JP2004020202A - Method and apparatus for measuring dimension of infinitesimal shape section - Google Patents

Method and apparatus for measuring dimension of infinitesimal shape section Download PDF

Info

Publication number
JP2004020202A
JP2004020202A JP2002171219A JP2002171219A JP2004020202A JP 2004020202 A JP2004020202 A JP 2004020202A JP 2002171219 A JP2002171219 A JP 2002171219A JP 2002171219 A JP2002171219 A JP 2002171219A JP 2004020202 A JP2004020202 A JP 2004020202A
Authority
JP
Japan
Prior art keywords
minute shape
shape portion
measuring
measurement
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002171219A
Other languages
Japanese (ja)
Other versions
JP3670627B2 (en
Inventor
Yoshimi Toda
戸田 好実
Tadahito Izawa
井澤 忠仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takano Co Ltd
Original Assignee
Takano Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takano Co Ltd filed Critical Takano Co Ltd
Priority to JP2002171219A priority Critical patent/JP3670627B2/en
Publication of JP2004020202A publication Critical patent/JP2004020202A/en
Application granted granted Critical
Publication of JP3670627B2 publication Critical patent/JP3670627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance mass productivity by facilitating automation at a measuring time and to enhance measuring efficiency at the time of production by shortening the measuring time. <P>SOLUTION: When a height H of an infinitesimal shape section Ws of an article W to be measured is measured by an optical interference method, a preliminary measuring section 2 for detecting the position including at least the height direction of the infinitesimal shape section Ws, and a main measuring section 3 for measuring the height H of the infinitesimal shape section Ws by the optical interference method are set to a predetermined positional relation. At the measuring time, the infinitesimal shape section Ws is detected by the preliminary measuring section 2, positioning of the infinitesimal shape section Ws is performed, and thereafter the main measuring section 3 is moved by a set distance Ls based on a predetermined positional relation, the main measuring section 3 is positioned at a reference position Ps, and thereby the height of the infinitesimal shape section Ws is measured. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、被測定物における微小形状部の高さを光干渉法により測定する際に用いて好適な微小形状部の寸法測定方法及び装置に関する。
【0002】
【従来の技術】
従来、被測定物における微小形状部の形状を光干渉法により測定する方法(装置)は、特表平8−502828号公報,特表平9−503065号公報及び特開平10−62139号公報等で知られており、また、特に、微小形状部の高さを測定する方法(装置)としては、特開平8−327327号公報等で開示される高さ測定方法及び装置が知られている。
【0003】
光干渉法(白色光干渉法)を用いた形状測定(高さ測定方法)では、まず、白色光光源から可干渉距離の短い白色光を二光束干渉光学系におけるハーフミラーに照射し、参照光と測定光に分けるとともに、この参照光と測定光を干渉させて干渉縞を発生させる。この際、測定光路と参照光路の距離が一致すれば、干渉縞の輝度は最大となるため、参照光路に対して測定光路の距離を相対的に変化させるとともに、発生する干渉縞を撮像し、画像処理により最大となる光路差を求めることにより、被測定物の三次元形状(Z軸高さ)を測定する。
【0004】
【発明が解決しようとする課題】
ところで、液晶表示器に用いるカラーフィルタでは、微小ギャップを設ける必要性から、基板上にスペーサ用突起を一体形成する。このスペーサ用突起は、通常、高さが5ミクロンメートル程度に形成され、また、数百ミクロンメートル程度の間隔で設けられるとともに、このスペーサ用突起の高さは、一定の公差に収める必要があるため、検査工程において高さの測定を行い、公差内に収まっているか否かをチェックしている。
【0005】
しかし、このようなスペーサ用突起を生産ライン上で検査する場合、光干渉法を用いた従来の高さ測定方法及び装置では、光干渉法により測定を開始する基準位置を見つけることが容易でなく、通常は推定した位置へ移動させる方法に頼っている。このため、正確な位置を見つける確実性が小さく、結局、測定に時間がかかることによる測定能率の低下を招くとともに、測定時の自動化を確立することが容易でなく、量産性に劣るという問題があった。
【0006】
本発明は、このような従来の技術に存在する課題を解決したものであり、測定時の自動化を容易にして量産性を高めるとともに、測定時間の短縮化により生産時の測定能率を高めることができる微小形状部の寸法測定方法及び装置の提供を目的とする。
【0007】
【課題を解決するための手段及び実施の形態】
本発明に係る微小形状部の寸法測定方法は、被測定物Wにおける微小形状部Wsの高さHを、光干渉法により測定するに際し、微小形状部Wsの少なくとも高さ方向を含む位置を検出する予備測定部2と微小形状部Wsの高さHを光干渉法により測定する主測定部3を一定の位置関係に設定し、測定時に、予備測定部2により微小形状部Wsを検出して当該微小形状部Wsに対する位置決めを行うとともに、この後、主測定部3を一定の位置関係に基づく設定距離Lsだけ移動させ、主測定部3を基準位置Psに位置させることにより微小形状部Wsの高さ測定を行うようにしたことを特徴とする。
【0008】
この場合、好適な実施の態様により、微小形状部Wsには、微小ギャップを設けるための基板Bに一体形成したスペーサ用突起Wssを適用できるとともに、光干渉法は、白色光干渉法を用いることができる。また、予備測定部2では、少なくとも上方から微小形状部Wsまでの距離を測定してフォーカシング処理を行うことができる。
【0009】
一方、本発明に係る微小形状部Wsの寸法測定装置1は、微小形状部Wsの少なくとも高さ方向を含む位置を検出する予備測定部2と微小形状部Wsの高さHを光干渉法により測定する主測定部3を一定の位置関係に設定した測定機構部Fsと、予備測定部2による微小形状部Wsの検出により当該微小形状部Wsに対する位置決めを行うとともに、主測定部3を一定の位置関係に基づく設定距離Lsだけ移動させることにより微小形状部Wsの高さ測定を行う基準位置Psに位置させる移動機構部Fmとを有する測定ユニットMを備えてなることを特徴とする。
【0010】
この場合、予備測定部2は、少なくとも上方から微小形状部Wsまでの距離を測定してフォーカシング処理を行う測距センサ11を備えて構成できる。また、寸法測定装置1は、複数の被測定物W…を順次搬送し、かつ所定の測定位置で停止させる搬送機構部4を備えるとともに、搬送機構部4の搬送方向Tに対する垂直方向に、測定ユニットM…を複数配列させて構成することができる。
【0011】
【実施例】
次に、本発明に係る好適な実施例を挙げ、図面に基づき詳細に説明する。
【0012】
まず、本実施例に係る寸法測定装置1の構成について、図1〜図5を参照して説明する。なお、実施例の被測定物Wは、液晶表示器に用いられるカラーフィルタの基板Bであり、微小形状部Wsは、この基板B上に一体形成されたスペーサ用突起Wssである。本実施例に係る寸法測定装置1(寸法測定方法)は、このようなスペーサ用突起Wssに適用して、特に良好な結果
(効果)を期待することができる。
【0013】
寸法測定装置1は、図1に示すように、測定機構部Fsと移動機構部Fmを有する測定ユニットMを備える。また、測定機構部Fsは、予備測定部2と主測定部3を備え、この予備測定部2と主測定部3は、結合部材51を介して一体化し、両者間に一定の位置関係をもたせる。
【0014】
予備測定部2は、微小形状部Wsの少なくとも高さ方向を含む位置を検出する機能を備える。実施例の予備測定部2は、微小形状部Wsに対して、X軸方向,Y軸方向及びZ軸方向の位置を検出する。X軸方向及びY軸方向の位置は、予備測定部2に備えるCCDカメラ10により、被測定物Wを上方から撮像し、画像処理により座標点として検出する。また、Z軸方向の位置は、測距センサ11により上方から微小形状部Wsまでの距離を測定する。この場合、Z軸方向については、位置の測定時に、移動機構部Fmを用いて測定ユニットMをZ軸方向に変位させ、フォーカシング処理を行うことにより高さ方向に対する位置決めを同時に行う。なお、後述する搬送機構部4における被測定物Wのセッティング位置(X軸方向位置)の設定と、被測定物Wに対する搬送量(Y軸方向位置)の設定を行えば、予備測定部2におけるX軸方向とY軸方向の位置検出(位置決め)を不要にできる。この予備測定部2に用いるCCDカメラ10は、被測定物Wの傷や異物付着等の不良を検出する画像処理検査工程のCCDカメラを兼用することができる。
【0015】
一方、主測定部3は、微小形状部Wsの高さHを光干渉法により測定する機能を備える。実施例の主測定部3は、ミラウ式干渉計を用いたものであり、図1に示すように、ハロゲンランプを用いた白色光光源12と、水平に対して45°に傾斜させたハーフミラー13と、このハーフミラー13の横側方に配した照明レンズ14と、白色光光源12からの白色光を照明レンズ14に対して水平方向から入射させる光ファイバ15と、ハーフミラー13の上方に配した結像レンズ16と、ハーフミラー13の下方に配した対物レンズ17と、対物レンズ17の下方に水平に配したハーフミラー18と、このハーフミラー18と対物レンズ17間に配した微小ミラー19と、測定光路(測定距離)を可変するピエゾアクチュエータ20と、結像レンズ16の上方に配したCCDカメラ21をそれぞれ備えて構成する。
【0016】
他方、移動機構部Fmは、予備測定部2による微小形状部Wsの検出により当該微小形状部Wsに対する位置決めを行うとともに、主測定部3を一定の位置関係に基づく設定距離Lsだけ移動させることにより微小形状部Wsの高さ測定を行う基準位置Psに位置させる機能を備える。即ち、移動機構部Fmは、測定機構部FsをX軸方向に移動させるX軸方向移動機構部25と、このX軸方向移動機構部25をZ方向に移動させるZ軸方向移動機構部26と、このZ軸方向移動機構部26をY方向に移動させるY軸方向移動機構部27をそれぞれ備え、これにより、測定機構部Fsを、X軸方向,Y軸方向及びZ軸方向に移動させることができる。
【0017】
さらに、31は、コンピュータ処理機能を内蔵したコントローラであり、本実施例に係る寸法測定方法のためのシーケンス制御やデータ処理などを実行する。コントローラ31は、測定機構部Fsに関連して、ピエゾアクチュエータ20を制御する位置制御部32と、白色光光源12を制御する光源制御部33と、予備測定部2及びCCDカメラ21から得る信号を処理(画像処理)する信号処理部34をそれぞれ備えるとともに、移動機構部Fmに関連して、X軸方向移動機構部25を駆動制御するX軸ドライバ部35と、Z軸方向移動機構部26を駆動制御するZ軸ドライバ部36と、Y軸方向移動機構部27を駆動制御するY軸ドライバ部37をそれぞれ備える。
