JP2004029285A - 光導波路の製造方法 - Google Patents

光導波路の製造方法 Download PDF

Info

Publication number
JP2004029285A
JP2004029285A JP2002184186A JP2002184186A JP2004029285A JP 2004029285 A JP2004029285 A JP 2004029285A JP 2002184186 A JP2002184186 A JP 2002184186A JP 2002184186 A JP2002184186 A JP 2002184186A JP 2004029285 A JP2004029285 A JP 2004029285A
Authority
JP
Japan
Prior art keywords
laser beam
optical waveguide
layer
refractive index
transparent layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002184186A
Other languages
English (en)
Other versions
JP3803307B2 (ja
Inventor
Katsuyuki Imoto
井本 克之
Shuhei Tanaka
田中 修平
Kazuyuki Hirao
平尾 一之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Nippon Sheet Glass Co Ltd
Original Assignee
Hitachi Cable Ltd
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Nippon Sheet Glass Co Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002184186A priority Critical patent/JP3803307B2/ja
Publication of JP2004029285A publication Critical patent/JP2004029285A/ja
Application granted granted Critical
Publication of JP3803307B2 publication Critical patent/JP3803307B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Laser Beam Processing (AREA)

Abstract

【課題】低損失な光導波路の製造方法を提供する。
【解決手段】レーザビーム9−1を集光、照射したレーザビーム9−2を透明層1中に照射して屈折率を高くすることによって光伝搬層パターンを形成する光導波路の製造方法において、光透過部の形状が光伝搬層パターン2とほぼ同一のマスク7を介してレーザビーム9−2を透明層1に集光、照射することにより、側面におけるレーザビーム9−2の照射部と非照射部との界面近傍の屈折率の変化率が急峻な光伝搬層パターン2を形成するものである。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、光導波路の製造方法に関する。
【0002】
【従来の技術】
図8(a)は従来の光導波路の製造方法の説明図であり、図8(b)は図8(a)に示した製造方法を適用した光導波路の側面図であり、図8(c)は図8(b)に示した光導波路の8c−8c線上の屈折率分布を示す図である。図8(c)において横軸は屈折率を示し、縦軸は厚さ方向の位置を示す。
【0003】
この光導波路の製造方法は、超短レーザビーム40−1をレンズ50を介して集光し、その集光したレーザビーム40−2をガラスブロック20内に照射することにより、照射部の屈折率を増加させて高屈折率層、すなわち光伝搬層30に改質する方法である。
【0004】
超短パルスレーザビーム40−1には200fs(フェムト秒)以下の狭いパルス幅のパルスレーザが用いられ、200kHz程度の速い繰り返し周波数で照射され、ガラスブロック20を矢印41方向に移動させることにより、所望の光伝搬層パターンが形成される。
【0005】
屈折率分布は、超短パルスレーザビーム40−1の断面内光パワー分布(ガウス分布)に略比例した分布型の屈折率分布となっている。
【0006】
【発明が解決しようとする課題】
しかしながら、図8(a)〜(c)に示した従来技術は、以下のような問題があり、まだ実用化までには至っていない。
【0007】
(1)レーザビーム40−2の揺らぎ及びその焦点位置の変動、ガラスブロック20の移動速度の変動等によって光伝搬層30の形状が変動する。この変動により、高屈折率の光伝搬層30と低屈折率のガラスブロック20との界面が不均一になるので、光散乱損失を増大させ、低損失な光導波路がまだ得られていない。
【0008】
(2)(1)により、光伝搬層30とガラスブロック20との界面の屈折率も不均一となり、曲率半径の小さい曲線導波路を実現しようとすると、その曲線導波路での光伝搬特性が乱れて損失が増大し、レーザビーム40−1を用いない通常のコア層及びクラッド層からなる光導波路で実現されているような低損失な分岐、合流、合波等の光信号処理回路を得ることが難しい。
【0009】
(3)レーザビーム40−2の照射によって光伝搬層30の屈折率をより高く実現しようとすると、レーザビーム40−2のエネルギーをガラスブロック20内に空孔が発生する直前に増加させるか、レーザビーム40−2を同一箇所に複数回照射する方法が用いられている。しかし、いずれの方法もプロセス的に不安定であり、再現性の悪い方法である。
【0010】
そこで、本発明の目的は、上記課題を解決し、低損失な光導波路の製造方法を提供することにある。
【0011】
【課題を解決するための手段】
請求項1の発明は、透明層中に、レーザビームを集光、照射してレーザビームの照射部の屈折率を高くすることによって光伝搬層パターンを形成する光導波路の製造方法において、光透過部の形状が光伝搬層パターンとほぼ同一のマスクを介してレーザビームを透明層に集光、照射することにより、側面におけるレーザビームの照射部と非照射部との界面近傍の屈折率の変化率が急峻な光伝搬層パターンを形成するものである。
【0012】
請求項2の発明は、請求項1に記載の構成に加え、マスクを透明層の表面に形成した後で、レーザビームを集光、照射してもよい。
【0013】
請求項3の発明は、請求項2に記載の構成に加え、透明層の表面にフォトブリーチング用ポリマ層を形成し、フォトブリーチング用ポリマ層に形状が光伝搬層パターンとほぼ同一となるように紫外線を照射して屈折率を低くすることによって、マスクを形成してもよい。
【0014】
請求項4の発明は、請求項1に記載の構成に加え、マスクを透明層の上に配置してレーザビームを集光、照射してもよい。
【0015】
請求項5の発明は、請求項4に記載の構成に加え、マスクとしてガラス板に光透過部の形状が光伝搬層パターンとほぼ同一のCrパターンが形成されたフォトマスクを用いてもよい。
【0016】
請求項6の発明は、請求項1から5のいずれかに記載の構成に加え、透明層として厚さが15μm〜100μmの範囲のものを用いるのが好ましい。
【0017】
請求項7の発明は、請求項1から6のいずれかに記載の構成に加え、透明層を1000℃〜1250℃の範囲で熱処理した後で光伝搬層パターンを形成するのが好ましい。
【0018】
請求項1の発明によれば、所望の光信号用の光伝搬層パターンが形成されたマスクパターンを透明層の表面に設け、そのマスクパターンを介してレーザビームを透明層中に集光、照射するので、所望幅を有する光伝搬層の照射部と非照射部との界面近傍の屈折率の変化率が急峻な構造とすることができる。すなわち、マスクパターン上でのレーザビームスポット径をマスクパターン幅よりも大きくすることによって、マスクパターン内のレーザビームのエネルギー分布をほぼ一様にし、レーザビームの揺らぎや透明層の移動速度変動等の不安定要因が光伝搬層パターン形状及び屈折率分布を乱さないようにすることが可能となる。また、光伝搬層(「光伝播層」とも言う。)の幅方向の光の閉じ込めが厚さ方向の光の閉じ込めより強くなり、光伝搬層の側面の光散乱損失を小さくすることができるので、曲率半径の小さい曲線部での光散乱損失を減少させることができる。
【0019】
請求項2の発明によれば、マスク用の膜を透明層の表面に形成した後でフォトリソグラフィ、エッチング工程を経てパターニングしておけば、透明層中に高寸法精度で光伝搬層を形成することが可能となる。
【0020】
請求項3の発明によれば、マスクにフォトブリーチング用ポリマ層を用いることにより、透明層の表面へのポリマ層の形成(ポリマ層の溶液の塗布、ベーキングにより形成)後、フォトマスクを介してポリマ層への紫外線照射により、光伝搬層と形状がほぼ同一のマスクを透明層上に形成することが容易となる。このマスクは、レーザビームが通過する領域と遮断される領域のいずれの表面もほぼ同一の平坦な面であるので、照射部と非照射部との界面におけるレーザビームの不要な乱反射による乱れをなくすことができる。
【0021】
請求項4の発明によれば、マスクを何回でも使用してほぼ同一パターン形状の光導波路を製造することができ、低コスト化に寄与することができる。
【0022】
請求項5の発明によれば、Cr領域では超短パルスレーザビームを反射し、そのレーザビーム外周部をCr領域で遮断して急峻なパワー分布のレーザビームを透明層の内部に集光させ、Crの無い領域、すなわち、光伝搬層パターンでは超短パルスレーザビームのパワーの80〜90%を通過させて透明層の内部に集光させ、急峻な屈折率分布を実現することが可能となる。この場合、マスク表面が平坦な面であるので、透明層に照射されるレーザビームの不要な乱反射による乱れを抑えることができる。
【0023】
請求項6の発明によれば、透明層の厚さが15μm〜100μmの範囲であるので、フォトマスクを介して透明層の中に焦点距離の短いレンズを用いてレーザビームを集光、照射することが可能となり、フォトマスクによってレーザビームの外周部のパワーを遮断することができ、照射部と非照射部との界面近傍の屈折率の変化率を急峻にすることができる。また、透明層の中にフォトマスクパターンとほぼ同一形状で擬似的にステップに近い屈折率分布を有するシングルモード伝搬用の光伝搬層を形成することができるので、シングルモード光導波路及びそれを用いた光信号処理回路のパターンを描画することができる。
【0024】
請求項7の発明によれば、透明層を1000℃〜1250℃の範囲で熱処理することにより、レーザビーム照射により形成した光伝搬層だけでなく、非照射部の緻密度を高くするができるので、長期的に安定な光学特性を有する光導波路及びそれを用いた光信号処理回路を実現することができる。すなわち、高密度な層を形成することができるので、外部からOHイオンの進入を阻止することができ、また温度変化に対し安定した光学特性を得ることができる。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて詳述する。
【0026】
図1(a)〜(d)は本発明の光導波路の製造方法の一実施の形態を示す工程図である。
【0027】
基板4の表面に透明層1をCVD法、スパッタリング法等により形成した後で1000℃から250℃の範囲で熱処理を行う。ついでその透明層1の上にフォトブリーチング用ポリマ層3を形成する。このポリマ層3は、有機溶媒に溶けたフォトブリーチング用ポリマ溶液をスピンコーティング法により透明層1上に塗布し、その後250℃〜350℃の範囲で熱処理することにより得られる。
【0028】
フォトブリーチング用ポリマ溶液としては、有機溶媒に溶けたポリシラン化合物にシリコーン化合物を添加したもの、ニトロンを添加したシリコーン化合物等を用いることができる(図1(a))。
【0029】
次にフォトブリーチング用ポリマ層3の上にフォトマスク7を配置し、そのフォトマスク7の上から紫外線光8を照射してフォトブリーチング用ポリマ層3を露光する。尚、フォトマスク7の7aは透過領域であり、7bは遮断領域である(図1(b))。
【0030】
フォトブリーチング用ポリマ層3の紫外線光の照射された領域3aは、感光して屈折率が低下すると共に透明に変化し、図1(c)に示す光伝搬層2とほぼ同一形状のパターンとなる。フォトブリーチング用ポリマ層3の紫外線光8の照射されなかった領域3bは屈折率が低下しない領域のままである。
【0031】
フォトブリーチング用ポリマ層3からなるマスク3a、3bの上から超短パルスレーザビーム9−1をレンズ10を介して集光し、その集光したレーザビーム9−2を透明層1内に照射し、透明層1内に高屈折率の光伝搬層2のパターンを描画する。
【0032】
ここで、超短パルスレーザビーム9−1には波長が700nm〜900nmの範囲でパルス幅が200fs以下、繰り返し周波数が50kHz〜300kHzの範囲、平均出力が100mWの範囲のものを用いる(図1(c))。
【0033】
以上の工程により図1(d)に示すような光導波路が得られる。
【0034】
この方法の特徴は、フォトブリーチング用ポリマ層3からなるマスク3a、3bを用いることにより、透明層1の表面へのフォトブリーチング用ポリマ層3の形成(フォトブリーチング用ポリマ層の塗布、ベーキングにより形成)後、フォトマスク7を介してフォトブリーチング用ポリマ層3への紫外線光の照射により、容易に光伝搬層とほぼ同一形状のマスク3a、3bを透明層1の表面にパターニングすることができる。このマスク3a、3bのうちマスク3aはレーザビーム9−2が通過する領域3aであり、マスク3bはレーザビーム9−2を遮断する領域3bであり、いずれの領域3a、3bの表面はほぼ同一の平坦な面であるので、レーザビーム9−2の照射部と非照射部との界面でのレーザビーム9−2の不要な乱反射による乱れを無くすことができる点に特徴がある。
【0035】
図2(a)〜(c)は本発明の光導波路の製造方法の他の実施の形態を示す工程図である。
【0036】
図1(a)〜(d)に示した製造方法との相違点は、フォトマスクを用いた点である。
【0037】
基板4の表面に透明層1を形成する(図2(a))。
【0038】
透明層1の上にWSi膜11を形成する。そのWSi膜11の上にフォトレジスト膜(図示せず。)を塗布し、アニール後にフォトマスク(図示せず。)を配置し、フォトレジスト膜をパターニングし、所望の光伝搬層パターンとほぼ同一形状のパターンを形成する。その後、フォトレジストパターンをマスクにしてWSi膜11をドライエッチングプロセスによりエッチングしてパターン化する。
【0039】
次にWSi膜パターン11a、11bの上から超短パルスレーザビーム9−1をレンズ10を通して透明層1内に集光、照射することにより(図2(b))、図2(c)に示すような光伝搬層2を有する光導波路が得られる。
【0040】
WSi膜11のパターン11bは、超短パルスレーザビーム9−2を反射する材料であり、かつ透明層1上に密着性よく成膜することができる。また、厚い透明層をWSi膜11でドライエッチングする際にも大きなエッチング選択比を得ることができる。なお、図2(b)に示したWSi膜パターン11a、11bの代わりに、ガラス板上にCr膜でパターン化されたフォトマスクを透明層1の表面上に配置し、レーザビーム9−2を照射して光伝搬層2を形成してもよい。この場合にはCr領域部では超短パルスレーザビーム9−2を反射し、そのレーザビーム9−2の外周部をこのCr領域部で遮断して急峻なパワー分布のレーザビーム9−2を透明層1内に集光させ、Crの無い領域部、すなわち、光伝搬層パターン部では超短パルスレーザビーム9−2の80%〜90%を通過させて透明層1の内部に集光させ、急峻な屈折率分布を実現することができる。この場合もマスク表面が平坦な面であるので、照射するレーザビーム9−2の不要な乱反射による乱れを抑えることができる。
【0041】
図3(a)は本発明の光導波路の製造方法を適用した光導波路の一実施の形態を示す側面断面図であり、図3(b)は図3(a)の3b−3b線断面内の屈折率分布を示す図である。図3(b)において、横軸は位置を示し、縦軸は屈折率を示す。
【0042】
透明層1にはSiO、あるいはSiOにGe、P、Al、Ta、Sb等の屈折率制御用ドーパントを少なくとも1種類添加して屈折率を低下させたものを用いる。特に、図3(b)に示すような光伝搬層内の屈折率分布、すなわち、擬似的にステップ状に近い高屈折率の分布特性を実現するためには、上記ドーパントを1種類だけ高濃度(15モル%以上)に添加するか、2種類のドーパントをそれぞれ8モル%以上添加するのが好ましい。
【0043】
図3(a)、(b)において、偏波依存損失を低くするためには、光伝搬層2は透明層1の厚さのほぼ中心の位置に形成するのが好ましい。図3(b)に示すように3b−3b線断面内での屈折率分布を急峻にすることにより、レーザビームのパワーの揺らぎや図示しない移動装置(透明層1もしくはレーザビームを相対移動させる装置)の不連続な変動による光伝搬層2の界面の構造の乱れによる光散乱損失を減少させることができる。
【0044】
透明層1の厚さは、15μm〜100μmの範囲にあり、光伝搬層2の構造は、シングルモード伝搬用のサイズ(3μm〜8μm)、透明層1と光伝搬層2との比屈折率差Δ(0.8%〜3%の範囲)となるように選ばれる。
【0045】
図4(a)は本発明の光導波路の製造方法を適用した光導波路の他の実施の形態を示す側面断面図であり、図4(b)は図4(a)の4b−4b線断面内の屈折率分布を示す図である。図4(b)において、横軸は位置を示し、縦軸は屈折率を示す。
【0046】
透明層1の表面にはフォトブリーチング用ポリマ層(厚さ0.5μm〜5μm)3からなる平坦なレーザマスクパターン3a、3bが形成されている。3bは紫外線の照射されていない領域であり、3aは紫外線が照射されて透明な層に変化した低屈折率(屈折率変化は紫外線照射量に依存するが、通常、3%程度の値を実現することができる。)層である。ポリマ層3のレーザマスクパターン3a、3bはその上にフォトマスク(図示せず。)を配置して紫外線光を照射することによって形成したパターンである。光伝搬層2はこのレーザマスクパターン3a、3bを介してレーザビーム9−2(図2(b)参照)を照射することによって形成される。フォトブリーチング用ポリマ層3は、照射するレーザビーム9−2の波長(700nm〜900nm)に対してはほぼ吸収層として作用する。このマスク表面は3a、3b共にほぼ平坦な面であるので、その境界領域でのレーザビーム9−2の不要な乱反射による乱れを吸収することができる。
【0047】
図5(a)は本発明の光導波路の製造方法を適用した光導波路の他の実施の形態を示す側面断面図であり、図5(b)は図5(a)の5b−5b線断面内の屈折率分布を示す図である。図5(b)において、横軸は位置を示し、縦軸は屈折率を示す。
【0048】
この光導波路は、透明層1を基板4の表面に形成したものである。この基板4にはガラス、半導体、強誘電体等の材料を用いることができる。このように透明層1を基板4上に形成し、少なくとも1000℃よりも高い温度で熱処理を行うようにすることにより、レーザビーム9−2(図2(b)参照)の照射により形成した光伝搬層2だけでなく、レーザビーム9−2が照射されない部分の緻密度も高くすることができるので、長期的に安定な光学特性を有する光導波路及びそれを用いた光信号処理回路を実現することができる。すなわち、この光導波路は、高密度な層であるので、外部からのOHイオンの進入を阻止することができ、また温度安定性に優れた光学特性も期待できる。
【0049】
なお、フォトブリーチング用ポリマ層3は、熱処理後の低温状態で形成される。
【0050】
図6(a)は本発明の光導波路の製造方法を適用した光導波路の他の実施の形態を示す側面断面図であり、図6(b)は図6(a)の6b−6b線断面内の屈折率分布を示す図である。図6(b)において、横軸は屈折率を示し、縦軸は位置を示す。
【0051】
この光導波路は透明層1と基板4との間に透明層1よりも屈折率の低い低屈折率層5−1を設け、透明層1とマスク3a、3bとの間にも低屈折率層5−1と同様な低屈折率層5−2を設けたものである。低屈折率層5−1、5−2は光伝搬層2の厚さ方向の光の閉じ込め性を向上させるために設けたものであり、例えばSiOにFやBを添加した層が用いられる。
【0052】
図7(a)は本発明の光導波路の製造方法を適用した光導波路の他の実施の形態を示す側面断面図であり、図7(b)は図7(a)の7b−7b線断面内の屈折率分布を示す図であり、図7(c)は図7(a)の7c−7c線断面内の屈折率分布を示す図である。図7(b)において、横軸は屈折率を示し、縦軸は位置を示す。図7(c)において、横軸は位置を示し、縦軸は屈折率を示す。
【0053】
この光導波路は、透明層1をほぼ矩形断面形状に形成し、その側面を透明層1よりも屈折率の低い層6−1、6−2で挟み、上下面を透明層1よりも屈折率の低い層5−1、5−2で挟んだ構造となっている。このようにほぼ矩形断面形状の透明層1の周囲を透明層1よりも屈折率の低い層5−1、5−2、6−1、6−2で囲むことにより、偏光依存性が少なく、光の閉じ込め性に優れた光導波路を得ることができる。
【0054】
図3(a)、(b)〜図7(a)、(b)、(c)において、透明層1及び基板4に形成された透明層1は1000℃〜1250℃で熱処理されているのが好ましい。すなわち、上記温度で熱処理することにより、レーザビーム9−2の照射により形成した光伝搬層2だけでなく、非照射部の緻密度も高くすることができるので、長期的に安定した光学特性を有する光導波路及びそれを用いた光信号処理回路を期待することができる。すなわち、これらの光導波路は、高密度な層からなるので、外部からOHイオンの進入を阻止することができ、また温度変化に対して安定した光学特性を期待することができる。
【0055】
本発明の光導波路を用いて、従来、知られているような光方向性結合器、光Y分岐回路、リング共振器、光フィルタ回路、光スイッチ回路等を構成してもよい。また、光伝搬層として、直線状パターン、曲線状パターンもしくはこれらの組み合わせパターンを用いて上記以外の光信号処理回路を構成してもよい。
【0056】
図6(a)、(b)、図7(a)〜(c)において、屈折率制御用添加物を少なくとも1種類含んだ低屈折率の透明層1の材質は少なくとも1層よりも多く積層しておき、各透明層1内に光伝搬層2を形成してもよい。このようにすることにより、より一層の高集積化を図ることができ、多機能化も期待できる。
【0057】
超短パルスレーザビームの波長も800nm以外に、700nm〜900nmの範囲から選ぶことができる。
【0058】
また、屈折率制御用添加物を少なくとも1種類含んだ透明層の材質として、ポリマ材料を用いてもよく、例えばポリイミド、ポリシラン、シリコーン、エポキシ樹脂等が挙げられる。
【0059】
以上において、本発明は、以下のような効果を有している。
【0060】
(1)請求項1の発明によれば、所望の光信号用の光伝搬層パターンが形成されたマスクパターンを透明層の表面に設け、そのマスクパターンを介してレーザビームを透明層中に集光、照射するので、所望幅を有する光伝搬層の照射部と非照射部との界面近傍の屈折率の変化率が急峻な構造とすることができる。すなわち、マスクパターン上でのレーザビームスポット径をマスクパターン幅よりも大きくすることによって、マスクパターン内のレーザビームのエネルギー分布をほぼ一様にし、レーザビームの揺らぎや透明層の移動速度変動等の不安定要因が光伝搬層パターン形状及び屈折率分布を乱さないようにすることが可能となる。また、光伝搬層の幅方向の光の閉じ込めが厚さ方向の光の閉じ込めより強くなり、光伝搬層の側面の光散乱損失を小さくすることができるので、曲率半径の小さい曲線部での光散乱損失を減少させることができる。
【0061】
(2)請求項2の発明によれば、マスク用の膜を透明層の表面に形成した後でフォトリソグラフィ、エッチング工程を経てパターニングしておけば、透明層中に高寸法精度で光伝搬層を形成することが可能となる。
【0062】
(3)請求項3の発明によれば、マスクにフォトブリーチング用ポリマ層を用いることにより、透明層の表面へのポリマ層の形成(ポリマ層の溶液の塗布、ベーキングにより形成)後、フォトマスクを介してポリマ層への紫外線照射により、光伝搬層と形状がほぼ同一のマスクを透明層上に形成することが容易となる。このマスクは、レーザビームが通過する領域と遮断される領域のいずれの表面もほぼ同一の平坦な面であるので、照射部と非照射部との界面におけるレーザビームの不要な乱反射による乱れをなくすことができる。
【0063】
(4)請求項4の発明によれば、マスクを何回でも使用してほぼ同一パターン形状の光導波路を製造することができ、低コスト化に寄与することができる。
【0064】
(5)請求項5の発明によれば、Cr領域では超短パルスレーザビームを反射し、そのレーザビーム外周部をCr領域で遮断して急峻なパワー分布のレーザビームを透明層の内部に集光させ、Crの無い領域、すなわち、光伝搬層パターンでは超短パルスレーザビームのパワーの80〜90%を通過させて透明層の内部に集光させ、急峻な屈折率分布を実現することが可能となる。この場合、マスク表面が平坦な面であるので、透明層に照射されるレーザビームの不要な乱反射による乱れを抑えることができる。
【0065】
(6)請求項6の発明によれば、透明層の厚さが15μm〜100μmの範囲であるので、フォトマスクを介して透明層の中に焦点距離の短いレンズを用いてレーザビームを集光、照射することが可能となり、フォトマスクによってレーザビームの外周部のパワーを遮断することができ、照射部と非照射部との界面近傍の屈折率の変化率を急峻にすることができる。また、透明層の中にフォトマスクパターンとほぼ同一形状で擬似的にステップに近い屈折率分布を有するシングルモード伝搬用の光伝搬層を形成することができるので、シングルモード光導波路及びそれを用いた光信号処理回路のパターンを描画することができる。
【0066】
(7)請求項7の発明によれば、透明層を1000℃〜1250℃の範囲で熱処理することにより、レーザビーム照射により形成した光伝搬層だけでなく、非照射部の緻密度を高くすることができるので、長期的に安定な光学特性を有する光導波路及びそれを用いた光信号処理回路を実現することができる。すなわち、高密度な層を形成することができるので、外部からOHイオンの進入を阻止することができ、また温度変化に対し安定した光学特性を得ることができる。
【0067】
【発明の効果】
以上要するに本発明によれば、低損失な光導波路の製造方法を提供する。
【図面の簡単な説明】
【図1】(a)〜(d)は本発明の光導波路の製造方法の一実施の形態を示す工程図である。
【図2】(a)〜(c)は本発明の光導波路の製造方法の他の実施の形態を示す工程図である。
【図3】(a)は本発明の光導波路の製造方法を適用した光導波路の一実施の形態を示す側面断面図であり、(b)は(a)の3b−3b線断面内の屈折率分布を示す図である。
【図4】(a)は本発明の光導波路の製造方法を適用した光導波路の他の実施の形態を示す側面断面図であり、(b)は(a)の4b−4b線断面内の屈折率分布を示す図である。
【図5】(a)は本発明の光導波路の製造方法を適用した光導波路の他の実施の形態を示す側面断面図であり、(b)は(a)の5b−5b線断面内の屈折率分布を示す図である。
【図6】(a)は本発明の光導波路の製造方法を適用した光導波路の他の実施の形態を示す側面断面図であり、(b)は(a)の6b−6b線断面内の屈折率分布を示す図である。
【図7】(a)は本発明の光導波路の製造方法を適用した光導波路の他の実施の形態を示す側面断面図であり、(b)は(a)の7b−7b線断面内の屈折率分布を示す図であり、(c)は(a)の7c−7c線断面内の屈折率分布を示す図である。
【図8】(a)は従来の光導波路の製造方法の説明図であり、(b)は(a)に示した製造方法を適用した光導波路の側面図であり、(c)は(b)に示した光導波路の8c−8c線上の屈折率分布を示す図である。
【符号の説明】
1 透明層
2 光伝搬層
3 フォトブリーチング用ポリマ層
3a、3b マスク
4 基板
9−1、9−2 超短パルスレーザビーム

Claims (7)

  1. 透明層中に、レーザビームを集光、照射して該レーザビームの照射部の屈折率を高くすることによって光伝搬層パターンを形成する光導波路の製造方法において、光透過部の形状が上記光伝搬層パターンとほぼ同一のマスクを介して上記レーザビームを上記透明層に集光、照射することにより、側面における上記レーザビームの照射部と非照射部との界面近傍の屈折率の変化率が急峻な光伝搬層パターンを形成することを特徴とする光導波路の製造方法。
  2. 上記マスクを上記透明層の表面に形成した後で、上記レーザビームを集光、照射する請求項1に記載の光導波路の製造方法。
  3. 上記透明層の表面にフォトブリーチング用ポリマ層を形成し、該フォトブリーチング用ポリマ層に形状が上記光伝搬層パターンとほぼ同一となるように紫外線を照射して屈折率を低くすることによって、上記マスクを形成する請求項2に記載の光導波路の製造方法。
  4. 上記マスクを上記透明層の上に配置して上記レーザビームを集光、照射する請求項1に記載の光導波路の製造方法。
  5. 上記マスクとしてガラス板に光透過部の形状が上記光伝搬層パターンとほぼ同一のCrパターンが形成されたフォトマスクを用いる請求項4に記載の光導波路の製造方法。
  6. 上記透明層として厚さが15μm〜100μmの範囲のものを用いる請求項1から5のいずれかに記載の光導波路の製造方法。
  7. 上記透明層を1000℃〜1250℃の範囲で熱処理した後で上記光伝搬層パターンを形成する請求項1から6のいずれかに記載の光導波路の製造方法。
JP2002184186A 2002-06-25 2002-06-25 光導波路の製造方法 Expired - Fee Related JP3803307B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002184186A JP3803307B2 (ja) 2002-06-25 2002-06-25 光導波路の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002184186A JP3803307B2 (ja) 2002-06-25 2002-06-25 光導波路の製造方法

Publications (2)

Publication Number Publication Date
JP2004029285A true JP2004029285A (ja) 2004-01-29
JP3803307B2 JP3803307B2 (ja) 2006-08-02

Family

ID=31180160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002184186A Expired - Fee Related JP3803307B2 (ja) 2002-06-25 2002-06-25 光導波路の製造方法

Country Status (1)

Country Link
JP (1) JP3803307B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012039443A1 (ja) * 2010-09-22 2014-02-03 住友ベークライト株式会社 光導波路形成用フィルムおよびその製造方法、光導波路およびその製造方法、電子機器
JP2016136278A (ja) * 2010-06-30 2016-07-28 スリーエム イノベイティブ プロパティズ カンパニー 空間選択的な複屈折低減を有するフィルムを使用するマスク加工
US9939560B2 (en) 2010-06-30 2018-04-10 3M Innovative Properties Company Diffuse reflective optical films with spatially selective birefringence reduction
US9964677B2 (en) 2008-12-22 2018-05-08 3M Innovative Properties Company Multilayer optical films suitable for bi-level internal patterning

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9964677B2 (en) 2008-12-22 2018-05-08 3M Innovative Properties Company Multilayer optical films suitable for bi-level internal patterning
JP2016136278A (ja) * 2010-06-30 2016-07-28 スリーエム イノベイティブ プロパティズ カンパニー 空間選択的な複屈折低減を有するフィルムを使用するマスク加工
US9810930B2 (en) 2010-06-30 2017-11-07 3M Innovative Properties Company Mask processing using films with spatially selective birefringence reduction
US9939560B2 (en) 2010-06-30 2018-04-10 3M Innovative Properties Company Diffuse reflective optical films with spatially selective birefringence reduction
JPWO2012039443A1 (ja) * 2010-09-22 2014-02-03 住友ベークライト株式会社 光導波路形成用フィルムおよびその製造方法、光導波路およびその製造方法、電子機器
JP6065589B2 (ja) * 2010-09-22 2017-01-25 住友ベークライト株式会社 光導波路形成用フィルムおよびその製造方法、光導波路およびその製造方法、電子機器

Also Published As

Publication number Publication date
JP3803307B2 (ja) 2006-08-02

Similar Documents

Publication Publication Date Title
US20040008968A1 (en) Photosensitive optical glass
JPH11125726A (ja) 光導波路及びその製作方法
JPH09318826A (ja) 光導波路型フィルタおよびその製造方法
US20010021293A1 (en) Method for modifying refractive index in optical wave-guide device
JPH11142668A (ja) 損失吸収のための光導波路素子及びその製造方法
JP3706496B2 (ja) 光導波路の製造方法
JP2000249859A (ja) グレーティング付き光導波路の製造方法
JP3803307B2 (ja) 光導波路の製造方法
US20020048727A1 (en) Method for forming a refractive-index-patterned film for use in optical device manufacturing
JP2004046031A (ja) フィルム状ガラス導波路及びその製造方法
JP3826740B2 (ja) レーザ直接描画導波路及びその製造方法
JP2007010692A (ja) 光導波路及びその製造方法
JPH04298702A (ja) 光回路及びその特性調節方法
JP3857910B2 (ja) 光導波路素子の製造方法
JP3921987B2 (ja) フォトニック結晶導波路及びその製造方法
JP2002311277A (ja) ガラス導波路の製造方法
JP2004051388A (ja) 光学素子の表面加工方法
JP3358184B2 (ja) 光伝送線路
JP2004029286A (ja) ホーリー導波路型光回路及びその製造方法
JP2001324634A (ja) グレーティング付き光導波路の製造方法
JP3823770B2 (ja) 光導波路及びその製造方法
JP2001350049A (ja) 光導波路の製造方法
JPH0720336A (ja) 光導波路の構造とその製造方法
JP2002189141A (ja) 光導波路の製造方法及び光導波路
JP3890407B2 (ja) 回折格子型光機能素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees