JP2004043939A - Method for manufacturing annealed aluminum alloy sheet superior in appearance - Google Patents

Method for manufacturing annealed aluminum alloy sheet superior in appearance Download PDF

Info

Publication number
JP2004043939A
JP2004043939A JP2002206408A JP2002206408A JP2004043939A JP 2004043939 A JP2004043939 A JP 2004043939A JP 2002206408 A JP2002206408 A JP 2002206408A JP 2002206408 A JP2002206408 A JP 2002206408A JP 2004043939 A JP2004043939 A JP 2004043939A
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
sheet
appearance
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002206408A
Other languages
Japanese (ja)
Inventor
Toshiki Muramatsu
村松 俊樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky KK
Original Assignee
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky KK filed Critical Furukawa Sky KK
Priority to JP2002206408A priority Critical patent/JP2004043939A/en
Publication of JP2004043939A publication Critical patent/JP2004043939A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an annealed aluminum alloy sheet which is formed, further painted and baked if necessary, and is used as a material such as machinery and appliances, parts of home electric appliances, optical equipment, instruments and building materials, particularly the annealed aluminum alloy sheet superior in an appearance of formed parts. <P>SOLUTION: The alloy comprises one or more elements selected from among 1.5% or less Mg, 0.05-1.5% Cu, 0.05-1.5% Zn, 0.05-1.5% Mn, 0.03-0.4% Cr, 0.03-0.4% Zr, 0.03-0.4% V, 0.03-0.5% Fe and 0.005-0.2% Ti, and the balance Al with unavoidable impurities. The manufacturing method comprises rolling the above alloy into a sheet with a necessary thickness, and heating it in a continuous annealing line with a tension of 1.96 to 6.86 MPa, at a material temperature of 400 to 540°C for 3 minutes or shorter. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、各種機械器具、家電部品、光学機器、器物、建材等の素材として、成形加工し、更には必要により塗装焼付を施して使用されるアルミニウム合金焼鈍板の製造方法に関するものであり、特に成形部品の外観性能に優れるアルミニウム合金焼鈍板の製造方法に関するものである。
【0002】
【従来の技術】
従来の焼鈍方法はボックスタイプの焼鈍炉に数コイルを装入し加熱するバッチ焼鈍方法である。加熱は主に石油やガスを燃焼させたガスにより行われ、加熱速度は10〜50℃/hである。加熱焼鈍温度は合金により異なるが一般には280〜400℃である。また材料温度の均一化を達成する為に、加熱温度での保持が2〜10時間ほど行われる。
それに対して、コイルを巻き戻しながら炉中に通して加熱焼鈍する連続焼鈍方法が一般的になってきた。加熱方法は燃焼ガスによる方法や電磁誘導加熱による方法、これら両方法を組み合わせた方法と種々ある。加熱速度は加熱方法や板厚によりやや異なるが数℃〜数百度/sである。また加熱焼鈍温度は、保持時間が短いためバッチ焼鈍よりは高く400℃以上で行われる。加熱温度での保持時間は一般的には3分以内である。生産性を上げるために保持時間をとらず、加熱焼鈍温度に上げたらすぐに冷却する場合(保持時間0s)もある。
このようにバッチ焼鈍に比べ連続焼鈍では、加熱速度が速いという特徴があり、1コイル当たりの処理時間が早く、カンバン方式に対応する生産日数の短縮が可能となる。
【0003】
【発明が解決しようとする課題】
成形用に用いられる焼鈍材(JISではO材と呼称)を連続焼鈍ラインで生産する場合、合金や焼鈍条件により材料には圧延方向に直角に、ある程度の周期性を持った小波状の模様が発生する場合がある。この模様は成形加工を行っても残存し、塗装を行う事によってさらに明瞭に見えるようになる場合があり、このような模様が現れると商品価値は低下し、ユーザーから改善を求められることになる。
また、成形品の外観品質としては、この小波状の模様の他にも、成形加工時におけるリューダースマークやその他表面の種々の模様が発生しない表面外観性状が要求される。
この発明は以上の事情を背景としてなされたもので、板表面に小波状の模様のない外観性能に優れた成形加工用アルミニウム合金板の製造方法を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
前述の課題を解決するべく本発明者等が実験・検討を重ねた結果、板製造プロセス中において、連続焼鈍ラインにおける操炉条件を適切に制御する事により、前述の課題を解決し得ることを見出し、この発明をなすに至った。
【0005】
具体的には、この発明のアルミニウム合金板の製造方法は、請求項1記載のように、Mg1.5%以下(mass%、以下同じ)、残部がAlおよび不可避的不純物よりなる合金を必要な板厚の圧延板に対し、連続焼鈍ラインで張力を1.96〜6.86MPaで、材料温度を400℃以上540℃以下の温度で3分以内の加熱処理を行なう事を特徴とする外観性能に優れたアルミニウム合金焼鈍板の製造方法である。
また請求項2記載のように、Mg1.5%以下、Cu0.05〜1.5%、Zn0.05〜1.5%、 Mn0.05〜1.5%、Cr0.03〜0.4%、Zr0.03〜0.4%、V0.03〜0.4%、Fe0.03〜0.5%、Ti0.005〜0.2%のうちから選ばれた1種または2種以上を含有し、残部がAlおよび不可避的不純物よりなる合金を必要な板厚の圧延板に対し、連続焼鈍ラインで張力を1.96〜6.86MPaで、材料温度を400℃以上540℃以下の温度で3分以内の加熱処理を行なう事を特徴とする表面性状に優れたアルミニウム合金焼鈍板の製造方法である。
【0006】
【発明の実施の形態】
先ずこの発明の合金の成分組成限定理由について説明する。
Mg:
Mg量が1.5%を越えて含有されると連続焼鈍ラインにおいて板幅方向に沿う筋状の表面欠陥は観察されない。このため本発明の対象はMg量を1.5%以下とする。
【0007】
Cu,Zn,Mn,Cr,Zr,V,Ti,Fe:
これらは強度向上のために必要に応じ1種または2種以上添加できる。
Cuは強度向上と成形性向上の為に添加される。Cu量が0.05%未満では上記効果が不十分である。一方Cuが1.5%を越えると曲げ加工性や耐食性が低下する。このためCuを添加する場合は0.05〜1.5%とした。
Znは合金の時効性の向上を通じて強度向上に寄与する元素であり、その含有量が0.05%未満では上記の効果が不充分であり、一方1.5%を越えれば成形性が低下する。従ってZnを添加する場合Zn量は0.05〜1.5%の範囲内とした。
さらにMn,Cr,Zr,Vはいずれも強度向上と結晶粒の微細化および組織の安定化に効果がある元素であり、Mnは0.05%未満では上記の効果が充分に得られない。またCr,Zr,Vが0.03%未満でも上記効果が十分に得られない。一方Mnが1.5%、Cr、Zr,Vが0.4%を越えれば上記の効果が飽和するばかりでなく、巨大金属間化合物が生成されて成形性に悪影響を及ぼすおそれがあり、したがってMnは0.05〜1.5%、Cr,Zr,Vはいずれも0.03〜0.4%の範囲内とした。
またTiも強度向上と鋳塊組織の微細化に有効な元素であり、その含有量が0.005%未満では充分な効果が得られず、一方0.2%を越えればTi添加の効果が飽和するばかりでなく、巨大晶出物が生じるおそれがあるから、Tiは0.005〜0.2%の範囲内とした。
そしてまたFeも強度向上と結晶粒微細化に有効な元素であり、その含有量が0.03%未満では充分な効果が得られず、一方0.5%を越えれば成形性が低下するおそれがあり、したがってFeは0.03〜0.5%の範囲内とした。
なおこれらのZn,Mn,Cr,Zr,V,Ti,Feの範囲は、積極的な添加元素としてこれらの元素を含む場合について示したものであり、いずれもその下限値よりも少ない量を不純物として含有していることは特に支障ない。特に、0.03%未満のFeは、通常のアルミ地金を用いれば不可避的に含有されるのが通常である。
【0008】
以上の各元素のほかは、基本的にはAlおよび不可避的不純物とすれば良い。Siは不可避的不純物元素であり0.3%以下であれば特に影響はない
また一般に結晶粒微細化のために前述のTiと同時にBを添加することもあり、この発明の場合もTiとともに500ppm以下のBを添加することは許容される。
BeはMg含有合金に一般的に使用される元素であり溶湯の酸化を防止する効果がある。必要であれば0.1ppm以上50ppm以下含有できる。
【0009】
次にこの発明の方法における製造プロセスについて説明する。
連続焼鈍ラインまでの工程すなわち所要の製品板厚の圧延板とするまでの工程は、従来の一般的な工程と同様であれば良い。
すなわち、鋳造はDC鋳造法等によっても良いし、連続鋳造で2〜10mmの板厚へストリップ鋳造しても良いし、10〜100mm厚さへブロック式連続鋳造を行っても良い。
その後常法により必要に応じ均質化処理を施し、熱間圧延および冷間圧延を行なって所要の板厚とすれば良く、また熱間圧延と冷間圧延との間、あるいは冷間圧延の中途において必要に応じて中間焼鈍を行なっても良い。
【0010】
上述のようにして所要の製品板厚とした後、連続焼鈍ラインを用いて最終焼鈍を行う。
焼鈍加熱温度は400〜540℃とする。400℃未満では完全に再結晶がしない場合がある。一方、540℃を越えて焼鈍すると幅方向に沿う表面筋模様が発生する。
保持時間は3分以内とする。再結晶を完全に終了させれば良いのであり、できるだけ短時間が好ましい。3分を越えて行ってもエネルギー的に無駄であり、また結晶粒が成長しやすくなり、肌荒れ等の表面欠陥が生じやすくなるので3分以内とする。再結晶が完全に終了する条件であれば、加熱温度によっては保持無しで加熱温度に到達したらすぐに冷却させてもよい。
板の炉内張力は1.96〜6.86MPaとする。Mgが1.5%以下の素材では高温強度が低く、連続焼鈍ラインでの加熱により局部的に軟化し、張力及びラインスピード等の影響で周期的に局部的な伸びが発生し、板幅方向に沿う小波状の筋模様が発生する。しかし、400〜540℃で3分以内の加熱という焼鈍条件のもとで張力を1.96〜6.86MPaの範囲とすることで、この周期的な局部伸びの発生を抑制することができる。1.96MPa未満ではライン走行中に板が垂れ下がり擦り傷が発生したり蛇行が発生する。6.86MPaを越えて張力を掛けると伸びて破断したり、破断しなくても板厚が薄くなったり、幅が短かくなるという不具合が現れ易い。
また板の通板速度は炉内温度と板の加熱温度、保持時間により異なってくるが、通常10m/min〜200m/minであれば特に筋模様への影響はない。
【0011】
【実施例】
以下、実施例により本発明法が有効なことを詳細に示す。
表1に示す本発明成分組成範囲内の合金記号A1〜A10の合金について、それぞれ常法に従って鋳造、熱間圧延、続いて冷間圧延を行なって厚さ1mmの圧延板とした。次いで各圧延板に対し、連続焼鈍ライン条件を変更し加熱焼鈍して、冷却してからコイル表面の幅方向の筋模様観察及び再結晶の程度を調査した。表2に加熱焼鈍の為の連続焼鈍ライン条件を示す。
筋模様観察としては焼鈍板を平らな台に置いて、砥石で軽く表面研削し幅方向に沿う小波状の周期的な筋模様があるか調査を行い、無しを○、有りを×として評価した。再結晶程度は断面の結晶粒観察を行い、完全に再結晶が終了していれば○、未再結晶部分が残留していれば×として評価を行った。また、疵などのその他の表面欠陥の有無についても目視観察した。その結果を表3に示す。
【0012】
【表1】

Figure 2004043939
【0013】
【表2】
Figure 2004043939
【0014】
【表3】
Figure 2004043939
【0015】
表3に示すように、合金A1、A2で本発明の焼鈍条件B1〜B3の発明例(No1〜3、No7〜9)ではいずれも完全に再結晶した焼鈍であり、小波状の模様の発生もなく良好な表面性状であった。
しかし、本発明の製造条件から外れたB4〜B6で作成したNo4〜6、No10〜12では完全に再結晶していなかったり、表面に筋模様が現れたり、擦り疵がついたりと表面性状が良くない結果となった。
本発明の成分範囲内の合金A3〜A10を本発明焼鈍条件で行った場合(No13〜20)も完全に再結晶した焼鈍材であり、表面性状も良好であった。
【0016】
【発明の効果】
以上、詳述したように本発明例によれば、Mg1.5%以下のアルミニウム合金板においても連続焼鈍による小波状の周期的な模様の発生のない外観性能に優れたアルミニウム合金焼鈍板を製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an aluminum alloy annealed plate that is used as a material for various types of machinery, home appliances, optical devices, equipment, building materials, etc., which is formed and further subjected to painting baking as necessary. In particular, the present invention relates to a method for producing an annealed aluminum alloy sheet having excellent appearance performance of a molded part.
[0002]
[Prior art]
The conventional annealing method is a batch annealing method in which several coils are charged into a box type annealing furnace and heated. Heating is performed mainly by burning oil or gas, and the heating rate is 10 to 50 ° C./h. The heat annealing temperature varies depending on the alloy, but is generally from 280 to 400 ° C. In order to achieve a uniform material temperature, holding at a heating temperature is performed for about 2 to 10 hours.
In contrast, a continuous annealing method in which a coil is passed through a furnace while being unwound and heated and annealed has become common. There are various heating methods, such as a method using combustion gas, a method using electromagnetic induction heating, and a method combining these two methods. The heating speed varies slightly depending on the heating method and the plate thickness, but is several degrees C to several hundred degrees / s. In addition, the heat annealing temperature is higher than that of batch annealing and is performed at 400 ° C. or higher because the holding time is short. The holding time at the heating temperature is generally within 3 minutes. In some cases, the holding time is not taken to increase the productivity, and cooling is performed immediately after the temperature is raised to the heating annealing temperature (holding time 0 s).
As described above, the continuous annealing has a feature that the heating rate is faster than the batch annealing, and the processing time per one coil is short, and the number of production days corresponding to the kanban method can be reduced.
[0003]
[Problems to be solved by the invention]
When annealed material used for forming (referred to as O material in JIS) is produced in a continuous annealing line, the material has a small wave-like pattern with a certain periodicity at right angles to the rolling direction depending on the alloy and annealing conditions. May occur. This pattern remains even after forming processing, and may become more clearly visible by painting, and when such a pattern appears, the commercial value decreases and the user needs improvement. .
Further, as the appearance quality of the molded article, in addition to the small wavy pattern, a surface appearance property that does not generate a Ruder's mark or other various patterns on the surface during molding is required.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing an aluminum alloy sheet for forming and processing having excellent appearance performance without a small wavy pattern on the sheet surface.
[0004]
[Means for Solving the Problems]
As a result of repeated experiments and studies by the present inventors to solve the above-mentioned problems, it was found that the above-mentioned problems can be solved by appropriately controlling the furnace operating conditions in the continuous annealing line during the plate manufacturing process. Heading, this led to the invention.
[0005]
More specifically, the method for manufacturing an aluminum alloy plate of the present invention requires an alloy comprising 1.5% or less (mass%, the same applies hereinafter) of Mg and the balance of Al and unavoidable impurities. Appearance performance characterized by performing a heat treatment on a rolled sheet having a thickness of 1.96 to 6.86 MPa in a continuous annealing line at a material temperature of 400 ° C. to 540 ° C. for 3 minutes or less. This is a method for producing an aluminum alloy annealed plate excellent in quality.
Further, as described in claim 2, Mg 1.5% or less, Cu 0.05-1.5%, Zn 0.05-1.5%, Mn 0.05-1.5%, Cr 0.03-0.4% , Zr 0.03 to 0.4%, V 0.03 to 0.4%, Fe 0.03 to 0.5%, and Ti 0.005 to 0.2%. Then, for a rolled plate having a required thickness, an alloy consisting of Al and unavoidable impurities with a balance of 1.96 to 6.86 MPa in a continuous annealing line and a material temperature of 400 ° C. to 540 ° C. This is a method for producing an aluminum alloy annealed sheet having excellent surface properties, wherein a heat treatment is performed within 3 minutes.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the reasons for limiting the composition of the alloy of the present invention will be described.
Mg:
If the content of Mg exceeds 1.5%, no streak-like surface defects along the sheet width direction are observed in the continuous annealing line. Therefore, the object of the present invention is to set the Mg content to 1.5% or less.
[0007]
Cu, Zn, Mn, Cr, Zr, V, Ti, Fe:
One or more of these can be added as needed to improve the strength.
Cu is added to improve strength and formability. If the Cu content is less than 0.05%, the above effect is insufficient. On the other hand, when Cu exceeds 1.5%, bending workability and corrosion resistance are reduced. Therefore, when Cu is added, the content is set to 0.05 to 1.5%.
Zn is an element that contributes to the strength improvement through the improvement of the aging property of the alloy. If its content is less than 0.05%, the above effects are insufficient, while if it exceeds 1.5%, the formability decreases. . Therefore, when Zn is added, the amount of Zn is set in the range of 0.05 to 1.5%.
Further, Mn, Cr, Zr, and V are all elements that are effective in improving strength, refining crystal grains, and stabilizing the structure. If Mn is less than 0.05%, the above effects cannot be sufficiently obtained. Further, even if Cr, Zr, and V are less than 0.03%, the above effects cannot be sufficiently obtained. On the other hand, if Mn exceeds 1.5% and Cr, Zr, and V exceed 0.4%, not only the above effects are saturated, but also a giant intermetallic compound may be generated to adversely affect the formability. Mn was in the range of 0.05 to 1.5%, and Cr, Zr, and V were all in the range of 0.03 to 0.4%.
Ti is also an element effective for improving the strength and refining the ingot structure. When the content is less than 0.005%, a sufficient effect cannot be obtained. On the other hand, when the content exceeds 0.2%, the effect of Ti addition is not obtained. In addition to being saturated, there is a possibility that a giant crystal may be generated. Therefore, Ti is set in the range of 0.005 to 0.2%.
Further, Fe is also an element effective for improving strength and refining crystal grains. If its content is less than 0.03%, a sufficient effect cannot be obtained, while if it exceeds 0.5%, formability may be reduced. Therefore, Fe was set in the range of 0.03 to 0.5%.
Note that the ranges of Zn, Mn, Cr, Zr, V, Ti, and Fe are shown in the case where these elements are included as positively added elements, and in each case, the amount of impurities smaller than the lower limit is set as the impurity. There is no particular hindrance to the inclusion. In particular, Fe of less than 0.03% is usually inevitably contained when ordinary aluminum ingots are used.
[0008]
In addition to the above elements, Al and unavoidable impurities may be basically used. Si is an unavoidable impurity element and has no particular effect if it is 0.3% or less. In general, B may be added simultaneously with the above-mentioned Ti for refining the crystal grains. The following B is allowed to be added.
Be is an element generally used in Mg-containing alloys and has an effect of preventing oxidation of molten metal. If necessary, the content can be 0.1 ppm or more and 50 ppm or less.
[0009]
Next, the manufacturing process in the method of the present invention will be described.
The process up to the continuous annealing line, that is, the process up to a rolled plate having a required product thickness may be the same as the conventional general process.
That is, casting may be performed by a DC casting method or the like, strip casting may be performed to a thickness of 2 to 10 mm by continuous casting, or block-type continuous casting may be performed to a thickness of 10 to 100 mm.
Thereafter, homogenization treatment is performed as necessary by a conventional method, and hot rolling and cold rolling may be performed to a required thickness, and between hot rolling and cold rolling, or in the middle of cold rolling. In step, intermediate annealing may be performed as necessary.
[0010]
After the required product thickness is obtained as described above, final annealing is performed using a continuous annealing line.
The annealing heating temperature is 400 to 540 ° C. If the temperature is lower than 400 ° C., recrystallization may not be performed completely. On the other hand, when annealing is performed at a temperature exceeding 540 ° C., a surface streak pattern is generated along the width direction.
The holding time is within 3 minutes. What is necessary is just to complete the recrystallization completely, and the shortest possible time is preferable. Even if it is performed for more than 3 minutes, it is useless in terms of energy, and crystal grains tend to grow, and surface defects such as rough skin are likely to occur. If the recrystallization is completed completely, depending on the heating temperature, cooling may be performed immediately after reaching the heating temperature without holding.
The furnace tension of the plate is 1.96 to 6.86 MPa. Materials with less than 1.5% Mg have low high-temperature strength, soften locally by heating in the continuous annealing line, and locally elongate periodically under the influence of tension, line speed, etc. A small wavy line pattern is generated along the line. However, by setting the tension in the range of 1.96 to 6.86 MPa under the annealing condition of heating at 400 to 540 ° C. for 3 minutes or less, it is possible to suppress the occurrence of this periodic local elongation. If the pressure is less than 1.96 MPa, the plate will sag during running on a line, causing scratches and meandering. When a tension is applied above 6.86 MPa, a failure such as elongation and breakage, or a failure in which the thickness is reduced or the width is reduced without breaking easily occurs.
The speed at which the plate is passed depends on the temperature in the furnace, the heating temperature of the plate, and the holding time, but if it is usually 10 m / min to 200 m / min, there is no particular effect on the streak pattern.
[0011]
【Example】
Hereinafter, the effectiveness of the method of the present invention will be described in detail with reference to examples.
The alloys of the alloy symbols A1 to A10 within the composition range of the present invention shown in Table 1 were cast, hot-rolled, and then cold-rolled according to the usual methods to obtain rolled plates having a thickness of 1 mm. Next, the continuous annealing line conditions were changed for each rolled sheet, and the sheet was annealed by heating, cooled, and then examined for the streak pattern in the width direction of the coil surface and the degree of recrystallization. Table 2 shows the continuous annealing line conditions for heat annealing.
As the streak pattern observation, the annealed plate was placed on a flat table, the surface was lightly ground with a grindstone and investigated for small wavy periodic streak patterns along the width direction. . The degree of recrystallization was evaluated by observing the crystal grains of the cross section, and was evaluated as れ ば when complete recrystallization was completed, and as × when unrecrystallized portions remained. In addition, the presence or absence of other surface defects such as flaws was visually observed. Table 3 shows the results.
[0012]
[Table 1]
Figure 2004043939
[0013]
[Table 2]
Figure 2004043939
[0014]
[Table 3]
Figure 2004043939
[0015]
As shown in Table 3, all the alloys A1 and A2 were completely recrystallized in the invention examples (Nos. 1 to 3 and Nos. 7 to 9) of the annealing conditions B1 to B3 of the present invention, and a small wavy pattern was generated. There were no good surface properties.
However, in Nos. 4 to 6 and Nos. 10 to 12 prepared in B4 to B6 which deviated from the production conditions of the present invention, the surface properties were not completely recrystallized, streaks appeared on the surface, and scratches were formed. The result was not good.
When alloys A3 to A10 within the component range of the present invention were subjected to the annealing conditions of the present invention (Nos. 13 to 20), the alloys were completely recrystallized annealed materials and had good surface properties.
[0016]
【The invention's effect】
As described above in detail, according to the example of the present invention, an aluminum alloy annealed sheet excellent in appearance performance without generation of small rippled periodic patterns due to continuous annealing even in an aluminum alloy sheet of 1.5% or less of Mg is manufactured. can do.

Claims (2)

Mg1.5%以下(mass%、以下同じ)、残部がAlおよび不可避的不純物よりなる合金を必要な板厚にした圧延板に対し、連続焼鈍ラインで張力を1.96〜6.86MPa、材料温度を400℃以上540℃以下で3分以内の加熱処理を行なう事を特徴とする外観性能に優れたアルミニウム合金焼鈍板の製造方法。Mg is 1.5% or less (mass%, the same applies hereinafter), and the balance is made of an alloy comprising Al and unavoidable impurities to a rolled sheet having a necessary thickness. The tension is 1.96 to 6.86 MPa in a continuous annealing line. A method for producing an aluminum alloy annealed sheet having excellent appearance performance, wherein a heat treatment is performed at a temperature of 400 ° C. to 540 ° C. for 3 minutes or less. Mg1.5%以下、Cu0.05〜1.5%、Zn0.05〜1.5%、 Mn0.05〜1.5%、Cr0.03〜0.4%、Zr0.03〜0.4%、V0.03〜0.4%、Fe0.03〜0.5%、Ti0.005〜0.2%のうちから選ばれた1種または2種以上を含有し、残部がAlおよび不可避的不純物よりなる合金を必要な板厚にした圧延板に対し、連続焼鈍ラインで張力を1.96〜6.86MPa、材料温度を400℃以上540℃以下で3分以内の加熱処理を行なう事を特徴とする表面性状に優れたアルミニウム合金焼鈍板の製造方法。Mg 1.5% or less, Cu 0.05-1.5%, Zn 0.05-1.5%, ΔMn 0.05-1.5%, Cr 0.03-0.4%, Zr 0.03-0.4% , V 0.03 to 0.4%, Fe 0.03 to 0.5%, Ti 0.005 to 0.2%, the balance being Al and unavoidable impurities. It is characterized in that a rolled plate having a required thickness of a rolled alloy is subjected to a heat treatment in a continuous annealing line at a tension of 1.96 to 6.86 MPa and a material temperature of 400 ° C to 540 ° C for 3 minutes or less. A method for producing an aluminum alloy annealed sheet having excellent surface properties.
JP2002206408A 2002-07-16 2002-07-16 Method for manufacturing annealed aluminum alloy sheet superior in appearance Pending JP2004043939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002206408A JP2004043939A (en) 2002-07-16 2002-07-16 Method for manufacturing annealed aluminum alloy sheet superior in appearance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002206408A JP2004043939A (en) 2002-07-16 2002-07-16 Method for manufacturing annealed aluminum alloy sheet superior in appearance

Publications (1)

Publication Number Publication Date
JP2004043939A true JP2004043939A (en) 2004-02-12

Family

ID=31711399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002206408A Pending JP2004043939A (en) 2002-07-16 2002-07-16 Method for manufacturing annealed aluminum alloy sheet superior in appearance

Country Status (1)

Country Link
JP (1) JP2004043939A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008068981A1 (en) * 2006-12-08 2008-06-12 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy plate and process for production thereof
JP2012149354A (en) * 2012-05-11 2012-08-09 Kobe Steel Ltd Aluminum alloy sheet, and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008068981A1 (en) * 2006-12-08 2008-06-12 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy plate and process for production thereof
JP2008144209A (en) * 2006-12-08 2008-06-26 Kobe Steel Ltd Aluminum alloy sheet and its manufacturing method
JP2012149354A (en) * 2012-05-11 2012-08-09 Kobe Steel Ltd Aluminum alloy sheet, and its manufacturing method

Similar Documents

Publication Publication Date Title
CN100532603C (en) Aluminum alloy thin plate and its making method
JP7041664B2 (en) 6XXX Aluminum sheet manufacturing method
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
JP2008174797A (en) Aluminum alloy sheet
JP2008045192A (en) Aluminum alloy sheet showing excellent ridging-mark resistance at molding
WO2017168890A1 (en) Al-mg-si-based alloy material, al-mg-si-based alloy plate, and method for manufacturing al-mg-si-based alloy plate
JP2017179457A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP2017179442A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP2017179454A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2008006483A (en) METHOD FOR PRODUCING HIGHLY FORMABLE Al-Mg BASED ALLOY PLATE
JP2006283070A (en) Method for producing galvannealed steel sheet having good workability
JP4708555B2 (en) Continuous solution quenching method for rolled aluminum alloy sheets with excellent formability and flatness
JP2004043938A (en) Method for manufacturing annealed aluminum alloy sheet superior in appearance
JP2017179456A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP2004043939A (en) Method for manufacturing annealed aluminum alloy sheet superior in appearance
TW201742931A (en) Method for producing Al-Mg-Si alloy plate
JP2017179443A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JPS62130268A (en) Production of hot dip zinc coated mild steel sheet for working subjected to alloying treatment
JPS5831034A (en) Production of cold rolled steel plate for drawing
JP4050344B2 (en) Quenching simultaneous precipitation hardening type Al-Mg-Cu based T4 alloy plate and method for producing the same
JP2017179455A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JPH02285045A (en) Aluminum alloy for automobile panel and its manufacture
JP2007162088A (en) Ferritic stainless steel wire for sealing into glass
JPS6362822A (en) Production of cold rolled steel sheet for deep drawing
JPH0333768B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612