WO2014208362A1 - Applicator device and height detection method - Google Patents

Applicator device and height detection method Download PDF

Info

Publication number
WO2014208362A1
WO2014208362A1 PCT/JP2014/065711 JP2014065711W WO2014208362A1 WO 2014208362 A1 WO2014208362 A1 WO 2014208362A1 JP 2014065711 W JP2014065711 W JP 2014065711W WO 2014208362 A1 WO2014208362 A1 WO 2014208362A1
Authority
WO
WIPO (PCT)
Prior art keywords
height
substrate
image
value
pixel
Prior art date
Application number
PCT/JP2014/065711
Other languages
French (fr)
Japanese (ja)
Inventor
博明 大庭
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201480030007.6A priority Critical patent/CN105247318B/en
Publication of WO2014208362A1 publication Critical patent/WO2014208362A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0675Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating using interferometry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J25/00Actions or mechanisms not otherwise provided for
    • B41J25/304Bodily-movable mechanisms for print heads or carriages movable towards or from paper surface
    • B41J25/308Bodily-movable mechanisms for print heads or carriages movable towards or from paper surface with print gap adjustment mechanisms
    • B41J25/3086Bodily-movable mechanisms for print heads or carriages movable towards or from paper surface with print gap adjustment mechanisms with print gap adjustment means between the print head and its carriage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/005Repairing damaged coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography

Definitions

  • the present invention relates to a coating apparatus and a height detection method, and in particular, a coating apparatus that applies a liquid material to the surface of a substrate, and a height detection method that detects the height of a coating portion made of the liquid material applied to the surface of the substrate.
  • a coating apparatus that applies a liquid material to the surface of a substrate
  • a height detection method that detects the height of a coating portion made of the liquid material applied to the surface of the substrate.
  • the liquid crystal color filter substrate includes a transparent substrate, a lattice pattern called a black matrix 51 formed on the surface thereof, and a plurality of sets of R (red) pixels 52, G ( Green) pixel 53 and B (blue) pixel 54.
  • the white defect 55 in which the color of the pixel or the black matrix 51 is lost, or the adjacent pixel and the color as shown in FIG. Are mixed, or a black defect 56 in which the black matrix 51 protrudes from the pixel, or a foreign object defect 57 in which a foreign object adheres to the pixel as shown in FIG.
  • an ink having the same color as that of the pixel in which the white defect 55 exists is attached to the tip of the application needle by the ink application mechanism, and the ink attached to the tip of the application needle is applied to the white defect 55
  • There is a method to correct by applying Further, as a method of correcting the black defect 56 and the foreign object defect 57, after the defective portion is laser-cut to form a rectangular white defect 55, the ink applied to the tip of the application needle is removed by the ink application mechanism.
  • Patent Document 1 Japanese Patent Laid-Open No. 2009-122259
  • a liquid crystal display is obtained by bonding a TFT substrate on which an electronic circuit is formed and a liquid crystal color filter substrate that expresses the color of a pixel, and sealing liquid crystal between two substrates.
  • a TFT substrate on which an electronic circuit is formed and a liquid crystal color filter substrate that expresses the color of a pixel, and sealing liquid crystal between two substrates.
  • protrusions higher than a predetermined height are present on the surface of at least one of the two substrates, the liquid crystal cannot be normally sealed between the two substrates. For this reason, before bonding the two substrates, it is necessary to determine whether the bonding is possible by inspecting the presence or absence of protrusions on the surface of the substrate.
  • the ink application portion made of the applied ink becomes a protrusion on the surface of the liquid crystal color filter substrate. Therefore, it is necessary to detect the height of the ink application part after correcting the white defect 55.
  • the method of Patent Document 2 cannot quantitatively detect the height of the ink application portion even if a planar defect such as the color and density of the ink application portion or the size and shape can be detected. It was.
  • a main object of the present invention is to provide a coating apparatus capable of quantitatively detecting the height of the coating part and a height detection method.
  • the coating apparatus is a coating apparatus that applies a liquid material to the surface of a substrate, and includes an observation optical system that observes the surface of the substrate via an objective lens, and an image of the surface of the substrate via the observation optical system.
  • a head unit including an image pickup apparatus for picking up images, a coating mechanism for applying a liquid material to the surface of the substrate, and the head unit and the substrate are relatively moved to position the head unit at a desired position above the surface of the substrate.
  • the positioning device, the positioning device, and the imaging device are controlled to position the objective lens above the application portion made of a liquid material applied to the surface of the substrate, and then the application portion and the objective lens are moved relative to each other in the vertical direction.
  • a height detection unit is provided that captures an image, obtains a focal position for each of a plurality of pixels constituting the captured image, and obtains a height of the application unit based on the obtained focal position.
  • the height detection method includes an observation optical system for observing the surface of the substrate through the objective lens, an imaging device for capturing an image of the surface of the substrate through the observation optical system, and a surface of the substrate.
  • a coating apparatus comprising: a head unit including a coating mechanism that coats a liquid material; and a positioning device that relatively moves the head unit and the substrate to position the head unit at a desired position above the surface of the substrate.
  • a height detection method for detecting the height of an application part made of a liquid material applied to the surface of the apparatus wherein the positioning device and the imaging device are controlled to position the objective lens above the application part, and An image is picked up while relatively moving the objective lens in the vertical direction, a focal position is obtained for each of a plurality of pixels constituting the picked-up image, and the height of the coating part is obtained based on the obtained focal position.
  • an image is captured while the coating unit and the objective lens are relatively moved in the vertical direction, and a focal position is obtained and obtained for each of a plurality of pixels constituting the captured image.
  • the height of the application part is obtained based on the focal position. Therefore, the height of the application part can be detected quantitatively.
  • FIG. 1 It is a perspective view which shows the whole structure of the defect correction apparatus by Embodiment 1 of this invention. It is a perspective view which shows the structure of the ink application
  • FIG. 11 is a diagram for explaining a problem of the third embodiment.
  • FIG. 10 is another diagram for explaining the problem of the third embodiment. It is a figure for demonstrating the principle of the height detection method by Embodiment 4 of this invention. It is another figure for demonstrating the principle of the height detection method by Embodiment 4.
  • FIG. 11 is a diagram for explaining a problem of the third embodiment.
  • FIG. 10 is another diagram for explaining the problem of the third embodiment.
  • FIG. 10 is a figure for demonstrating the principle of the height detection method by Embodiment 4 of this invention.
  • FIG. 18 is a diagram showing a zero point of a phase ⁇ nearest to the peak position shown in FIG. 17. It is a figure which shows the deviation
  • the defect correcting apparatus 1 includes an observation optical system 2, a CCD camera 3, a cutting laser device 4, an ink application mechanism 5, and an ink curing light source 6.
  • a correction head portion a Z stage 8 that moves the correction head portion in a direction perpendicular to the liquid crystal color filter substrate 7 to be corrected (Z-axis direction), and a Z stage 8 that is mounted and moved in the X-axis direction.
  • the observation optical system 2 includes a light source for illumination, and observes the surface state of the substrate 7 and the state of the correction ink applied by the ink application mechanism 5. An image observed by the observation optical system 2 is converted into an electrical signal by the CCD camera 3 and displayed on the monitor 12.
  • the cutting laser device 4 removes unnecessary portions on the substrate 7 by irradiating them with laser light via the observation optical system 2.
  • the ink application mechanism 5 corrects the white defect generated on the substrate 7 by applying correction ink.
  • the ink curing light source 6 includes, for example, a CO 2 laser, and cures the correction ink applied by the ink application mechanism 5 by irradiating it with laser light.
  • This apparatus configuration is an example.
  • the Z stage 8 on which the observation optical system 2 or the like is mounted is mounted on the X stage, the X stage is mounted on the Y stage, and the Z stage 8 can be moved in the XY directions.
  • a configuration called a gantry system may be used, and any configuration may be used as long as the Z stage 8 on which the observation optical system 2 and the like are mounted can be moved relative to the correction target substrate 7 in the XY directions.
  • FIG. 2 is a perspective view showing the main parts of the observation optical system 2 and the ink application mechanism 5.
  • the defect correcting apparatus 1 includes a movable plate 15, a plurality of (for example, five) objective lenses 16 having different magnifications, and a plurality of (for example, five) application units 17 for applying different color inks.
  • the movable plate 15 is provided between the lower end of the observation barrel 2a of the observation optical system 2 and the substrate 7 so as to be movable in the X-axis direction and the Y-axis direction. Further, the movable plate 15 is formed with five through holes 15a corresponding to the five objective lenses 16, respectively.
  • the five through holes 15a are arranged at predetermined intervals in the Y-axis direction.
  • Each objective lens 16 is fixed to the lower surface of the movable plate 15 so that its optical axis coincides with the center line of the corresponding through hole 15a.
  • the optical axis of the observation barrel 2a and the optical axis of each objective lens 16 are arranged in the Z-axis direction perpendicular to the X-axis direction and the Y-axis direction.
  • the five coating units 17 are fixed to the lower surface of the movable plate 15 at a predetermined interval in the Y-axis direction. Each of the five coating units 17 is disposed adjacent to the five objective lenses 16. By moving the movable plate 15, it is possible to arrange the desired coating unit 17 above the white defect to be corrected.
  • 3 (a) to 3 (c) are views showing the main part from the direction A in FIG. 2, and showing the ink application operation.
  • the application unit 17 includes an application needle 18 and an ink tank 19.
  • the application needle 18 of the desired application unit 17 is positioned above the white defect to be corrected.
  • the tip of the application needle 18 is immersed in the correction ink in the ink tank 19.
  • the application needle 18 is lowered and the tip of the application needle 18 protrudes from the hole at the bottom of the ink tank 19. At this time, correction ink is attached to the tip of the application needle 18.
  • the application needle 18 and the ink tank 19 are lowered to bring the tip of the application needle 18 into contact with the white defect, and the correction ink is applied to the white defect. Thereafter, the state returns to the state of FIG.
  • the ink application mechanism using a plurality of application needles is not described in detail since various other techniques are known. For example, it is shown in Patent Document 1 (Japanese Patent Laid-Open No. 2009-122259).
  • the defect correction apparatus 1 can correct a defect using ink of a desired color among a plurality of inks by using, for example, a mechanism as shown in FIG. 2 as the ink application mechanism 5.
  • the defect can be corrected using an application needle having a desired application diameter among the application needles.
  • FIG. 4 is a view showing the surface of the liquid crystal color filter substrate 7.
  • the liquid crystal color filter substrate 7 includes a plurality of picture elements PC formed on the surface of a glass substrate.
  • the beginning DS of the picture element PC and the end DE of the picture element PC exist at the intersection positions of the black matrix portions BM formed vertically and horizontally.
  • the start DS of the picture element PC is referred to as a color filter position.
  • the control computer 11 specifies the position of this color filter.
  • a set of pixels having a value of 1 in the picture element PC is a color filter portion (shown by a color filter portion CF in the figure), and a set of pixels having a value of 0 (hatched portion in the figure) is This is a black matrix portion (indicated by a black matrix portion BM in the figure) of the picture element PC.
  • Each picture element PC has one of RGB (Red, Green, Blue) different from each other, and is repeatedly formed at a constant cycle.
  • FIGS. 5A and 5B are diagrams showing operations when the control computer 11 detects a defect in the horizontal direction of the input image.
  • the control computer 11 detects a defective portion based on the brightness of the pixels of the color filter. More specifically, the control computer 11 sets the brightness f (x, y) at the position (x, y) in the input image, where P is the interval between picture elements arranged periodically, that is, at equal intervals.
  • a comparative inspection is performed as shown by the following formula (1).
  • the control computer 11 compares the luminance f (x, y) with the luminance f (x ⁇ P, y) before one cycle and the luminance f (x + P, y) after one cycle.
  • s-p (x, y) is a comparison result between f (x, y) and f (x-P, y)
  • s + p (x, y) is f (x, y) and f.
  • the comparison result with (x + P, y) is shown.
  • the control computer 11 compares sH (x, y) with the slice level Td when the signs of sp (x, y) and s + p (x, y) match. Further, when the signs of sp (x, y) and s + p (x, y) do not match, the control computer 11 determines whether the position (x ⁇ P, y) or the position (x + P, y). The position (x, y) is excluded from the inspection target because it is highly likely to be erroneously detected as a pixel defect in FIG. With such a configuration, an error in defect detection due to noise in the input image can be prevented.
  • sH (x, y) is equal to or greater than Td
  • the control computer 11 determines that the pixel at the position (x, y) is a defect and stores the result in dH (x, y).
  • dH (x, y) a pixel having a value of 1 indicates a defect
  • a pixel having a value of 0 indicates normal.
  • control computer 11 calculates the centroid position of the portion having a value of 1 (ie, white defect), and the X stage 9 and the Y stage so that the coordinates of the calculated centroid position coincide with the center of the screen of the monitor 12. 10 is controlled. Further, the control computer 11 determines the color of the ink to be applied to the white defect. Further, the control computer 11 calculates the ink application position in the white defect.
  • a defect detection step is disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-233299.
  • control computer 11 selects the application unit 17 for applying the ink of the determined color, contacts the tip of the application needle 18 of the application unit 17 with the calculated ink application position, and determines the determined color. Apply correction ink to white defects.
  • the correction ink applied to the white defect is cured by irradiating the light of the ink curing light source 6, and the correction of the white defect is completed.
  • the control computer 11 controls the defect correcting device 1 to obtain the height of the ink application portion made of the correction ink applied to the white defect and cured.
  • the height detection method of the first embodiment is suitable for detecting the height of the ink application part that is higher than the focal depth of the objective lens 16.
  • the Z stage 8 is moved relative to the ink application part, and the contrast is maximized for each pixel of the image.
  • the stage position is obtained and the position is used as the height information of the pixel.
  • the search procedure is shown.
  • the Z stage 8 is moved to the search start position. If the current position is Zp and the search range is ⁇ , for example, it moves to Zp ⁇ / 2.
  • the minus direction of the Z stage 8 is the direction approaching the substrate 7, and the search is performed in the plus direction from the initial position, that is, the direction away from the substrate 7. Therefore, a range of ⁇ is searched in the positive direction from the initial position Zp ⁇ / 2.
  • the search direction is not necessarily a direction away from the substrate 7, and may be a direction approaching.
  • the control computer 11 starts sampling the image after the Z stage 8 starts to move and reaches a constant speed state. Sampling is performed at regular intervals. Preferably, sampling can be performed more accurately by performing the period of the vertical synchronizing signal of the CCD camera 3.
  • the Z stage 8 moves at a predetermined speed v ( ⁇ m / second).
  • the velocity v satisfies the condition of D ⁇ (1 / F) ⁇ v, where D ( ⁇ m) is the depth of focus of the objective lens 16 to be used, and F (Hz) is the frequency of the vertical synchronization signal of the CCD camera 3. It is desirable. This is because the depth of focus is the length of the region that appears to be in focus, so that the image cannot be changed unless it moves at least D ( ⁇ m) during the sampling period.
  • the image is sampled while moving the Z stage 8 within the search range, and the contrast value C of the image is calculated for each pixel of the acquired image.
  • the contrast value C is the luminance fi (x + a) of the pixel (x + a, y + b) separated by (a, b) vertically and horizontally with respect to the luminance fi (x, y) of the target pixel (x, y).
  • Y + b) and dx xy , dy xy the following formula (2) is calculated.
  • (H, W) indicates the number of pixels in the horizontal and vertical directions of the image.
  • fi (x, y) indicates the luminance of the pixel of the i-th sampled image
  • FIG. 7A is a diagram showing the relationship between the Z stage position and the contrast value C
  • FIG. 7B is a diagram showing the relationship between the Z stage position and its speed.
  • the contrast value C has a mountain shape as shown in FIG. 7A, and the peak of the mountain is the focal position.
  • the Prewitt operator and Sobel operator generally used in image processing are applied to an image and the average luminance value of the image after application is plotted, the same tendency as in FIG. In other words, any image feature that exhibits a tendency similar to that of Equation (2) may be used. Since the image is sampled at least every D ( ⁇ m), the true focal position is likely to exist between samples. For this reason, interpolation is performed using data in the vicinity of the position where the contrast value C is maximum, and an accurate focal position is obtained by approximation.
  • the data in the vicinity of the focal position can be approximated by a quadratic function or a Gaussian function because it shows a symmetrical mountain-shaped tendency centered on the focal position.
  • Function approximation is performed by the Newton method or the like using the Z stage coordinates near the focal position and the contrast value, and the peak position is interpolated from the obtained function to obtain the height of the corresponding pixel.
  • the center of gravity position may be obtained using the contrast value around the peak, and the obtained center of gravity position may be set as the height of the corresponding pixel.
  • the ink application part is extracted based on the images before and after application, and the heights of the extracted ink application part and the reference part are compared.
  • Patent Document 2 Japanese Patent Laid-Open No. 2009-237086
  • the brightness of the image before and after application is compared, and the ink application part is extracted based on the comparison result.
  • the extraction result of the ink application part be b (x, y).
  • b (x, y) is a function that returns 1 if the pixel at the position (x, y) is an ink application portion, and returns 0 otherwise.
  • the reference portion is a normal portion of the substrate 7 where the correction ink is not applied, and is extracted from an image before or after application.
  • the center coordinates ( ⁇ x, ⁇ y) of the reference portion with respect to the application start point and the vertical and horizontal sizes (w, h) are determined in advance.
  • an image in which the height information obtained in the height detection step is stored is h (x, y)
  • the coordinates of the application start point are (xs, ys)
  • the height of the reference portion is (xs + ⁇ x
  • the reference portion is not limited to the above method, and for example, a characteristic portion of the substrate 7 may be detected by pattern matching or the like, or may be set in an area offset from a detection position obtained by pattern matching. .
  • the average height of the reference portion obtained as described above is set as h0.
  • H0 is subtracted from the height image h (x, y), and the subtraction result is set as h '(x, y).
  • the total value, the maximum value, the minimum value, the variance value, and the average value of h ′ (x, y) of the pixel indicating the value 1 of the ink application part b (x, y) extracted earlier are calculated.
  • the vertical and horizontal dimensions of one pixel are (mx, my). The unit is nm.
  • the total value corresponds to the volume of the ink application part, and is effective for checking whether a predetermined ink application amount can be secured or whether the upper limit is exceeded.
  • the total value is calculated using the following formula.
  • the maximum value is the maximum value of h ′ (x, y) of a pixel having a b (x, y) value of 1, and is effective for checking whether the height of the ink application part exceeds the upper limit. It is.
  • the minimum value is the minimum value of h ′ (x, y) of a pixel having a b (x, y) value of 1, and is effective for checking whether or not a certain thickness can be secured.
  • the dispersion value is effective when evaluating the uniformity of the height of the ink application part.
  • the variance value is calculated according to the following equation (4).
  • the average value is effective for checking whether or not a certain height is secured over the entire ink application part.
  • the average value is calculated according to the following equation (5).
  • the control computer 11 determines whether or not the ink application unit is normal based on at least one of the calculated total value, maximum value, minimum value, variance value, and average value.
  • the defect correction apparatus 1 has a function of registering inspection items in advance in the order of application, and the inspection items and the allowable range can be changed depending on the type of application needle, the substrate 7, and the correction ink. Yes.
  • FIG. 8 is a diagram showing inspection conditions when ink is applied by the ink application mechanism 5 shown in FIG.
  • the ink application mechanism 5 has five application needles, and inspection conditions can be registered for each application needle.
  • the registered content is referred to when application is performed with the corresponding application needle. AND is passed when all the specified conditions are met, and OR is passed when any one of the conditions is met.
  • the numeric field is specified as a (lower limit, upper limit) pair.
  • the condition is satisfied when the value of the corresponding inspection item is not less than the lower limit value and less than the upper limit value.
  • the lower limit value is “ ⁇ ”
  • the condition is satisfied when the value is less than or equal to the upper limit value.
  • the upper limit is “ ⁇ ”
  • the condition is satisfied when the value is equal to or greater than the lower limit. It is not judged when both are blank.
  • an image is captured while the ink application unit and the objective lens 16 are relatively moved in the vertical direction, a focal position is obtained for each of a plurality of pixels constituting the captured image, and the obtained focal position is obtained. Based on this, the height of the ink application part is obtained. Therefore, the height of the ink application part can be easily and accurately detected quantitatively. As a result, accurate inspections such as changes in the viscosity of the corrected ink and detection of an abnormal state of the ink application mechanism 5 can be performed, which can contribute to an improvement in manufacturing process yield.
  • the present invention is not limited to this. It goes without saying that the present invention can be applied to the detection of the height of an application part made of a liquid material applied to a substrate.
  • the present invention can be applied to the detection of the height of a paste application portion made of a conductive paste applied to a disconnection defect portion of a wiring on the surface of a substrate such as a TFT substrate or a printed circuit board.
  • FIG. 9 is a diagram showing a main part of the defect correcting apparatus according to the second embodiment of the present invention, and is a diagram contrasted with FIG. Referring to FIG. 9, this defect correcting device is different from defect correcting device 1 of the first embodiment in that coating unit 17 is replaced with electrostatic ink jet device 20.
  • the electrostatic inkjet device 20 is fixed to the lower surface of the movable plate 15.
  • FIG. 10 is a diagram showing a main part of the electrostatic ink jet apparatus 20.
  • the electrostatic inkjet device 20 includes an inkjet nozzle 21, a pulse voltage generator 22, and a controller 23.
  • the nozzle 21 is a glass tube that is stretched to have a very small tip diameter.
  • Conductive correction ink 24 is injected into the nozzle 21, and a pulse voltage VP output from the pulse voltage generator 22 can be applied to the correction ink 24.
  • the substrate 7 is fixed horizontally on the Y stage 10. A desired target position on the surface of the substrate 7 can be positioned below the nozzle 21 by driving the stages 8 to 10.
  • the tip 21a of the nozzle 21 and the surface of the substrate 7 face each other with a minute drawing distance d.
  • a conical tailor cone 24a is formed from the tip 21a of the nozzle 21 toward the substrate 7, and the surface of the substrate 7 is formed from the top of the tailor cone 24a.
  • a jet flow (liquid column) 24b that reaches 1 is generated, and a part of the correction ink 24 moves onto the surface of the substrate 7 to form droplets 24c.
  • a height detection method different from the height detection method described in the first embodiment is employed.
  • a two-beam interference objective lens is used instead of the objective lens 16, and the interference fringe intensity is maximized at the focal position, and the Z stage 8 is moved relative to the substrate 7. Then, an interference fringe image is picked up, a Z stage position where the interference intensity is maximized is obtained for each pixel, and the position is set as the height of the pixel.
  • This height detection method is suitable for detecting a minute height of several ⁇ m or less.
  • the two-beam interference objective lens separates the white light emitted from the light source into two light beams and irradiates one on the surface of the object and the other on the reference surface to interfere the reflected light from both surfaces. is there.
  • a Mirau interference objective lens is used, but a Michelson type interference linique type interference objective lens may be used.
  • a white light source is used as the light source. This is because the brightness of the interference fringes is maximized only at the focal position of the lens unlike a single wavelength light source such as a laser, and is therefore suitable for measuring the height.
  • FIG. 11 shows a layout of the optical elements of the observation optical system 2 when the Mirau-type interference objective lens 30 is used.
  • the Mirau interference objective lens 30 includes a lens 31, a reference mirror 32, and a beam splitter 33.
  • a filter 36 is inserted by the filter switching device 35 into the exit portion of the falling light source 34. When light passes through the filter 36, white light having a center wavelength ⁇ (nm) is obtained.
  • the light that has passed through the filter 36 is reflected by the half mirror 37 toward the lens 31.
  • the light incident on the lens 31 is divided by the beam splitter 33 into light that passes in the direction of the substrate 7 and two light that reflects in the direction of the reference mirror 32.
  • the light reflected by the surface of the substrate 7 and the reference mirror 32 is again merged by the beam splitter 33 and condensed by the lens 31. Thereafter, the light emitted from the lens 31 passes through the half mirror 37 and then enters the imaging surface 3 a of the CCD camera 3 through the imaging lens 38.
  • the Mirau-type interference objective lens 30 is moved in the optical axis direction by the Z stage 8 to cause an optical path length difference between the surface reflected light of the substrate 7 and the surface reflected light of the reference mirror 32.
  • the CCD camera 3 captures an interference fringe generated by the optical path length difference while moving the Mirau interference objective lens 30.
  • the intensity that is, the brightness of the interference fringes is maximized when the reflected light from the substrate 7 and the reflected light from the reference mirror 32 are equal in length. At this time, the surface of the substrate 7 is in focus.
  • the substrate 7 itself is moved up and down on the table, or a piezo table or the like is attached to the connecting portion between the Mirau interference objective lens 30 and the observation optical system 2 to set the upper and lower positions of the Mirau interference objective lens 30. You may adjust.
  • the search range is ⁇ , and the search is performed in the positive direction from the initial position Zp ⁇ / 2, that is, in the direction in which the Z stage 8 moves away from the substrate 7.
  • the search direction does not necessarily need to be a direction away from the substrate 7 and may be a direction approaching.
  • the sampling of the image is started after the Z stage 8 starts to move and reaches a constant speed state. Further, if sampling is performed at the period of the vertical synchronization signal of the CCD camera 3, an interference fringe image can be sampled more accurately.
  • the contrast value Mi of the interference fringe intensity is calculated using the following equation (6) using five images.
  • fi (x, y) indicates the value of the pixel at the position (x, y) of the image fi.
  • FIG. 12A is a diagram showing the relationship between the image number i and the pixel value fi (x, y), and FIG. 12B is a diagram showing the relationship between the pixel number i and the contrast value Mi.
  • c) is a diagram showing the relationship between the position of the Z stage 8 and the speed. 12 (a) to 12 (c), fi (x, y) and Mi show peaks in the vicinity of the image p. This peak point is the focal position of the pixel (x, y). Since Mi shows a symmetrical mountain-shaped tendency around the peak point, a curve representing Mi can be approximated by a quadratic function or a Gaussian function as in the first embodiment.
  • an image in which the maximum value of Mi is stored is Mmax (x, y)
  • an image in which the image number indicating the maximum value is stored is I (x, y).
  • all pixels of Mmax (x, y) are set to 0.
  • ⁇ 1 is set to all the pixels of I (x, y).
  • Mi (x, y) is compared with Mmax (x, y). If Mi (x, y) is larger, then Mi is set to Mmax (x, y).
  • an accurate peak point is obtained by function approximation using a total of (2n + 1) images of ⁇ n sheets around the image p near the peak point.
  • Let j be the number of (2n + 1) images. Since the interference fringe amplitude value Mj (x, y) of each image is obtained during the measurement, the second order is obtained by the Newton method or the like using (2n + 1) amplitude values Mj (x, y) and the image number j. Approximate with a function or Gaussian function, and interpolate peak position from the obtained function. Besides the function approximation, the center of gravity position may be obtained using the contrast value around the peak, and the obtained center of gravity position may be set as the peak position.
  • the fourth embodiment relates to a method for increasing the detection accuracy of the height detection method of the third embodiment. First, problems of the third embodiment will be described.
  • the intensity value g ⁇ of the interference fringe waveform can be expressed by the following equation (7).
  • s is the sampling position
  • h is the height of the ink application part
  • ⁇ and ⁇ are coefficients determined from the amplitude of white light. Since white light actually has a certain bandwidth, the center wavelength is ⁇ , and light having a wavelength of ⁇ 1 ⁇ ⁇ ⁇ ⁇ 2 is irradiated. The intensity of light having this bandwidth is expressed by the following equation (8).
  • G is one in which the wavelength lambda is varied between from .lambda.1 .lambda.2 adds g lambda, and averaged by dividing by the number of times N obtained by adding.
  • FIG. 13 is a diagram showing the relationship between the sampling position s and the interference fringe intensity G.
  • the interference fringe intensity G in FIG. 13 is calculated using Equation (8).
  • indicates sampling points.
  • the sampling point controls the Z stage 8 that adjusts the relative position between the substrate 7 and the Mirau interference objective lens 30, and the relative distance between the substrate 7 and the objective lens 30 is ⁇ / 8 corresponding to ⁇ / 2 in phase increment.
  • (nm) is a plot of the luminance value G at the position (x, y) on the image when the image is taken while being changed. Note that the sampling of the image satisfies the Nyquist principle, and the original signal can be reproduced using the sampling points.
  • the contrast value Mi of the interference fringe waveform is obtained from the luminance value of the sampling point, and the peak position is taken as the height of the corresponding pixel.
  • the contrast value Mi is calculated by Equation (6) using a total of five images including two images before and after an image sample to be obtained when an image is taken while changing by ⁇ / 2 in phase increment.
  • phase ⁇ is expressed by the following equation (12) and can be calculated without being affected by ⁇ and ⁇ .
  • the horizontal axis in FIG. 15 indicates the sampling position s
  • the convex curve indicates Mi
  • the saw-tooth line segment indicates the phase ⁇ .
  • the phase ⁇ changes linearly downward from ⁇ to ⁇ , and becomes discontinuous where it changes from ⁇ to ⁇ . This discontinuous portion is indicated by a vertical line segment.
  • an image is taken while changing the relative distance between the substrate 7 and the Mirau interference objective lens 30 by ⁇ / 8 (nm) corresponding to ⁇ / 2 in phase increment.
  • the amount of movement is equal to the phase difference ⁇ and is ⁇ / 8.
  • ⁇ / 8 corresponds to ⁇ / 2 in phase increment.
  • FIG. 16 shows that the peak of the contrast value Mi is not affected by the phase difference ⁇ , but the zero point of the phase ⁇ is affected by the phase difference ⁇ .
  • the peak of the contrast value Mi may be displaced due to noise, it can indicate the height of the object without being affected by the phase difference ⁇ as described above.
  • the phase ⁇ can minimize the influence of noise, and can be detected with higher accuracy than the peak of the contrast value Mi. Therefore, in the present invention, the height of the ink application part is detected using both the peak of the contrast value Mi and the phase ⁇ .
  • the zero point of the phase ⁇ closest to the peak of the contrast value Mi is set as the height of the corresponding pixel as an initial value.
  • the peak of the contrast value Mi is called the primary height
  • the zero point of the phase ⁇ closest to the peak of the contrast value Mi is called the secondary height.
  • FIG. 17 is a diagram showing a peak position of a certain line on the image.
  • FIG. 17 shows data for one line in the horizontal direction when an inclined plane is measured.
  • the horizontal axis indicates the pixel position
  • the vertical axis indicates the image sampling number. It increases as the sampling number increases. When the sampling number changes by 1, the height changes by ⁇ / 8.
  • FIG. 18 shows the zero point of the phase ⁇ closest to the peak position shown in FIG. Phase jumps occur at D and E in FIG. Also, comparing FIG. 17 with FIG. 18, it can be seen that there is less variation at the zero point of the phase ⁇ .
  • the amount of deviation between the peak point of the contrast value Mi and the zero point of the phase ⁇ is obtained, and correction processing is performed so that the sign of the amount of deviation coincides for almost all pixels on the image. To correct. Although this process changes the pixel height, there is no problem in this inspection method because the relative height is used for height evaluation.
  • the amount of deviation between the peak point and the zero point of the phase ⁇ is ⁇
  • the threshold is T
  • the threshold correction amount is t
  • ⁇ (x, y) at the same place as in FIG. 17 is shown in FIG.
  • the horizontal axis in FIG. 19 indicates the pixel position
  • the vertical axis indicates ⁇ (x, y)
  • a change of value 1 corresponds to ⁇ / 8.
  • K ′ (x, y) after correction of all the pixels (x, y) is compared with at least one pixel adjacent to (x, y) to obtain a sum S of difference values.
  • the difference value is the absolute value of the difference from K ′ (x, y) of the adjacent pixel.
  • the obtained total value S is stored in association with the threshold value T.
  • the correction amount t is added to the threshold value T to obtain a new threshold value T.
  • K ′ (x, y) is obtained for all pixels (x, y) on the image, and the total value S is obtained.
  • FIG. 21 shows the final K ′ (x, y) in FIG. Further, ⁇ (x, y) at this time is shown in FIG.
  • the threshold value T is started from ⁇ 4, and the correction amount t is set to 0.1, and the correction is performed 80 times in total.
  • the threshold T varies up to 4.
  • FIG. 21 shows that the phase jump is corrected.
  • the criteria for determining the amount of ink applied varies depending on the pattern to be applied.
  • the submicron level is required. It is.
  • the height information to be used can be switched according to the ink to be applied.
  • the ink to be applied can be changed for each application needle when, for example, the ink application mechanism 5 shown in FIG. 2 is used. Therefore, a selection column of “height type” is provided in the “needle-inspection item correspondence table” shown in FIG. 22, and the height type used when applying with the corresponding needle is registered. For example, when applied with the application needle A, the tertiary height is used, and when applied with the application needle B, the primary height is used.
  • the scan range can be set for each application needle.
  • a tact time suitable for ink can be set, and the inspection time can be made more efficient.
  • the height of the ink application part can be detected with higher accuracy than in the third embodiment.
  • 1 defect correction device 2 observation optical system, 2a observation barrel, 3 CCD camera, 4 cutting laser device, 5 ink application mechanism, 6 ink curing light source, 7 liquid crystal color filter substrate, 8 Z stage, 9 X stage, 10 Y stage, 11 control computer, 12 monitor, 13 operation panel, 15 movable plate, 16 objective lens, 17 coating unit, 18 coating needle, 19 ink tank, 20 electrostatic inkjet device, 21 inkjet nozzle, 22 pulse voltage generation Device, 23 control device, 24 correction ink, 24a tailor cone, 24b jet flow, 24c droplet, 30 Mirau interference objective lens, 31 lens, 32 reference mirror, 33 beam splitter, 34 falling light source, 35 filter switching device, 36 Motor, 37 a half mirror, 38 an imaging lens, 51 a black matrix, 52 R pixel, 53 G pixel, 54 B pixel, 55 white defect, 56 black defect, 57 defective foreign matter.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)
  • Optical Filters (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

A controlling computer (11) of this defect repair device (1) (applicator device) positions an objective lens (16) above an ink application part comprising ink applied to the surface of a substrate (7), then captures an image while moving a Z stage (8), calculates, for each of a plurality of pixels constituting the captured image, a Z stage position (focal location of the pixel) at which a contrast value C reaches a peak, and on the basis of the calculated Z stage position, calculates the height of the ink application part. Thus, the height of the ink application part can be detected quantitatively.

Description

塗布装置および高さ検出方法Coating apparatus and height detection method
 この発明は塗布装置および高さ検出方法に関し、特に、基板の表面に液状材料を塗布する塗布装置と、基板の表面に塗布された液状材料からなる塗布部の高さを検出する高さ検出方法に関する。 The present invention relates to a coating apparatus and a height detection method, and in particular, a coating apparatus that applies a liquid material to the surface of a substrate, and a height detection method that detects the height of a coating portion made of the liquid material applied to the surface of the substrate. About.
 近年、液晶ディスプレイの大型化、高精細化に伴い画素数も増大し、液晶ディスプレイを無欠陥で製造することは困難となり、欠陥の発生確率も増加してきている。このような状況下において歩留まり向上のために、液晶カラーフィルタ基板の製造工程において発生する欠陥を修正する欠陥修正装置が生産ラインに不可欠となってきている。 In recent years, the number of pixels has increased with the increase in size and definition of liquid crystal displays, making it difficult to produce liquid crystal displays without defects, and the probability of occurrence of defects has also increased. Under such circumstances, in order to improve the yield, a defect correcting apparatus that corrects a defect that occurs in the manufacturing process of the liquid crystal color filter substrate has become indispensable for the production line.
 図23(a)~(c)は、液晶カラーフィルタ基板の製造工程において発生する欠陥を示す図である。図23(a)~(c)において、液晶カラーフィルタ基板は、透明基板と、その表面に形成されたブラックマトリクス51と呼ばれる格子状のパターンと、複数組のR(赤色)画素52、G(緑色)画素53、およびB(青色)画素54とを含む。液晶カラーフィルタ基板の製造工程においては、図23(a)に示すように画素やブラックマトリクス51の色が抜けてしまった白欠陥55や、図23(b)に示すように隣の画素と色が混色したり、ブラックマトリクス51が画素にはみ出してしまった黒欠陥56や、図23(c)に示すように画素に異物が付着した異物欠陥57などが発生する。 23 (a) to 23 (c) are diagrams showing defects that occur in the manufacturing process of the liquid crystal color filter substrate. 23A to 23C, the liquid crystal color filter substrate includes a transparent substrate, a lattice pattern called a black matrix 51 formed on the surface thereof, and a plurality of sets of R (red) pixels 52, G ( Green) pixel 53 and B (blue) pixel 54. In the manufacturing process of the liquid crystal color filter substrate, as shown in FIG. 23A, the white defect 55 in which the color of the pixel or the black matrix 51 is lost, or the adjacent pixel and the color as shown in FIG. Are mixed, or a black defect 56 in which the black matrix 51 protrudes from the pixel, or a foreign object defect 57 in which a foreign object adheres to the pixel as shown in FIG.
 白欠陥55を修正する方法としては、インク塗布機構により、白欠陥55が存在する画素と同色のインクを塗布針の先端部に付着させ、塗布針の先端部に付着したインクを白欠陥55に塗布して修正する方法がある。また、黒欠陥56や異物欠陥57を修正する方法としては、欠陥部分をレーザカットして矩形の白欠陥55を形成した後、インク塗布機構により、塗布針の先端部に付着したインクをその白欠陥55に塗布して修正する方法がある(たとえば特許文献1(特開2009-122259号公報)参照)。 As a method of correcting the white defect 55, an ink having the same color as that of the pixel in which the white defect 55 exists is attached to the tip of the application needle by the ink application mechanism, and the ink attached to the tip of the application needle is applied to the white defect 55 There is a method to correct by applying. Further, as a method of correcting the black defect 56 and the foreign object defect 57, after the defective portion is laser-cut to form a rectangular white defect 55, the ink applied to the tip of the application needle is removed by the ink application mechanism. There is a method in which the defect 55 is applied and corrected (see, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2009-122259)).
 また、修正処理前後における欠陥を含む領域の画像を撮像し、修正処理前後の画像の明るさを比較し、比較結果に基づいて修正処理の異常を検出する方法もある(たとえば特許文献2(特開2009-237086号公報)参照)。 Also, there is a method of capturing an image of a region including a defect before and after the correction process, comparing the brightness of the image before and after the correction process, and detecting an abnormality in the correction process based on the comparison result (for example, Patent Document 2 No. 2009-237086)).
特開2009-122259号公報JP 2009-122259 A 特開2009-237086号公報JP 2009-237086 A
 液晶ディスプレイは、電子回路が形成されているTFT基板と、画素の色を表現する液晶カラーフィルタ基板とを貼り合わせ、2枚の基板の間に液晶を封止したものである。しかるに、2枚の基板のうちの少なくとも一方の基板の表面に所定の高さより高い突起が存在すると、2枚の基板の間に液晶を正常に封止することができなくなる。このため、2枚の基板を貼り合わせる前に基板の表面の突起の有無を検査して貼り合わせが可能か否かを判定する必要がある。 A liquid crystal display is obtained by bonding a TFT substrate on which an electronic circuit is formed and a liquid crystal color filter substrate that expresses the color of a pixel, and sealing liquid crystal between two substrates. However, if protrusions higher than a predetermined height are present on the surface of at least one of the two substrates, the liquid crystal cannot be normally sealed between the two substrates. For this reason, before bonding the two substrates, it is necessary to determine whether the bonding is possible by inspecting the presence or absence of protrusions on the surface of the substrate.
 粘度の高いインクを塗布して白欠陥55を修正した場合、塗布したインクからなるインク塗布部は液晶カラーフィルタ基板の表面の突起になる。したがって、白欠陥55を修正した後に、インク塗布部の高さを検出する必要がある。しかし、特許文献2の方法では、インク塗布部の色味や濃さ、あるいはサイズや形状など平面的な不具合を検出できても、インク塗布部の高さを定量的に検出することはできなかった。 When the white defect 55 is corrected by applying high viscosity ink, the ink application portion made of the applied ink becomes a protrusion on the surface of the liquid crystal color filter substrate. Therefore, it is necessary to detect the height of the ink application part after correcting the white defect 55. However, the method of Patent Document 2 cannot quantitatively detect the height of the ink application portion even if a planar defect such as the color and density of the ink application portion or the size and shape can be detected. It was.
 それゆえに、この発明の主たる目的は、塗布部の高さを定量的に検出することが可能な塗布装置と、高さ検出方法とを提供することである。 Therefore, a main object of the present invention is to provide a coating apparatus capable of quantitatively detecting the height of the coating part and a height detection method.
 この発明に係る塗布装置は、基板の表面に液状材料を塗布する塗布装置であって、対物レンズを介して基板の表面を観察する観察光学系と、観察光学系を介して基板の表面の画像を撮像する撮像装置と、基板の表面に液状材料を塗布する塗布機構とを含むヘッド部と、ヘッド部と基板とを相対移動させてヘッド部を基板の表面の上方の所望の位置に位置決めする位置決め装置と、位置決め装置および撮像装置を制御し、基板の表面に塗布された液状材料からなる塗布部の上方に対物レンズを位置決めした後、塗布部と対物レンズとを上下方向に相対移動させながら画像を撮像し、撮像した画像を構成する複数の画素の各々について焦点位置を求め、求めた焦点位置に基づいて塗布部の高さを求める高さ検出部とを備えたものである。 The coating apparatus according to the present invention is a coating apparatus that applies a liquid material to the surface of a substrate, and includes an observation optical system that observes the surface of the substrate via an objective lens, and an image of the surface of the substrate via the observation optical system. A head unit including an image pickup apparatus for picking up images, a coating mechanism for applying a liquid material to the surface of the substrate, and the head unit and the substrate are relatively moved to position the head unit at a desired position above the surface of the substrate. The positioning device, the positioning device, and the imaging device are controlled to position the objective lens above the application portion made of a liquid material applied to the surface of the substrate, and then the application portion and the objective lens are moved relative to each other in the vertical direction. A height detection unit is provided that captures an image, obtains a focal position for each of a plurality of pixels constituting the captured image, and obtains a height of the application unit based on the obtained focal position.
 また、この発明に係る高さ検出方法は、対物レンズを介して基板の表面を観察する観察光学系と、観察光学系を介して基板の表面の画像を撮像する撮像装置と、基板の表面に液状材料を塗布する塗布機構とを含むヘッド部と、ヘッド部と基板とを相対移動させてヘッド部を基板の表面の上方の所望の位置に位置決めする位置決め装置とを備えた塗布装置において、基板の表面に塗布された液状材料からなる塗布部の高さを検出する高さ検出方法であって、位置決め装置および撮像装置を制御し、塗布部の上方に対物レンズを位置決めした後、塗布部と対物レンズとを上下方向に相対移動させながら画像を撮像し、撮像した画像を構成する複数の画素の各々について焦点位置を求め、求めた焦点位置に基づいて塗布部の高さを求めるものである。 Further, the height detection method according to the present invention includes an observation optical system for observing the surface of the substrate through the objective lens, an imaging device for capturing an image of the surface of the substrate through the observation optical system, and a surface of the substrate. In a coating apparatus comprising: a head unit including a coating mechanism that coats a liquid material; and a positioning device that relatively moves the head unit and the substrate to position the head unit at a desired position above the surface of the substrate. A height detection method for detecting the height of an application part made of a liquid material applied to the surface of the apparatus, wherein the positioning device and the imaging device are controlled to position the objective lens above the application part, and An image is picked up while relatively moving the objective lens in the vertical direction, a focal position is obtained for each of a plurality of pixels constituting the picked-up image, and the height of the coating part is obtained based on the obtained focal position. .
 この発明に係る塗布装置および高さ検出方法では、塗布部と対物レンズとを上下方向に相対移動させながら画像を撮像し、撮像した画像を構成する複数の画素の各々について焦点位置を求め、求めた焦点位置に基づいて塗布部の高さを求める。したがって、塗布部の高さを定量的に検出することができる。 In the coating apparatus and the height detection method according to the present invention, an image is captured while the coating unit and the objective lens are relatively moved in the vertical direction, and a focal position is obtained and obtained for each of a plurality of pixels constituting the captured image. The height of the application part is obtained based on the focal position. Therefore, the height of the application part can be detected quantitatively.
この発明の実施の形態1による欠陥修正装置の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the defect correction apparatus by Embodiment 1 of this invention. 図1に示したインク塗布機構の構成を示す斜視図である。It is a perspective view which shows the structure of the ink application | coating mechanism shown in FIG. 図2に示したインク塗布機構の動作を示す図である。It is a figure which shows operation | movement of the ink application | coating mechanism shown in FIG. 図1に示した液晶カラーフィルタ基板の表面を示す図である。It is a figure which shows the surface of the liquid crystal color filter substrate shown in FIG. 図1に示した制御用コンピュータの欠陥検出動作を示す図である。It is a figure which shows the defect detection operation | movement of the control computer shown in FIG. 図1に示した制御用コンピュータによる画像のコントラスト値の計算方法を示す図である。It is a figure which shows the calculation method of the contrast value of the image by the computer for control shown in FIG. 図1に示した制御用コンピュータによる画素の高さ検出方法を示す図である。It is a figure which shows the pixel height detection method by the computer for control shown in FIG. 図2に示したインク塗布機構によって塗布したインク塗布部の検査条件を示す図である。It is a figure which shows the test conditions of the ink application part apply | coated by the ink application mechanism shown in FIG. この発明の実施の形態2による欠陥修正装置の要部を示す斜視図である。It is a perspective view which shows the principal part of the defect correction apparatus by Embodiment 2 of this invention. 図9に示したインク塗布機構の構成を示す図である。It is a figure which shows the structure of the ink application | coating mechanism shown in FIG. この発明の実施の形態3による欠陥修正装置の要部を示す図である。It is a figure which shows the principal part of the defect correction apparatus by Embodiment 3 of this invention. 図11に示したミラウ型干渉対物レンズを用いた画素の高さ検出方法を示す図である。It is a figure which shows the pixel height detection method using the Mirau type | mold interference objective lens shown in FIG. 実施の形態3の問題点を説明するための図である。FIG. 11 is a diagram for explaining a problem of the third embodiment. 実施の形態3の問題点を説明するための他の図である。FIG. 10 is another diagram for explaining the problem of the third embodiment. この発明の実施の形態4による高さ検出方法の原理を説明するための図である。It is a figure for demonstrating the principle of the height detection method by Embodiment 4 of this invention. 実施の形態4による高さ検出方法の原理を説明するための他の図である。It is another figure for demonstrating the principle of the height detection method by Embodiment 4. FIG. 画像上のある1ラインのピーク位置を示す図である。It is a figure which shows the peak position of a certain line on an image. 図17に示したピーク位置に最寄りの位相δの0点を示す図である。FIG. 18 is a diagram showing a zero point of a phase δ nearest to the peak position shown in FIG. 17. 図16に示したピーク位置と図17に示した0点とのずれ量を示す図である。It is a figure which shows the deviation | shift amount of the peak position shown in FIG. 16, and the 0 point shown in FIG. 修正後のずれ量を示す図である。It is a figure which shows the deviation | shift amount after correction. 修正後の0点を示す図である。It is a figure which shows 0 point after correction. 塗布針の検査項目を示す図である。It is a figure which shows the inspection item of an applicator needle. 液晶カラーフィルタの欠陥を示す図である。It is a figure which shows the defect of a liquid crystal color filter.
 [実施の形態1]
 [装置構成]
 この発明の実施の形態1による欠陥修正装置1は、図1に示すように、観察光学系2、CCDカメラ3、カット用レーザ装置4、インク塗布機構5、およびインク硬化用光源6から構成される修正ヘッド部と、この修正ヘッド部を修正対象の液晶カラーフィルタ基板7に対して垂直方向(Z軸方向)に移動させるZステージ8と、Zステージ8を搭載してX軸方向に移動させるXステージ9と、基板7を搭載してY軸方向に移動させるYステージ10と、装置全体の動作を制御する制御用コンピュータ11と、CCDカメラ3によって撮影された画像などを表示するモニタ12と、制御用コンピュータ11に作業者からの指令を入力するための操作パネル13とを備える。
[Embodiment 1]
[Device configuration]
As shown in FIG. 1, the defect correcting apparatus 1 according to the first embodiment of the present invention includes an observation optical system 2, a CCD camera 3, a cutting laser device 4, an ink application mechanism 5, and an ink curing light source 6. A correction head portion, a Z stage 8 that moves the correction head portion in a direction perpendicular to the liquid crystal color filter substrate 7 to be corrected (Z-axis direction), and a Z stage 8 that is mounted and moved in the X-axis direction. An X stage 9; a Y stage 10 on which the substrate 7 is mounted and moved in the Y-axis direction; a control computer 11 for controlling the operation of the entire apparatus; a monitor 12 for displaying an image taken by the CCD camera 3; And an operation panel 13 for inputting a command from an operator to the control computer 11.
 観察光学系2は、照明用の光源を含み、基板7の表面状態や、インク塗布機構5によって塗布された修正インクの状態を観察する。観察光学系2によって観察される画像は、CCDカメラ3により電気信号に変換され、モニタ12に表示される。カット用レーザ装置4は、観察光学系2を介して基板7上の不要部にレーザ光を照射して除去する。 The observation optical system 2 includes a light source for illumination, and observes the surface state of the substrate 7 and the state of the correction ink applied by the ink application mechanism 5. An image observed by the observation optical system 2 is converted into an electrical signal by the CCD camera 3 and displayed on the monitor 12. The cutting laser device 4 removes unnecessary portions on the substrate 7 by irradiating them with laser light via the observation optical system 2.
 インク塗布機構5は、基板7に発生した白欠陥に修正インクを塗布して修正する。インク硬化用光源6は、たとえばCOレーザを含み、インク塗布機構5によって塗布された修正インクにレーザ光を照射して硬化させる。 The ink application mechanism 5 corrects the white defect generated on the substrate 7 by applying correction ink. The ink curing light source 6 includes, for example, a CO 2 laser, and cures the correction ink applied by the ink application mechanism 5 by irradiating it with laser light.
 なお、この装置構成は一例であり、たとえば、観察光学系2などを搭載したZステージ8をXステージに搭載し、さらにXステージをYステージに搭載し、Zステージ8をXY方向に移動可能とするガントリー方式と呼ばれる構成でもよく、観察光学系2などを搭載したZステージ8を、修正対象の基板7に対してXY方向に相対的に移動可能な構成であればどのような構成でもよい。 This apparatus configuration is an example. For example, the Z stage 8 on which the observation optical system 2 or the like is mounted is mounted on the X stage, the X stage is mounted on the Y stage, and the Z stage 8 can be moved in the XY directions. A configuration called a gantry system may be used, and any configuration may be used as long as the Z stage 8 on which the observation optical system 2 and the like are mounted can be moved relative to the correction target substrate 7 in the XY directions.
 次に、複数の塗布針を用いたインク塗布機構の例について説明する。図2は、観察光学系2およびインク塗布機構5の要部を示す斜視図である。図2において、この欠陥修正装置1は、可動板15と、倍率の異なる複数(たとえば5個)の対物レンズ16と、異なる色のインクを塗布するための複数(たとえば5個)の塗布ユニット17とを備える。 Next, an example of an ink application mechanism using a plurality of application needles will be described. FIG. 2 is a perspective view showing the main parts of the observation optical system 2 and the ink application mechanism 5. In FIG. 2, the defect correcting apparatus 1 includes a movable plate 15, a plurality of (for example, five) objective lenses 16 having different magnifications, and a plurality of (for example, five) application units 17 for applying different color inks. With.
 可動板15は、観察光学系2の観察鏡筒2aの下端と基板7との間で、X軸方向およびY軸方向に移動可能に設けられている。また、可動板15には、それぞれ5個の対物レンズ16に対応する5個の貫通孔15aが形成されている。 The movable plate 15 is provided between the lower end of the observation barrel 2a of the observation optical system 2 and the substrate 7 so as to be movable in the X-axis direction and the Y-axis direction. Further, the movable plate 15 is formed with five through holes 15a corresponding to the five objective lenses 16, respectively.
 5個の貫通孔15aは、Y軸方向に所定の間隔で配置されている。各対物レンズ16は、その光軸が対応する貫通孔15aの中心線に一致するようにして、可動板15の下面に固定されている。なお、観察鏡筒2aの光軸および各対物レンズ16の光軸は、X軸方向およびY軸方向に垂直なZ軸方向に配置されている。可動板15を移動させることにより、所望の倍率の対物レンズ16を観察鏡筒2aに下方に配置することが可能となっている。 The five through holes 15a are arranged at predetermined intervals in the Y-axis direction. Each objective lens 16 is fixed to the lower surface of the movable plate 15 so that its optical axis coincides with the center line of the corresponding through hole 15a. The optical axis of the observation barrel 2a and the optical axis of each objective lens 16 are arranged in the Z-axis direction perpendicular to the X-axis direction and the Y-axis direction. By moving the movable plate 15, the objective lens 16 having a desired magnification can be disposed below the observation barrel 2a.
 また、5個の塗布ユニット17は、Y軸方向に所定の間隔で、可動板15の下面に固定されている。5個の塗布ユニット17は、それぞれ5個の対物レンズ16に隣接して配置されている。可動板15を移動させることにより、所望の塗布ユニット17を修正対象の白欠陥の上方に配置することが可能となっている。 The five coating units 17 are fixed to the lower surface of the movable plate 15 at a predetermined interval in the Y-axis direction. Each of the five coating units 17 is disposed adjacent to the five objective lenses 16. By moving the movable plate 15, it is possible to arrange the desired coating unit 17 above the white defect to be corrected.
 図3(a)~(c)は、図2のA方向から要部を見た図であって、インク塗布動作を示す図である。塗布ユニット17は、塗布針18とインクタンク19を含む。まず図3(a)に示すように、所望の塗布ユニット17の塗布針18を修正対象の白欠陥の上方に位置決めする。このとき、塗布針18の先端部は、インクタンク19内の修正インク内に浸漬されている。 3 (a) to 3 (c) are views showing the main part from the direction A in FIG. 2, and showing the ink application operation. The application unit 17 includes an application needle 18 and an ink tank 19. First, as shown in FIG. 3A, the application needle 18 of the desired application unit 17 is positioned above the white defect to be corrected. At this time, the tip of the application needle 18 is immersed in the correction ink in the ink tank 19.
 次いで図3(b)に示すように、塗布針18を下降させてインクタンク19の底の孔から塗布針18の先端部を突出させる。このとき、塗布針18の先端部には修正インクが付着している。次に図3(c)に示すように、塗布針18およびインクタンク19を下降させて塗布針18の先端を白欠陥に接触させ、白欠陥に修正インクを塗布する。この後、図3(a)の状態に戻る。 Next, as shown in FIG. 3B, the application needle 18 is lowered and the tip of the application needle 18 protrudes from the hole at the bottom of the ink tank 19. At this time, correction ink is attached to the tip of the application needle 18. Next, as shown in FIG. 3C, the application needle 18 and the ink tank 19 are lowered to bring the tip of the application needle 18 into contact with the white defect, and the correction ink is applied to the white defect. Thereafter, the state returns to the state of FIG.
 複数の塗布針を用いたインク塗布機構は、この他にも様々な技術が知られているため詳細な説明を省略する。たとえば特許文献1(特開2009-122259号公報)などに示されている。欠陥修正装置1は、例えば図2に示すような機構をインク塗布機構5として用いることにより、複数のインクのうちの所望の色のインクを用いて欠陥を修正することができ、また、複数の塗布針のうち所望の塗布径の塗布針を用いて欠陥を修正することができる。 The ink application mechanism using a plurality of application needles is not described in detail since various other techniques are known. For example, it is shown in Patent Document 1 (Japanese Patent Laid-Open No. 2009-122259). The defect correction apparatus 1 can correct a defect using ink of a desired color among a plurality of inks by using, for example, a mechanism as shown in FIG. 2 as the ink application mechanism 5. The defect can be corrected using an application needle having a desired application diameter among the application needles.
 [欠陥検出工程]
 図4は、液晶カラーフィルタ基板7の表面を示す図である。図4において、液晶カラーフィルタ基板7は、ガラス基板の表面に形成された複数個の絵素PCを含む。縦横に形成されているブラックマトリックス部BMの交差位置に、絵素PCの始まりDSおよび絵素PCの終わりDEが存在する。また、絵素PCの始まりDSをカラーフィルタの位置と称する。制御用コンピュータ11は、このカラーフィルタの位置を特定する。また、同図において四角で囲まれた絵素PCの始まりDSから絵素の終わりDEまでの範囲が絵素PCを構成する。
[Defect detection process]
FIG. 4 is a view showing the surface of the liquid crystal color filter substrate 7. In FIG. 4, the liquid crystal color filter substrate 7 includes a plurality of picture elements PC formed on the surface of a glass substrate. The beginning DS of the picture element PC and the end DE of the picture element PC exist at the intersection positions of the black matrix portions BM formed vertically and horizontally. The start DS of the picture element PC is referred to as a color filter position. The control computer 11 specifies the position of this color filter. In addition, the range from the start DS of the picture element PC to the end DE of the picture element surrounded by a square in FIG.
 2値画像において絵素PCにおける値1の画素の集合が絵素のカラーフィルタ部(同図中にカラーフィルタ部CFで示す)であり、値0(同図のハッチング部分)の画素の集合が絵素PCのブラックマトリックス部(同図中にブラックマトリックス部BMで示す)である。また、各絵素PCは互いに異なるRGB(Red,Green,Blue)のうちのいずれかの色を有し、一定の周期で繰り返し形成されている。 In the binary image, a set of pixels having a value of 1 in the picture element PC is a color filter portion (shown by a color filter portion CF in the figure), and a set of pixels having a value of 0 (hatched portion in the figure) is This is a black matrix portion (indicated by a black matrix portion BM in the figure) of the picture element PC. Each picture element PC has one of RGB (Red, Green, Blue) different from each other, and is repeatedly formed at a constant cycle.
 図5(a)および(b)は、制御用コンピュータ11が入力画像の水平方向に欠陥検出を行なう際の動作を示す図である。制御用コンピュータ11は、カラーフィルタの画素の明るさに基づいて欠陥箇所を検出する。より詳細には、制御用コンピュータ11は、周期的に、すなわち等間隔で配置されている絵素の間隔をPとすると、入力画像における位置(x,y)の輝度f(x,y)に対して、以下の数式(1)で示されるように比較検査を行なう。 FIGS. 5A and 5B are diagrams showing operations when the control computer 11 detects a defect in the horizontal direction of the input image. The control computer 11 detects a defective portion based on the brightness of the pixels of the color filter. More specifically, the control computer 11 sets the brightness f (x, y) at the position (x, y) in the input image, where P is the interval between picture elements arranged periodically, that is, at equal intervals. On the other hand, a comparative inspection is performed as shown by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記のように、制御用コンピュータ11は、輝度f(x,y)と、1周期前の輝度f(x-P,y)および1周期後の輝度f(x+P,y)とを比較する。ここで、s-p(x,y)はf(x,y)とf(x-P,y)との比較結果を、s+p(x,y)はf(x,y)とf(x+P,y)との比較結果を示す。 As described above, the control computer 11 compares the luminance f (x, y) with the luminance f (x−P, y) before one cycle and the luminance f (x + P, y) after one cycle. Here, s-p (x, y) is a comparison result between f (x, y) and f (x-P, y), and s + p (x, y) is f (x, y) and f. The comparison result with (x + P, y) is shown.
 制御用コンピュータ11は、s-p(x,y)およびs+p(x,y)の符号が一致している場合にsH(x,y)をスライスレベルTdと比較する。また、制御用コンピュータ11は、s-p(x,y)およびs+p(x,y)の符号が一致していない場合には、位置(x-P,y)または位置(x+P,y)における画素欠陥として誤検出する可能性が高く、検査の信頼性が低いため、位置(x,y)を検査対象から除外する。このような構成により、入力画像のノイズによる欠陥検出の誤りを防ぐことができる。 The control computer 11 compares sH (x, y) with the slice level Td when the signs of sp (x, y) and s + p (x, y) match. Further, when the signs of sp (x, y) and s + p (x, y) do not match, the control computer 11 determines whether the position (x−P, y) or the position (x + P, y). The position (x, y) is excluded from the inspection target because it is highly likely to be erroneously detected as a pixel defect in FIG. With such a configuration, an error in defect detection due to noise in the input image can be prevented.
 そして、制御用コンピュータ11は、sH(x,y)がTd以上の場合は位置(x,y)における画素を欠陥と判断し、結果をdH(x,y)に格納する。dH(x,y)において、値1の画素は欠陥であることを、値0の画素は正常であることを示す。 Then, if sH (x, y) is equal to or greater than Td, the control computer 11 determines that the pixel at the position (x, y) is a defect and stores the result in dH (x, y). In dH (x, y), a pixel having a value of 1 indicates a defect, and a pixel having a value of 0 indicates normal.
 次に制御用コンピュータ11は、値が1である部分(すなわち白欠陥)の重心位置を計算し、計算した重心位置の座標がモニタ12の画面の中心に一致するようにXステージ9およびYステージ10を制御する。さらに制御用コンピュータ11は、白欠陥に塗布すべきインクの色を判定する。また、制御用コンピュータ11は、白欠陥内のインク塗布位置を計算する。このような欠陥検出工程は、たとえば特開2007-233299号公報に開示されている。 Next, the control computer 11 calculates the centroid position of the portion having a value of 1 (ie, white defect), and the X stage 9 and the Y stage so that the coordinates of the calculated centroid position coincide with the center of the screen of the monitor 12. 10 is controlled. Further, the control computer 11 determines the color of the ink to be applied to the white defect. Further, the control computer 11 calculates the ink application position in the white defect. Such a defect detection step is disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-233299.
 この後、制御用コンピュータ11は、判定した色のインクを塗布するための塗布ユニット17を選択し、その塗布ユニット17の塗布針18の先端を計算したインク塗布位置に接触させ、判定した色の修正インクを白欠陥に塗布する。インク硬化用光源6の光を照射して白欠陥に塗布した修正インクを硬化させて、白欠陥の修正が終了する。 Thereafter, the control computer 11 selects the application unit 17 for applying the ink of the determined color, contacts the tip of the application needle 18 of the application unit 17 with the calculated ink application position, and determines the determined color. Apply correction ink to white defects. The correction ink applied to the white defect is cured by irradiating the light of the ink curing light source 6, and the correction of the white defect is completed.
 [高さ検出工程]
 この工程では、制御用コンピュータ11が欠陥修正装置1を制御し、白欠陥に塗布して硬化させた修正インクからなるインク塗布部の高さを求める。本実施の形態1の高さ検出方法は、対物レンズ16の焦点深度よりも高いインク塗布部の高さの検出に適している。
[Height detection process]
In this step, the control computer 11 controls the defect correcting device 1 to obtain the height of the ink application portion made of the correction ink applied to the white defect and cured. The height detection method of the first embodiment is suitable for detecting the height of the ink application part that is higher than the focal depth of the objective lens 16.
 この高さ検出方法では、焦点位置で画像のコントラストが最大になることを利用し、Zステージ8をインク塗布部に対して相対的に移動させ、画像の各画素毎にコントラストが最大になるZステージ位置を求め、その位置を当該画素の高さ情報とする。 In this height detection method, utilizing the fact that the contrast of the image is maximized at the focal position, the Z stage 8 is moved relative to the ink application part, and the contrast is maximized for each pixel of the image. The stage position is obtained and the position is used as the height information of the pixel.
 最初に、探索手順を示す。Zステージ8を探索開始位置に移動させる。現在位置をZp、探索範囲をΔとおくと、例えばZp-Δ/2に移動する。ここで、Zステージ8のマイナス方向は基板7に近づく方向とし、探索は初期位置からプラス方向、すなわち基板7から遠ざかる方向に行うこととする。したがって、初期位置Zp-Δ/2からプラス方向にΔの範囲を探索する。なお、探索方向は必ずしも基板7から遠ざかる方向である必要はなく、近づく方向であってもよい。 First, the search procedure is shown. The Z stage 8 is moved to the search start position. If the current position is Zp and the search range is Δ, for example, it moves to Zp−Δ / 2. Here, the minus direction of the Z stage 8 is the direction approaching the substrate 7, and the search is performed in the plus direction from the initial position, that is, the direction away from the substrate 7. Therefore, a range of Δ is searched in the positive direction from the initial position Zp−Δ / 2. Note that the search direction is not necessarily a direction away from the substrate 7, and may be a direction approaching.
 Zステージ8が移動を始め、定速状態になってから制御用コンピュータ11は画像のサンプリングを始める。サンプリングは一定周期で行なう。好ましくはCCDカメラ3の垂直同期信号の周期で行なうとより正確にサンプリングを行なえる。Zステージ8は予め定められた速度v(μm/秒)で移動する。速度vは、使用する対物レンズ16の焦点深度をD(μm)とし、CCDカメラ3の垂直同期信号の周波数をF(Hz)とすると、D≦(1/F)×vの条件を満足することが望ましい。焦点深度は焦点が合っているように見える領域の長さであるから、サンプリング周期の間に少なくともD(μm)以上移動しないと画像の変化が得られないからである。 The control computer 11 starts sampling the image after the Z stage 8 starts to move and reaches a constant speed state. Sampling is performed at regular intervals. Preferably, sampling can be performed more accurately by performing the period of the vertical synchronizing signal of the CCD camera 3. The Z stage 8 moves at a predetermined speed v (μm / second). The velocity v satisfies the condition of D ≦ (1 / F) × v, where D (μm) is the depth of focus of the objective lens 16 to be used, and F (Hz) is the frequency of the vertical synchronization signal of the CCD camera 3. It is desirable. This is because the depth of focus is the length of the region that appears to be in focus, so that the image cannot be changed unless it moves at least D (μm) during the sampling period.
 以上のように探索範囲内でZステージ8を移動させながら画像をサンプリングし、取得した画像の各画素毎に画像のコントラスト値Cを計算する。コントラスト値Cは、図6に示すように注目画素(x,y)の輝度fi(x,y)に対して縦横に(a,b)だけ離れた画素(x+a,y+b)の輝度fi(x+a,y+b)との減算結果をdxxy、dyxyとすると、以下に示す数式(2)で算出される。 As described above, the image is sampled while moving the Z stage 8 within the search range, and the contrast value C of the image is calculated for each pixel of the acquired image. As shown in FIG. 6, the contrast value C is the luminance fi (x + a) of the pixel (x + a, y + b) separated by (a, b) vertically and horizontally with respect to the luminance fi (x, y) of the target pixel (x, y). , Y + b) and dx xy , dy xy , the following formula (2) is calculated.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 この数式(2)において、(H,W)は画像の水平方向および垂直方向の画素数を示す。また、fi(x,y)はi番目にサンプリングした画像の画素の輝度であることを示し、iは取得した順に付けられた画像番号でありi=1,2,…,Nの値を取る。 In this equation (2), (H, W) indicates the number of pixels in the horizontal and vertical directions of the image. Further, fi (x, y) indicates the luminance of the pixel of the i-th sampled image, i is an image number given in the order of acquisition, and takes values of i = 1, 2,. .
 図7(a)はZステージ位置とコントラスト値Cの関係を示す図であり、図7(b)はZステージ位置とその速度の関係を示す図である。コントラスト値Cは、図7(a)に示すように山型の形状を示し、山のピークが焦点位置である。画像処理で一般的に用いられているPrewittオペレータやSobelオペレータを画像に適用し、適用後の画像の輝度平均値をプロットしても図7(a)と同様の傾向を示す。すなわち、数式(2)と同様の傾向を示す画像特徴であればよい。画像は少なくともD(μm)毎にサンプリングされるため、真の焦点位置はサンプルとサンプルの間に存在する可能性が高い。このため、コントラスト値Cが最大となる位置近傍のデータを用いて補間し、近似により正確な焦点位置を求める。 7A is a diagram showing the relationship between the Z stage position and the contrast value C, and FIG. 7B is a diagram showing the relationship between the Z stage position and its speed. The contrast value C has a mountain shape as shown in FIG. 7A, and the peak of the mountain is the focal position. Even when the Prewitt operator and Sobel operator generally used in image processing are applied to an image and the average luminance value of the image after application is plotted, the same tendency as in FIG. In other words, any image feature that exhibits a tendency similar to that of Equation (2) may be used. Since the image is sampled at least every D (μm), the true focal position is likely to exist between samples. For this reason, interpolation is performed using data in the vicinity of the position where the contrast value C is maximum, and an accurate focal position is obtained by approximation.
 焦点位置近傍のデータは、焦点位置を中心とする左右対称の山型傾向を示すため、2次関数あるいはガウス関数により近似することができる。焦点位置近傍のZステージ座標およびコントラスト値を用いてニュートン法などにより関数近似を行ない、求めた関数からピーク位置を内挿し、該当する画素の高さとする。また、関数近似以外に、ピーク周辺のコントラスト値を用いて重心位置を求め、求めた重心位置を該当する画素の高さとしてもよい。 The data in the vicinity of the focal position can be approximated by a quadratic function or a Gaussian function because it shows a symmetrical mountain-shaped tendency centered on the focal position. Function approximation is performed by the Newton method or the like using the Z stage coordinates near the focal position and the contrast value, and the peak position is interpolated from the obtained function to obtain the height of the corresponding pixel. In addition to function approximation, the center of gravity position may be obtained using the contrast value around the peak, and the obtained center of gravity position may be set as the height of the corresponding pixel.
 [高さ検査工程]
 この工程では、塗布前後の画像に基づいてインク塗布部を抽出し、抽出したインク塗布部と基準部との高さを比較する。たとえば特許文献2(特開2009-237086号公報)に記載されているように、塗布前後の画像の明るさを比較し、比較結果に基づいてインク塗布部を抽出する。インク塗布部の抽出結果をb(x,y)とする。b(x,y)は位置(x,y)の画素がインク塗布部ならば1、それ以外なら0を返す関数である。
[Height inspection process]
In this step, the ink application part is extracted based on the images before and after application, and the heights of the extracted ink application part and the reference part are compared. For example, as described in Patent Document 2 (Japanese Patent Laid-Open No. 2009-237086), the brightness of the image before and after application is compared, and the ink application part is extracted based on the comparison result. Let the extraction result of the ink application part be b (x, y). b (x, y) is a function that returns 1 if the pixel at the position (x, y) is an ink application portion, and returns 0 otherwise.
 基準部は、基板7のうちの修正インクが塗布されていない正常な部分であり、塗布前または塗布後のいずれかの画像から抽出される。予め塗布開始点に対する基準部の中心座標(Δx,Δy)と、縦横のサイズ(w,h)を決めておく。ここで、高さ検出工程で求めた高さ情報が格納されている画像をh(x,y)、塗布開始点の座標を(xs,ys)とおき、基準部の高さを(xs+Δx,ys+Δy)を中心とする(±w/2,±h/2)の範囲内の高さの平均値とする。なお、基準部は上記手法に限らず、たとえば、基板7の特徴的な部分をパターンマッチングなどにより検出してその内部としたり、パターンマッチングにより求めた検出位置からオフセットした領域に設定してもよい。 The reference portion is a normal portion of the substrate 7 where the correction ink is not applied, and is extracted from an image before or after application. The center coordinates (Δx, Δy) of the reference portion with respect to the application start point and the vertical and horizontal sizes (w, h) are determined in advance. Here, an image in which the height information obtained in the height detection step is stored is h (x, y), the coordinates of the application start point are (xs, ys), and the height of the reference portion is (xs + Δx, The average value of the heights in the range of (± w / 2, ± h / 2) with ys + Δy) as the center. Note that the reference portion is not limited to the above method, and for example, a characteristic portion of the substrate 7 may be detected by pattern matching or the like, or may be set in an area offset from a detection position obtained by pattern matching. .
 以上のようにして求めた基準部の高さ平均値をh0とおく。高さ画像h(x,y)からh0を減算し、減算結果をh’(x,y)とおく。続けて、先に抽出したインク塗布部位b(x,y)の値1を示す画素のh’(x,y)の合計値、最大値、最小値、分散値、平均値を算出する。なお、1画素の縦横寸法を(mx,my)とおく。単位はnmとする。 The average height of the reference portion obtained as described above is set as h0. H0 is subtracted from the height image h (x, y), and the subtraction result is set as h '(x, y). Subsequently, the total value, the maximum value, the minimum value, the variance value, and the average value of h ′ (x, y) of the pixel indicating the value 1 of the ink application part b (x, y) extracted earlier are calculated. Note that the vertical and horizontal dimensions of one pixel are (mx, my). The unit is nm.
 合計値は、インク塗布部の体積に相当し、所定のインク塗布量が確保できているか、または上限を超えていないかなどの検査に有効である。合計値は次式を用いて計算する。 The total value corresponds to the volume of the ink application part, and is effective for checking whether a predetermined ink application amount can be secured or whether the upper limit is exceeded. The total value is calculated using the following formula.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 最大値は、b(x,y)の値が1なる画素のh’(x,y)の内の最大値であり、インク塗布部の高さが上限を超えているか否かの検査に有効である。 The maximum value is the maximum value of h ′ (x, y) of a pixel having a b (x, y) value of 1, and is effective for checking whether the height of the ink application part exceeds the upper limit. It is.
 最小値は、b(x,y)の値が1なる画素のh’(x,y)の内の最小値であり、一定の厚みを確保できているか否かの検査に有効である。 The minimum value is the minimum value of h ′ (x, y) of a pixel having a b (x, y) value of 1, and is effective for checking whether or not a certain thickness can be secured.
 分散値は、インク塗布部の高さの均一性を評価したい場合に有効である。分散値は次式(4)に従って計算する。 The dispersion value is effective when evaluating the uniformity of the height of the ink application part. The variance value is calculated according to the following equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 平均値は、インク塗布部全体に渡り一定以上の高さを確保できているか否かの検査に有効である。平均値は次式(5)に従って計算する。 The average value is effective for checking whether or not a certain height is secured over the entire ink application part. The average value is calculated according to the following equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 制御用コンピュータ11は、計算した合計値、最大値、最小値、分散値、平均値のうちの少なくとも1つの値に基づいて、インク塗布部が正常か否かを判定する。 The control computer 11 determines whether or not the ink application unit is normal based on at least one of the calculated total value, maximum value, minimum value, variance value, and average value.
 本実施の形態1の欠陥修正装置1では、検査項目を適用順に事前に登録する機能を持ち、塗布針、基板7、修正インクの種類によって検査項目や許容範囲を変更することが可能となっている。 The defect correction apparatus 1 according to the first embodiment has a function of registering inspection items in advance in the order of application, and the inspection items and the allowable range can be changed depending on the type of application needle, the substrate 7, and the correction ink. Yes.
 図8は、図2で示したインク塗布機構5によってインク塗布を行なったときの検査条件を示す図である。インク塗布機構5は5本の塗布針を持っており、塗布針毎に検査条件を登録することができる。該当する塗布針で塗布を行なったときに、登録内容が参照される。ANDは指定したすべての条件が成立したときに合格とし、ORはいずれか1つの条件が成立したときに合格とする。 FIG. 8 is a diagram showing inspection conditions when ink is applied by the ink application mechanism 5 shown in FIG. The ink application mechanism 5 has five application needles, and inspection conditions can be registered for each application needle. The registered content is referred to when application is performed with the corresponding application needle. AND is passed when all the specified conditions are met, and OR is passed when any one of the conditions is met.
 「合計値」「最大値」「最小値」「分散値」「平均値」の欄に数値が指定されているときに適用され、それぞれの判定を「最終判定」でまとめる。本例では、「最終判定」には「AND」または「OR」の2種類の設定が可能となっている。数値欄は(下限値,上限値)のペアで指定する。下限値および上限値がともに数値指定されているときは、該当する検査項目の値が下限値以上、上限値未満で条件が成立する。下限値が「-」のときは値が上限値以下のとき条件が成立する。上限値が「-」のときは値が下限値以上のとき条件が成立する。両者が空欄のときは判定しない。 適用 Applicable when numerical values are specified in the columns of “Total Value”, “Maximum Value”, “Minimum Value”, “Dispersion Value”, and “Average Value”. In this example, two types of settings “AND” or “OR” are possible for “final determination”. The numeric field is specified as a (lower limit, upper limit) pair. When both the lower limit value and the upper limit value are numerically designated, the condition is satisfied when the value of the corresponding inspection item is not less than the lower limit value and less than the upper limit value. When the lower limit value is “−”, the condition is satisfied when the value is less than or equal to the upper limit value. When the upper limit is “−”, the condition is satisfied when the value is equal to or greater than the lower limit. It is not judged when both are blank.
 この実施の形態1では、インク塗布部と対物レンズ16とを上下方向に相対移動させながら画像を撮像し、撮像した画像を構成する複数の画素の各々について焦点位置を求め、求めた焦点位置に基づいてインク塗布部の高さを求める。したがって、インク塗布部の高さを容易かつ正確に定量的に検出することができる。その結果、修正インクの粘度の変化や、インク塗布機構5の異常状態の検出など正確な検査が可能となり、製造工程の歩留まりの向上に寄与することができる。 In the first embodiment, an image is captured while the ink application unit and the objective lens 16 are relatively moved in the vertical direction, a focal position is obtained for each of a plurality of pixels constituting the captured image, and the obtained focal position is obtained. Based on this, the height of the ink application part is obtained. Therefore, the height of the ink application part can be easily and accurately detected quantitatively. As a result, accurate inspections such as changes in the viscosity of the corrected ink and detection of an abnormal state of the ink application mechanism 5 can be performed, which can contribute to an improvement in manufacturing process yield.
 なお、この実施の形態1では、本願発明が液晶カラーフィルタ基板7に塗布された修正インクからなるインク塗布部の高さの検出に適用された場合について説明したが、これに限るものではなく、本願発明は基板に塗布された液状材料からなる塗布部の高さの検出に適用できることは言うまでもない。たとえば、TFT基板やプリント基板などの基板表面の配線の断線欠陥部に塗布された導電性ペーストからなるペースト塗布部の高さの検出に適用可能である。 In the first embodiment, the case where the present invention is applied to the detection of the height of the ink application portion made of the correction ink applied to the liquid crystal color filter substrate 7 has been described, but the present invention is not limited to this. It goes without saying that the present invention can be applied to the detection of the height of an application part made of a liquid material applied to a substrate. For example, the present invention can be applied to the detection of the height of a paste application portion made of a conductive paste applied to a disconnection defect portion of a wiring on the surface of a substrate such as a TFT substrate or a printed circuit board.
 [実施の形態2]
 図9は、この発明の実施の形態2による欠陥修正装置の要部を示す図であって、図2と対比される図である。図9を参照して、この欠陥修正装置が実施の形態1の欠陥修正装置1と異なる点は、塗布ユニット17が静電インクジェット装置20と置換されている点である。静電インクジェット装置20は、可動板15の下面に固定される。
[Embodiment 2]
FIG. 9 is a diagram showing a main part of the defect correcting apparatus according to the second embodiment of the present invention, and is a diagram contrasted with FIG. Referring to FIG. 9, this defect correcting device is different from defect correcting device 1 of the first embodiment in that coating unit 17 is replaced with electrostatic ink jet device 20. The electrostatic inkjet device 20 is fixed to the lower surface of the movable plate 15.
 図10は、静電インクジェット装置20の要部を示す図である。図10において、静電インクジェット装置20は、インクジェットノズル21、パルス電圧発生装置22、および制御装置23を含む。ノズル21は、ガラス管を引き伸ばして先端径を微小に形成したものである。ノズル21の内部には導電性の修正インク24が注入され、パルス電圧発生装置22から出力されるパルス電圧VPが修正インク24に印加可能になっている。基板7は、Yステージ10の上に水平に固定される。ステージ8~10を駆動させることによって基板7の表面の所望の目標位置をノズル21の下方に位置決めすることが可能となっている。 FIG. 10 is a diagram showing a main part of the electrostatic ink jet apparatus 20. In FIG. 10, the electrostatic inkjet device 20 includes an inkjet nozzle 21, a pulse voltage generator 22, and a controller 23. The nozzle 21 is a glass tube that is stretched to have a very small tip diameter. Conductive correction ink 24 is injected into the nozzle 21, and a pulse voltage VP output from the pulse voltage generator 22 can be applied to the correction ink 24. The substrate 7 is fixed horizontally on the Y stage 10. A desired target position on the surface of the substrate 7 can be positioned below the nozzle 21 by driving the stages 8 to 10.
 描画動作時にはノズル21の先端21aと基板7の表面とは、微小な描画距離dを開けて対峙する。この状態でノズル21に注入した修正インク24にパルス電圧VPを印加すると、ノズル21の先端21aから基板7に向かって円錐状のテーラーコーン24aが形成され、テーラーコーン24aの頂部から基板7の表面に達するジェット流(液柱)24bが生じ、修正インク24の一部が基板7の表面上に移動して液滴24cが形成される。Xステージ9およびYステージ10によって基板7を移動させることにより、基板7の表面に所望の形状のインク塗布部を形成することができる。他の構成および動作は実施の形態1と同じであるので、その説明は繰り返さない。この実施の形態2でも、実施の形態1と同じ効果が得られる。 During the drawing operation, the tip 21a of the nozzle 21 and the surface of the substrate 7 face each other with a minute drawing distance d. When the pulse voltage VP is applied to the correction ink 24 injected into the nozzle 21 in this state, a conical tailor cone 24a is formed from the tip 21a of the nozzle 21 toward the substrate 7, and the surface of the substrate 7 is formed from the top of the tailor cone 24a. A jet flow (liquid column) 24b that reaches 1 is generated, and a part of the correction ink 24 moves onto the surface of the substrate 7 to form droplets 24c. By moving the substrate 7 by the X stage 9 and the Y stage 10, an ink application portion having a desired shape can be formed on the surface of the substrate 7. Since other configurations and operations are the same as those in the first embodiment, description thereof will not be repeated. Also in this second embodiment, the same effect as in the first embodiment can be obtained.
 なお、他の塗布機構としては、図示しないがディスペンサがある。どの塗布機構を用いるかは、対象物や液状材料に応じて適切に選択すればよい。 In addition, as another application mechanism, there is a dispenser (not shown). Which coating mechanism is used may be appropriately selected according to the object and the liquid material.
 [実施の形態3]
 本実施の形態3の欠陥修正装置では、実施の形態1で説明した高さ検出方法とは異なる高さ検出方法が採用されている。この高さ検出方法では、対物レンズ16の代わりに二光束干渉対物レンズを使用し、焦点位置で干渉縞強度が最大になることを利用し、Zステージ8を基板7に対して相対的に移動させながら干渉縞の画像を撮像し、各画素毎に干渉強度が最大になるZステージ位置を求め、その位置を当該画素の高さとする。この高さ検出方法は、数μm以下の微小な高さの検出に適している。
[Embodiment 3]
In the defect correction apparatus according to the third embodiment, a height detection method different from the height detection method described in the first embodiment is employed. In this height detection method, a two-beam interference objective lens is used instead of the objective lens 16, and the interference fringe intensity is maximized at the focal position, and the Z stage 8 is moved relative to the substrate 7. Then, an interference fringe image is picked up, a Z stage position where the interference intensity is maximized is obtained for each pixel, and the position is set as the height of the pixel. This height detection method is suitable for detecting a minute height of several μm or less.
 二光束干渉対物レンズは、光源から出射された白色光を二光束に分離して一方を対象物表面に照射すると共に、他方を参照面に照射し、これら両面からの反射光を干渉させるものである。本実施の形態3では、ミラウ型干渉対物レンズを用いるが、マイケルソン型やリニーク型の干渉対物レンズを用いてもよい。 The two-beam interference objective lens separates the white light emitted from the light source into two light beams and irradiates one on the surface of the object and the other on the reference surface to interfere the reflected light from both surfaces. is there. In the third embodiment, a Mirau interference objective lens is used, but a Michelson type interference linique type interference objective lens may be used.
 また、光源としては白色光源を用いる。干渉縞の明るさは、レーザなどの単一波長の光源と異なりレンズの焦点位置でのみ最大になるため、高さを測定するのに適しているからである。 Also, a white light source is used as the light source. This is because the brightness of the interference fringes is maximized only at the focal position of the lens unlike a single wavelength light source such as a laser, and is therefore suitable for measuring the height.
 図11は、ミラウ型干渉対物レンズ30を用いたときの観察光学系2の光学素子の配置図を示す。ミラウ型干渉対物レンズ30は、レンズ31、参照鏡32、およびビームスプリッタ33を含む。対物レンズ16をミラウ型干渉対物レンズ30に切換えると同時に、落斜光源34の出射部にフィルタ切換装置35によってフィルタ36を挿入する。フィルタ36を光が通過すると中心波長λ(nm)の白色光が得られる。 FIG. 11 shows a layout of the optical elements of the observation optical system 2 when the Mirau-type interference objective lens 30 is used. The Mirau interference objective lens 30 includes a lens 31, a reference mirror 32, and a beam splitter 33. At the same time as switching the objective lens 16 to the Mirau-type interference objective lens 30, a filter 36 is inserted by the filter switching device 35 into the exit portion of the falling light source 34. When light passes through the filter 36, white light having a center wavelength λ (nm) is obtained.
 フィルタ36を通過した光は、ハーフミラー37でレンズ31の方向に反射される。レンズ31に入射した光は、ビームスプリッタ33で基板7の方向に通過する光と参照鏡32の方向に反射する2つの光に分けられる。基板7および参照鏡32の表面で反射した光は再びビームスプリッタ33で合流し、レンズ31で集光される。この後、レンズ31から出た光は、ハーフミラー37を通過した後、結像レンズ38を経てCCDカメラ3の撮像面3aに入射する。 The light that has passed through the filter 36 is reflected by the half mirror 37 toward the lens 31. The light incident on the lens 31 is divided by the beam splitter 33 into light that passes in the direction of the substrate 7 and two light that reflects in the direction of the reference mirror 32. The light reflected by the surface of the substrate 7 and the reference mirror 32 is again merged by the beam splitter 33 and condensed by the lens 31. Thereafter, the light emitted from the lens 31 passes through the half mirror 37 and then enters the imaging surface 3 a of the CCD camera 3 through the imaging lens 38.
 通常は、Zステージ8によりミラウ型干渉対物レンズ30を光軸方向に移動させて基板7の表面反射光と参照鏡32の表面反射光との間に光路長差を生じさせ、Zステージ8によりミラウ型干渉対物レンズ30を移動させながら上記光路長差により発生する干渉縞をCCDカメラ3で撮像する。この干渉縞の強度、すなわち明るさは基板7からの反射光と参照鏡32から反射光の光路長が等しいとき最大となる。また、このとき基板7の表面に焦点が合っている。 Normally, the Mirau-type interference objective lens 30 is moved in the optical axis direction by the Z stage 8 to cause an optical path length difference between the surface reflected light of the substrate 7 and the surface reflected light of the reference mirror 32. The CCD camera 3 captures an interference fringe generated by the optical path length difference while moving the Mirau interference objective lens 30. The intensity, that is, the brightness of the interference fringes is maximized when the reflected light from the substrate 7 and the reflected light from the reference mirror 32 are equal in length. At this time, the surface of the substrate 7 is in focus.
 なお、Zステージ8の他に、基板7自身をテーブルで上下させたり、ミラウ型干渉対物レンズ30と観察光学系2の連結部にピエゾテーブルなどを取り付けてミラウ型干渉対物レンズ30の上下位置を調整してもよい。 In addition to the Z stage 8, the substrate 7 itself is moved up and down on the table, or a piezo table or the like is attached to the connecting portion between the Mirau interference objective lens 30 and the observation optical system 2 to set the upper and lower positions of the Mirau interference objective lens 30. You may adjust.
 実施の形態1と同様に、探索範囲をΔとし、初期位置Zp-Δ/2からプラス方向、すなわちZステージ8が基板7から遠ざかる方向に探索する。なお、実施の形態1と同様、探索方向は必ずしも基板7から遠ざかる方向である必要はなく、近づく方向であってもよい。 As in the first embodiment, the search range is Δ, and the search is performed in the positive direction from the initial position Zp−Δ / 2, that is, in the direction in which the Z stage 8 moves away from the substrate 7. As in the first embodiment, the search direction does not necessarily need to be a direction away from the substrate 7 and may be a direction approaching.
 画像のサンプリングも実施の形態1と同様に、Zステージ8が移動を始め、定速状態になってから始める。また、CCDカメラ3の垂直同期信号の周期でサンプリングすれば、より正確に干渉縞の画像をサンプリングすることができる。 As in the first embodiment, the sampling of the image is started after the Z stage 8 starts to move and reaches a constant speed state. Further, if sampling is performed at the period of the vertical synchronization signal of the CCD camera 3, an interference fringe image can be sampled more accurately.
 Zステージ8は予め定められた速度v(μm/秒)で移動するが、移動速度は次のように定める。速度vは、白色光の中心波長をλ(μm)とし、CCDカメラ3の垂直同期信号の周波数をF(Hz)とすると、画像のサンプルリング周期(1/F)秒の間に(λ/8)μmだけ移動する速度とする。すなわち、v=(λ/8)×Fとなる。この速度vは白色光の位相増分でπ/2に相当する。位相をπ/2ずつ変化させることにより、干渉縞強度のピーク点を容易に検出できることが知られている。 The Z stage 8 moves at a predetermined speed v (μm / second), and the moving speed is determined as follows. Assuming that the center wavelength of white light is λ (μm) and the frequency of the vertical synchronizing signal of the CCD camera 3 is F (Hz), the velocity v is (λ /) during the sampling period (1 / F) second of the image. 8) Set the speed to move by μm. That is, v = (λ / 8) × F. This speed v corresponds to π / 2 in white light phase increment. It is known that the peak point of the interference fringe intensity can be easily detected by changing the phase by π / 2.
 位相をπ/2ずつ変化させながら画像をサンプリングしたとき、5枚の画像を用いて干渉縞強度のコントラスト値Miを次式(6)を用いて算出する。 When the image is sampled while changing the phase by π / 2, the contrast value Mi of the interference fringe intensity is calculated using the following equation (6) using five images.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、fi(x,y)は画像fiの位置(x,y)の画素の値を示す。また、iは取得した順に画像に付けられた番号でありi=1,2,…,Nの値を取る。 Here, fi (x, y) indicates the value of the pixel at the position (x, y) of the image fi. I is a number assigned to an image in the order of acquisition, and takes a value of i = 1, 2,.
 図12(a)は画像番号iと画素値fi(x,y)の関係を示す図であり、図12(b)は画素番号iとコントラスト値Miの関係を示す図であり、図12(c)はZステージ8の位置と速度の関係を示す図である。図12(a)~(c)においてfi(x,y)とMiは画像pの近傍でピークを示している。このピーク点が画素(x,y)の焦点位置である。Miはピーク点を中心とする左右対称の山型傾向を示すので、実施の形態1と同様に2次関数あるいはガウス関数によりMiを示す曲線を近似することができる。 12A is a diagram showing the relationship between the image number i and the pixel value fi (x, y), and FIG. 12B is a diagram showing the relationship between the pixel number i and the contrast value Mi. c) is a diagram showing the relationship between the position of the Z stage 8 and the speed. 12 (a) to 12 (c), fi (x, y) and Mi show peaks in the vicinity of the image p. This peak point is the focal position of the pixel (x, y). Since Mi shows a symmetrical mountain-shaped tendency around the peak point, a curve representing Mi can be approximated by a quadratic function or a Gaussian function as in the first embodiment.
 Miの最大値が格納される画像をMmax(x,y)とし、最大値を示す画像の番号が格納される画像をI(x,y)とする。測定を開始する前に、Mmax(x,y)のすべての画素に0がセットされる。また、I(x,y)のすべての画素に-1がセットされる。測定中はMi(x,y)を算出するたびにMi(x,y)とMmax(x,y)を比較し、Mi(x,y)の方が大きければMmax(x,y)にMi(x,y)を、I(x,y)にiをセットする。探索範囲内のすべての画像取得が完了すると、I(x,y)には各画素のピーク点近傍の画像番号が格納されている。 Suppose that an image in which the maximum value of Mi is stored is Mmax (x, y), and an image in which the image number indicating the maximum value is stored is I (x, y). Before starting the measurement, all pixels of Mmax (x, y) are set to 0. Further, −1 is set to all the pixels of I (x, y). During measurement, every time Mi (x, y) is calculated, Mi (x, y) is compared with Mmax (x, y). If Mi (x, y) is larger, then Mi is set to Mmax (x, y). Set (x, y) to i (x, y). When acquisition of all images within the search range is completed, an image number in the vicinity of the peak point of each pixel is stored in I (x, y).
 最後に、ピーク点近傍の画像pを中心とする前後±n枚の合計(2n+1)枚の画像を用いて関数近似により正確なピーク点を求める。(2n+1)枚の画像の番号をjとおく。各画像の干渉縞の振幅値Mj(x,y)は測定中に求められているので、(2n+1)個の振幅値Mj(x,y)と画像番号jを用いてニュートン法などにより2次関数あるいはガウス関数で近似し、求めた関数からピーク位置を内挿する。また、関数近似以外に、ピーク周辺のコントラスト値を用いて重心位置を求め、求めた重心位置をピーク位置としてもよい。 Finally, an accurate peak point is obtained by function approximation using a total of (2n + 1) images of ± n sheets around the image p near the peak point. Let j be the number of (2n + 1) images. Since the interference fringe amplitude value Mj (x, y) of each image is obtained during the measurement, the second order is obtained by the Newton method or the like using (2n + 1) amplitude values Mj (x, y) and the image number j. Approximate with a function or Gaussian function, and interpolate peak position from the obtained function. Besides the function approximation, the center of gravity position may be obtained using the contrast value around the peak, and the obtained center of gravity position may be set as the peak position.
 ここで、内挿により求めたピーク位置をA、番号0の画像を撮影したときのZステージ座標をz0とおくと、ピーク位置Pの高さh(x,y)はh(x,y)=z0+A×(λ/8)となる。 Here, if the peak position obtained by interpolation is A and the Z stage coordinate when the image of number 0 is taken is z0, the height h (x, y) of the peak position P is h (x, y). = Z0 + A × (λ / 8).
 この実施の形態3でも、実施の形態1と同じ効果が得られる。 In the third embodiment, the same effect as in the first embodiment can be obtained.
 [実施の形態4]
 実施の形態4は、実施の形態3の高さ検出方法の検出精度を高める方法に関するものである。まず、実施の形態3の問題点について説明する。
[Embodiment 4]
The fourth embodiment relates to a method for increasing the detection accuracy of the height detection method of the third embodiment. First, problems of the third embodiment will be described.
 光源の波長をλとすると、干渉縞波形の強度値gλは次式(7)で表すことができる。 If the wavelength of the light source is λ, the intensity value g λ of the interference fringe waveform can be expressed by the following equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ここで、sはサンプリング位置、hはインク塗布部の高さ、αとγは白色光の振幅から決まる係数である。白色光は実際にはある帯域幅を持つため、中心波長をλとし、λ1≦λ≦λ2の波長の光が照射される。この帯域幅を持つ光の強度は、次式(8)で表わされる。 Here, s is the sampling position, h is the height of the ink application part, and α and γ are coefficients determined from the amplitude of white light. Since white light actually has a certain bandwidth, the center wavelength is λ, and light having a wavelength of λ1 ≦ λ ≦ λ2 is irradiated. The intensity of light having this bandwidth is expressed by the following equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ここで、gλは数式(7)で与えられる。Gは、波長λをλ1からλ2の間で変化させてgλを加算し、加算した回数Nで除算して平均化したものである。 Here, g λ is given by Equation (7). G is one in which the wavelength lambda is varied between from .lambda.1 .lambda.2 adds g lambda, and averaged by dividing by the number of times N obtained by adding.
 数式(7)において、s=hすなわち基板7からの反射光の光路長と参照鏡32からの参照光の光路長が同じとき、cos(2π(2s-2h)/λ)は最大となり、gλも最大値をとる。このことは任意の波長で同様であるから、gλと同様にGも最大値をとる。 In Expression (7), when s = h, that is, when the optical path length of the reflected light from the substrate 7 and the optical path length of the reference light from the reference mirror 32 are the same, cos (2π (2s−2h) / λ) is maximized and g λ also takes a maximum value. Since this is the same at any wavelength, like the g lambda G also takes the maximum value.
 図13は、サンプリング位置sと干渉縞強度Gの関係を示す図である。図13中の干渉縞強度Gは数式(8)を用いて計算したものである。●は、サンプリング点を示している。サンプリング点は、基板7とミラウ型干渉対物レンズ30との相対位置を調整するZステージ8を制御し、基板7と対物レンズ30の相対距離を位相増分でπ/2に相当するλ/8(nm)ずつ変化させながら画像を撮影したときの画像上の位置(x,y)の輝度値Gをプロットしたものである。なお、画像のサンプリングはナイキスト原理を満たしており、サンプリング点を用いて元信号を再現することができる。 FIG. 13 is a diagram showing the relationship between the sampling position s and the interference fringe intensity G. FIG. The interference fringe intensity G in FIG. 13 is calculated using Equation (8). ● indicates sampling points. The sampling point controls the Z stage 8 that adjusts the relative position between the substrate 7 and the Mirau interference objective lens 30, and the relative distance between the substrate 7 and the objective lens 30 is λ / 8 corresponding to π / 2 in phase increment. (nm) is a plot of the luminance value G at the position (x, y) on the image when the image is taken while being changed. Note that the sampling of the image satisfies the Nyquist principle, and the original signal can be reproduced using the sampling points.
 実施の形態3では、サンプリング点の輝度値から干渉縞波形のコントラスト値Miを求め、そのピーク位置を該当する画素の高さとしている。コントラスト値Miは、位相増分でπ/2ずつ変化させながら画像を撮影したとき、求めたい画像サンプルの前後2枚を含む合計5枚の画像を用いて数式(6)により算出される。 In Embodiment 3, the contrast value Mi of the interference fringe waveform is obtained from the luminance value of the sampling point, and the peak position is taken as the height of the corresponding pixel. The contrast value Mi is calculated by Equation (6) using a total of five images including two images before and after an image sample to be obtained when an image is taken while changing by π / 2 in phase increment.
 Miの平方根の1/2は干渉縞波形の包絡線に相当する。図13に包絡線を重ねると図14のようになる。実際の測定では、数式(7)のαやγが雑音の影響を受けて一定にはならないため、実際のサンプリング点は干渉縞波形に一致せず、最終的にはこの不一致がピーク点の位置ずれを生じる。 ½ of the square root of Mi corresponds to the envelope of the interference fringe waveform. When the envelope is superimposed on FIG. 13, the result is as shown in FIG. In actual measurement, α and γ in Equation (7) do not become constant due to the influence of noise, so the actual sampling point does not match the interference fringe waveform, and finally this mismatch is the position of the peak point. Deviation occurs.
 [位相を用いることのメリット]
 位相情報は、数式(7)のαやγの影響なしに求めることができる。ここでは説明を分かり易くするため、中心波長λの光について考える。干渉縞波形の位相2π(2s-2h)/λをδとすると、数式(7)はgλ=α(1+γcosδ)となる。ここで、オイラーの公式より、次式(9)が得られる。
[Advantages of using phase]
The phase information can be obtained without the influence of α and γ in Equation (7). Here, in order to make the explanation easy to understand, light having a center wavelength λ is considered. When the phase 2π (2s−2h) / λ of the interference fringe waveform is δ, Equation (7) becomes g λ = α (1 + γ cos δ). Here, the following equation (9) is obtained from Euler's formula.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ここで、数式(9)をフーリエ変換し、右辺の第2項のスペクトルだけをバンドパスフィルタにより抽出して逆フーリエ変換すると次式(10)が得られる。 Here, when Expression (9) is Fourier transformed, and only the spectrum of the second term on the right side is extracted by a band pass filter and inverse Fourier transformed, the following Expression (10) is obtained.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 数式(10)をオイラーの公式により三角関数で表すと次式(11)が得られる。 The following equation (11) is obtained when the equation (10) is expressed by a trigonometric function according to Euler's formula.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 ここで、位相δは、次式(12)で表わされ、αやγの影響を受けずに算出できることが分かる。 Here, it can be seen that the phase δ is expressed by the following equation (12) and can be calculated without being affected by α and γ.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 [ピーク点と位相との関係]
 ところで、反射光と参照光は再度合流するまでにそれぞれ異なる光路を経由するため、厳密には数式(7)において位相差を考慮する方が好ましい。この理由は、参照鏡32と基板7の表面の反射特性が異なるためである。この位相差をφとすると、次式(13)が得られる。
[Relationship between peak point and phase]
By the way, since the reflected light and the reference light pass through different optical paths before joining again, strictly speaking, it is preferable to consider the phase difference in Expression (7). This is because the reflection characteristics of the reference mirror 32 and the surface of the substrate 7 are different. When this phase difference is φ, the following equation (13) is obtained.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 ここで、位相差φの影響について検証する。図15は、高さh=0、位相差φ=0である場合におけるサンプリング位置sとコントラスト値Miおよび位相δとの関係を示す図である。図15の横軸はサンプリング位置sを示し、凸な曲線はMiを示し、のこぎり状の線分は位相δを示している。位相δはπから-πまでは線形に右下がりに変化し、-πからπに変化するところで不連続となる。この不連続部分は垂直線分で示している。また、図13と同様に、基板7とミラウ型干渉対物レンズ30との相対距離を位相増分でπ/2に相当するλ/8(nm)ずつ変化させながら画像を撮影している。 Here, the effect of the phase difference φ will be verified. FIG. 15 is a diagram showing the relationship between the sampling position s, the contrast value Mi, and the phase δ when the height h = 0 and the phase difference φ = 0. The horizontal axis in FIG. 15 indicates the sampling position s, the convex curve indicates Mi, and the saw-tooth line segment indicates the phase δ. The phase δ changes linearly downward from π to −π, and becomes discontinuous where it changes from −π to π. This discontinuous portion is indicated by a vertical line segment. Similarly to FIG. 13, an image is taken while changing the relative distance between the substrate 7 and the Mirau interference objective lens 30 by λ / 8 (nm) corresponding to π / 2 in phase increment.
 図15から分かるように、Miはs=0でピークを迎え、位相は0となる。すなわち、コントラスト値Miのピーク点および位相δの0点はs=0で一致している。 As can be seen from FIG. 15, Mi reaches a peak at s = 0, and the phase becomes zero. That is, the peak point of the contrast value Mi coincides with the zero point of the phase δ at s = 0.
 図16は、高さh=0、位相差φ=π/2である場合におけるサンプリング位置sとコントラスト値Miおよび位相δとの関係を示す図であって、図15と対比される図である。コントラスト値Miのピーク点は変化せずs=0のときにMiがピーク点となるが、位相δの0点は図15と比べて右に移動している。移動量は位相差φに等しく、λ/8である。λ/8は位相増分でπ/2に相当する。図16からコントラスト値Miのピークは位相差φの影響を受けないが、位相δの0点は位相差φの影響を受けることが分かる。 FIG. 16 is a diagram showing the relationship between the sampling position s, the contrast value Mi, and the phase δ when the height h = 0 and the phase difference φ = π / 2, and is compared with FIG. . The peak point of the contrast value Mi does not change and Mi is a peak point when s = 0, but the zero point of the phase δ has moved to the right as compared to FIG. The amount of movement is equal to the phase difference φ and is λ / 8. λ / 8 corresponds to π / 2 in phase increment. FIG. 16 shows that the peak of the contrast value Mi is not affected by the phase difference φ, but the zero point of the phase δ is affected by the phase difference φ.
 [ピーク点と位相の併用]
 コントラスト値Miのピークは雑音の影響で位置ずれが生じる可能性がある反面、前述したように位相差φの影響を受けずに対象物の高さを示すことができる。また、位相δは理論的には雑音の影響を最小限に止めることが可能であり、コントラスト値Miのピークと比較して高精度な検出が可能である。そこで、本発明では、コントラスト値Miのピークと位相δの双方を利用してインク塗布部の高さを検出することとした。
[Combination of peak point and phase]
Although the peak of the contrast value Mi may be displaced due to noise, it can indicate the height of the object without being affected by the phase difference φ as described above. Theoretically, the phase δ can minimize the influence of noise, and can be detected with higher accuracy than the peak of the contrast value Mi. Therefore, in the present invention, the height of the ink application part is detected using both the peak of the contrast value Mi and the phase δ.
 [位相飛びの発生]
 位相差φを予め求めておくことは難しいので、初期値としてコントラスト値Miのピークに最寄りの位相δの0点を該当する画素の高さとする。コントラスト値Miのピークを1次高さと呼び、コントラスト値Miのピークに最寄りの位相δの0点を2次高さと呼ぶものとする。
[Generation of phase jump]
Since it is difficult to obtain the phase difference φ in advance, the zero point of the phase δ closest to the peak of the contrast value Mi is set as the height of the corresponding pixel as an initial value. The peak of the contrast value Mi is called the primary height, and the zero point of the phase δ closest to the peak of the contrast value Mi is called the secondary height.
 図15および図16から分かるように、位相δの0点はピークの左右に1箇所ずつ存在する。2次高さを求めるためにピーク点に最寄りの0点を採用するが、雑音によりピーク位置がずれると0点の選択ミスを招く。この選択ミスが発生した場合、位相δが-π~πの値を取るために隣接画素間で2πの位相飛びが発生する。 As can be seen from FIG. 15 and FIG. 16, there is one zero point of the phase δ on the left and right sides of the peak. In order to obtain the secondary height, the nearest zero point is adopted as the peak point. However, if the peak position is shifted due to noise, a zero point selection error is caused. When this selection error occurs, a phase jump of 2π occurs between adjacent pixels because the phase δ takes a value of −π to π.
 図17は、画像上のある1ラインのピーク位置を示す図である。図17は、傾斜のある平面を測定した場合における水平方向の1ライン分のデータを示している。図17の横軸は画素位置を示し、縦軸は画像のサンプリング番号を示している。サンプリング番号が大きくなるにつれて高くなる。なお、サンプリング番号が1変化すると高さはλ/8変化する。 FIG. 17 is a diagram showing a peak position of a certain line on the image. FIG. 17 shows data for one line in the horizontal direction when an inclined plane is measured. In FIG. 17, the horizontal axis indicates the pixel position, and the vertical axis indicates the image sampling number. It increases as the sampling number increases. When the sampling number changes by 1, the height changes by λ / 8.
 また、図17で示したピーク位置に最寄りの位相δの0点を図18に示す。図18のDやEで位相飛びが発生している。また、図17と図18を比較すると、位相δの0点の方がばらつきが少ないことも分かる。 Also, FIG. 18 shows the zero point of the phase δ closest to the peak position shown in FIG. Phase jumps occur at D and E in FIG. Also, comparing FIG. 17 with FIG. 18, it can be seen that there is less variation at the zero point of the phase δ.
 [位相飛びの検出と修正]
 位相飛びが発生する要因はコントラスト値Miのピーク点の左右にある位相δの0点の選択ミスであるから、最終的に、どの画素においても左または右のいずれか一方を統一して選択するように修正すればよい。
[Detection and correction of phase jump]
Since the cause of the phase jump is a selection error of the zero point of the phase δ on the left and right of the peak point of the contrast value Mi, finally, either one of the left and right is selected uniformly in any pixel. It should be corrected as follows.
 そこで、後処理として、コントラスト値Miのピーク点と位相δの0点とのずれ量を求め、画像上のほぼすべての画素についてずれ量の符号が一致するような修正処理を実施し、位相飛びを修正する。なお、この処理により画素の高さが変化するが、本検査方法では高さの評価に相対高さを用いるため問題はない。 Therefore, as post-processing, the amount of deviation between the peak point of the contrast value Mi and the zero point of the phase δ is obtained, and correction processing is performed so that the sign of the amount of deviation coincides for almost all pixels on the image. To correct. Although this process changes the pixel height, there is no problem in this inspection method because the relative height is used for height evaluation.
 最初に、ピーク点と位相δの0点とのずれ量をΔとし、しきい値をTとし、しきい値の修正量をtとし、修正回数をMとする。画像上の位置(x,y)のコントラスト値MiのピークをJ(x,y)、位相の0点をK(x,y)とおくと、ずれ量Δ(x,y)は、Δ(x,y)=K(x,y)-J(x,y)となる。 First, the amount of deviation between the peak point and the zero point of the phase δ is Δ, the threshold is T, the threshold correction amount is t, and the number of corrections is M. If the peak of the contrast value Mi at the position (x, y) on the image is J (x, y) and the zero point of the phase is K (x, y), the deviation amount Δ (x, y) is Δ ( x, y) = K (x, y) −J (x, y).
 ここで、図17と同一箇所のΔ(x,y)を図19に示す。図19の横軸は画素位置を示し、縦軸はΔ(x,y)を示し、値1の変化がλ/8に相当する。次に、Δ(x,y)をしきい値Tと比較し、Δ(x,y)<Tである場合は、K(x,y)をK′(x,y)=K(x,y)+2πとする。また、Δ(x,y)>Tである場合はK′(x,y)=K(x,y)とする。 Here, Δ (x, y) at the same place as in FIG. 17 is shown in FIG. The horizontal axis in FIG. 19 indicates the pixel position, the vertical axis indicates Δ (x, y), and a change of value 1 corresponds to λ / 8. Next, Δ (x, y) is compared with the threshold value T. If Δ (x, y) <T, K (x, y) is set to K ′ (x, y) = K (x, x y) Set to + 2π. If Δ (x, y)> T, K ′ (x, y) = K (x, y).
 この後、すべての画素(x,y)の修正後のK′(x,y)を、(x,y)に隣接する少なくとも1画素以上と比較し、差分値の総和Sを求める。なお、差分値は隣接する画素のK′(x,y)との差分の絶対値とする。例えば、(x+1,y)との差分値は、|K′(x,y)-K′(x+1,y)|である。また、求めた総和値Sはしきい値Tと関連付けて保持しておく。次に、しきい値Tに修正量tを加算し、新たなしきい値Tを求める。再度、画像上のすべての画素(x,y)についてK′(x,y)を求め、総和値Sを求める。 Thereafter, K ′ (x, y) after correction of all the pixels (x, y) is compared with at least one pixel adjacent to (x, y) to obtain a sum S of difference values. The difference value is the absolute value of the difference from K ′ (x, y) of the adjacent pixel. For example, the difference value from (x + 1, y) is | K ′ (x, y) −K ′ (x + 1, y) |. Further, the obtained total value S is stored in association with the threshold value T. Next, the correction amount t is added to the threshold value T to obtain a new threshold value T. Again, K ′ (x, y) is obtained for all pixels (x, y) on the image, and the total value S is obtained.
 以上の処理をM回繰り返し、最後に、求めた総和値Sの最小値を求め、最小値を示したときのしきい値Tを用いて再度K′(x,y)を求め、求めたK′(x,y)を各画素の3次高さとする。 The above processing is repeated M times. Finally, the minimum value of the obtained total value S is obtained, and K ′ (x, y) is obtained again using the threshold value T when the minimum value is indicated, and the obtained K Let ′ (x, y) be the tertiary height of each pixel.
 図19の最終的なK′(x,y)を図21に示す。また、このときのΔ(x,y)を図20に示す。図21ではしきい値Tは-4から始め、修正量tを0.1として合計80回の修正を行なった。しきい値Tは4まで変化する。図21から位相飛びが修正されていることが分かる。 FIG. 21 shows the final K ′ (x, y) in FIG. Further, Δ (x, y) at this time is shown in FIG. In FIG. 21, the threshold value T is started from −4, and the correction amount t is set to 0.1, and the correction is performed 80 times in total. The threshold T varies up to 4. FIG. 21 shows that the phase jump is corrected.
 [検出方法の切り替え]
 1回当たりのインク塗布量はインクの粘度によって異なる。高粘度のインクは表面張力が大きいため、低粘度のインクと比較すると厚膜となる。なお、インクの性質に関しては、予め行なうサンプル試験で事前に明らかとなっている場合が多い。
[Switch detection method]
The amount of ink applied per time varies depending on the viscosity of the ink. High-viscosity ink has a large surface tension, so it becomes thicker than low-viscosity ink. In many cases, the properties of the ink are clarified in advance by a sample test.
 また、インク塗布量の判定基準は塗布対象とするパターンによって異なり、フラットパネルディスプレイや半導体のような薄膜の場合はサブミクロン以下であるが、プリント基板の電極など膜厚が必要な場合はミクロン単位である。 In addition, the criteria for determining the amount of ink applied varies depending on the pattern to be applied. For thin films such as flat panel displays and semiconductors, the submicron level is required. It is.
 このように塗布するインクや、塗布対象のパターンに応じて必要検出精度も異なってくることから、本検出方法では、塗布するインクに応じて使用する高さ情報を切り替えられるようにした。 Since the required detection accuracy varies depending on the ink to be applied and the pattern to be applied, the height information to be used can be switched according to the ink to be applied.
 塗布するインクは、たとえば図2に示すインク塗布機構5を用いた場合、塗布針毎に変更することができる。そこで、図22に示す「針-検査項目対応表」に「高さ種別」の選択欄を設け、該当する針で塗布したときに使用する高さ種別を登録する。例えば、塗布針Aで塗布したときは3次高さを使用し、塗布針Bで塗布したときは1次高さを使用する。 The ink to be applied can be changed for each application needle when, for example, the ink application mechanism 5 shown in FIG. 2 is used. Therefore, a selection column of “height type” is provided in the “needle-inspection item correspondence table” shown in FIG. 22, and the height type used when applying with the corresponding needle is registered. For example, when applied with the application needle A, the tertiary height is used, and when applied with the application needle B, the primary height is used.
 また、インク毎に膜厚も異なるため、塗布針毎にスキャン範囲を設定できるようにした。これにより、インクに適したタクトタイムを設定でき、検査時間の効率化も可能である。 Also, since the film thickness is different for each ink, the scan range can be set for each application needle. As a result, a tact time suitable for ink can be set, and the inspection time can be made more efficient.
 この実施の形態4では、実施の形態3よりも高い精度でインク塗布部の高さを検出することができる。 In the fourth embodiment, the height of the ink application part can be detected with higher accuracy than in the third embodiment.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明でなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 欠陥修正装置、2 観察光学系、2a 観察鏡筒、3 CCDカメラ、4 カット用レーザ装置、5 インク塗布機構、6 インク硬化用光源、7 液晶カラーフィルタ基板、8 Zステージ、9 Xステージ、10 Yステージ、11 制御用コンピュータ、12 モニタ、13 操作パネル、15 可動板、16 対物レンズ、17 塗布ユニット、18 塗布針、19 インクタンク、20 静電インクジェット装置、21 インクジェットノズル、22 パルス電圧発生装置、23 制御装置、24 修正インク、24a テーラーコーン、24b ジェット流、24c 液滴、30 ミラウ型干渉対物レンズ、31 レンズ、32 参照鏡、33 ビームスプリッタ、34 落斜光源、35 フィルタ切換装置、36 フィルタ、37 ハーフミラー、38 結像レンズ、51 ブラックマトリクス、52 R画素、53 G画素、54 B画素、55 白欠陥、56 黒欠陥、57 異物欠陥。 1 defect correction device, 2 observation optical system, 2a observation barrel, 3 CCD camera, 4 cutting laser device, 5 ink application mechanism, 6 ink curing light source, 7 liquid crystal color filter substrate, 8 Z stage, 9 X stage, 10 Y stage, 11 control computer, 12 monitor, 13 operation panel, 15 movable plate, 16 objective lens, 17 coating unit, 18 coating needle, 19 ink tank, 20 electrostatic inkjet device, 21 inkjet nozzle, 22 pulse voltage generation Device, 23 control device, 24 correction ink, 24a tailor cone, 24b jet flow, 24c droplet, 30 Mirau interference objective lens, 31 lens, 32 reference mirror, 33 beam splitter, 34 falling light source, 35 filter switching device, 36 Motor, 37 a half mirror, 38 an imaging lens, 51 a black matrix, 52 R pixel, 53 G pixel, 54 B pixel, 55 white defect, 56 black defect, 57 defective foreign matter.

Claims (14)

  1.  基板の表面に液状材料を塗布する塗布装置であって、
     対物レンズを介して前記基板の表面を観察する観察光学系と、前記観察光学系を介して前記基板の表面の画像を撮像する撮像装置と、前記基板の表面に前記液状材料を塗布する塗布機構とを含むヘッド部と、
     前記ヘッド部と前記基板とを相対移動させて前記ヘッド部を前記基板の表面の上方の所望の位置に位置決めする位置決め装置と、
     前記位置決め装置および前記撮像装置を制御し、前記基板の表面に塗布された前記液状材料からなる塗布部の上方に前記対物レンズを位置決めした後、前記塗布部と前記対物レンズとを上下方向に相対移動させながら画像を撮像し、撮像した画像を構成する複数の画素の各々について焦点位置を求め、求めた焦点位置に基づいて前記塗布部の高さを求める高さ検出部とを備える、塗布装置。
    An application device for applying a liquid material to the surface of a substrate,
    An observation optical system for observing the surface of the substrate via an objective lens, an imaging device for capturing an image of the surface of the substrate via the observation optical system, and an application mechanism for applying the liquid material to the surface of the substrate A head portion including
    A positioning device that relatively moves the head portion and the substrate to position the head portion at a desired position above the surface of the substrate;
    After controlling the positioning device and the imaging device and positioning the objective lens above the application portion made of the liquid material applied to the surface of the substrate, the application portion and the objective lens are relatively moved in the vertical direction. A coating apparatus comprising: a height detection unit that captures an image while moving, obtains a focal position for each of a plurality of pixels constituting the captured image, and obtains the height of the application unit based on the obtained focal position .
  2.  前記撮像装置は前記塗布部の画像を撮像し、
     前記位置決め装置は、前記ヘッド部を搭載して前記基板の表面の垂直方向に移動するZステージを含み、
     前記高さ検出部は、各画素の輝度のコントラスト値が最大となるときの前記Zステージの位置を当該画素の焦点位置とする、請求項1に記載の塗布装置。
    The imaging device captures an image of the application unit,
    The positioning device includes a Z stage that mounts the head portion and moves in a direction perpendicular to the surface of the substrate,
    The coating apparatus according to claim 1, wherein the height detection unit sets a position of the Z stage when a luminance contrast value of each pixel is maximized as a focal position of the pixel.
  3.  前記対物レンズは二光束干渉対物レンズであり、
     前記撮像装置は干渉縞の画像を撮像し、
     前記位置決め装置は、前記ヘッド部を搭載して前記基板の表面の垂直方向に移動するZステージを含み、
     前記高さ検出部は、各画素の干渉縞強度のコントラスト値が最大となるときの前記Zステージの位置を当該画素の焦点位置とする、請求項1に記載の塗布装置。
    The objective lens is a two-beam interference objective lens;
    The imaging device captures an image of interference fringes,
    The positioning device includes a Z stage that mounts the head portion and moves in a direction perpendicular to the surface of the substrate,
    The coating apparatus according to claim 1, wherein the height detection unit sets the position of the Z stage when the contrast value of the interference fringe intensity of each pixel is maximized as a focal position of the pixel.
  4.  前記高さ検出部は、撮像した画像を予め定められた周期でサンプリングし、サンプリングした画像の各画素の焦点位置を求める、請求項3に記載の塗布装置。 The coating apparatus according to claim 3, wherein the height detection unit samples a captured image at a predetermined cycle and obtains a focal position of each pixel of the sampled image.
  5.  前記予め定められた周期はナイキスト周期を満たす周期である、請求項4に記載の塗布装置。 The coating apparatus according to claim 4, wherein the predetermined period is a period that satisfies a Nyquist period.
  6.  前記高さ検出部は、サンプリングした画像の各画素毎に、干渉縞強度のコントラスト値を計算し、計算値がピークとなる画像のサンプリング位置を1次高さとし、さらに干渉縞強度から位相を求め、前記1次高さに最寄りの0点を対応する画素の2次高さとし、さらに各画素毎に前記1次高さと前記2次高さを比較して位相飛びの発生を検出し、位相飛びが検出された場合は前記2次高さを修正し、位相飛びが修正された3次高さを測定結果とする、請求項4に記載の塗布装置。 The height detector calculates the contrast value of the interference fringe intensity for each pixel of the sampled image, sets the sampling position of the image where the calculated value reaches a peak as the primary height, and further obtains the phase from the interference fringe intensity. Then, the nearest zero point to the primary height is set as the secondary height of the corresponding pixel, and the occurrence of phase jump is detected for each pixel by comparing the primary height and the secondary height. The coating apparatus according to claim 4, wherein the secondary height is corrected when the detection is detected, and the tertiary height with the phase jump corrected is used as a measurement result.
  7.  前記高さ検出部は、
     前記3次高さを求める際、しきい値を設け、画像上のすべての画素に関し、各画素の前記2次高さから前記1次高さを減算した値と前記しきい値とを比較し、減算結果が前記しきい値を下回っているとき現在の2次高さに対して位相が2πだけ増加したサンプリング位置を修正後の2次高さとし、修正後の2次高さについて、各画素毎に、隣接画素との差分値を計算して画像上のすべての画素の差分値の総和を求め、
     この処理を、予め定められた修正量ずつ合計M回前記しきい値を修正しながらしきい値毎に差分値の総和を保持し、修正後の2次高さのうちの総和が最小となるしきい値で修正された2次高さを前記3次高さとする、請求項6に記載の塗布装置。
    The height detector is
    When determining the tertiary height, a threshold value is provided, and for all pixels on the image, the value obtained by subtracting the primary height from the secondary height of each pixel is compared with the threshold value. When the subtraction result is less than the threshold value, the sampling position whose phase has increased by 2π with respect to the current secondary height is taken as the corrected secondary height, and each pixel for the corrected secondary height Every time, the difference value between adjacent pixels is calculated to obtain the sum of the difference values of all the pixels on the image,
    In this process, the sum of the difference values is held for each threshold value while correcting the threshold value a total of M times in a predetermined correction amount, and the sum of the corrected secondary heights is minimized. The coating apparatus according to claim 6, wherein a secondary height corrected by a threshold value is set as the tertiary height.
  8.  前記高さ検出部は、前記液状材料の塗布条件に応じて前記1次高さおよび前記3次高さのうちのいずれかを選択して測定する、請求項6に記載の塗布装置。 The coating apparatus according to claim 6, wherein the height detection unit selects and measures either the primary height or the tertiary height according to the coating condition of the liquid material.
  9.  さらに、前記高さ検出部によって検出された前記塗布部の高さに基づいて前記塗布部が正常か否かを判定する検査部を備える、請求項1に記載の塗布装置。 The coating apparatus according to claim 1, further comprising an inspection unit that determines whether the coating unit is normal based on a height of the coating unit detected by the height detection unit.
  10.  前記検査部は、前記高さ検出部によって検出された前記塗布部の高さから前記基板の表面のうちの前記液状材料が塗布されていない基準部の高さを減算して前記塗布部の相対高さを求め、その相対高さに基づいて前記塗布部が正常か否かを判定する、請求項9に記載の塗布装置。 The inspection unit subtracts the height of the reference portion on the surface of the substrate on which the liquid material is not applied from the height of the application unit detected by the height detection unit. The coating apparatus according to claim 9, wherein a height is obtained, and whether or not the coating unit is normal is determined based on the relative height.
  11.  前記検査部は、前記塗布部の画像を構成する前記複数の画素の相対高さの合計値、最大値、最小値、平均値、分散値のうちの少なくとも1つに基づいて前記塗布部が正常か否かを判定する、請求項10に記載の塗布装置。 The inspection unit is normal based on at least one of a total value, a maximum value, a minimum value, an average value, and a dispersion value of the relative heights of the plurality of pixels constituting the image of the application unit. The coating apparatus of Claim 10 which determines whether it is.
  12.  前記塗布機構は、塗布針の先端部に付着した前記液状材料を前記基板の表面に塗布する、請求項1に記載の塗布装置。 The coating apparatus according to claim 1, wherein the coating mechanism applies the liquid material adhering to a tip portion of a coating needle to the surface of the substrate.
  13.  前記塗布機構は、静電インクジェット方式で前記液状材料を前記基板の表面に塗布する、請求項1に記載の塗布装置。 The coating apparatus according to claim 1, wherein the coating mechanism applies the liquid material to a surface of the substrate by an electrostatic ink jet method.
  14.  対物レンズを介して前記基板の表面を観察するための観察光学系と、前記観察光学系を介して前記基板の表面の画像を撮像する撮像装置と、前記基板の表面に前記液状材料を塗布する塗布機構とを含むヘッド部と、前記ヘッド部と前記基板とを相対移動させて前記ヘッド部を前記基板の表面の上方の所望の位置に位置決めする位置決め装置とを備えた塗布装置において、前記基板の表面に塗布された前記液状材料からなる塗布部の高さを検出する高さ検出方法であって、
     前記位置決め装置および前記撮像装置を制御し、前記塗布部の上方に前記対物レンズを位置決めした後、前記塗布部と前記対物レンズとを上下方向に相対移動させながら画像を撮像し、撮像した画像を構成する複数の画素の各々について焦点位置を求め、求めた焦点位置に基づいて前記塗布部の高さを求める、高さ検出方法。
    An observation optical system for observing the surface of the substrate via an objective lens, an imaging device for capturing an image of the surface of the substrate via the observation optical system, and applying the liquid material to the surface of the substrate A coating apparatus comprising: a head unit including a coating mechanism; and a positioning device that relatively moves the head unit and the substrate to position the head unit at a desired position above the surface of the substrate. A height detection method for detecting the height of the application part made of the liquid material applied to the surface of
    After the positioning device and the imaging device are controlled and the objective lens is positioned above the application unit, an image is captured while the application unit and the objective lens are relatively moved in the vertical direction. A height detection method for obtaining a focal position for each of a plurality of constituent pixels and obtaining a height of the application unit based on the obtained focal position.
PCT/JP2014/065711 2013-06-25 2014-06-13 Applicator device and height detection method WO2014208362A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480030007.6A CN105247318B (en) 2013-06-25 2014-06-13 Apparatus for coating and height detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-132506 2013-06-25
JP2013132506A JP6189102B2 (en) 2013-06-25 2013-06-25 Coating apparatus and height detection method

Publications (1)

Publication Number Publication Date
WO2014208362A1 true WO2014208362A1 (en) 2014-12-31

Family

ID=52141706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065711 WO2014208362A1 (en) 2013-06-25 2014-06-13 Applicator device and height detection method

Country Status (3)

Country Link
JP (1) JP6189102B2 (en)
CN (1) CN105247318B (en)
WO (1) WO2014208362A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021359A1 (en) * 2014-08-07 2016-02-11 Ntn株式会社 Shape measurement device, coating apparatus, and shape measurement method
JP2016143859A (en) * 2015-02-05 2016-08-08 Ntn株式会社 Pattern correction device and pattern correction method
CN108603751A (en) * 2016-02-08 2018-09-28 Ntn株式会社 The manufacturing method of form measuring instrument and target object to be coated
CN109641229A (en) * 2016-08-29 2019-04-16 Ntn株式会社 Coating equipment and coating method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204062A1 (en) * 2015-06-18 2016-12-22 Ntn株式会社 Shape measurement device and coating device equipped with same
JP6665028B2 (en) * 2015-06-18 2020-03-13 Ntn株式会社 Shape measuring device and coating device equipped with the same
EP3376156B1 (en) * 2015-11-12 2022-03-02 NTN Corporation Height detection apparatus and coating apparatus equipped with the same
JP6749814B2 (en) * 2015-11-12 2020-09-02 Ntn株式会社 Height detection device and coating device equipped with the same
WO2017122633A1 (en) * 2016-01-13 2017-07-20 Ntn株式会社 Method for measuring volume of minute protrusion, and method of applying liquid material
JP6737693B2 (en) * 2016-01-13 2020-08-12 Ntn株式会社 Method for measuring volume of minute projections and method for applying liquid material
JP6822864B2 (en) * 2017-01-31 2021-01-27 アルファーデザイン株式会社 Information processing equipment, information processing methods, programs,
JP6883436B2 (en) * 2017-01-31 2021-06-09 アルファーデザイン株式会社 Coating device, coating method, program
CN106918954A (en) * 2017-05-10 2017-07-04 京东方科技集团股份有限公司 A kind of orientation membrane preparation method, display base plate and display panel
CN107367850B (en) * 2017-05-31 2020-08-21 京东方科技集团股份有限公司 Detection device, detection method, liquid crystal dripping equipment and liquid crystal dripping method
JP6461260B1 (en) * 2017-08-02 2019-01-30 Ntn株式会社 Coating mechanism and coating device
CN108871206B (en) * 2018-08-23 2021-06-22 业成科技(成都)有限公司 Surface measuring method and surface measuring device
JP6799046B2 (en) * 2018-11-15 2020-12-09 Ntn株式会社 Coating method and coating equipment
CN109884811A (en) * 2019-03-21 2019-06-14 深圳市华星光电技术有限公司 Defects of display panel height detection method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363507A (en) * 1989-08-02 1991-03-19 Hitachi Ltd Solid shape detecting method
JP2004020202A (en) * 2002-06-12 2004-01-22 Takano Co Ltd Method and apparatus for measuring dimension of infinitesimal shape section
JP2006084297A (en) * 2004-09-15 2006-03-30 Sharp Corp Surface shape measuring method, program, recording medium, and surface shape measuring device
JP2006136836A (en) * 2004-11-15 2006-06-01 Hitachi Industries Co Ltd Droplet application apparatus
JP2007033217A (en) * 2005-07-26 2007-02-08 Keyence Corp Interference measuring instrument, and interference measuring method
JP2009122259A (en) * 2007-11-13 2009-06-04 Ntn Corp Liquid material applicator and defect correcting apparatus using the same
JP2009178627A (en) * 2008-01-29 2009-08-13 Seiko Epson Corp Thin film forming method and color filter manufacturing method
JP2010112865A (en) * 2008-11-07 2010-05-20 Ryoka Systems Inc White interference measuring device and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201050978Y (en) * 2007-06-15 2008-04-23 西安普瑞光学仪器有限公司 Precise distribution device for surface shape of white light interferometry sample
CN101435698B (en) * 2008-12-17 2010-08-25 天津大学 Method and system for measuring surface appearance of micro-device under transparent encapsulation medium
JP5607392B2 (en) * 2010-03-12 2014-10-15 株式会社ミツトヨ Optical interference measurement device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363507A (en) * 1989-08-02 1991-03-19 Hitachi Ltd Solid shape detecting method
JP2004020202A (en) * 2002-06-12 2004-01-22 Takano Co Ltd Method and apparatus for measuring dimension of infinitesimal shape section
JP2006084297A (en) * 2004-09-15 2006-03-30 Sharp Corp Surface shape measuring method, program, recording medium, and surface shape measuring device
JP2006136836A (en) * 2004-11-15 2006-06-01 Hitachi Industries Co Ltd Droplet application apparatus
JP2007033217A (en) * 2005-07-26 2007-02-08 Keyence Corp Interference measuring instrument, and interference measuring method
JP2009122259A (en) * 2007-11-13 2009-06-04 Ntn Corp Liquid material applicator and defect correcting apparatus using the same
JP2009178627A (en) * 2008-01-29 2009-08-13 Seiko Epson Corp Thin film forming method and color filter manufacturing method
JP2010112865A (en) * 2008-11-07 2010-05-20 Ryoka Systems Inc White interference measuring device and method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PETER LEHMANN: "Systematic effects in coherence peak and phase evaluation of signals obtained with a vertical scanning white-light Mirau interferometer", PROC. SPIE, OPTICAL MICRO- AND NANOMETROLOGY IN MICROSYSTEMS TECHNOLOGY, vol. 6188, 28 April 2006 (2006-04-28), pages 618811-1 - 618811-11 *
S. K. DEBNATH ET AL.: "Optical profiler based on spectrally resolved white light interferometry", OPTICAL ENGINEERING, vol. 44, no. 1, 23 December 2004 (2004-12-23), pages 013606-1 - 013606-5 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021359A1 (en) * 2014-08-07 2016-02-11 Ntn株式会社 Shape measurement device, coating apparatus, and shape measurement method
JP2016143859A (en) * 2015-02-05 2016-08-08 Ntn株式会社 Pattern correction device and pattern correction method
WO2016125521A1 (en) * 2015-02-05 2016-08-11 Ntn株式会社 Pattern correcting device and pattern correcting method
CN108603751A (en) * 2016-02-08 2018-09-28 Ntn株式会社 The manufacturing method of form measuring instrument and target object to be coated
EP3415864A4 (en) * 2016-02-08 2019-09-25 NTN Corporation Shape measuring device and method of manufacturing object to be coated
US10704898B2 (en) 2016-02-08 2020-07-07 Ntn Corporation Shape measuring apparatus and method for manufacturing target object to be coated
CN109641229A (en) * 2016-08-29 2019-04-16 Ntn株式会社 Coating equipment and coating method
CN109641229B (en) * 2016-08-29 2022-05-10 Ntn株式会社 Coating apparatus and coating method

Also Published As

Publication number Publication date
JP2015007564A (en) 2015-01-15
JP6189102B2 (en) 2017-08-30
CN105247318A (en) 2016-01-13
CN105247318B (en) 2018-10-12

Similar Documents

Publication Publication Date Title
JP6189102B2 (en) Coating apparatus and height detection method
JP6522344B2 (en) Height detection device, coating device and height detection method
US10026162B2 (en) Method and device for sealant coating inspection
KR101849962B1 (en) Overlay measurement method, device and display device
EP3415864B1 (en) Shape measuring apparatus and method of manufacturing target object to be coated
JP2005189069A (en) Method and apparatus for measuring surface shape
WO2010089959A1 (en) Method and apparatus for inspecting semiconductor using absorbed current image
US11181362B2 (en) Method of measuring volume of micro projection and method of applying liquid material
CN107709923B (en) Shape measuring device and coating device equipped with shape measuring device
JP6415948B2 (en) Shape measuring device
US20140007810A1 (en) Liquid-discharging device with observation optical system
JP2019219357A (en) Imaging apparatus, imaging method, and imaging program
EP3564619B1 (en) Application apparatus and method of measuring film thickness
WO2016125521A1 (en) Pattern correcting device and pattern correcting method
JP2012233782A (en) Shape recognition method, shape recognition apparatus and mounting board manufacturing system
WO2016204062A1 (en) Shape measurement device and coating device equipped with same
KR102664402B1 (en) Correction pattern gaining apparatus for correction of noise by optical element included in display and method of gaining noise using the same
JP2006153509A (en) Surface shape measuring instrument, surface shape measuring method, surface shape measuring program, and recording medium
EP3376156B1 (en) Height detection apparatus and coating apparatus equipped with the same
JP2005221458A (en) Method and device for inspecting film thickness distribution
JP2018054373A (en) Inspection device, inspection method, inspection program, and method of manufacturing object
JP2011163805A (en) Light source set value adjustment method, inspection method, and inspection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818038

Country of ref document: EP

Kind code of ref document: A1