the Mo content exceeds 3.0%, a harmful compound phase is precipitated. Therefore, the Mo content is 3.0% or less, preferably 2.0% or less. In order to surely obtain this effect due to the Mo content, the Mo content is preferably 0.03% or more.

Cuは、析出強化により耐熱部材用フェライト系ステンレス鋼板の高温強度を向上する。しかし、Cu含有量が1%を超えると、耐熱部材用フェライト系ステンレス鋼板の常温延性および耐酸化性を低下させる。したがって、Cu含有量は、1%以下であり、好ましくは0.6%以下である。Cu含有によるこの効果を確実に得るためには、Cu含有量は好ましくは0.01%以上である。 Cu improves the high temperature strength of ferritic stainless steel sheets for heat-resistant members by strengthening precipitation. However, if the Cu content exceeds 1%, the room temperature ductility and oxidation resistance of the ferrite stainless steel sheet for heat-resistant members are lowered. Therefore, the Cu content is 1% or less, preferably 0.6% or less. In order to surely obtain this effect due to the Cu content, the Cu content is preferably 0.01% or more.

Tiは、Nbと同様に、母相の固溶強化および炭窒化物等による析出強化により、耐熱部材用フェライト系ステンレス鋼板の高温強度を向上させる。また、Tiは、CやNと炭窒化物を形成してピン止め効果により結晶粒成長を抑制し、真円換算の結晶粒径が20μm以下の帯状細粒組織の形成に寄与する。しかし、Ti含有量が0.2%を超えると、耐熱部材用フェライト系ステンレス鋼板の常温延性が低下する他、粗大なTi系析出物を形成し、加工性を劣化させる。したがって、Ti含有量は、0.2%以下であり、表面疵の発生や靭性を勘案して好ましくは0.1%以下である。Ti含有によるこの効果を確実に得るためには、Ti含有量は好ましくは0.01%以上である。 Similar to Nb, Ti improves the high-temperature strength of the ferritic stainless steel sheet for heat-resistant members by strengthening the solid solution of the matrix phase and strengthening the precipitation with carbonitride or the like. Further, Ti forms a carbonitride with C and N, suppresses crystal grain growth by a pinning effect, and contributes to the formation of a band-shaped fine grain structure having a crystal grain size of 20 μm or less in terms of a perfect circle. However, when the Ti content exceeds 0.2%, the room temperature ductility of the ferritic stainless steel sheet for heat-resistant members is lowered, and coarse Ti-based precipitates are formed, which deteriorates workability. Therefore, the Ti content is 0.2% or less, preferably 0.1% or less in consideration of the occurrence of surface defects and toughness. In order to surely obtain this effect due to the Ti content, the Ti content is preferably 0.01% or more.

Mo、Cu、Tiは、耐熱部材用フェライト系ステンレス鋼板の高温強度を高めるために、その一種を単独で含有してもよいし、二種以上を複合して含有してもよい。 Mo, Cu, and Ti may be contained alone or in combination of two or more in order to increase the high temperature strength of the ferritic stainless steel sheet for heat-resistant members.

(1−12)V:0.5%以下
Vは、微細な炭窒化物を形成し、析出強化作用およびピン止め効果により結晶粒成長を抑制し、真円換算の結晶粒径が20μm以下の帯状細粒組織の形成に寄与する。しかし、V含有量が0.5%を超えると、析出物が粗大化して高温強度が低下する。したがって、V含有量は、0.5%以下であり、製造コストや製造性を考慮すると好ましくは0.3%以下である。V含有によるこの効果を確実に得るためには、V含有量は好ましくは0.01%以上である。
(1-12) V: 0.5% or less V forms fine carbonitrides, suppresses crystal grain growth by precipitation strengthening action and pinning effect, and has a perfect circle equivalent crystal grain size of 20 μm or less. Contributes to the formation of strip-shaped fine grain structures. However, when the V content exceeds 0.5%, the precipitate becomes coarse and the high temperature strength decreases. Therefore, the V content is 0.5% or less, and preferably 0.3% or less in consideration of manufacturing cost and manufacturability. In order to surely obtain this effect due to the V content, the V content is preferably 0.01% or more.

(1−13)B:0.0050%以下
Bは、結晶粒界に偏析して耐熱部材用フェライト系ステンレス鋼板の2次加工性の向上に寄与する。しかし、B含有量が0.0050%を超えると、耐熱部材用フェライト系ステンレス鋼板の加工性および耐食性の低下をもたらす。したがって、B含有量は、0.0050%以下であり、好ましくは0.0020%以下である。B含有によるこの効果を確実に得るためには、B含有量は好ましくは0.0001%以上である。
(1-13) B: 0.0050% or less B segregates at the grain boundaries and contributes to the improvement of the secondary workability of the ferritic stainless steel sheet for heat-resistant members. However, when the B content exceeds 0.0050%, the processability and corrosion resistance of the ferrite stainless steel sheet for heat-resistant members are lowered. Therefore, the B content is 0.0050% or less, preferably 0.0020% or less. In order to surely obtain this effect due to the B content, the B content is preferably 0.0001% or more.

(1−14)残部
上記以外の残部は、Feおよび不純物である。不純物としては、鉱石やスクラップ等の原材料に含まれるものや、製造工程において含まれるものが例示される。
(1-14) Remaining Remaining other than the above is Fe and impurities. Examples of impurities include those contained in raw materials such as ore and scrap, and those contained in the manufacturing process.

(2)金属組織:
本発明に係る耐熱部材用フェライト系ステンレス鋼板は、真円換算の結晶粒径が20μm以下のフェライト結晶粒の面積率が3.0〜15.0%である金属組織を有する。この金属組織を説明する。
(2) Metallographic structure:
The ferrite-based stainless steel sheet for heat-resistant members according to the present invention has a metal structure in which the area ratio of ferrite crystal grains having a crystal grain size of 20 μm or less in terms of a perfect circle is 3.0 to 15.0%. This metallographic structure will be described.

本発明者らは、Nbを含有する耐熱部材用フェライト系ステンレス鋼板のr値の異方性Δrを低減するため、化学組成および製造条件を種々変化させることにより金属組織を変化させた耐熱部材用フェライト系ステンレス鋼板の試作し、r値の異方性Δrと金属組織の関係を調べた。 In order to reduce the anisotropic Δr of the r value of the ferritic stainless steel sheet for heat-resistant members containing Nb, the present inventors have changed the metal structure by variously changing the chemical composition and manufacturing conditions for heat-resistant members. A ferritic stainless steel sheet was prototyped, and the relationship between the r-value anisotropic Δr and the metallographic structure was investigated.

その結果、Nbを含有する耐熱部材用フェライト系ステンレス鋼板の金属組織において、フェライト母相の集合組織や粒径、さらには析出物だけでなく、真円換算の結晶粒径が20μm以下の微細なフェライト粒の金属組織内での分布状態に大きく影響することが判明した。 As a result, in the metal structure of the ferritic stainless steel sheet for heat-resistant members containing Nb, not only the texture and particle size of the ferrite matrix, and also the precipitate, but also the crystal grain size in terms of a perfect circle is as fine as 20 μm or less. It was found that the distribution of ferritic grains in the metallographic structure was greatly affected.

すなわち、耐熱部材用フェライト系ステンレス鋼板のL断面組織中に真円換算の結晶粒径が20μm以下の、圧延面に平行に伸びた帯状の細粒組織(以下、「帯状細粒組織」という)が一定量以上存在し、それ以外の領域の金属組織が、真円換算の結晶粒径が20μm超のフェライト粒である場合、r値の面内異方性Δrが0.1以下に抑制される。また、帯状細粒組織の面積率は、金属組織中の真円換算の結晶粒径が20μm以下の微細なフェライト粒の面積率と相関することが判明した。すなわち、真円換算の結晶粒径が20μm以下の微細なフェライト結晶粒の面積率が3.0%以上であると、帯状細粒組織が十分に形成される。 That is, a strip-shaped fine grain structure extending parallel to the rolled surface in the L cross-sectional structure of the ferrite-based stainless steel sheet for heat-resistant members and having a crystal grain size of 20 μm or less in terms of a perfect circle (hereinafter referred to as “belt-shaped fine grain structure”). Is present in a certain amount or more, and when the metal structure in the other region is a ferrite grain having a crystal grain size of more than 20 μm in terms of a perfect circle, the in-plane anisotropy Δr of the r value is suppressed to 0.1 or less. To. Further, it was found that the area ratio of the strip-shaped fine grain structure correlates with the area ratio of fine ferrite grains having a crystal grain size of 20 μm or less in the metal structure in terms of a perfect circle. That is, when the area ratio of fine ferrite crystal grains having a perfect circle-equivalent crystal grain size of 20 μm or less is 3.0% or more, a strip-shaped fine grain structure is sufficiently formed.

帯状細粒組織がr値の面内異方性Δrを低減する原理は、明確ではないが、帯状細粒組織は周辺の組織よりも強度が高く変形し難いため、帯状細粒組織が帯状に分布することにより、変形し易い粗粒部が引張変形する際に、板幅方向の減少が大きい方位への引張であっても、帯状細粒組織によって板幅方向の減少が抑制され、これにより、r値の面内異方性Δrが低減すると推定される。 The principle by which the band-shaped fine-grained structure reduces the in-plane anisotropy Δr of the r value is not clear, but since the band-shaped fine-grained structure has higher strength than the surrounding structure and is not easily deformed, the band-shaped fine-grained structure becomes band-shaped. Due to the distribution, when the easily deformable coarse grain portion is tensile-deformed, the strip-shaped fine grain structure suppresses the decrease in the plate width direction even if the tension is in a direction in which the decrease in the plate width direction is large. , It is estimated that the in-plane anisotropy Δr of the r value is reduced.

真円換算の結晶粒径が20μm以下のフェライト結晶粒の面積率が3.0%未満であると、r値の面内異方性Δrの低減効果を十分に得られず、この面積率が15.0%を超えると、耐熱部材用フェライト系ステンレス鋼板の高温強度が不足するうえ、常温での加工性が低下する。このため、真円換算の結晶粒径が20μm以下のフェライト結晶粒の面積率は3.0〜15.0%である。 If the area ratio of ferrite crystal grains having a perfect circle-equivalent crystal grain size of 20 μm or less is less than 3.0%, the effect of reducing the in-plane anisotropy Δr of the r value cannot be sufficiently obtained, and this area ratio becomes If it exceeds 15.0%, the high-temperature strength of the ferrite-based stainless steel plate for heat-resistant members is insufficient, and the workability at room temperature is lowered. Therefore, the area ratio of ferrite crystal grains having a perfect circle-equivalent crystal grain size of 20 μm or less is 3.0 to 15.0%.

(3)機械特性
本発明に係る耐熱部材用フェライト系ステンレス鋼板は、r値の面内異方性Δrが0.1以下であり、かつ、圧延方向を長手方向とする試験片を用いた700℃引張試験における0.2%耐力が75MPa以上である機械特性を有する。面内異方性Δrは、上記(1)式および(2)式により定義される。
(3) Mechanical Properties The ferritic stainless steel sheet for heat-resistant members according to the present invention uses a test piece having an in-plane anisotropy Δr of r value of 0.1 or less and a rolling direction in the longitudinal direction 700. It has mechanical properties with a 0.2% proof stress of 75 MPa or more in a ℃ tensile test. The in-plane anisotropy Δr is defined by the above equations (1) and (2).

本発明に係る耐熱部材用フェライト系ステンレス鋼板は、高い高温強度を有する。また、本発明に係る耐熱部材用フェライト系ステンレス鋼板は、r値の面内異方性Δrが非常に小さいため、深絞り加工時に耳が形成され難く、成形時の歩留まりが向上する。 The ferrite-based stainless steel sheet for heat-resistant members according to the present invention has high high-temperature strength. Further, in the ferritic stainless steel sheet for heat-resistant members according to the present invention, since the in-plane anisotropy Δr of the r value is very small, it is difficult for ears to be formed during deep drawing, and the yield during molding is improved.

2.製造方法
本発明に係る耐熱部材用フェライト系ステンレス鋼板は、上述した化学組成を有する鋼片に熱間圧延を行い、仕上熱間圧延後に700〜850℃で巻取り、熱延板焼鈍を行わずに冷間圧延を行い、最終焼鈍を850〜950℃の温度域で行うことにより、上述した帯状細粒組織を形成して、製造される。
2. 2. Manufacturing Method The ferritic stainless steel sheet for heat-resistant members according to the present invention is hot-rolled on a steel piece having the above-mentioned chemical composition, wound at 700 to 850 ° C. after hot-rolling for finishing, and not annealed by hot-rolled sheet. It is produced by cold rolling and final annealing in a temperature range of 850 to 950 ° C. to form the above-mentioned ferritic fine grain structure.

従来の耐熱部材用フェライト系ステンレス鋼板は、熱間圧延後に焼鈍を施し、冷間圧延後に1000℃以上の温度域で最終焼鈍を行っていたが、本発明に係る製造方法では、熱延板焼鈍を行わないことと、最終焼鈍を、従来よりも低温域で行うことにより、耐熱熱部材用フェライト系ステンレス鋼板に上述の帯状細粒組織を形成する。 Conventional ferritic stainless steel sheets for heat-resistant members are annealed after hot rolling and finally annealed in a temperature range of 1000 ° C. or higher after cold rolling. However, in the production method according to the present invention, hot-rolled sheet is annealed. The above-mentioned strip-shaped fine grain structure is formed on the ferritic stainless steel sheet for heat-resistant heat members by not performing the above and performing the final annealing in a lower temperature range than before.

仕上熱間圧延後の巻取り温度が700℃未満または850℃超であったり、熱延板焼鈍を行ったり、あるいは、最終焼鈍温度が850℃未満または950℃超であったりすると、上述の帯状細粒組織を得られない。 If the take-up temperature after finishing hot rolling is less than 700 ° C or more than 850 ° C, hot rolled sheet annealing is performed, or the final annealing temperature is less than 850 ° C or more than 950 ° C, the above-mentioned strip shape Fine grain structure cannot be obtained.

本発明を、実施例を参照しながら、より具体的に説明する。
表1に示す化学組成(質量%、残部はFeおよび不純物)A〜Vを有する100mm厚の50kg鋼塊を溶製し、これらの鋼塊を1150〜1250℃に加熱した後、仕上温度が800〜1000℃の範囲内となるように4.0mm厚まで熱間圧延し、一旦水冷し、コイルに巻取った後の保温状態を再現するため、大気熱処理を1時間行った。
The present invention will be described in more detail with reference to Examples.
A 100 mm thick 50 kg ingot having the chemical composition (mass%, balance Fe and impurities) A to V shown in Table 1 was melted, and these ingots were heated to 1150 to 1250 ° C., and then the finishing temperature was 800. It was hot-rolled to a thickness of 4.0 mm so as to be within the range of ~ 1000 ° C., water-cooled once, and subjected to atmospheric heat treatment for 1 hour in order to reproduce the heat-retaining state after winding on a coil.

一部試料について熱延板焼鈍を施し、その後焼鈍しなかったものを含めた全ての試料について1.2mm厚まで冷間圧延した。
得られた冷延鋼板について大気熱処理(最終焼鈍)を行い、製品である耐熱部材用フェライト系ステンレス鋼板とした。コイル巻取再現熱処理温度、熱延板焼鈍温度、最終焼鈍温度は表2に示す。
Some samples were annealed on a hot-rolled plate, and then all the samples, including those not annealed, were cold-rolled to a thickness of 1.2 mm.
The obtained cold-rolled steel sheet was subjected to atmospheric heat treatment (final annealing) to obtain a ferritic stainless steel sheet for heat-resistant members, which is a product. Table 2 shows the coil winding reproduction heat treatment temperature, the hot-rolled plate annealing temperature, and the final annealing temperature.

このようにして得られた薄板について、L断面(圧延方向に並行な板厚断面)のミクロ組織を観察し、真円換算の結晶粒径20μm以下のフェライト結晶粒の面積率を以下の方法で求めた。画像処理機能を備えた光学顕微鏡または走査型電子顕微鏡を用い、500倍の視野(200μm×250μmの視野)で板厚方向全厚を含む組写真を作成し、そこで観察される各フェライト結晶粒の断面面積(S、S、・・・、S)を測定する。各フェライト結晶粒の断面形状を真円と見なした場合の結晶粒径(2r、2r、・・・、2r、本発明では「真円換算の結晶粒径」と呼ぶ。)をそれぞれの断面面積から求める(2r=2(S/π)1/2)。真円換算の結晶粒径が20μm以下の結晶粒と20μmを超える結晶粒を選別して、次に示す式で、真円換算の結晶粒径が20μm以下のフェライト結晶粒の面積率を求める。 With respect to the thin plate thus obtained, the microstructure of the L cross section (plate thickness cross section parallel to the rolling direction) was observed, and the area ratio of ferrite crystal grains having a crystal grain size of 20 μm or less in terms of a perfect circle was determined by the following method. I asked. Using an optical microscope or scanning electron microscope equipped with an image processing function, a set photograph including the total thickness in the plate thickness direction is created with a field of view of 500 times (field of view of 200 μm × 250 μm), and each ferrite crystal grain observed there is The cross-sectional area (S 1 , S 2 , ..., Sn ) is measured. Crystal grain size in the case of considers each ferrite grain cross-sectional shape a perfect circle (2r 1, 2r 2, ··· , 2r n, in the present invention referred to as "crystal grain size of a perfect circle converted".) The obtaining from each of the cross-section area (2r n = 2 (S n / π) 1/2). Crystal grains having a perfect circle-equivalent crystal grain size of 20 μm or less and crystal grains having a perfect circle-equivalent crystal grain size of more than 20 μm are selected, and the area ratio of ferrite crystal grains having a perfect circle-equivalent crystal grain size of 20 μm or less is obtained by the following formula.

真円換算の結晶粒径が20μm以下のフェライト結晶粒の面積率(%)=(真円換算の結晶粒径が20μm以下の結晶粒の断面面積の合計)/{(真円換算の結晶粒径が20μm以下の結晶粒の断面面積の合計+真円換算の結晶粒径が20μmを超える結晶粒の断面面積の合計)}×100 Area ratio (%) of ferrite crystal grains with a perfect circle equivalent crystal grain size of 20 μm or less = (total cross-sectional area of crystal grains with a perfect circle equivalent crystal grain size of 20 μm or less) / {(round shape equivalent crystal grains) Total cross-sectional area of crystal grains with a diameter of 20 μm or less + total cross-sectional area of crystal grains with a perfect circle-equivalent crystal grain size of more than 20 μm)} × 100

また、得られた薄板からJIS13号B引張試験片を採取し、JIS Z 2254に準拠し、L,D,C方向のr値を評価した。ここでr値は、試験片に12%のひずみを付与した後に、上記(2)式を用いて算出した。 Further, a JIS No. 13B tensile test piece was collected from the obtained thin plate, and the r values in the L, D, and C directions were evaluated in accordance with JIS Z 2254. Here, the r value was calculated using the above equation (2) after applying a strain of 12% to the test piece.

また、L,D,C方向のr値の測定結果から、r値の異方性Δrを上記(1)式用いて算出した。異方性Δrは0.1以下であれば良好なものであると判断した。 Further, from the measurement results of the r value in the L, D, and C directions, the anisotropy Δr of the r value was calculated using the above equation (1). If the anisotropy Δr is 0.1 or less, it is judged to be good.

さらにこの薄板より高温引張試験片を切り出し、JIS G 0567に準拠して700℃で高温引張試験を行って、0.2%耐力を測定した。高温強度は、700℃における0.2%耐力が75MPa以上であれば良好であるものとした。 Further, a high-temperature tensile test piece was cut out from this thin plate, and a high-temperature tensile test was performed at 700 ° C. in accordance with JIS G 0567 to measure 0.2% proof stress. The high temperature strength was considered to be good if the 0.2% proof stress at 700 ° C. was 75 MPa or more.

試験結果を表2,3に併せて示す。表1〜3における下線は、本発明の範囲外であること、または試験結果が良好でないことを示す。 The test results are also shown in Tables 2 and 3. Underlines in Tables 1 to 3 indicate that they are outside the scope of the present invention or that the test results are not good.

Figure 0006841150
Figure 0006841150

Figure 0006841150
Figure 0006841150

Figure 0006841150
Figure 0006841150

表1における鋼種A〜Qの化学組成は、本発明の範囲を満足する。これに対し、鋼種RはC含有量が本発明の範囲の上限を上回り、鋼種SはSi含有量が本発明の範囲の上限を上回り、鋼種TはSi含有量が本発明の範囲の下限を下回り、鋼種UはCr含有量が本発明の範囲の下限を下回り、鋼種VはCr含有量が本発明の範囲の上限を上回り、鋼種W,XはNb含有量が本発明の範囲の下限を下回り、鋼種YはNb含有量が本発明の範囲の上限を上回る。 The chemical compositions of steel grades A to Q in Table 1 satisfy the scope of the present invention. On the other hand, the C content of the steel type R exceeds the upper limit of the range of the present invention, the Si content of the steel type S exceeds the upper limit of the range of the present invention, and the Si content of the steel type T exceeds the lower limit of the range of the present invention. Below, the Cr content of steel type U is below the lower limit of the range of the present invention, the Cr content of steel type V is above the upper limit of the range of the present invention, and the Nb content of steel types W and X is below the lower limit of the range of the present invention. Below, the Nb content of steel type Y exceeds the upper limit of the range of the present invention.

表2における本発明例1〜24は本発明の範囲を全て満足する本発明例であり、表3における比較例1〜39は本発明の範囲を満足しない比較例である。 Examples 1 to 24 of the present invention in Table 2 are examples of the present invention that satisfy all the scope of the present invention, and Comparative Examples 1 to 39 in Table 3 are comparative examples that do not satisfy the scope of the present invention.

本発明例1〜24は、真円換算の結晶粒径20μm以下のフェライト結晶粒の面積率(細粒組織の面積率)が3.0〜15.0%の範囲内にあり、r値の異方性Δrが0.1以下、具体的には0.011〜0.099であり、700℃における0.2%耐力が75MPa以上、具体的には、77〜113MPaであった。このため、本発明例は、r値の異方性Δrが小さく、常温での優れた加工性と高温強度を高次元で兼ね備える耐熱部材用フェライト系ステンレス鋼板であることが分かる。 In Examples 1 to 24 of the present invention, the area ratio (area ratio of fine grain structure) of ferrite crystal grains having a crystal grain size of 20 μm or less in terms of perfect circle is in the range of 3.0 to 15.0%, and the r value is The anisotropy Δr was 0.1 or less, specifically 0.011 to 0.099, and the 0.2% proof stress at 700 ° C. was 75 MPa or more, specifically 77 to 113 MPa. Therefore, it can be seen that the example of the present invention is a ferritic stainless steel sheet for heat-resistant members, which has a small r-value anisotropy Δr and has excellent workability at room temperature and high-temperature strength at a high level.

これに対し、比較例1〜6は、コイル巻取再現熱処理温度が700℃を下回るため、真円換算の結晶粒径が20μm以下のフェライト結晶粒の面積率が本発明の範囲(3.0〜15.0%)内に入らず、r値の異方性Δrが大きく、700℃における0.2%耐力が低いものもあった。 On the other hand, in Comparative Examples 1 to 6, since the coil winding reproduction heat treatment temperature is lower than 700 ° C., the area ratio of ferrite crystal grains having a crystal grain size of 20 μm or less in terms of perfect circle is within the range of the present invention (3.0). There were some that did not fall within the range of ~ 15.0%), had a large anisotropy Δr of the r value, and had a low 0.2% proof stress at 700 ° C.

比較例7〜11は、800〜1000℃で熱延板焼鈍を行ったため、真円換算の結晶粒径が20μm以下のフェライト結晶粒の面積率(細粒組織の面積率)が本発明の範囲(3.0〜15.0%)内に入らず、r値の異方性Δrが大きかった。 In Comparative Examples 7 to 11, since the hot-rolled plate was annealed at 800 to 1000 ° C., the area ratio of ferrite crystal grains (area ratio of fine grain structure) having a crystal grain size of 20 μm or less in terms of perfect circle is within the scope of the present invention. It did not fall within (3.0 to 15.0%), and the anisotropy Δr of the r value was large.

比較例12〜19は、最終焼鈍温度が850〜950℃の温度域を外れるため、真円換算の結晶粒径が20μm以下のフェライト結晶粒の面積率が本発明の範囲(3.0〜15.0%)内に入らず、r値の異方性Δrが大きく、700℃における0.2%耐力が低いものもあった。 In Comparative Examples 12 to 19, since the final annealing temperature is outside the temperature range of 850 to 950 ° C., the area ratio of ferrite crystal grains having a perfect circle-equivalent crystal grain size of 20 μm or less is within the range of the present invention (3.0 to 15). Some of them did not fall within 0.0%), had a large anisotropy Δr of r value, and had a low 0.2% proof stress at 700 ° C.

比較例20〜24は、C含有量が本発明の範囲の上限を上回るため、真円換算の結晶粒径が20μm以下のフェライト結晶粒の面積率が本発明の範囲(3.0〜15.0%)内に入らず、r値の異方性Δrが大きかった。 In Comparative Examples 20 to 24, since the C content exceeds the upper limit of the range of the present invention, the area ratio of ferrite crystal grains having a crystal grain size of 20 μm or less in terms of a perfect circle is within the range of the present invention (3.0 to 15. It did not fall within 0%), and the anisotropy Δr of the r value was large.

比較例25,26は、Si含有量が本発明の範囲の上限を上回り、特に比較例26はコイル巻取再現熱処理温度が本発明の範囲の上限を上回るため、r値の異方性Δrが大きかった。 In Comparative Examples 25 and 26, the Si content exceeded the upper limit of the range of the present invention, and in particular, in Comparative Example 26, the coil winding reproduction heat treatment temperature exceeded the upper limit of the range of the present invention, so that the anisotropy Δr of the r value was increased. It was big.

比較例27,28は、Si含有量が本発明の範囲の下限を下回り、特に比較例28は熱延板焼鈍を行ったため、比較例27は700℃における0.2%耐力が低下し、比較例28はr値の異方性Δrが大きかった。 In Comparative Examples 27 and 28, the Si content was below the lower limit of the range of the present invention, and in particular, Comparative Example 28 was annealed with a hot-rolled plate, so that Comparative Example 27 had a 0.2% proof stress at 700 ° C. In Example 28, the anisotropy Δr of the r value was large.

比較例29は、Cr含有量が本発明の範囲の下限を下回るため、700℃における0.2%耐力が低下した。 In Comparative Example 29, since the Cr content was below the lower limit of the range of the present invention, the 0.2% proof stress at 700 ° C. decreased.

比較例30,31は、Cr含有量が本発明の範囲の上限を上回り、特に比較例29は熱延板焼鈍を行ったため、真円換算の結晶粒径が20μm以下のフェライト結晶粒の面積率が本発明の範囲(3.0〜15.0%)内に入らず、r値の異方性Δrが大きかった。 In Comparative Examples 30 and 31, the Cr content exceeded the upper limit of the range of the present invention. In particular, in Comparative Example 29, since the hot-rolled plate was annealed, the area ratio of the ferrite crystal grains having a perfect circle-equivalent crystal grain size of 20 μm or less was performed. Was not within the range of the present invention (3.0 to 15.0%), and the anisotropy Δr of the r value was large.

比較例32〜34は、Nb含有量が本発明の範囲の下限を下回り、特に比較例34は最終焼鈍温度が850℃を下回ったため、r値の異方性Δrが大きいか、または700℃における0.2%耐力が低下した。 In Comparative Examples 32 to 34, the Nb content was below the lower limit of the range of the present invention, and in particular, in Comparative Example 34, the final annealing temperature was below 850 ° C., so that the anisotropy Δr of the r value was large or at 700 ° C. The yield strength decreased by 0.2%.

比較例35,36は、Nb含有量が本発明の範囲の下限を下回るため、700℃における0.2%耐力が低下した。 In Comparative Examples 35 and 36, the Nb content was below the lower limit of the range of the present invention, so that the 0.2% proof stress at 700 ° C. decreased.

さらに、比較例37〜39は、Nb含有量が本発明の範囲の上限を上回るため、r値の異方性Δrが大きかった。 Further, in Comparative Examples 37 to 39, since the Nb content exceeded the upper limit of the range of the present invention, the anisotropy Δr of the r value was large.

Claims (5)

化学組成が、質量%で、
C:0.001〜0.02%、
Si:0.2%超3.0%以下、
Mn:0.20〜1.0%、
P:0.01〜0.08%、
S:0.0001〜0.0100%、
Cr:10〜20%、
Nb:0.32%超1.0%以下、
Al:0.0005〜0.500%、
N:0.005〜0.02%、
Ni:0〜1%、
Mo:0〜3.0%、
Cu:0〜1%、
Ti:0〜0.2%、
V:0〜0.5%、
B:0〜0.0050%
を含有し、残部がFeおよび不純物であり、
金属組織として、真円換算の結晶粒径が20μm以下のフェライト結晶粒の面積率が3.0〜15.0%であり、
機械特性として、下記(1)式により定義されるr値の異方性Δrが0.1以下であり、かつ、圧延方向を長手方向とする試験片を用いた700℃引張試験における0.2%耐力が75MPa以上である、耐熱部材用フェライト系ステンレス鋼板。
Δr=|(r+r90)/2−r45| ・・・・・(1)
(1)式において、r、r45およびr90は、耐熱部材用フェライト系ステンレス鋼板の圧延方向、圧延方向に対して45°の方向および、圧延直角方向をそれぞれ長手方向とする試験片を用いて常温で引張試験を行い、それぞれの方向について下記(2)式に従って求めたr値である。
r=ln(W/W)/ln(t/t) ・・・・・(2)
(2)式において、Wおよびt、ならびに、Wおよびtは、それぞれ、引張塑性変形後の試験片の幅および板厚、ならびに、引張塑性変形前の試験片の幅および板厚である。
The chemical composition is mass%,
C: 0.001 to 0.02%,
Si: More than 0.2% and less than 3.0%,
Mn: 0.25 to 1.0%,
P: 0.01-0.08%,
S: 0.0001 to 0.0100%,
Cr: 10 to 20%,
Nb: More than 0.32% and less than 1.0%,
Al: 0.0005 to 0.500%,
N: 0.005 to 0.02%,
Ni: 0 to 1%,
Mo: 0-3.0%,
Cu: 0 to 1%,
Ti: 0-0.2%,
V: 0-0.5%,
B: 0 to 0.0050%
Containing, the balance is Fe and impurities,
As a metal structure, the area ratio of ferrite crystal grains having a crystal grain size of 20 μm or less in terms of a perfect circle is 3.0 to 15.0%.
As mechanical properties, the anisotropy Δr of the r value defined by the following equation (1) is 0.1 or less, and 0.2 in a 700 ° C. tensile test using a test piece whose rolling direction is the longitudinal direction. Ferritic stainless steel sheet for heat-resistant members with a% yield strength of 75 MPa or more.
Δr = | (r 0 + r 90 ) / 2-r 45 | ... (1)
In the formula (1), r 0 , r 45 and r 90 are test pieces having the rolling direction of the ferrite-based stainless steel sheet for heat-resistant members, the direction of 45 ° with respect to the rolling direction, and the direction perpendicular to the rolling as the longitudinal direction, respectively. It is an r value obtained by performing a tensile test at room temperature using the product in accordance with the following equation (2) in each direction.
r = ln (W / W 0 ) / ln (t / t 0 ) ... (2)
In equation (2), W and t, and W 0 and t 0 are the width and plate thickness of the test piece after tensile plastic deformation and the width and plate thickness of the test piece before tensile plastic deformation, respectively. ..
Ni:0.01〜1質量%を含有する、請求項1に記載の耐熱部材用フェライト系ステンレス鋼板。 The ferrite-based stainless steel sheet for heat-resistant members according to claim 1, which contains Ni: 0.01 to 1% by mass. 質量%で、
Mo:0.03〜3.0%、
Cu:0.01〜1%、および
Ti:0.01〜0.2%
の1種以上を含有する、請求項1または2に記載の耐熱部材用フェライト系ステンレス鋼板。
By mass%
Mo: 0.03 to 3.0%,
Cu: 0.01 to 1%, and Ti: 0.01 to 0.2%
The ferrite-based stainless steel sheet for a heat-resistant member according to claim 1 or 2, which contains one or more of the above-mentioned.
V:0.01〜0.5質量%を含有する、請求項1〜3のいずれかに記載の耐熱部材用フェライト系ステンレス鋼板。 The ferrite-based stainless steel sheet for heat-resistant members according to any one of claims 1 to 3, which contains V: 0.01 to 0.5% by mass. B:0.0001〜0.0050%質量を含有する、請求項1〜4のいずれかに記載の耐熱部材用フェライト系ステンレス鋼板。 B: The ferritic stainless steel sheet for heat-resistant members according to any one of claims 1 to 4, which contains 0.0001 to 0.0050% by mass.
JP2017090419A 2017-04-28 2017-04-28 Ferritic stainless steel sheet for heat-resistant members Active JP6841150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017090419A JP6841150B2 (en) 2017-04-28 2017-04-28 Ferritic stainless steel sheet for heat-resistant members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017090419A JP6841150B2 (en) 2017-04-28 2017-04-28 Ferritic stainless steel sheet for heat-resistant members

Publications (2)

Publication Number Publication Date
JP2018188687A JP2018188687A (en) 2018-11-29
JP6841150B2 true JP6841150B2 (en) 2021-03-10

Family

ID=64478138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017090419A Active JP6841150B2 (en) 2017-04-28 2017-04-28 Ferritic stainless steel sheet for heat-resistant members

Country Status (1)

Country Link
JP (1) JP6841150B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519505B2 (en) * 2004-04-07 2010-08-04 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet having excellent formability and method for producing the same
JP4606820B2 (en) * 2004-09-10 2011-01-05 新日鐵住金ステンレス株式会社 Method for producing soft Nb-added ferritic stainless steel sheet
JP4498950B2 (en) * 2005-02-25 2010-07-07 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for exhaust parts with excellent workability and manufacturing method thereof
JP5420292B2 (en) * 2008-05-12 2014-02-19 日新製鋼株式会社 Ferritic stainless steel
JP5349153B2 (en) * 2009-06-15 2013-11-20 日新製鋼株式会社 Ferritic stainless steel for brazing and heat exchanger members
JP5793459B2 (en) * 2012-03-30 2015-10-14 新日鐵住金ステンレス株式会社 Heat-resistant ferritic stainless steel cold-rolled steel sheet excellent in workability, ferritic stainless hot-rolled steel sheet for cold-rolled material, and production method thereof
CN106795608B (en) * 2014-10-31 2018-06-19 新日铁住金不锈钢株式会社 Ferrite-group stainless steel steel plate, steel pipe and its manufacturing method
EP3239315B1 (en) * 2014-12-24 2019-01-30 JFE Steel Corporation Ferritic stainless steel and process for producing same
JP6367259B2 (en) * 2016-04-21 2018-08-01 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate with excellent carburization and oxidation resistance

Also Published As

Publication number Publication date
JP2018188687A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
JP5793459B2 (en) Heat-resistant ferritic stainless steel cold-rolled steel sheet excellent in workability, ferritic stainless hot-rolled steel sheet for cold-rolled material, and production method thereof
JP5794945B2 (en) Heat resistant austenitic stainless steel sheet
JP5546911B2 (en) Ferritic stainless steel sheet with excellent heat resistance and workability
JP4702493B1 (en) Ferritic stainless steel with excellent heat resistance
JP5709875B2 (en) Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
JP5546922B2 (en) Ferritic stainless steel sheet with excellent heat resistance and workability and method for producing the same
JP5396752B2 (en) Ferritic stainless steel with excellent toughness and method for producing the same
WO2020110843A1 (en) Hot-rolled steel sheet
JP6851269B2 (en) Manufacturing method of ferritic stainless steel sheets, ferritic stainless steel members for steel pipes and exhaust system parts, and ferritic stainless steel sheets
KR101692660B1 (en) Ferritic stainless steel sheet having excellent heat resistance
WO2020110855A1 (en) Hot-rolled steel sheet
JP2006233278A (en) Ferritic stainless steel sheet for exhaust parts with excellent workability and its manufacturing method
JP5918796B2 (en) Ferritic stainless hot rolled steel sheet and steel strip with excellent toughness
JP2016191150A (en) Stainless steel sheet excellent in toughness and production method thereof
CN114502760B (en) Ferritic stainless steel sheet, method for producing same, and ferritic stainless steel member
JP4185425B2 (en) Ferritic steel sheet with improved formability and high temperature strength, high temperature oxidation resistance and low temperature toughness at the same time
JP5937861B2 (en) Heat-resistant ferritic stainless steel sheet with excellent weldability
WO2008004506A1 (en) Cr-CONTAINING STEEL EXCELLENT IN THERMAL FATIGUE CHARACTERISTICS
JP6841150B2 (en) Ferritic stainless steel sheet for heat-resistant members
JPWO2018135028A1 (en) Ferritic stainless steel, manufacturing method thereof, and ferritic stainless steel for automobile exhaust gas path member
JP2002194508A (en) Ferritic stainless steel sheet superior in workability and production method for the same
JP2019173149A (en) Ferritic stainless steel sheet, manufacturing method therefor, and ferritic stainless member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210201

R151 Written notification of patent or utility model registration

Ref document number: 6841150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350