【0018】
また、コントローラ31には、測定状態を監視するディスプレイ(モニター)を備える。図4及び図5には、ディスプレイにおける表示画面の一例を示す。図4は、主に、測定データ及びその測定データの判定結果等を示す表示画面V1であり、微小形状部WsのX軸方向及びY軸方向の位置をX−Y座標で示すイメージデータ表示部41,微小形状部WsのX軸方向及びZ軸方向の位置をX−Z座標で示すイメージデータ表示部42及び各種数値データを表示する数値データ表示部43等を有するとともに、図5に示す表示画面V2には、微小形状部Ws(スペーサ用突起Wss)を三次元表示する立体表示部44を有する。
【0019】
このような測定機構部Fsと移動機構部Fmを有する測定ユニットMは、図2に示すように、生産ラインを構成する搬送機構部4に付設して寸法測定装置1の全体を構成する。この場合、搬送機構部4は、横二列に配した複数の被測定物W…を順次搬送するとともに、所定の測定位置で停止させる機能を備える。また、測定ユニットM…は複数(実施例は四台)用意し、各測定ユニットM…を、搬送機構部4の搬送方向Tに対する垂直方向に配列させて設置する。測定ユニットM…を、このように複数配列させて構成すれば、さらなる量産性と測定能率の向上に寄与できる。
【0020】
次に、本実施例に係る寸法測定方法を含む寸法測定装置1の動作(機能)について、図1〜図5及び図7を参照しつつ、図6に示すフローチャートに従って説明する。
【0021】
まず、搬送機構部4を制御することにより、被測定物W…を矢印Tで示す搬送方向へ搬送する(ステップS1)。そして、予め設定された測定位置で搬送を停止する(ステップS2,S3)。この場合、測定機構部Fsは、X軸方向移動機構部25により、図7に示す位置、即ち、予備測定部2により微小形状部Wsを検出する検出位置Pdにセットされるため、この位置において、微小形状部Wsに対する検出処理を実行する(ステップS4)。なお、検出処理には、検出のみならず、検出結果に基づく微小形状部Wsに対する測定機構部Fsの位置決め処理が含まれる。
【0022】
検出処理は、予備測定部2におけるCCDカメラ10により被測定物Wを上方から撮像し、画像処理により座標点としてX軸方向及びY軸方向における微小形状部Wsの位置を検出する。X軸方向及びY軸方向の位置を検出したなら、X軸ドライバ部35及びY軸ドライバ部37により、X軸方向移動機構部25及びY軸方向移動機構部27をそれぞれ駆動制御し、予備測定部2における測距センサ11の検出中心が微小形状部Wsの上端になるように変位させるとともに、Z軸ドライバ部36によりZ軸方向移動機構部26を駆動制御し、予備測定部2をZ軸方向に変位させることによりフォーカシング処理を行う。なお、搬送機構部4における被測定物Wのセッティング位置(X軸方向位置)を設定するとともに、被測定物Wに対する搬送量(Y軸方向位置)の設定を行えば、予備測定部2におけるX軸方向及びY軸方向の位置検出(位置決め)は不要となる。
【0023】
そして、予備測定部2による検出処理が終了したなら、X軸ドライバ部35によりX軸方向移動機構部25を駆動制御し、測定機構部Fsを設定距離Lsだけ移動させる(ステップS5,S6)。これにより、主測定部3は、微小形状部Wsの高さHを測定する基準位置Psまで変位する。この場合、予備測定部2と主測定部3は一定の位置関係により設定されているため、設定距離Lsは、この一定の位置関係に基づいて設定、即ち、予備測定部2の検出中心と主測定部3の測定中心間の距離が設定距離Lsとして設定される。
【0024】
このように、予備測定部2を利用して測定機構部Fsに対する少なくとも高さ方向(Z軸方向)を含むX軸方向及びY軸方向の位置決めを行えば、X軸方向移動機構部25により測定機構部Fsを単に設定距離Lsだけ移動させるのみで、主測定部3を、微小形状部Wsの高さ測定を行うための基準位置Psに容易かつ確実にセットすることができる。
【0025】
主測定部3が基準位置Psにセットされたなら、主測定部3により微小形状部Wsの高さを測定する測定処理を実行する(ステップS7)。測定時には、白色光光源12の白色光が、光ファイバ15,照明レンズ14及びハーフミラー13を介して対物レンズ17に入射する。白色光は対物レンズ17により集束されるが、ハーフミラー18により半分の光量が反射されて微小ミラー19に入射するとともに、残りの半分の光量は、ハーフミラー18を透過して下方へ出射する。また、微小形状部Wsを反射した光と微小ミラー19を反射した光は、再びハーフミラー18に戻り、ここで干渉縞が発生する。干渉縞の輝度が最も大きくなるのはハーフミラー18から微小ミラー19までの距離と微小形状部Ws上で反射した光の光路長が一致する場合である。この際、光の波長に拘わらずに位相が一致するため、最も輝度の大きい干渉縞が発生するとともに、他方、一致点から離れることにより、光の波長ごとに位相差が大きくなるため、干渉縞の輝度(干渉強度)が急速に小さくなる。
【0026】
したがって、基準位置Psに着目して、対物レンズ17を連続的に光軸方向に動かせば、図3に示す干渉縞の強度曲線Kが得られる。即ち、干渉縞は結像レンズ16によりCCDカメラ21上に結像するため、コントローラ31によりピエゾアクチュエータ20を制御し、対物レンズ17を光軸方向へ間欠的に微小量移動させることにより画像を取り込めば、干渉縞の輝度データがコントローラ31におけるメモリに記憶され、一定の間隔でサンプリングした図3に示す強度曲線Kが得られる。よって、サンプリングしたデータから干渉中心点を求め、これを二次元的に捕らえれば、微小形状部Wsの高さHを高精度で測定することができる。
【0027】
このような処理は、図2に示す各測定ユニットM…毎に独立して並行処理が可能である。そして、各被測定物W…は、搬送機構部4により順次搬送され、同様の測定処理が繰り返して行われる(ステップS8,S9)。よって、このような微小形状部Wsの寸法測定方法(寸法測定装置1)によれば、予備測定部2を利用して微小形状部Wsに対する主測定部3の位置決めを正確かつ迅速に行うことができるため、測定時の自動化を容易にして量産性を高めることができるとともに、測定時間の短縮化により生産時の測定能率を高めることができる。
【0028】
以上、実施例について詳細に説明したが、本発明はこのような実施例に限定されるものではなく、細部の構成,形状,手法等において、本発明の要旨を逸脱しない範囲で任意に変更,追加,削除することができる。
【0029】
例えば、被測定物W(微小形状部Ws)として液晶表示器に用いられるカラーフィルタの基板B(スペーサ用突起Wss)を例示したが、同様の形態を有する他の任意の被測定物W(微小形状部Ws)を適用できる。また、光干渉法を用いた光干渉計としてミラウ式干渉計を例示したが、リニック式干渉計やトワイマングリーン式干渉計等の他の光干渉計を排除するものではない。さらに、検出処理の段階でフォーカシング処理を行ったが、距離を測定し、移動させた後に、測定結果に基づいて高さを補正するなど、本発明の効果を失わない以上、細部の処理手順等の変更は任意である。
【0030】
一方、上述した実施例は、X軸方向移動機構部25を用いて測定機構部Fsを移動させる場合を示したが、図8に示すように、回転駆動部61を利用し、この回転駆動部61の回転シャフト62に固定したベース部63に、同様の予備測定部2と主測定部3を取付け、矢印Rで示す方向へ一定角度範囲回転させても同様に実施できる。
【0031】
【発明の効果】
このように、本発明に係る微小形状部の寸法測定方法(寸法測定装置)は、微小形状部の少なくとも高さ方向を含む位置を検出する予備測定部と微小形状部の高さを光干渉法により測定する主測定部を一定の位置関係に設定し、測定時に、予備測定部により微小形状部を検出して当該微小形状部に対する位置決めを行うとともに、この後、主測定部を一定の位置関係に基づく設定距離だけ移動させ、主測定部を基準位置に位置させることにより微小形状部の高さ測定を行うようにしたため、次のような顕著な効果を奏する。
【0032】
(1) 予備測定部を利用して、微小形状部に対する主測定部の位置決めを正確かつ迅速に行うことができるため、測定時の自動化を容易にして量産性を高めることができるとともに、測定時間の短縮化により生産時の測定能率を高めることができる。
【0033】
(2) 好適な実施の態様により、微小形状部を、微小ギャップを設けるための基板に一体形成したスペーサ用突起に適用することにより、特に良好な結果を期待できる。
【0034】
(3) 好適な実施の態様により、予備測定部において、上方から微小形状部までの距離を測定してフォーカシング処理を行えば、測定機構部を単に設定距離だけ移動させるのみで、主測定部を、微小形状部の高さ測定を行うための基準位置に容易かつ確実にセットすることができる。
【0035】
(4) 好適な実施の形態により、複数の被測定物を順次搬送し、かつ所定の測定位置で停止させる搬送機構部を設けるとともに、搬送機構部の搬送方向に対する垂直方向に、測定ユニットを複数配列させて構成すれば、さらなる量産性と測定能率の向上に寄与できる。
【図面の簡単な説明】
【図1】本発明の好適な実施例に係る寸法測定装置の模式的正面構成図、
【図2】同寸法測定装置の搬送機構部を含む全体の模式的平面構成図、
【図3】光干渉法を用いた場合に発生する干渉縞の強度曲線図、
【図4】同寸法測定装置に備えるディスプレイの表示画面図、
【図5】同寸法測定装置に備えるディスプレイの他の表示画面図、
【図6】本発明の好適な実施例に係る寸法測定方法による処理手順を示すフローチャート、
【図7】同寸法測定装置における測定機構部を検出位置にセットした状態の模式的正面構成図、
【図8】本発明の変更実施例に係る寸法測定装置の一部を示す模式的平面構成図、
【符号の説明】
1   寸法測定装置
2   予備測定部
3   主測定部
4   搬送機構部
11  測距センサ
W   被測定物
Ws  微小形状部
Wss スペーサ用突起
H   微小形状部の高さ
Ls  設定距離
Ps  基準位置
B   基板
Fs  測定機構部
Fm  移動機構部
M   測定ユニット
T   搬送方向
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus suitable for measuring the size of a minute shape portion, which are suitable for measuring the height of a minute shape portion in an object to be measured by an optical interference method.
[0002]
[Prior art]
Conventionally, a method (apparatus) for measuring the shape of a minute shape portion in an object to be measured by an optical interference method is disclosed in JP-A-8-502828, JP-A-9-503065, and JP-A-10-62139. In addition, as a method (apparatus) for measuring the height of a minute shape portion, a height measuring method and apparatus disclosed in Japanese Patent Application Laid-Open No. 8-327327 are known.
[0003]
In the shape measurement (height measurement method) using the light interference method (white light interference method), first, a white light source having a short coherence distance is irradiated from a white light source onto a half mirror in a two-beam interference optical system, and a reference light is emitted. And the measurement light, and the reference light and the measurement light interfere with each other to generate interference fringes. At this time, if the distance between the measurement optical path and the reference optical path matches, the luminance of the interference fringe becomes maximum, so that the distance of the measurement optical path is relatively changed with respect to the reference optical path, and the generated interference fringes are imaged. The three-dimensional shape (the height of the Z-axis) of the object to be measured is measured by obtaining the maximum optical path difference by image processing.
[0004]
[Problems to be solved by the invention]
By the way, in a color filter used for a liquid crystal display, a spacer projection is integrally formed on a substrate because of the necessity of providing a minute gap. The spacer projections are usually formed to have a height of about 5 μm, are provided at intervals of about several hundred μm, and the height of the spacer projections must be kept within a certain tolerance. Therefore, the height is measured in the inspection process to check whether the height is within the tolerance.
[0005]
However, when such a spacer protrusion is inspected on a production line, it is not easy to find a reference position at which measurement is started by optical interferometry with a conventional height measuring method and apparatus using optical interferometry. , Usually relying on moving them to an estimated position. For this reason, the accuracy of finding the correct position is small, and eventually the measurement takes a long time, resulting in a decrease in measurement efficiency, and it is not easy to establish automation at the time of measurement, resulting in poor mass productivity. there were.
[0006]
The present invention solves the problems existing in such conventional techniques, and facilitates automation at the time of measurement to increase mass productivity, and shortens measurement time to increase measurement efficiency at the time of production. It is an object of the present invention to provide a method and an apparatus for measuring a dimension of a minute shape portion that can be formed.
[0007]
Means and Embodiments for Solving the Problems
The dimension measuring method of the minute shape portion according to the present invention detects a position including at least the height direction of the minute shape portion Ws when measuring the height H of the minute shape portion Ws in the workpiece W by an optical interference method. The preliminary measurement unit 2 and the main measurement unit 3 that measures the height H of the minute shape portion Ws by the optical interference method are set in a fixed positional relationship, and the small shape portion Ws is detected by the preliminary measurement unit 2 during measurement. The positioning of the minute shape portion Ws is performed, and thereafter, the main measurement portion 3 is moved by a set distance Ls based on a fixed positional relationship, and the main measurement portion 3 is positioned at the reference position Ps. The height measurement is performed.
[0008]
In this case, according to a preferred embodiment, a spacer protrusion Wss integrally formed on the substrate B for providing a minute gap can be applied to the minute shape portion Ws, and the light interference method uses a white light interference method. Can be. In addition, the preliminary measurement unit 2 can perform a focusing process by measuring at least a distance from above to the minute shape portion Ws.
[0009]
On the other hand, the dimension measuring device 1 for the minute shape portion Ws according to the present invention uses the preliminary measurement unit 2 for detecting a position including at least the height direction of the minute shape portion Ws and the height H of the minute shape portion Ws by an optical interference method. The detection of the minute shape portion Ws by the preliminary measurement portion 2 and the measurement mechanism portion Fs in which the main measurement portion 3 to be measured is set in a fixed positional relationship performs positioning with respect to the minute shape portion Ws, and sets the main measurement portion 3 to a fixed position. It is characterized by comprising a measurement unit M having a movement mechanism unit Fm that is moved to a reference position Ps for measuring the height of the minute shape part Ws by moving by a set distance Ls based on the positional relationship.
[0010]
In this case, the preliminary measurement unit 2 can be configured to include the distance measurement sensor 11 that measures a distance from at least the top of the minute shape portion Ws and performs a focusing process. The dimension measuring device 1 includes a transport mechanism 4 that sequentially transports a plurality of objects W to be measured and stops at a predetermined measurement position, and measures the transport in a direction perpendicular to the transport direction T of the transport mechanism 4. A plurality of units M can be arranged.
[0011]
【Example】
Next, preferred embodiments according to the present invention will be described in detail with reference to the drawings.
[0012]
First, the configuration of the dimension measuring apparatus 1 according to the present embodiment will be described with reference to FIGS. Note that the DUT W in the example is a substrate B of a color filter used in a liquid crystal display, and the minute shape portion Ws is a projection Wss for a spacer integrally formed on the substrate B. The dimension measuring apparatus 1 (dimension measuring method) according to the present embodiment can expect particularly good results (effect) when applied to such a spacer projection Wss.
[0013]
As shown in FIG. 1, the dimension measuring apparatus 1 includes a measuring unit M having a measuring mechanism Fs and a moving mechanism Fm. In addition, the measurement mechanism unit Fs includes a preliminary measurement unit 2 and a main measurement unit 3, and the preliminary measurement unit 2 and the main measurement unit 3 are integrated via a coupling member 51 so as to have a fixed positional relationship therebetween. .
[0014]
The preliminary measurement unit 2 has a function of detecting a position including at least the height direction of the minute shape portion Ws. The preliminary measurement unit 2 according to the embodiment detects the positions in the X-axis direction, the Y-axis direction, and the Z-axis direction with respect to the minute shape portion Ws. The positions in the X-axis direction and the Y-axis direction are imaged from above by the CCD camera 10 provided in the preliminary measurement unit 2 and detected as coordinate points by image processing. As for the position in the Z-axis direction, the distance from the upper portion to the minute shape portion Ws is measured by the distance measuring sensor 11. In this case, in the Z-axis direction, when measuring the position, the measurement unit M is displaced in the Z-axis direction using the moving mechanism unit Fm, and the positioning in the height direction is performed simultaneously by performing a focusing process. The setting of the setting position (X-axis direction position) of the workpiece W in the transport mechanism unit 4 described later and the setting of the transport amount (Y-axis direction position) with respect to the workpiece W can be performed by the preliminary measurement unit 2. Position detection (positioning) in the X-axis direction and the Y-axis direction can be eliminated. The CCD camera 10 used in the preliminary measurement section 2 can also be used as a CCD camera in an image processing and inspection process for detecting a defect such as a scratch on the measured object W or adhesion of a foreign substance.
[0015]
On the other hand, the main measurement section 3 has a function of measuring the height H of the minute shape portion Ws by an optical interference method. The main measuring unit 3 of the embodiment uses a Mirau interferometer, and as shown in FIG. 1, a white light source 12 using a halogen lamp and a half mirror inclined at 45 ° with respect to the horizontal. 13, an illumination lens 14 arranged on the lateral side of the half mirror 13, an optical fiber 15 for allowing white light from the white light source 12 to enter the illumination lens 14 in a horizontal direction, and An imaging lens 16 disposed, an objective lens 17 disposed below the half mirror 13, a half mirror 18 disposed horizontally below the objective lens 17, and a micromirror disposed between the half mirror 18 and the objective lens 17. 19, a piezo actuator 20 for varying a measurement optical path (measurement distance), and a CCD camera 21 disposed above the imaging lens 16.
[0016]
On the other hand, the movement mechanism unit Fm performs positioning with respect to the minute shape portion Ws by detecting the minute shape portion Ws by the preliminary measurement unit 2, and moves the main measurement unit 3 by a set distance Ls based on a fixed positional relationship. It has a function of positioning at the reference position Ps for measuring the height of the minute shape portion Ws. That is, the moving mechanism unit Fm includes an X-axis direction moving mechanism unit 25 that moves the measuring mechanism unit Fs in the X-axis direction, a Z-axis direction moving mechanism unit 26 that moves the X-axis direction moving mechanism unit 25 in the Z direction. And a Y-axis moving mechanism 27 for moving the Z-axis moving mechanism 26 in the Y-direction, thereby moving the measuring mechanism Fs in the X-, Y-, and Z-axis directions. Can be.
[0017]
Further, a controller 31 having a built-in computer processing function executes sequence control, data processing, and the like for the dimension measuring method according to the present embodiment. The controller 31 relates to the measurement mechanism unit Fs, and outputs signals obtained from the position control unit 32 that controls the piezo actuator 20, the light source control unit 33 that controls the white light source 12, the preliminary measurement unit 2, and the CCD camera 21. A signal processing unit 34 for processing (image processing) is provided, and an X-axis driver unit 35 for driving and controlling the X-axis direction moving mechanism unit 25 and a Z-axis direction moving mechanism unit 26 are associated with the moving mechanism unit Fm. A Z-axis driver section 36 for controlling the driving and a Y-axis driver section 37 for controlling the driving of the Y-axis direction moving mechanism section 27 are provided.
[0018]
Further, the controller 31 includes a display (monitor) for monitoring the measurement state. 4 and 5 show examples of the display screen on the display. FIG. 4 is a display screen V1 mainly showing measurement data and a determination result of the measurement data, and an image data display section showing the X-axis and Y-axis directions of the minute shape portion Ws in XY coordinates. 5, an image data display section 42 for displaying the position of the minute shape portion Ws in the X-axis direction and the Z-axis direction by XZ coordinates, a numerical data display section 43 for displaying various numerical data, and the like. The screen V2 has a three-dimensional display unit 44 that three-dimensionally displays the minute shape part Ws (spacer projection Wss).
[0019]
The measuring unit M having such a measuring mechanism unit Fs and a moving mechanism unit Fm is attached to a transport mechanism unit 4 constituting a production line, as shown in FIG. In this case, the transport mechanism unit 4 has a function of sequentially transporting a plurality of objects to be measured W arranged in two horizontal rows and stopping at a predetermined measurement position. In addition, a plurality of (four in the embodiment) measurement units M are prepared, and the measurement units M are arranged and arranged in a direction perpendicular to the transport direction T of the transport mechanism unit 4. By arranging a plurality of measurement units M in this way, it is possible to contribute to further improvement in mass productivity and measurement efficiency.
[0020]
Next, the operation (function) of the dimension measuring apparatus 1 including the dimension measuring method according to the present embodiment will be described with reference to FIGS. 1 to 5 and 7 and the flowchart shown in FIG.
[0021]
First, by controlling the transport mechanism 4, the workpieces W are transported in the transport direction indicated by the arrow T (step S1). Then, the conveyance is stopped at the preset measurement position (steps S2 and S3). In this case, the measurement mechanism unit Fs is set to the position shown in FIG. 7 by the X-axis direction movement mechanism unit 25, that is, the detection position Pd at which the preliminary measurement unit 2 detects the minute shape part Ws. Then, a detection process is performed on the minute shape portion Ws (step S4). Note that the detection processing includes not only the detection but also the positioning processing of the measurement mechanism unit Fs with respect to the minute shape part Ws based on the detection result.
[0022]
In the detection processing, the object to be measured W is imaged from above by the CCD camera 10 in the preliminary measurement unit 2, and the position of the minute shape part Ws in the X-axis direction and the Y-axis direction is detected as a coordinate point by image processing. When the positions in the X-axis direction and the Y-axis direction are detected, the X-axis driver unit 35 and the Y-axis driver unit 37 drive and control the X-axis direction moving mechanism unit 25 and the Y-axis direction moving mechanism unit 27, respectively, to perform preliminary measurement. The detection center of the distance measuring sensor 11 in the section 2 is displaced so as to be at the upper end of the minute shape section Ws, and the Z-axis driver section 36 controls the driving of the Z-axis direction moving mechanism section 26 to move the preliminary measurement section 2 in the Z-axis direction. Focusing processing is performed by displacing in the direction. In addition, by setting the setting position (X-axis direction position) of the workpiece W in the transport mechanism unit 4 and setting the transport amount (Y-axis direction position) with respect to the workpiece W, the X Position detection (positioning) in the axial direction and the Y-axis direction becomes unnecessary.
[0023]
When the detection process by the preliminary measurement unit 2 is completed, the X-axis driver unit 35 controls the driving of the X-axis direction movement mechanism unit 25 to move the measurement mechanism unit Fs by the set distance Ls (steps S5 and S6). As a result, the main measurement unit 3 is displaced to the reference position Ps for measuring the height H of the minute shape part Ws. In this case, since the preliminary measurement unit 2 and the main measurement unit 3 are set according to a fixed positional relationship, the set distance Ls is set based on this fixed positional relationship, that is, the detection distance of the preliminary measurement unit 2 and the main distance. The distance between the measurement centers of the measurement unit 3 is set as the set distance Ls.
[0024]
As described above, if the positioning in the X-axis direction and the Y-axis direction including at least the height direction (Z-axis direction) with respect to the measurement mechanism unit Fs is performed using the preliminary measurement unit 2, the measurement is performed by the X-axis direction movement mechanism unit 25. By simply moving the mechanism section Fs by the set distance Ls, the main measurement section 3 can be easily and surely set to the reference position Ps for measuring the height of the minute shape section Ws.
[0025]
When the main measurement unit 3 is set at the reference position Ps, a measurement process for measuring the height of the minute shape part Ws by the main measurement unit 3 is executed (step S7). At the time of measurement, white light from the white light source 12 enters the objective lens 17 via the optical fiber 15, the illumination lens 14, and the half mirror 13. While the white light is focused by the objective lens 17, half of the light quantity is reflected by the half mirror 18 and enters the micro mirror 19, and the other half of the light quantity passes through the half mirror 18 and exits downward. The light reflected by the minute shape portion Ws and the light reflected by the minute mirror 19 return to the half mirror 18 again, where interference fringes are generated. The brightness of the interference fringes is maximized when the distance from the half mirror 18 to the minute mirror 19 and the optical path length of the light reflected on the minute shape portion Ws match. At this time, since the phases match irrespective of the wavelength of the light, interference fringes with the highest brightness occur, and on the other hand, the phase difference increases with each wavelength of light by moving away from the point of coincidence. Brightness (interference intensity) decreases rapidly.
[0026]
Therefore, if the objective lens 17 is continuously moved in the optical axis direction while focusing on the reference position Ps, the intensity curve K of the interference fringe shown in FIG. 3 is obtained. That is, since the interference fringes are imaged on the CCD camera 21 by the imaging lens 16, the controller 31 controls the piezo actuator 20 and intermittently moves the objective lens 17 by a very small amount in the optical axis direction to capture an image. For example, the interference fringe luminance data is stored in the memory of the controller 31, and an intensity curve K shown in FIG. 3 sampled at regular intervals is obtained. Therefore, if the interference center point is obtained from the sampled data and is captured two-dimensionally, the height H of the minute shape portion Ws can be measured with high accuracy.
[0027]
Such processing can be independently performed in parallel for each of the measurement units M shown in FIG. Each of the objects to be measured W is sequentially transported by the transport mechanism unit 4, and the same measurement process is repeatedly performed (steps S8 and S9). Therefore, according to the dimension measuring method (dimension measuring device 1) of the minute shape portion Ws, it is possible to accurately and quickly perform the positioning of the main measurement portion 3 with respect to the minute shape portion Ws using the preliminary measurement portion 2. Therefore, automation at the time of measurement can be facilitated and mass productivity can be increased, and measurement efficiency at the time of production can be increased by shortening the measurement time.
[0028]
Although the embodiment has been described in detail, the present invention is not limited to such an embodiment, and the configuration, shape, method, and the like of the detail can be arbitrarily changed and changed without departing from the gist of the present invention. Can be added or deleted.
[0029]
For example, although the substrate B (spacer projection Wss) of a color filter used in a liquid crystal display is illustrated as the measured object W (microscopic portion Ws), any other measured object W (fine Shape part Ws) can be applied. In addition, the Mirau interferometer is illustrated as an optical interferometer using the optical interferometry, but other optical interferometers such as a linic interferometer and a Twyman-Green interferometer are not excluded. Furthermore, focusing processing was performed at the stage of the detection processing, but after measuring the distance and moving it, correcting the height based on the measurement result, etc., as long as the effects of the present invention are not lost, the detailed processing procedure etc. The change of is optional.
[0030]
On the other hand, in the above-described embodiment, the case where the measurement mechanism Fs is moved using the X-axis direction movement mechanism 25 has been described. However, as shown in FIG. The same can be achieved by attaching the same preliminary measurement unit 2 and main measurement unit 3 to the base unit 63 fixed to the rotating shaft 62 of 61 and rotating the main measurement unit 3 in the direction indicated by the arrow R by a certain angle.
[0031]
【The invention's effect】
As described above, the method for measuring the size of a minute shape portion (dimension measuring device) according to the present invention includes a preliminary measurement unit that detects a position including at least the height direction of the minute shape portion and a method of measuring the height of the minute shape portion by an optical interference method. The main measurement unit to be measured is set to have a fixed positional relationship, and at the time of measurement, the preliminary measurement unit detects the minute shape portion and performs positioning with respect to the minute shape portion. The height measurement of the minute shape portion is performed by moving the main measuring portion at the reference position by moving the main measuring portion at the set distance based on the above, and the following remarkable effects are obtained.
[0032]
(1) The preliminary measurement unit can be used to accurately and quickly position the main measurement unit with respect to the minute shape part, thereby facilitating automation at the time of measurement, improving mass productivity, and measuring time. The measurement efficiency at the time of production can be improved by shortening the measurement time.
[0033]
(2) According to a preferred embodiment, a particularly good result can be expected by applying the minute shape portion to the spacer projection integrally formed on the substrate for providing the minute gap.
[0034]
(3) According to a preferred embodiment, if the preliminary measurement unit measures the distance from the top to the minute shape part and performs the focusing process, the main measurement unit is simply moved by the set distance and the main measurement unit is moved. It can be easily and reliably set at the reference position for measuring the height of the minute shape portion.
[0035]
(4) According to a preferred embodiment, a transport mechanism for sequentially transporting a plurality of objects to be measured and stopping at a predetermined measurement position is provided, and a plurality of measurement units are provided in a direction perpendicular to the transport direction of the transport mechanism. If they are arranged, they can contribute to further improvement in mass productivity and measurement efficiency.
[Brief description of the drawings]
FIG. 1 is a schematic front configuration diagram of a dimension measuring device according to a preferred embodiment of the present invention,
FIG. 2 is a schematic plan view showing the entire structure including a transport mechanism of the dimension measuring apparatus;
FIG. 3 is an intensity curve diagram of interference fringes generated when an optical interference method is used;
FIG. 4 is a display screen diagram of a display provided in the dimension measuring device,
FIG. 5 is another display screen view of a display provided in the same dimension measuring device;
FIG. 6 is a flowchart showing a processing procedure by a dimension measuring method according to a preferred embodiment of the present invention;
FIG. 7 is a schematic front configuration diagram showing a state in which a measurement mechanism unit in the dimension measurement device is set at a detection position.
FIG. 8 is a schematic plan view showing a part of a dimension measuring apparatus according to a modified embodiment of the present invention;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Dimension measuring device 2 Preliminary measuring part 3 Main measuring part 4 Transport mechanism part 11 Distance measuring sensor W Object to be measured Ws Micro-shaped part Ws Spacer protrusion H Height of micro-shaped part Ls Set distance Ps Reference position B Substrate Fs Measuring mechanism Section Fm Moving mechanism section M Measurement unit T Transport direction

Claims (8)

被測定物における微小形状部の高さを光干渉法により測定する微小形状部の寸法測定方法において、前記微小形状部の少なくとも高さ方向を含む位置を検出する予備測定部と前記微小形状部の高さを光干渉法により測定する主測定部を一定の位置関係に設定し、測定時に、前記予備測定部により前記微小形状部を検出して当該微小形状部に対する位置決めを行うとともに、この後、前記主測定部を前記一定の位置関係に基づく設定距離だけ移動させ、前記主測定部を基準位置に位置させることにより前記微小形状部の高さ測定を行うことを特徴とする微小形状部の寸法測定方法。In the method for measuring the size of a minute shape portion by measuring the height of the minute shape portion in an object to be measured by an optical interference method, a preliminary measurement unit that detects a position including at least the height direction of the minute shape portion and the minute shape portion The main measurement unit that measures the height by the optical interference method is set in a fixed positional relationship, and at the time of measurement, the preliminary measurement unit detects the minute shape portion and performs positioning with respect to the minute shape portion. The height of the minute shape portion is measured by moving the main measurement portion by a set distance based on the fixed positional relationship, and positioning the main measurement portion at a reference position. Measuring method. 前記微小形状部は、微小ギャップを設けるための基板に一体形成したスペーサ用突起であることを特徴とする微小形状部の寸法測定方法。The method for measuring the size of a minute shape portion, wherein the minute shape portion is a spacer protrusion integrally formed on a substrate for providing a minute gap. 前記光干渉法は、白色光干渉法を用いることを特徴とする請求項1記載の微小形状部の寸法測定方法。2. The method according to claim 1, wherein the light interference method uses a white light interference method. 前記予備測定部は、少なくとも上方から前記微小形状部までの距離を測定してフォーカシング処理を行うことを特徴とする請求項1記載の微小形状部の寸法測定方法。The method according to claim 1, wherein the preliminary measurement unit measures a distance from at least an upper portion to the minute shape portion to perform a focusing process. 被測定物における微小形状部の高さを光干渉法により測定する微小形状部の寸法測定装置において、前記微小形状部の少なくとも高さ方向を含む位置を検出する予備測定部と前記微小形状部の高さを光干渉法により測定する主測定部を一定の位置関係に設定した測定機構部と、前記予備測定部による前記微小形状部の検出により当該微小形状部に対する位置決めを行うとともに、前記主測定部を前記一定の位置関係に基づく設定距離だけ移動させることにより前記微小形状部の高さ測定を行う基準位置に位置させる移動機構部とを有する測定ユニットを備えてなることを特徴とする微小形状部の寸法測定装置。In the dimension measuring apparatus for a minute shape portion that measures the height of the minute shape portion in the object to be measured by an optical interference method, a preliminary measurement unit that detects a position including at least a height direction of the minute shape portion and the minute shape portion A measurement mechanism that sets the main measurement unit that measures the height by the optical interference method in a fixed positional relationship, and performs the positioning with respect to the minute shape by detecting the minute shape by the preliminary measurement unit, and performs the main measurement. A moving mechanism unit that moves the unit by a set distance based on the fixed positional relationship and thereby moves the unit to a reference position for measuring the height of the minute shape unit. Dimension measuring device. 前記予備測定部は、少なくとも上方から前記微小形状部までの距離を測定してフォーカシング処理を行う測距センサを備えることを特徴とする請求項5記載の微小形状部の寸法測定装置。The dimension measuring device according to claim 5, wherein the preliminary measurement unit includes a distance measuring sensor that measures a distance from at least an upper portion to the minute shape portion and performs a focusing process. 複数の被測定物を順次搬送し、かつ所定の測定位置で停止させる搬送機構部を備えることを特徴とする請求項5記載の微小形状部の寸法測定装置。6. The dimension measuring device for a micro-shaped portion according to claim 5, further comprising a transport mechanism for sequentially transporting a plurality of objects to be measured and stopping at a predetermined measurement position. 前記搬送機構部の搬送方向に対する垂直方向に、前記測定ユニットを複数配列させて構成したことを特徴とする請求項7記載の微小形状部の寸法測定装置。8. The apparatus according to claim 7, wherein a plurality of the measurement units are arranged in a direction perpendicular to a transport direction of the transport mechanism.
JP2002171219A 2002-06-12 2002-06-12 Method and apparatus for measuring dimension of minute shape portion Expired - Fee Related JP3670627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002171219A JP3670627B2 (en) 2002-06-12 2002-06-12 Method and apparatus for measuring dimension of minute shape portion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002171219A JP3670627B2 (en) 2002-06-12 2002-06-12 Method and apparatus for measuring dimension of minute shape portion

Publications (2)

Publication Number Publication Date
JP2004020202A true JP2004020202A (en) 2004-01-22
JP3670627B2 JP3670627B2 (en) 2005-07-13

Family

ID=31171137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002171219A Expired - Fee Related JP3670627B2 (en) 2002-06-12 2002-06-12 Method and apparatus for measuring dimension of minute shape portion

Country Status (1)

Country Link
JP (1) JP3670627B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085809A (en) * 2005-09-21 2007-04-05 Hitachi High-Technologies Corp Height measuring instrument and height measuring method for minute projection
JP2007187623A (en) * 2006-01-16 2007-07-26 Anritsu Corp Method and apparatus for measuring three-dimensional shape
JP2011220712A (en) * 2010-04-05 2011-11-04 Hitachi High-Technologies Corp Height measuring method and apparatus
WO2014208362A1 (en) * 2013-06-25 2014-12-31 Ntn株式会社 Applicator device and height detection method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085809A (en) * 2005-09-21 2007-04-05 Hitachi High-Technologies Corp Height measuring instrument and height measuring method for minute projection
JP2007187623A (en) * 2006-01-16 2007-07-26 Anritsu Corp Method and apparatus for measuring three-dimensional shape
JP2011220712A (en) * 2010-04-05 2011-11-04 Hitachi High-Technologies Corp Height measuring method and apparatus
WO2014208362A1 (en) * 2013-06-25 2014-12-31 Ntn株式会社 Applicator device and height detection method
JP2015007564A (en) * 2013-06-25 2015-01-15 Ntn株式会社 Coating applicator and height detection method
CN105247318A (en) * 2013-06-25 2016-01-13 Ntn株式会社 Applicator device and height detection method

Also Published As

Publication number Publication date
JP3670627B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
KR102615578B1 (en) Characterizing a height profile of a sample by side view imaging
JP2006329751A (en) Surface shape measuring method and surface shape measuring instrument
JPH11148807A (en) Method and instrument for measuring bump height
JP2001082926A (en) Mechanism and method for controlling focal position and apparatus and method for inspecting semiconductor wafer
JP2007327836A (en) Appearance inspection apparatus and method
JP3511097B2 (en) Shape measuring method and shape measuring device using optical interference
JP2009511932A (en) Image measuring apparatus and method
JP2005189069A (en) Method and apparatus for measuring surface shape
JP2002267416A (en) Surface defect inspecting device
JP2010528314A (en) 3D shape measuring device
JP2019074470A (en) Adjustment method of image measurement device
JP2015219085A (en) Substrate inspection device
JP3670627B2 (en) Method and apparatus for measuring dimension of minute shape portion
JP6927790B2 (en) Inspection method and inspection equipment
JP5096852B2 (en) Line width measuring apparatus and inspection method of line width measuring apparatus
JPH11351840A (en) Noncontact type three-dimensional measuring method
CN117110290A (en) Defect detection system and detection method for bright-dark field and white light interference
JPH01110243A (en) Appearance inspecting device
JP2003294419A (en) Measuring instrument for infinitesimal dimension
JPH11190616A (en) Surface shape measuring device
US20170292829A1 (en) Measuring apparatus and method for controlling the illumination for a measuring apparatus
JP6665028B2 (en) Shape measuring device and coating device equipped with the same
JP2015152379A (en) grazing incidence interferometer
KR20080088946A (en) Apparatus for inspection of three-dimensional shape and method for inspection by the same
JP6333351B1 (en) Measuring device, coating device, and film thickness measuring method

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040802

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20041013

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20041213

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050330

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20050414

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080422

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees