JP2004039254A - 燃料電池および燃料電池スタック - Google Patents
燃料電池および燃料電池スタック Download PDFInfo
- Publication number
- JP2004039254A JP2004039254A JP2002190004A JP2002190004A JP2004039254A JP 2004039254 A JP2004039254 A JP 2004039254A JP 2002190004 A JP2002190004 A JP 2002190004A JP 2002190004 A JP2002190004 A JP 2002190004A JP 2004039254 A JP2004039254 A JP 2004039254A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte
- fuel cell
- separator
- fuel
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
【解決手段】燃料電池10は、セパレータ58間に複数の電解質・電極接合体56を挟持している。電解質・電極接合体56は、小径円形状に構成され、円形孔部44と同心円上にそれぞれ8個ずつ配列される内周側配列層P1と外周側配列層P2とが設けられる。セパレータ58は、互いに積層されるプレート60、62を備え、前記プレート60、62間には、アノード電極54に燃料ガスを供給するための燃料ガス通路67と、カソード電極52に酸化剤ガスを供給するための酸化剤ガス通路82とが形成される。
【選択図】図3
Description
【発明の属する技術分野】
本発明は、電解質をアノード電極とカソード電極とで挟んで構成される円板状電解質・電極接合体が円板状セパレータ間に配設される燃料電池、および燃料電池を連続的に積層する燃料電池スタックに関する。
【0002】
【従来の技術】
通常、固体電解質型燃料電池(SOFC)は、電解質に酸化物イオン導電体、例えば、安定化ジルコニアを用いており、この電解質の両側にアノード電極およびカソード電極を対設して構成される単セル(電解質・電極接合体)を、セパレータ(バイポーラ板)によって挟持することにより構成されている。この燃料電池は、通常、所定数だけ連続的に積層して燃料電池スタックとして使用されている。
【0003】
この種の燃料電池において、カソード電極に酸化剤ガス、例えば、主に酸素を含有するガスあるいは空気(以下、酸素含有ガスともいう)が供給されると、前記カソード電極と電解質との界面でこの酸化剤ガス中の酸素がイオン化(O2−)され、酸素イオンが電解質を通ってアノード電極側に移動する。その間に生じた電子が外部回路に取り出され、直流の電気エネルギとして利用される。なお、アノード電極には、燃料ガス、例えば、主に水素を含有するガス(以下、水素含有ガスともいう)やCOが供給されているために、このアノード電極において、酸素イオン、電子および水素(またはCO)が反応して水(またはCO2 )が生成される。
【0004】
一般的に、固体電解質型燃料電池は、作動温度が800℃〜1000℃と高温であるため、高温の排熱を利用して燃料ガスの内部改質が可能であるとともに、例えば、ガスタービンを回して発電することができる。従って、固体電解質型燃料電池は、各種燃料電池の中でも、最も高い発電効率を示しており、ガスタービンとの組み合わせの他、車載用としての利用が望まれている。
【0005】
ところで、安定化ジルコニアは、イオン導電率が低いため、大電流を得ようとすると、前記安定化ジルコニアを薄膜状に構成する必要がある。しかしながら、安定化ジルコニアの機械的強度が弱くなり、固体電解質型燃料電池の大型化を図ることができないという不具合が指摘されている。
【0006】
そこで、例えば、特開平5−266910号公報に開示されているように、セパレータとセパレータとの間の同一平面に、複数のセルが配された固体電解質型燃料電池システムが知られている。この従来技術では、一平面におけるセルの総面積を増大することができ、大電流を取り出すことができるとともに、電解質板の破損を阻止して電池の信頼性を向上させることができる、としている。
【0007】
【発明が解決しようとする課題】
上記の従来技術では、図11に具体的に示すように、セパレータ1に4個のセル2が配置された状態で、前記セパレータ1および前記セル2が複数積層されており、積層体の最下層に燃料ガス給排プレート3が配置され、最上層に酸化剤ガス給排プレート4が配置されている。
【0008】
セパレータ1には、積層方向に貫通して各セル2に燃料ガスを供給する燃料ガス供給内部マニホールド5a、5b、反応後の燃料ガスを排出する燃料ガス排出内部マニホールド5c、5d、前記セル2に酸化剤ガスを供給する酸化剤ガス供給内部マニホールド6a、6b、および反応後の酸化剤ガスを排出する酸化剤ガス排出内部マニホールド6c、6dが形成されている。
【0009】
燃料ガス給排プレート3は、燃料ガス供給内部マニホールド5a、5bに連通する燃料ガス供給管7a、7bと、燃料ガス排出内部マニホールド5c、5dに連通する燃料ガス排出管7c、7dとを設けている。酸化剤ガス給排プレート4は、同様に、酸化剤ガス供給内部マニホールド6a、6bに連通する酸化剤ガス供給管8a、8bと、酸化剤ガス排出内部マニホールド6c、6dに連通する酸化剤ガス排出管8c、8dとを設けている。
【0010】
このような構成において、例えば、燃料ガス給排プレート3では、燃料ガス供給管7a、7bに供給された燃料ガスは、セパレータ1の燃料ガス供給内部マニホールド5a、5bを通って積層方向一方向に流れる間に、各セル2のアノードに分配されている。そして、反応後の燃料ガスは、燃料ガス排出内部マニホールド5c、5dを通って積層方向他方向に流れ、燃料ガス排出管7c、7dを介して外部に排出されている。なお、酸化剤ガス給排プレート4においても同様に、酸化剤ガスの供給および排出が行われている。
【0011】
上記のように、積層方向に燃料ガス給排プレート3および酸化剤ガス給排プレート4が配設されており、積層方向に沿って流れる燃料ガスおよび酸化剤ガスは、各セパレータ1において、それぞれ4つのセル2毎に供給される。これにより、反応ガス(燃料ガスおよび酸化剤ガス)の洩れを防止するためのシール構造が4つのセル2毎に必要になっており、このシール構造が相当に複雑化してしまう。
【0012】
しかも、燃料ガス給排プレート3には、燃料ガス供給管7a、7bと燃料ガス排出管7c、7dとが接続される一方、酸化剤ガス給排プレート4には、酸化剤ガス供給管8a、8bと酸化剤ガス排出管8c、8dとが接続されている。これにより、燃料電池システム全体が相当に大型化するという問題が指摘されている。
【0013】
本発明はこの種の問題を解決するものであり、所望の発電性能を維持するとともに、有効に小型化および簡素化することが可能な燃料電池および燃料電池スタックを提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明の請求項1に係る燃料電池では、セパレータの中心部と同心円上に複数の電解質・電極接合体が配列される配列層を備えている。これにより、セパレータ面内には、多数の電解質・電極接合体が配列され、コンパクトな構成で、燃料電池の高出力化が容易に図られるばかりでなく、複数の電解質・電極接合体のうちのいずれかの電解質・電極接合体が断線しても、残りの電解質・電極接合体が通電可能であり、発電の信頼性を向上させることができる。
【0015】
さらに、セパレータは、互いに積層される複数枚のプレートを備えており、前記プレート間には、アノード電極に燃料ガスを供給するための燃料ガス通路、およびカソード電極に酸化剤ガスを供給するための酸化剤ガス通路が形成されている。
【0016】
従って、セパレータの内部に、燃料ガス通路および酸化剤ガス通路が形成されるため、積層方向に反応ガス通路(燃料ガス通路および/または酸化剤ガス通路)を形成する構成に比べ、シール構造が簡素化されるとともに、所望のシール性を確実に維持することが可能になる。その上、燃料電池全体を有効に小型化することができ、集電効率の向上が容易に遂行される。
【0017】
しかも、電解質・電極接合体自体をコンパクトかつ薄肉に構成し、電極面内での温度差を小さくして温度分布のばらつきを減少させることができる。特に、固体電解質が使用される際に、熱応力による前記固体電解質の破損を阻止するとともに、抵抗分極を低減して出力の向上を図ることができる。
【0018】
また、本発明の請求項2に係る燃料電池では、セパレータの中心部と同心円上に複数の電解質・電極接合体が配列される2以上の配列層を備えている。これにより、セパレータ面内には、多数の電解質・電極接合体が配列され、コンパクトな構成で、燃料電池の高出力化が容易に図られる。しかも、電解質・電極接合体自体をコンパクトかつ薄肉に構成し、電極面内での温度差を小さくして温度分布のばらつきを減少させることができる。
【0019】
さらに、本発明の請求項3に係る燃料電池では、内周側配列層の電解質・電極接合体と外周側配列層の電解質・電極接合体とが、互いに位相をずらして配列されている。このため、複数の電解質・電極接合体を、互いに密に配列することができ、所望の発電性能を維持しながら、燃料電池のコンパクト化が確実に遂行可能になる。この他にも、反応後の燃料ガスおよび酸化剤ガス(以下、排ガスともいう)は、内周側配列層の電解質・電極接合体に衝突することにより生じる乱流の発生を回避することができ、排ガスを円滑に排気孔に導くことが可能になる。
【0020】
さらにまた、本発明の請求項4に係る燃料電池では、内周側配列層の電解質・電極接合体間に対応して、外周側配列層の電解質・電極接合体が配列されている。これにより、複数の電解質・電極接合体が、互いに密に配列されて燃料電池を効果的にコンパクト化することが可能になる。
【0021】
また、本発明の請求項5に係る燃料電池では、燃料ガス通路および酸化剤ガス通路の出口が、各配列層に配列されている電解質・電極接合体のそれぞれの両面中心部に対応して設けられている。従って、電解質・電極接合体の中心部から外周部に向かって燃料ガスおよび酸化剤ガスが供給されるため、各電解質・電極接合体の温度分布が小さくなって熱応力による破損を回避するとともに、発電面全体における化学反応が均一化する。
【0022】
しかも、各電解質・電極接合体に供給される燃料ガスの流量を均一化することができ、燃料ガスの利用率を高めることが可能になるとともに、全表面積を有効に利用して発電性能の向上が図られる。その上、電解質・電極接合体の両面中心部にそれぞれ燃料ガスおよび酸化剤ガスが供給され、前記燃料ガスおよび酸化剤ガスが前記両面外周側に向かって放射状に移動する。これにより、電解質・電極接合体とセパレータとの間に、燃料ガスと酸化剤ガスとのシール構造が不要になり、構成の簡素化が図られる。
【0023】
さらに、本発明の請求項6に係る燃料電池では、燃料ガス通路および酸化剤ガス通路が、セパレータの同一面上に設けられている。このため、燃料電池スタックを構成する際に、レイアウトが簡素化するとともに、積層方向の厚さを有効に薄肉化することができる。
【0024】
さらにまた、本発明の請求項7に係る燃料電池では、排ガスを排出する排出通路が、燃料ガス通路および酸化剤ガス通路が設けられる面とは異なる面上に設けられている。これにより、特別な部品を取り付ける必要がなく、セパレータを介して酸化剤ガスおよび燃料ガスの供給マニホールドと排出マニホールドとを設けることができ、燃料電池スタックの構成を容易に簡素化することが可能になる。
【0025】
また、本発明の請求項8に係る燃料電池では、セパレータの中心部に排ガス排出用の円形孔部が形成されるとともに、電解質・電極接合体が、円板状に構成されており、前記円形孔部の周囲に、該円形孔部と同心円上に複数の前記電解質・電極接合体が配列される配列層を備えている。従って、中心部に存在する排ガス排出用の円形孔部の周囲のみをシールするだけでよく、シール構造の簡素化が図られる。その上、排ガスが中心部に向かってのみ流れるため、前記排ガスの流量分布が均一化され、複数の電解質・電極接合体から排ガスが円滑かつ確実に排出される。
【0026】
さらに、本発明の請求項9に係る燃料電池では、円形孔部の周囲に、該円形孔部と同心円上に複数の電解質・電極接合体が配列される配列層が2以上設けられている。従って、複数の電解質・電極接合体を密に配置して燃料電池全体の小型化および高出力化を図るとともに、セパレータを軽量化することができる。
【0027】
さらにまた、本発明の請求項10に係る燃料電池スタックでは、円板状セパレータの面内に、前記セパレータの中心部と同心円上に複数の円板状電解質・電極接合体が配列される配列層が設けられるとともに、最外周の配列層に配列される前記電解質・電極接合体間に対応してスタック締め付け用ボルトを挿通するための孔部が形成されている。このため、燃料電池スタック全体の外形寸法が縮小され、前記燃料電池スタックの小型化が容易に図られる。
【0028】
また、本発明の請求項11に係る燃料電池スタックでは、セパレータの中心部と同心円上に複数の電解質・電極接合体が配列される配列層が2以上設けられている。これにより、セパレータ面内には、多数の電解質・電極接合体が配列され、コンパクトな構成で、燃料電池スタック全体の高出力化が容易に図られる。
【0029】
【発明の実施の形態】
図1は、本発明の実施形態に係る燃料電池10が複数積層された燃料電池スタック12の概略斜視説明図であり、図2は、前記燃料電池スタック12の一部断面説明図である。
【0030】
燃料電池10は、固体電解質型燃料電池であり、設置用の他、車載用等の種々の用途に用いられている。本実施形態では、燃料電池スタック12の適用例として、例えば、ガスタービン14に組み込む構成が、図3に示されている。なお、図3では、ガスタービン14に組み込むために、図1および図2に示す燃料電池スタック12とは異なる形状とされているが、実質的な構成は同一である。
【0031】
ガスタービン14を構成するケーシング16内には、燃焼器18を中心にして、燃料電池スタック12が組み込まれており、この燃料電池スタック12の中央側から前記燃焼器18側の室20に反応後の燃料ガスおよび酸化剤ガスである排ガスが排出される。室20は、排ガスの流れ方向(矢印X方向)に向かって幅狭となり、その先端側外周部に熱交換器22が外装されている。室20の前端側にタービン(出力タービン)24が配設されており、このタービン24にコンプレッサ26および発電器28が同軸に連結されている。ガスタービン14は、全体として軸対称に構成されている。
【0032】
タービン24の排出通路30は、熱交換器22の第1通路32に連通するとともに、コンプレッサ26の供給通路34は、前記熱交換器22の第2通路36に連通する。第2通路36は、加熱エア導入通路38を介して燃料電池スタック12の外周部に連通している。
【0033】
図1に示すように、燃料電池スタック12は、外周波形円板状の複数の燃料電池10を矢印A方向に積層するとともに、その積層方向両端には、エンドプレート40a、40bが配置され、複数本、例えば、8本の締め付け用ボルト42を介して一体的に締め付け保持されている。燃料電池スタック12の中心部には、排ガス排出用の円形孔部44がエンドプレート40bを底部として矢印A方向に形成される(図2参照)。
【0034】
この円形孔部44の周囲には、同心円上に複数、例えば、4つの燃料ガス供給連通孔46が、エンドプレート40aを底部としてエンドプレート40bから矢印A方向に形成される。エンドプレート40a、40bには、それぞれ出力端子48a、48bが設けられる。
【0035】
図4および図5に示すように、燃料電池10は、例えば、安定化ジルコニア等の酸化物イオン導電体で構成される電解質(電解質板)50の両面に、カソード電極52およびアノード電極54が設けられた電解質・電極接合体56を備える。電解質・電極接合体56は、比較的小径な円板状に形成される。
【0036】
複数、例えば、16個の電解質・電極接合体56を挟んで一組のセパレータ58が配設されることにより、燃料電池10が構成される。セパレータ58の面内には、このセパレータ58の中心部である円形孔部44と同心円上に8個の電解質・電極接合体56が配列される内周側配列層P1と、この内周側配列層P1の外周に8個の電解質・電極接合体56が配列される外周側配列層P2とが設けられる。
【0037】
セパレータ58は、互いに積層される複数枚、例えば、2枚のプレート60、62を備える。プレート60、62は、例えば、ステンレス合金等の板金で構成されており、それぞれ波形外周部60a、62aを設けている。
【0038】
図6乃至図8に示すように、プレート60は、円形孔部44に沿って周回する内側突起部64がプレート62側に膨出成形され、燃料ガス供給連通孔46の周囲には、前記プレート62から離間する方向に突出する凹部65が形成される。プレート60には、内側突起部64と同心円上に外側突起部66が設けられるとともに、前記内側突起部64と前記外側突起部66との間には、燃料ガス供給連通孔46に連通する燃料ガス通路67が形成される。
【0039】
外側突起部66は、それぞれ半径外方に所定の距離だけ突出する複数の第1壁部68および第2壁部70を交互に設けている。第1壁部68は、先端を結ぶ仮想円が内周側配列層P1の中心線を形成し、この内周側配列層P1に沿って8個の電解質・電極接合体56が配列される。第1壁部68間に第2壁部70が設けられ、前記第2壁部70の先端を通る仮想円により外周側配列層P2の中心線が形成される。この外周側配列層P2の中心線に沿って8個の電解質・電極接合体56が配列される。
【0040】
第1壁部68および第2壁部70の先端側周囲には、それぞれ3個の酸化剤ガス導入口78がプレート60の面方向に貫通して形成される。プレート60には、内周側配列層P1および外周側配列層P2に沿って配列される各電解質・電極接合体56側に突出し、各電解質・電極接合体56に接する第1ボス部80が膨出成形される。
【0041】
プレート60とプレート62との間には、内側突起部64と外側突起部66との間に対応して燃料ガス通路67が形成されるとともに、前記外側突起部66の外方に対応して酸化剤ガス通路82が形成される。この酸化剤ガス通路82は、プレート60に形成された酸化剤ガス導入口78に連通する。
【0042】
図6、図7および図9に示すように、プレート62は、燃料ガス供給連通孔46の周囲にプレート60から離間する方向に突出する凸部84が成形される。プレート62には、内周側配列層P1および外周側配列層P2に沿って配置される各電解質・電極接合体56側に突出して前記電解質・電極接合体56に接する第2ボス部86が設けられる。第2ボス部86は、第1ボス部80よりも径方向および高さ方向の各寸法が小さく設定されている。プレート62には、プレート60に成形された第1および第2壁部68、70の先端部内側に連通する燃料ガス導入口88が貫通形成される。
【0043】
セパレータ58には、燃料ガス供給連通孔46をシールするための絶縁シール90が設けられる。この絶縁シール90は、例えば、セラミックスの板材を配置する、あるいはセラミックスをプレート60または62に溶射することにより構成される。プレート60、62の波形外周部60a、62aは、互いに離間する方向に膨出成形されており(図6参照)、前記波形外周部60aまたは前記波形外周部62aには、セラミックス等の絶縁シール92が介装あるいは溶射により設けられる。
【0044】
図5および図6に示すように、一方のセパレータ58を構成するプレート60と他方のセパレータ58を構成するプレート62とにより、電解質・電極接合体56が挟持される。具体的には、電解質・電極接合体56を挟んで互いに対向するプレート60、62には、第1ボス部80および第2ボス部86が膨出成形されており、前記第1ボス部80と前記第2ボス部86とによって前記電解質・電極接合体56が挟持される。
【0045】
図10に示すように、電解質・電極接合体56と一方のセパレータ58を構成するプレート62との間には、燃料ガス通路67から燃料ガス導入口88を介して連通する燃料ガス供給流路94が形成される。電解質・電極接合体56と他方のセパレータ58を構成するプレート60との間には、酸化剤ガス通路82から酸化剤ガス導入口78を介して連通する酸化剤ガス供給流路96が形成される。燃料ガス供給流路94および酸化剤ガス供給流路96は、第2ボス部86および第1ボス部80の各高さ寸法に応じて開口寸法が設定されている。燃料ガスの流量が酸化剤ガスの流量よりも少ないために、第2ボス部86が第1ボス部80よりも小さな寸法に設定されている。
【0046】
図6に示すように、燃料ガス通路67は、同一のセパレータ58を構成するプレート60、62間に形成されて中心部に設けられた燃料ガス供給連通孔46に連通する。酸化剤ガス通路82は、燃料ガス通路67と同一の面上に形成されており、同一のセパレータ58を構成するプレート60、62の波形外周部60a、62a間を介して外部に開放されている。
【0047】
各セパレータ58は、積層方向に沿って第1および第2ボス部80、86が電解質・電極接合体56を挟持することにより、集電体として機能するとともに、前記プレート60の外側突起部66が前記プレート62に接触することにより、各燃料電池10が矢印A方向に沿って直列的に接続されている。
【0048】
図1および図2に示すように、上記のように構成される燃料電池10が矢印A方向に積層されて、その積層方向両端にエンドプレート40a、40bが配置される。エンドプレート40a、40bには、プレート60、62の波形外周部60a、62aが内方に湾曲する部分に対応して孔部100a、100bが形成される。孔部100a、100bには、絶縁材102a、102bが装着されており、締め付け用ボルト42がこの絶縁材102a、102bに挿入されて端部にナット104が螺合することにより、積層されている各燃料電池10に所望の締め付け力が付与されている。
【0049】
このように構成される燃料電池スタック12の動作について、以下に説明する。
【0050】
まず、燃料電池10を組み付ける際には、セパレータ58を構成するプレート60、62が接合される。具体的には、図6に示すように、プレート60に一体成形されている外側突起部66がプレート62にろう付けにより固定されるとともに、リング状の絶縁シール90が燃料ガス供給連通孔46を周回して前記プレート60または前記プレート62に、例えば、溶射等によって設けられる。一方、プレート60の波形外周部60aまたはプレート62の波形外周部62aの端面に、波形状の絶縁シール92が、例えば、溶射によって設けられる。
【0051】
これにより、セパレータ58が構成され、プレート60、62間には、同一面上に位置して燃料ガス通路67と酸化剤ガス通路82とが形成される。さらに、燃料ガス通路67が燃料ガス供給連通孔46に連通する一方、酸化剤ガス通路82がそれぞれの波形外周部60a、62a間から外部に開放されている。
【0052】
次いで、セパレータ58間に電解質・電極接合体56が挟持される。図4および図5に示すように、各セパレータ58は、互いに対向する面、すなわち、プレート60、62間に内周側配列層P1に対応して8個の電解質・電極接合体56が配置されるとともに、外周側配列層P2に沿って8個の電解質・電極接合体56が配置される。各電解質・電極接合体56の配置位置には、互いに近接する方向に突出して第1および第2ボス部80、86が形成されており、前記第1および第2ボス部80、86によって前記電解質・電極接合体56が挟持される。
【0053】
このため、図10に示すように、電解質・電極接合体56のカソード電極52とプレート60との間には、酸化剤ガス導入口78を介して酸化剤ガス通路82に連通する酸化剤ガス供給流路96が形成される。一方、電解質・電極接合体56のアノード電極54とプレート62との間には、燃料ガス導入口88を介して燃料ガス通路67に連通する燃料ガス供給流路94が形成される。さらに、セパレータ58間には、反応後の燃料ガスおよび酸化剤ガスを混合して円形孔部44に導くための排出通路106が形成される。
【0054】
上記のように組み付けられた燃料電池10が矢印A方向に積層されて、燃料電池スタック12が組み立てられる(図1および図2参照)。
【0055】
そこで、燃料電池スタック12を構成するエンドプレート40bの燃料ガス供給連通孔46に燃料ガス(例えば、水素含有ガス)が供給されるとともに、前記燃料電池スタック12の外周部側から加圧された酸化剤ガスである酸素含有ガス(以下、空気ともいう)が供給される。燃料ガス供給連通孔46に供給された燃料ガスは、積層方向(矢印A方向)に移動しながら、各燃料電池10を構成するセパレータ58内の燃料ガス通路67に導入される(図6参照)。
【0056】
図5に示すように、燃料ガスは、外側突起部66を構成する第1および第2壁部68、70に沿って移動し、前記第1および第2壁部68、70の先端部から燃料ガス導入口88を介して燃料ガス供給流路94に導入される。燃料ガス導入口88は、各電解質・電極接合体56のアノード電極54の中心位置に対応して設けられており、前記燃料ガス供給流路94に導入された前記燃料ガスは、前記アノード電極54の中心部から外周に向かって流動する(図10参照)。
【0057】
一方、各燃料電池10の外周側から供給される酸化剤ガスは、各セパレータ58のプレート60、62間に形成されている酸化剤ガス通路82に供給される。この酸化剤ガス通路82に供給された酸化剤ガスは、酸化剤ガス導入口78から酸化剤ガス供給流路96に導入され、電解質・電極接合体56のカソード電極52の中心部から外周に沿って流動する(図5および図10参照)。
【0058】
従って、各電解質・電極接合体56では、アノード電極54の中心部から外周に向かって燃料ガスが供給されるとともに、カソード電極52の中心部から外周に向かって酸化剤ガスが供給される。その際、酸素イオンが電解質50を通ってアノード電極54に移動し、化学反応により発電が行われる。
【0059】
ここで、各電解質・電極接合体56は、第1および第2ボス部80、86により挟持されており、前記第1および第2ボス部80、86が集電体として機能する。このため、各燃料電池10は、矢印A方向(積層方向)に電気的に直列に接続されて出力端子48a、48b間に出力を取り出すことができる。また、複数の電解質・電極接合体56のうちのいずれかの電解質・電極接合体56が断線しても、残りの電解質・電極接合体56で通電することが可能であり、発電の信頼性を向上させることができる。
【0060】
一方、各電解質・電極接合体56の外周に移動した反応後の燃料ガスおよび酸化剤ガス(排ガス)は、セパレータ58間に形成される排出通路106を介して前記セパレータ58の中心部側に移動する。セパレータ58の中心部には、排ガスマニホールドを構成する円形孔部44が形成されており、排ガスがこの円形孔部44から外部に排出される。
【0061】
この場合、本実施形態では、比較的小径な円形状の電解質・電極接合体56を備え、複数個、例えば、16個の前記電解質・電極接合体56をセパレータ58間に配置している。このため、電解質・電極接合体56を薄肉化することができ、抵抗分極の低減を図るとともに、温度分布が小さくなり、熱応力による破損を回避することが可能になる。従って、燃料電池10の発電性能を有効に向上させることができる。
【0062】
さらに、セパレータ58の中心部である円形孔部44と同心円上に8個の電解質・電極接合体56が配列される内周側配列層P1と、この内周側配列層P1の外周側に8個の前記電解質・電極接合体56が配列される外周側配列層P2とが設けられている。その際、外周側配列層P2の電解質・電極接合体56は、内周側配列層P1の電解質・電極接合体56に対し互いに位相をずらして配列している。より具体的には、外周側配列層P2の電解質・電極接合体56は、内周側配列層P1の電解質・電極接合体56間に対応して配列されている。
【0063】
これにより、複数の電解質・電極接合体56を互いに密に配列することができ、所望の発電性能を維持しつつ、燃料電池10全体のコンパクト化が容易に図られるという利点が得られる。この他にも、排ガスは、内周側配列層P1の電解質・電極接合体56に衝突することにより生じる乱流の発生を回避することができ、この排ガスを円滑に円形孔部44に導くことが可能になる。しかも、排ガスがセパレータ58の中心部である円形孔部44に向かって排出されるため、複数の電解質・電極接合体56からの排ガスの流れに乱れが生じ難くなり、流量が一定となり易い。このため、燃料電池10内での圧力損失を低減し、発電効率を高めることができる。
【0064】
また、セパレータ58は、2枚のプレート60、62を備えており、前記プレート60、62間に燃料ガス通路67および酸化剤ガス通路82が形成されている。従って、反応ガス通路を積層方向に形成する構造に比べ、燃料電池10のシール構造が有効に簡素化されるとともに、所望のシール性を確実に確保することが可能になる。しかも、燃料電池10全体を有効に小型化することができ、集電効率の向上が容易に遂行される。
【0065】
さらにまた、本実施形態では、燃料ガス通路67および酸化剤ガス通路82の出口である燃料ガス導入口88および酸化剤ガス導入口78が、各電解質・電極接合体56のそれぞれの両面中心部に対応して設けられている(図10参照)。従って、電解質・電極接合体56の中心部から外周に向かって燃料ガスおよび酸化剤ガスが供給されるため、各電解質・電極接合体56の温度分布が小さくなって、熱応力による破損を回避するとともに、発電面全体における化学反応が均一化する。
【0066】
しかも、各電解質・電極接合体56に供給される燃料ガスの流量を均一化することができ、燃料ガスの利用率を高めることが可能になるとともに、全表面積を有効に利用して発電性能の向上が図られるという効果が得られる。
【0067】
その上、電解質・電極接合体56の両面中心部に、それぞれ燃料ガスおよび酸化剤ガスが供給され、前記燃料ガスおよび前記酸化剤ガスが前記両面外周側に向かって放射状に移動している。これにより、電解質・電極接合体56とセパレータ58との間には、燃料ガスと酸化剤ガスとのシール構造が不要になり、構成の簡素化が容易に図られるという利点がある。
【0068】
また、セパレータ58では、燃料ガス通路67および酸化剤ガス通路82が同一面上、すなわち、同一空間内に設けられている。このため、燃料電池スタック12を構成する際に、レイアウトが簡素化するとともに、積層方向の厚さを有効に薄肉化することができる。
【0069】
さらに、排ガスを排出するための排出通路106が、燃料ガス通路67および酸化剤ガス通路82が設けられる面とは異なる面上、すなわち、セパレータ58間に設けられている(図10参照)。従って、セパレータ58を介して燃料ガスおよび酸化剤ガスの供給マニホールドと排出マニホールドとを設けることができ、特別な部品を取り付ける必要がなく、燃料電池スタック12を容易に構成することが可能になる。
【0070】
さらにまた、本実施形態では、セパレータ58を構成するプレート60、62の形状を波形外周部60a、62aに設定するとともに、円形孔部44の中心部側に湾曲する部分、すなわち、外周側配列層P2に配列されている電解質・電極接合体56間に対応する部分に締め付け用ボルト42が設けられている(図1参照)。このため、燃料電池スタック12全体の外形寸法が有効に縮小され、前記燃料電池スタック12の小型化が容易に図られる。
【0071】
さらに、波形外周部60a、62a側は、比較的低温の空気取り入れ口を構成している。これにより、締め付け用ボルト42が高温になることがなく、この締め付け用ボルト42の耐久性を向上させることが可能になる。
【0072】
次に、燃料電池スタック12を、図2に示すガスタービン14に組み込んだ場合の動作について、概略的に説明する。
【0073】
図3に示すように、このガスタービン14では、始動時に燃焼器18が駆動されてタービン24が回転され、コンプレッサ26および発電器28が駆動される。コンプレッサ26の駆動によって外気が供給通路34に導入され、高圧かつ所定温度(例えば、200℃)になった空気が熱交換器22の第2通路36に送られる。
【0074】
この熱交換器22の第1通路32には、反応後の燃料ガスおよび酸化剤ガスである高温の排ガスが供給されており、熱交換器22の第2通路36に導入された空気が加熱される。この加熱された空気は、加熱エア導入通路38を通って燃料電池スタック12を構成する各燃料電池10の外周部に導入される。このため、燃料電池10で発電が行われ、反応後の燃料ガスおよび酸化剤ガスである排ガスが、ケーシング16内の室20に排出される。
【0075】
その際、固体電解質型燃料電池である燃料電池10から排出される排ガスは、800℃〜1000℃の高温となっており、この排ガスがタービン24を回転させて発電器28による発電が行われるとともに、熱交換器22に送られて吸入される外部空気の加熱を行うことができる。これにより、燃焼器18を使用する必要がなく、燃料電池スタック12から排出される排ガスを用いてタービン24を回転させることが可能になる。
【0076】
しかも、排ガスが800℃〜1000℃と高温となっており、燃料電池スタック12に供給される燃料の内部改質を行うことができる。従って、燃料として、例えば、天然ガスやブタン、あるいはガソリン系等の種々の燃料を使用して内部改質を行うことが可能になる。
【0077】
なお、本実施形態では、燃料電池スタック12をガスタービン14に組み込んで使用する場合について説明したが、これに限定されるものではなく、燃料電池スタック12を車載用として使用することも可能である。
【0078】
【発明の効果】
本発明に係る燃料電池では、セパレータ間に複数の電解質・電極接合体が配列されるとともに、前記セパレータが、互いに積層される複数枚のプレートを備えており、前記プレート間には、燃料ガス通路および酸化剤ガス通路が形成されている。このため、電解質・電極接合体自体をコンパクトかつ薄肉に構成し、電極面内での温度差を小さくして温度分布のばらつきを減少させることができる。
【0079】
特に、固体電解質が使用される際に、前記固体電解質の破損を阻止するとともに、抵抗分極を低減して出力の向上を図ることができる。さらに、セパレータの内部に、燃料ガス通路および酸化剤ガス通路が形成されるため、シール構造が簡素化されるとともに、所望のシール性を確実に維持することが可能になる。しかも、燃料電池全体を有効に小型化することができ、集電効率の向上が容易に遂行される。
【図面の簡単な説明】
【図1】本発明の実施形態に係る燃料電池が複数積層された燃料電池スタックの概略斜視説明図である。
【図2】前記燃料電池スタックの一部断面説明図である。
【図3】前記燃料電池スタックを組み込むガスタービンの概略構成を示す断面説明図である。
【図4】前記燃料電池の分解斜視図である。
【図5】前記燃料電池の動作を示す一部分解斜視説明図である。
【図6】前記燃料電池スタックの一部省略断面図である。
【図7】前記燃料電池を構成するセパレータの分解斜視説明図である。
【図8】前記セパレータを構成する一方のプレートの正面説明図である。
【図9】前記セパレータを構成する他方のプレートの正面説明図である。
【図10】前記燃料電池の動作説明図である。
【図11】従来技術に係る燃料電池システムの分解斜視説明図である。
【符号の説明】
10…燃料電池 12…燃料電池スタック
14…ガスタービン 18…燃焼器
22…熱交換器 24…タービン
26…コンプレッサ 28…発電器
50…電解質 52…カソード電極
54…アノード電極 56…電解質・電極接合体
58…セパレータ 60、62…プレート
60a、62a…波形外周部 66…外側突起部
67…燃料ガス通路 78…酸化剤ガス導入口
80、86…ボス部 82…酸化剤ガス通路
88…燃料ガス導入口 94…燃料ガス供給流路
96…酸化剤ガス供給流路
Claims (11)
- 電解質をアノード電極とカソード電極とで挟んで構成される電解質・電極接合体がセパレータ間に配設される燃料電池であって、
前記セパレータは、互いに積層される複数枚のプレートを備え、前記プレート間には、前記アノード電極に燃料ガスを供給するための燃料ガス通路、および前記カソード電極に酸化剤ガスを供給するための酸化剤ガス通路が形成されるとともに、
前記セパレータの面内には、該セパレータの中心部と同心円上に複数の前記電解質・電極接合体が配列される配列層が設けられることを特徴とする燃料電池。 - 請求項1記載の燃料電池において、前記セパレータの面内には、該セパレータの中心部と同心円上に複数の前記電解質・電極接合体が配列される配列層が2以上設けられることを特徴とする燃料電池。
- 請求項1記載の燃料電池において、内周側配列層の前記電解質・電極接合体と外周側配列層の前記電解質・電極接合体とは、互いに位相をずらして配列されることを特徴とする燃料電池。
- 請求項1記載の燃料電池において、内周側配列層の前記電解質・電極接合体間に対応して、外周側配列層の前記電解質・電極接合体が配列されることを特徴とする燃料電池。
- 請求項1記載の燃料電池において、前記燃料ガス通路および前記酸化剤ガス通路の出口は、各配列層に配列される前記電解質・電極接合体のそれぞれの両面中心部に対応して設けられることを特徴とする燃料電池。
- 請求項1記載の燃料電池において、前記燃料ガス通路および前記酸化剤ガス通路は、前記セパレータの同一面上に設けられることを特徴とする燃料電池。
- 請求項6記載の燃料電池において、反応後の前記燃料ガスおよび前記酸化剤ガスを排出する排出通路は、前記燃料ガス通路および前記酸化剤ガス通路が設けられる面とは異なる面上に設けられることを特徴とする燃料電池。
- 請求項1乃至7のいずれか1項に記載の燃料電池において、前記セパレータは、中心部に排ガス排出用の円形孔部が形成されるとともに、前記電解質・電極接合体は、円板状に構成されており、
前記円形孔部の周囲に、該円形孔部と同心円上に複数の前記電解質・電極接合体が配列される配列層を設けることを特徴とする燃料電池。 - 請求項8記載の燃料電池において、前記円形孔部の周囲に、該円形孔部と同心円上に複数の前記電解質・電極接合体が配列される配列層が2以上設けられることを特徴とする燃料電池。
- 電解質をアノード電極とカソード電極とで挟んで構成される円板状電解質・電極接合体が円板状セパレータ間に配設される燃料電池を連続的に積層し、積層方向両端にエンドプレートを配設する燃料電池スタックであって、
前記セパレータの面内には、該セパレータの中心部と同心円上に複数の前記電解質・電極接合体が配列される配列層が設けられるとともに、
前記エンドプレートには、最外周の配列層に配列される前記電解質・電極接合体間に対応してスタック締め付け用ボルトを挿通するための孔部が形成されることを特徴とする燃料電池スタック。 - 請求項10記載の燃料電池スタックにおいて、前記セパレータの面内には、該セパレータの中心部と同心円上に複数の前記電解質・電極接合体が配列される配列層が2以上設けられることを特徴とする燃料電池スタック。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002190004A JP4394865B2 (ja) | 2002-06-28 | 2002-06-28 | 燃料電池 |
EP03761819A EP1540756A2 (en) | 2002-06-28 | 2003-06-26 | Fuel cell and fuel cell stack |
AU2003243009A AU2003243009B2 (en) | 2002-06-28 | 2003-06-26 | Fuel cell and fuel cell stack |
CNB03815255XA CN1312797C (zh) | 2002-06-28 | 2003-06-26 | 燃料电池和燃料电池组 |
KR1020047021430A KR100675613B1 (ko) | 2002-06-28 | 2003-06-26 | 연료전지 및 연료전지스택 |
CA002490448A CA2490448A1 (en) | 2002-06-28 | 2003-06-26 | Fuel cell and fuel cell stack |
PCT/JP2003/008099 WO2004004038A2 (en) | 2002-06-28 | 2003-06-26 | Fuel cell and fuel cell stack |
US10/608,592 US7125619B2 (en) | 2002-06-28 | 2003-06-27 | Fuel cell and fuel cell stack |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002190004A JP4394865B2 (ja) | 2002-06-28 | 2002-06-28 | 燃料電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004039254A true JP2004039254A (ja) | 2004-02-05 |
JP4394865B2 JP4394865B2 (ja) | 2010-01-06 |
Family
ID=31700046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002190004A Expired - Fee Related JP4394865B2 (ja) | 2002-06-28 | 2002-06-28 | 燃料電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4394865B2 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006134598A (ja) * | 2004-11-02 | 2006-05-25 | Honda Motor Co Ltd | 燃料電池 |
JP2006134597A (ja) * | 2004-11-02 | 2006-05-25 | Honda Motor Co Ltd | 燃料電池 |
JP2007005179A (ja) * | 2005-06-24 | 2007-01-11 | Honda Motor Co Ltd | 燃料電池及び燃料電池スタック |
JP2007005186A (ja) * | 2005-06-24 | 2007-01-11 | Honda Motor Co Ltd | 燃料電池及び燃料電池スタック |
JP2007005181A (ja) * | 2005-06-24 | 2007-01-11 | Honda Motor Co Ltd | 燃料電池及び燃料電池スタック |
JP2007005185A (ja) * | 2005-06-24 | 2007-01-11 | Honda Motor Co Ltd | 燃料電池及び燃料電池スタック |
JP2007005190A (ja) * | 2005-06-24 | 2007-01-11 | Honda Motor Co Ltd | 燃料電池及び燃料電池スタック |
JP2007005183A (ja) * | 2005-06-24 | 2007-01-11 | Honda Motor Co Ltd | 燃料電池及び燃料電池スタック |
JP2007179926A (ja) * | 2005-12-28 | 2007-07-12 | Honda Motor Co Ltd | 燃料電池及び燃料電池スタック |
JP2009093842A (ja) * | 2007-10-04 | 2009-04-30 | Honda Motor Co Ltd | 燃料電池及び燃料電池スタック |
JP2013522458A (ja) * | 2010-03-12 | 2013-06-13 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | 効率を改善した電気化学的プロセスおよびそれに関連する高温電解槽(hte)などの電気化学リアクタ |
JP2019220364A (ja) * | 2018-06-21 | 2019-12-26 | 本田技研工業株式会社 | 燃料電池システム |
-
2002
- 2002-06-28 JP JP2002190004A patent/JP4394865B2/ja not_active Expired - Fee Related
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006134598A (ja) * | 2004-11-02 | 2006-05-25 | Honda Motor Co Ltd | 燃料電池 |
JP2006134597A (ja) * | 2004-11-02 | 2006-05-25 | Honda Motor Co Ltd | 燃料電池 |
US8088533B2 (en) | 2004-11-02 | 2012-01-03 | Honda Motor Co., Ltd. | Fuel cell having separator with stopper |
JP4555051B2 (ja) * | 2004-11-02 | 2010-09-29 | 本田技研工業株式会社 | 燃料電池 |
JP4555050B2 (ja) * | 2004-11-02 | 2010-09-29 | 本田技研工業株式会社 | 燃料電池 |
JP4555173B2 (ja) * | 2005-06-24 | 2010-09-29 | 本田技研工業株式会社 | 燃料電池及び燃料電池スタック |
JP2007005181A (ja) * | 2005-06-24 | 2007-01-11 | Honda Motor Co Ltd | 燃料電池及び燃料電池スタック |
JP2007005183A (ja) * | 2005-06-24 | 2007-01-11 | Honda Motor Co Ltd | 燃料電池及び燃料電池スタック |
JP2007005179A (ja) * | 2005-06-24 | 2007-01-11 | Honda Motor Co Ltd | 燃料電池及び燃料電池スタック |
US7871730B2 (en) | 2005-06-24 | 2011-01-18 | Honda Motor Co., Ltd. | Fuel cell and fuel cell stack having a filter mechanism |
JP4555170B2 (ja) * | 2005-06-24 | 2010-09-29 | 本田技研工業株式会社 | 燃料電池及び燃料電池スタック |
JP4555174B2 (ja) * | 2005-06-24 | 2010-09-29 | 本田技研工業株式会社 | 燃料電池及び燃料電池スタック |
JP2007005185A (ja) * | 2005-06-24 | 2007-01-11 | Honda Motor Co Ltd | 燃料電池及び燃料電池スタック |
JP4555169B2 (ja) * | 2005-06-24 | 2010-09-29 | 本田技研工業株式会社 | 燃料電池及び燃料電池スタック |
JP2007005190A (ja) * | 2005-06-24 | 2007-01-11 | Honda Motor Co Ltd | 燃料電池及び燃料電池スタック |
JP4555172B2 (ja) * | 2005-06-24 | 2010-09-29 | 本田技研工業株式会社 | 燃料電池及び燃料電池スタック |
JP4555171B2 (ja) * | 2005-06-24 | 2010-09-29 | 本田技研工業株式会社 | 燃料電池及び燃料電池スタック |
JP2007005186A (ja) * | 2005-06-24 | 2007-01-11 | Honda Motor Co Ltd | 燃料電池及び燃料電池スタック |
JP4611196B2 (ja) * | 2005-12-28 | 2011-01-12 | 本田技研工業株式会社 | 燃料電池及び燃料電池スタック |
JP2007179926A (ja) * | 2005-12-28 | 2007-07-12 | Honda Motor Co Ltd | 燃料電池及び燃料電池スタック |
JP2009093842A (ja) * | 2007-10-04 | 2009-04-30 | Honda Motor Co Ltd | 燃料電池及び燃料電池スタック |
JP2013522458A (ja) * | 2010-03-12 | 2013-06-13 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | 効率を改善した電気化学的プロセスおよびそれに関連する高温電解槽(hte)などの電気化学リアクタ |
JP2019220364A (ja) * | 2018-06-21 | 2019-12-26 | 本田技研工業株式会社 | 燃料電池システム |
JP7103861B2 (ja) | 2018-06-21 | 2022-07-20 | 本田技研工業株式会社 | 燃料電池システム |
Also Published As
Publication number | Publication date |
---|---|
JP4394865B2 (ja) | 2010-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004146345A (ja) | 燃料電池 | |
KR100675613B1 (ko) | 연료전지 및 연료전지스택 | |
US20070243441A1 (en) | Fuel Cell and Fuel Cell Stack | |
JP2004348978A (ja) | 燃料電池 | |
JP4324409B2 (ja) | 燃料電池 | |
JP4394865B2 (ja) | 燃料電池 | |
JP2004362991A (ja) | 燃料電池 | |
JP4394899B2 (ja) | 燃料電池 | |
JP4324347B2 (ja) | 燃料電池 | |
JP4324348B2 (ja) | 燃料電池 | |
EP2215677B1 (en) | Fuel cell and fuel cell stack | |
JP2004362995A (ja) | 燃料電池及び燃料電池スタック | |
JP2004362990A (ja) | 燃料電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090602 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090908 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090914 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091013 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091016 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121023 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131023 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |