JP2004040030A - 電圧非直線抵抗体素子 - Google Patents

電圧非直線抵抗体素子 Download PDF

Info

Publication number
JP2004040030A
JP2004040030A JP2002198542A JP2002198542A JP2004040030A JP 2004040030 A JP2004040030 A JP 2004040030A JP 2002198542 A JP2002198542 A JP 2002198542A JP 2002198542 A JP2002198542 A JP 2002198542A JP 2004040030 A JP2004040030 A JP 2004040030A
Authority
JP
Japan
Prior art keywords
electrode
gap
resistance
voltage
voltage non
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002198542A
Other languages
English (en)
Inventor
Shigeki Hayashi
林 茂樹
Yusuke Arai
新居 裕介
Kouichi Umemoto
梅本 鍠一
Takao Soma
相馬 隆雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2002198542A priority Critical patent/JP2004040030A/ja
Publication of JP2004040030A publication Critical patent/JP2004040030A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】バリスタ電圧および静電容量を低減可能であり、しかもエネルギー耐量の低下も抑制可能な電圧非直線抵抗体素子構造を提供する。
【解決手段】電圧非直線抵抗体素子1Aは、第一の電極3A、第二の電極3B、および第一の電極3Aと第二の電極3Bとの間に介在し、多結晶材料からなる電圧非直線抵抗部6を備えている。電圧非直線抵抗部6が、電極3Aと電極3Bとを接続する複数の抵抗領域6a、6b、6cを備えている。複数の抵抗領域の粒径や組成等が互いに異なっている。
【選択図】            図2

Description

【0001】
【発明の属する技術分野】本発明は、電圧非直線抵抗体素子に関するものである。
【0002】
【従来の技術】いわゆるバリスタ素子(電圧非直線抵抗体素子)は、電源回路の安定化、サージ電圧の吸収といった用途に用いられる。最近は、インターフェースなどの信号回路系における静電気対策にバリスタの需要が増加している。電子機器の超小型化、省電力化の推進により、機器の低電圧化が進むに伴い、サージだけでなく静電気放電の脅威が高まり、電子機器の静電気対策が重要課題となってきた。回路の駆動電圧が小さくなるほど、異常電圧による電子機器の誤作動や回路部品の破壊が起こりやすいからである。携帯電話やノートパソコンあるいは携帯型情報端末機器といった電子機器は、外部からの信号を受けるための様々なIO端子を持つため、インターフェースケーブルの接続時等の静電気放電が直接内部信号回路にダメージを与える可能性が高い。携帯電話の場合には、アンテナ部分からの静電気放電も問題である。こうした電圧非直線抵抗体素子の従来技術としては、特開平11−204309号公報、特開2000−331805号公報が挙げられる。
【0003】信号回路やアンテナ回路用の静電気放電対策用の電圧非直線抵抗体素子は、信号ラインへの影響をできる限り小さくするために、静電容量が数pFから十数pFといった小さなものであることが望ましい。また、信号線を伝搬してくるノイズを低減するためには、バリスタ電圧をできる限り低くすることが必要である。更に、信号線に過大な電圧が加わったときに対応するため、電圧非直線抵抗体素子は高いエネルギー耐量を有していることが必要である。
【0004】
【発明が解決しようとする課題】電圧非直線抵抗体素子のバリスタ電圧を低減するためには、一対の対向電極の間隔を小さくすることが必要である。なぜなら、対向電極の間隔を小さくすると、電極間に存在するセラミック粒子の粒界数が減少し、バリスタ電圧が低下するからである。また、対向電極の面積を小さくすることによって、電極間の静電容量も低減することが可能である。
【0005】しかし、本発明者の検討では、対向電極面積を小さくすると、エネルギー耐量が著しく低下する。これは、電極間の電圧非直線抵抗材料において、サージ電流が一部に集中しやすい傾向があり、対向電極面積が小さくなると、こうした電流集中の傾向が一層強くなるためであった。
【0006】本発明の課題は、バリスタ電圧および静電容量を低減可能であり、しかもエネルギー耐量の低下も抑制可能な電圧非直線抵抗体素子構造を提供することである。
【0007】
【課題を解決するための手段】第一の態様に係る発明は、第一の電極、第二の電極、および第一の電極と第二の電極との間に介在し、多結晶材料からなる電圧非直線抵抗部を備えている電圧非直線抵抗体素子であって、
電圧非直線抵抗部が複数の抵抗領域を備えていることを特徴とする。
【0008】また、第二の態様に係る発明は、第一の電極、第二の電極、および第一の電極と第二の電極との間に介在する電圧非直線抵抗部を備えている電圧非直線抵抗体素子であって、電圧非直線抵抗部が、多結晶材料および単結晶材料を備えていることを特徴とする。
【0009】以下、適宜図面を参照しながら、本発明を詳細に説明する。
図1(a)は、本発明の一実施形態に係る素子1Aの表面電極のパターンを示す平面図であり、図1(b)は、図1(a)の素子1のIb−Ib線断面図である。
【0010】素子1Aでは、セラミック基体7の表面7aにバリスタ構造を形成している。即ち、基体7の両側面7c上に外部電極2A、2Bが設けられている。基体7の上面7aには一対の対向電極3A、3Bが形成されており、電極3A、3Bはそれぞれ対応する外部電極2A、2Bに接続されている。対向電極3Aと3Bとの間に細長いギャップ10が形成されている。電圧非直線材料6は、対向電極3A、3Bを被覆するのと共に、ギャップ10内に充填されており、これによって対向電極3A、3B間での抵抗値を制御する。7bは底面である。
【0011】ここで、対向電極3A、3B間において電流が一部に集中するのは、電圧非直線抵抗部の各導電経路において抵抗値に偏差があり、対向電極の最短距離に沿って電流が集中しやすいからであった。この点について、図2(a)を参照しつつ説明する。第一の電極3Aと第二の電極3Bとの間に、多結晶材料からなる電圧非直線抵抗部16を設ける。このとき、電圧非直線抵抗部16は、ギャップ10内に充填されるだけでなく、更にギャップ10上を被覆し、電極3A、3Bの少なくとも一部も被覆する。ここで、対向電極間のバリスタ電圧は組成にも依存するが、一般的に、電極間に介在する多結晶材料の粒界数に比例する傾向がある。つまり、粒界数が多ければバリスタ電圧が高く、粒界数が少なければバリスタ電圧が低くなる。従って、バリスタ電圧を低減するためには、電極間隔を小さくし、粒界数を減らすことが効果的である。
【0012】しかし、図2(a)に示す素子21のように、電圧非直線抵抗部16の各部分でのバリスタ電圧は、微視的に見ると一定ではない。なぜなら、導電経路Aにおけるバリスタ電圧は低く、導電経路Bにおけるバリスタ電圧は若干高くなり、導電経路Cにおけるバリスタ電圧が最も高くなるからである。この結果、素子にサージ電圧が加わったときには、最短の導電経路Aにおいて最初に所定のバリスタ電圧に到達し、導電経路Aに電流が集中し、多量の電流が流れる。このとき、導電経路B、Cにおいては今だ抵抗値が高く、このために電流が流れにくいからである。
【0013】本発明者は、このような電圧非直線抵抗部の微視的な構造に着目し、以下の変更を加えた。即ち、電圧非直線抵抗部を複数の抵抗領域に区分し、各抵抗領域における粒径を適宜変化させるようにした。
【0014】例えば、図2(b)に示す素子1Aにおいては、電圧非直線抵抗部6を、3つの抵抗領域6a、6b、6cに区分している。そして、ギャップ10内の最短距離にある抵抗領域6aの粒径を相対的に小さくし、抵抗領域6b、6cの粒径を順に大きくしている。これによって、抵抗領域6aにおける電極間の粒界数は相対的に多くなり、抵抗領域6cにおける電極間の粒界数は少なくなる。従って、図2(a)の場合に比べて、抵抗領域6a、6b、6cの間での粒界数のバラツキは少なくなる。この結果、抵抗領域6a、6b、6c間のバリスタ電圧の差を小さくでき、あるいはバリスタ電圧をほぼ同じに調整できる。
【0015】これによって、サージ電圧が加わったときに、導電経路A、B、Cにそれぞれ電流を流し、最短の導電経路Aへの電流集中を抑制できる。この結果、電圧非直線抵抗部全体としてのエネルギー耐量が増大する。
【0016】好適な実施形態においては、複数の抵抗領域のうち、第一の電極と第二の電極との間での導電経路が最短である最短抵抗領域6aの粒径を、他の抵抗領域6b、6cの粒径よりも小さくする。これによって、最短抵抗領域6aへの電流集中を抑制でき、エネルギー耐量を向上させることができる。
また、上記において、各抵抗領域の組成を異ならせることによって、各抵抗領域におけるバリスタ電圧が同程度になるように調整することもできる。
【0017】好適な実施形態においては、複数の抵抗領域がそれぞれ層状をなしており、電圧非直線抵抗部が複数の抵抗領域の積層体である。
【0018】本発明の素子の形態は特に限定されない。好適な実施形態においては、素子がセラミック基体を備えており、セラミック基体の表面に第一の電極および第二の電極が設けられており、第一の電極と第二の電極との間にギャップが形成されており、電圧非直線抵抗部が少なくともギャップを被覆している。
【0019】この場合、好適な実施形態においては、最短抵抗領域がギャップ内に設けられている。図2(b)、図3(a)、(b)、図6は、この実施形態に係るものである。
【0020】図3の素子1Bにおいては、基体7上の各電極3A、3Bの端面8が傾斜面になっている。この結果、ギャップ10内において、最短の導電経路Aは基体7の表面7aに最も近く、基体から離れた導電経路Bの距離はAに比べて若干大きくなる。従って、電圧非直線抵抗部9を複数の抵抗領域9a、9b、9cに区分する際に、ギャップ10内の電圧非直線抵抗部も複数の抵抗領域9a、9bに区分し、抵抗領域9aの粒径を抵抗領域9bの粒径よりも小さくする。
【0021】図3(b)の素子1Cにおいては、基体7上の各電極3A、3Bの端面18が傾斜面になっており、この結果、ギャップ10の幅が、表面7aに近いほど大きくなり、電極表面に近づくのにつれて小さくなっている。このため、ギャップ10内において、最短の導電経路Aは電極表面に近く、基体表面7aに隣接する導電経路Bの距離はAに比べて若干大きくなる。従って、電圧非直線抵抗部11を複数の抵抗領域11a、11b、11cに区分する際に、ギャップ10内の電圧非直線抵抗部も複数の抵抗領域11a、11bに区分する。そして、基体表面7aに近い抵抗領域11bの粒径を、電極表面に近い抵抗領域11aの粒径よりも大きくする。
【0022】好適な実施形態においては、ギャップ内に絶縁体を設け、電圧非直線抵抗部によって絶縁体を被覆する。これによって、一定の高さのエネルギー耐量を確保しつつ、素子の静電容量を一層低減することが可能である。図4は、この実施形態に係る素子1Dの要部拡大図である。
【0023】素子1Dにおいては、対向電極3Aと3Bとの間のギャップ10に低誘電率の絶縁性材料20を充填する。絶縁性材料20は、ギャップ10の全体を充填していてよいが、一部分を充填していてもよい。このようにギャップ10に低誘電率の絶縁性材料20を充填することによって、素子の静電容量を低減させることができる。
【0024】ただし、従来の素子においては、ギャップ10内の対向電極3Aと3Bとの間の最短導電経路Aに一層電流集中が起こりやすくなり、エネルギー耐量が低下する。しかし、本発明によれば、絶縁性材料20を電圧非直線抵抗部12によって被覆するのに際して、電圧非直線抵抗部12を複数の抵抗領域12a、12b、12cに区分する。そして、絶縁性材料20に最も近い抵抗領域12aの粒径を最も小さくし、その上の抵抗領域12bの粒径を若干大きくし、最も上の抵抗領域12cの粒径を最も大きくする。これによって、導電経路A、B、Cにおける各粒界数の差を小さくし、バリスタ電圧が同程度となるように調整する。これによって、素子のエネルギー耐量を高く維持することが可能である。
【0025】好適な実施形態においては、第一の電極が第一の突出部を備えており、第二の電極が第二の突出部を備えており、ギャップが第一の突出部と第二の突出部との間に形成されている。
【0026】第一の突出部と第二の突出部との間のギャップの幅を小さくすることによって、バリスタ電圧を低減できる。そして、第一の電極層と第二の電極層とが基体表面上で対向していることから、電極対向面の面積が小さく、従って静電容量を比較的に低く抑制することが可能である。その上、ギャップ数を増加させること、あるいはギャップを長くすることによって、エネルギー耐量を高くすることが可能である。図5、図6はこの実施形態に係るものである。
【0027】本例ではセラミック基体7は平板形状である。基体7の両側面7c上には外部電極2A、2Bが形成されており、各外部電極2A、2Bの端部は表面7a上に延びている。表面7aには、外部電極2A、2Bの縁部と平行に延びるベース電極5A、5Bが形成されており,各ベース電極5A、5Bは、それぞれ外部電極2A、2Bと接続されている。ベース電極5Aからは、電極5Aに対して略垂直方向に延びる複数列の第一の突出部13A、13Bが形成されている。ベース電極5Bからは、電極5Bに対して略平行な第二の突出部14A、14B、14Cが延びている。各突出部と各ベース電極とによって、第一の電極3A、第二の電極3Bが構成される。各突出部13A、13Bと、各突出部14A、14B、14Cとの間には、それぞれ細長い矩形のギャップ19が形成されている。各突出部13A、13Bとベース電極5Bとの間には各先端ギャップ10が形成されており、各突出部14A、14B、14Cとベース電極5Aとの間には各先端ギャップ10が形成されている。各ギャップ19と各先端ギャップ10とはつながっている。
【0028】本例では、第一の突出部13A、13Bと第二の突出部14A、14B、14Cとの間のギャップ19の幅を小さくすることによって、バリスタ電圧を低減できる。そして、突出部13A、13Bと突出部14A、14B、14Cは基体表面7a上で対向していることから、電極対向面の面積が小さく、従って静電容量を比較的に低く抑制することが可能である。その上、先端ギャップ10に加えて突出部間のギャップ19を設けることによって、素子のエネルギー耐量を向上させることができる。各ギャップ19を長くしたり、ギャップ19の個数を増加させることで、エネルギー耐量を一層増大させることができる。
【0029】そして、図6の拡大図に示すように、電圧非直線抵抗部15は、ギャップ19内に充填されている最短の抵抗領域15aと、抵抗領域15aを被覆する抵抗領域15bと、抵抗領域15bおよび各電極を被覆する抵抗領域15cとからなる。本発明に従い、抵抗領域15aの粒径を小さくし、抵抗領域15bの粒径を抵抗領域15aの粒径よりも大きくし、抵抗領域15cの粒径を抵抗領域15bの粒径よりも大きくする。これによって、各抵抗領域間での粒界数の差を小さくし、バリスタ電圧の差を小さくする。
【0030】第二の態様においては、電圧非直線抵抗部が多結晶材料および単結晶材料を備えている。図7(a)、(b)を参照しつつ、この発明の利点について述べる。
【0031】図7(a)に示すように、一対の電極25によって電圧非直線抵抗部22を挟んだものとする。雷サージが素子に加わると、矢印Dのように電流が流れる。ここで、素子のバリスタ電圧を小さくするためには、前述したように電圧非直線抵抗部22を薄くすることによって、対向電極25間における粒界数を減らす必要がある。また、素子の静電容量を低くするためには、対向電極25の間隔を小さくするのと共に、対向電極25の幅を小さくする必要がある。
【0032】ところが、対向電極25の幅を小さくし、かつ間隔を小さくすると、矢印Dで示すようなサージ電流が小さい面積に集中し、絶縁破壊を起こしやすくなるので、エネルギー耐量が著しく低下する。
【0033】そこで、本発明者は、電圧非直線抵抗部の一部を単結晶材料によって形成することを想到した。例えば、図7(b)に示す素子1Fにおいては、対向電極21Aと21Bとの間に、平板形状の電圧非直線抵抗部23を設けている。そして、電圧非直線抵抗部23は、多結晶材料部22と、多結晶材料部22を挟む一対の単結晶材料部24A、24Bとを備えている。
【0034】このような構造によれば、単結晶材料部24A、24Bを設けることによって、電極21Aと21Bとの間隔を大きくすることができる。これによって、静電容量を一層低減できる。言い換えると、図7(a)の素子と対比すると、同程度の静電容量を前提とすると、電極21A、21Bの幅Wを大きくする余地がある。そして、幅Wが大きくなると、雷サージ時に矢印Eのように広い面積にわたって電流が流れるので、エネルギー耐量が増加する。
【0035】ただし、図7(a)の構造では、電圧非直線抵抗部22の厚さを大きくし、電極25の間隔を大きくすると、バリスタ電圧V1mAが増大する。しかし、図7(b)の素子においては、単結晶材料部24A、24Bには1粒界しかない。従って、電極21Aと21Bとの間の粒界数は、単結晶材料部24A、24Bの付加によってほとんど変化せず、従ってバリスタ電圧を低く抑えることができる。以上によって、バリスタ電圧および静電容量の低減とエネルギー耐量の向上とを達成することができる。
【0036】図8は、第二の態様の発明の一実施形態に係る素子1Gを示す断面図である。素子1Gでは、セラミック基体7の表面7aにバリスタ構造を形成している。基体7の両側面7c上に外部電極2A、2Bが設けられている。基体7の上面7aには一対の対向電極3A、3Bが形成されており、電極3A、3Bはそれぞれ対応する外部電極2A、2Bに接続されている。対向電極3Aと3Bとの間に細長いギャップ10が形成されている。
【0037】ギャップ10内には電圧非直線抵抗部23Aが形成されている。この電圧非直線抵抗部23Aは、中央の多結晶材料部22Aと、多結晶材料部22Aを挟む一対の単結晶材料部24C、24Dからなっている。
【0038】第一および第二の態様において、好ましくは、本発明素子の8×20μsにおけるサージ耐量がすべて5A以上であり、国際電気標準会議(IEC)の定める静電気放電イミニュティ試験要求であるIEC−1000−4−2のレベル4のESD耐量をすべてクリアする。
【0039】好適な実施形態においては、素子のバリスタ電圧V1mAが100V以下であり、特に好ましくは20V以下である。
【0040】セラミック基体の材質は特に限定されないが、絶縁性を有することが好ましく、以下のものが特に好ましい。
Al2O3、AlN、ZrO2、ZnO
【0041】第一の電極層、第二の電極層の材質は特に限定されないが、導電性を有する金属であることが好ましく、銀、銅、金、白金、パラジウム、ニッケルあるいはこれらの合金など、電圧非直線材料と同時焼成できるものが特に好ましい。
【0042】第一の突出部、第二の突出部の形態は特に限定されないが、細長いストライプ状、あるいは矩形であることが好ましい。
【0043】第一の突出部と第二の突出部との間のギャップは細長い平面形状を有している。ここで、好ましくはギャップの幅がその全長にわたって略同一である。また,ギャップの平面的形状は、縦横比が3倍以上であることが好ましく、5倍以上であることが更に好ましく、10倍以上であることが一層好ましい。ギャップの幅は、バリスタ電圧を低減するという観点からは、100μm以下であることが好ましく、50μm以下であることが更に好ましい。
【0044】電圧非直線抵抗体材料は特に限定されないが、以下のものを主成分とした材料が特に好ましい。
ZnO、SrTiO3
【0045】第一の態様においては、各抵抗領域の粒径の大小を制御する必要がある。このためには、抵抗領域を生成させるための原料中に、粒子成長促進材を添加することによって、その抵抗領域を構成する多結晶材料の粒径を大きくすることができる。このような粒子成長促進剤としては、TiO2を例示できる。
【0046】また、抵抗領域を生成させるための原料中に、粒子成長を抑制する抑制材を添加することによって、その抵抗領域を構成する多結晶材料の粒径を小さくすることができる。このような粒子成長抑制剤としては、Sb2O3を例示できる。
【0047】抵抗領域中の多結晶材料の粒径は、一般的には1μm〜20μmとすることが好ましい。また、本発明の観点からは、(最も粒径の大きい抵抗領域における粒径)/(最も粒径の小さい抵抗領域における粒径)は、1.5
以上とすることが好ましく、2以上とすることが更に好ましい。
【0048】抵抗領域の個数や形態も特に限定されない。しかし、前述のように層状をなしていることが好ましい。また、各抵抗領域は、それぞれ、第一の電極および第二の電極に対して接触していて、独立して導電経路を構成していることが好ましい。
【0049】また、一つの素子内において、電圧非直線抵抗部を構成する単結晶材料と多結晶材料とは、同種、同組成のものであってよいが、別種,別組成のものであってもよい。しかし、多結晶材料と単結晶材料との熱膨張を合わせるという観点からは、両者が同種のものであることが好ましい。
【0050】前記単結晶材料としては、以下のものが特に好ましい。
ZnO、SrTiO3
【0051】好適な実施形態においては、外部電極上にニッケル−スズメッキやニッケル−半田メッキ等のメッキを施す。
【0052】本発明の素子の大きさは特に限定するものではなく、数ミリ〜数百ミクロンオーダーが一般的であるが、さらに小さくてもまた大きくてもよい。素子の外形は、通常は角柱、四角柱もしくはその角がとれた形が多いが、他の形態でもよい。
【0053】
【実施例】以下、更に具体的な実験結果について述べる。
図1に示す素子1Aを製造した。具体的には、アルミナ基板7の表面7aに、電極3A、3Bのパターンに合わせて銀/鉛ペーストを塗布した。
【0054】一方、主成分のZnOに副成分としてBi,Co,Sb,Al等を添加した原料に、酢酸ブチル、有機バインダ、可塑剤を加えて混合し、抵抗領域6a用のスラリーを得た。このスラリー中には、更に成長抑制剤として酸化アンチモンを添加した。このスラリーをギャップ10内に塗布した。
【0055】次いで、主成分のZnOに副成分としてBi,Co,Sb,Al等を添加した原料に、酢酸ブチル、有機バインダ、可塑剤を加えて混合し、抵抗領域6b用スラリーを得た。このスラリー中には、成長促進剤、抑制剤は添加しなかった。このスラリーを抵抗領域6a用スラリー上に塗布する。
【0056】次いで、主成分のZnOに副成分としてBi,Co,Sb,Al等を添加した原料に、酢酸ブチル、有機バインダ、可塑剤を加えて混合し、抵抗領域6c用スラリーを得た。このスラリー中には、成長促進剤として酸化チタンを添加した。このスラリーは、抵抗領域6b用スラリーおよび電極を被覆するように塗布する。
【0057】得られた積層体を900〜950℃の酸化性雰囲気下で焼成し、焼結体を得た。焼結体をバレル研磨後、基板7の両側面7cにニッケルメッキ電極2A、2Bを形成し、素子1Aを得た。
【0058】
【発明の効果】以上述べたように、本発明によれば、バリスタ電圧および静電容量を低減可能であり、しかもエネルギー耐量の低下も抑制可能な電圧非直線抵抗体素子構造を提供できる。
【図面の簡単な説明】
【図1】(a)は、第一の態様の発明の一実施形態に係る素子1Aを示す平面図であり、(b)は、素子1AのIb−Ib線断面図である。
【図2】(a)は、従来の素子21の要部拡大断面図であり、(b)は、本発明の素子1Aの要部拡大断面図である。
【図3】(a)、(b)は、それぞれ、第一の態様の発明に係る素子1B、1Cの要部拡大断面図である。
【図4】第一の態様の発明に係る素子1Dの要部拡大断面図であり、ギャップ10内に絶縁性材料20が充填されている。
【図5】(a)は、第一の態様の発明に係る素子1Eを示す平面図であり、(b)は、素子1EのVb−Vb線断面図であり、(c)は、素子1EのVc−Vc線断面図である。る。
【図6】図5の素子1Eの要部拡大断面図である。
【図7】(a)は、従来素子の断面図であり、(b)は、第二の態様の発明に係る素子1Fを示す断面図である。
【図8】第二の態様の発明に係る素子1Gを示す断面図である。
【符号の説明】1A、1B、1C、1D、1E、1F、1G 電圧非直線抵抗体素子
2A、2B 外部電極     3A 第一の電極    3B 第二の電極    6、9、11、12、15、23 電圧非直線抵抗部    6a、9a、11a、12a、15a 最短の抵抗領域    6b、6c、9b、9c、11b、11c、12b、12c、15b、15c 抵抗領域    7セラミック基体    10 ギャップ     13A、13B 第一の突出部
14A、14B、14C 第二の突出部    22 多結晶材料部
24A、24B 単結晶材料部

Claims (12)

  1. 第一の電極、第二の電極、および前記第一の電極と前記第二の電極との間に介在し、多結晶材料からなる電圧非直線抵抗部を備えている電圧非直線抵抗体素子であって、
    前記電圧非直線抵抗部が複数の抵抗領域を備えていることを特徴とする、電圧非直線抵抗体素子。
  2. 前記複数の抵抗領域が、異なる粒径または組成からなることを特徴とする、請求項1記載の素子。
  3. 前記複数の抵抗領域のうち、前記第一の電極と前記第二の電極との間での導電経路が最短である最短抵抗領域を構成する多結晶材料の粒径が、他の抵抗領域を構成する多結晶材料の粒径よりも小さいことを特徴とする、請求項2記載の素子。
  4. 前記複数の抵抗領域がそれぞれ層状をなしていることを特徴とする、請求項1〜3のいずれか一つの請求項に記載の素子。
  5. セラミック基体を備えており、このセラミック基体の表面に前記第一の電極および前記第二の電極が設けられており、前記第一の電極と前記第二の電極との間にギャップが形成されており、前記電圧非直線抵抗部が少なくとも前記ギャップを被覆していることを特徴とする、請求項1〜4のいずれか一つの請求項に記載の素子。
  6. 前記最短抵抗領域が前記ギャップ内に設けられていることを特徴とする、請求項5記載の素子。
  7. 前記ギャップ内に絶縁体が設けられており、前記電圧非直線抵抗部が前記絶縁体を被覆していることを特徴とする、請求項5記載の素子。
  8. 前記第一の電極が第一の突出部を備えており、前記第二の電極が第二の突出部を備えており、前記ギャップが前記第一の突出部と前記第二の突出部との間に形成されていることを特徴とする、請求項5〜7のいずれか一つの請求項に記載の素子。
  9. 第一の電極、第二の電極、および前記第一の電極と前記第二の電極との間に介在する電圧非直線抵抗部を備えている電圧非直線抵抗体素子であって、
    前記電圧非直線抵抗部が、多結晶材料および単結晶材料を備えていることを特徴とする、電圧非直線抵抗体素子。
  10. 前記第一の電極と前記第二の電極との最短導電経路に前記多結晶材料および前記単結晶材料が介在していることを特徴とする、請求項9記載の素子。
  11. セラミック基体を備えており、このセラミック基体の表面に前記第一の電極および前記第二の電極が設けられており、前記第一の電極と前記第二の電極との間にギャップが形成されており、前記電圧非直線抵抗部が少なくとも前記ギャップを被覆していることを特徴とする、請求項9または10記載の素子。
  12. 前記ギャップ内に前記多結晶材料および前記単結晶材料が設けられていることを特徴とする、請求項11記載の素子。
JP2002198542A 2002-07-08 2002-07-08 電圧非直線抵抗体素子 Withdrawn JP2004040030A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002198542A JP2004040030A (ja) 2002-07-08 2002-07-08 電圧非直線抵抗体素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002198542A JP2004040030A (ja) 2002-07-08 2002-07-08 電圧非直線抵抗体素子

Publications (1)

Publication Number Publication Date
JP2004040030A true JP2004040030A (ja) 2004-02-05

Family

ID=31705968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002198542A Withdrawn JP2004040030A (ja) 2002-07-08 2002-07-08 電圧非直線抵抗体素子

Country Status (1)

Country Link
JP (1) JP2004040030A (ja)

Similar Documents

Publication Publication Date Title
US8724284B2 (en) Electrostatic protection component
US6995967B2 (en) Stacked capacitor
US7541910B2 (en) Multilayer zinc oxide varistor
US20050286203A1 (en) Stacked capacitor
US9590417B2 (en) ESD protective device
KR100709914B1 (ko) 적층형 칩 배리스터
JP2007266479A (ja) 保護素子とその製造方法
US7061747B2 (en) Stacked capacitor
KR20170135146A (ko) 감전 방지 컨택터
TWI450642B (zh) 電路保護裝置
JP2004040023A (ja) 電圧非直線抵抗体素子
JP2004040030A (ja) 電圧非直線抵抗体素子
JPH11297508A (ja) 積層型セラミック電子部品
JP5760894B2 (ja) 静電気保護素子
JP2006332121A (ja) バリスタ
JP2004014437A (ja) チップ型サージアブソーバ及びその製造方法
JPH11297509A (ja) 積層型セラミック電子部品
US20220392701A1 (en) Transient voltage protection device
JPH056806A (ja) チツプバリスタ
JP2008270391A (ja) 積層型チップバリスタおよびその製造方法
JP4320565B2 (ja) 積層型複合機能素子
JP2000331805A (ja) 積層型セラミックアレイ
JP2007266478A (ja) 静電気保護素子とその製造方法
KR101842211B1 (ko) 감전 방지 컨택터 및 이를 구비하는 전자기기
CN117638654A (zh) 瞬态电压保护器件

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004