JP6415948B2 - Shape measuring device - Google Patents

Shape measuring device Download PDF

Info

Publication number
JP6415948B2
JP6415948B2 JP2014240989A JP2014240989A JP6415948B2 JP 6415948 B2 JP6415948 B2 JP 6415948B2 JP 2014240989 A JP2014240989 A JP 2014240989A JP 2014240989 A JP2014240989 A JP 2014240989A JP 6415948 B2 JP6415948 B2 JP 6415948B2
Authority
JP
Japan
Prior art keywords
imaging
light
shape
lens
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014240989A
Other languages
Japanese (ja)
Other versions
JP2016102713A (en
Inventor
博明 大庭
博明 大庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2014240989A priority Critical patent/JP6415948B2/en
Publication of JP2016102713A publication Critical patent/JP2016102713A/en
Application granted granted Critical
Publication of JP6415948B2 publication Critical patent/JP6415948B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

この発明は、形状等測定装置に関し、例えば、金属や樹脂およびそれらの加工品の表面、半導体や電子回路、フラットディスプレイなどの基板表面の形状を測定でき、これら表面の検査を行う技術に関する。   The present invention relates to a shape and the like measuring device, and relates to a technique for measuring the surface of a metal or resin and the surface of a processed product thereof, the surface of a substrate such as a semiconductor, an electronic circuit, or a flat display, and inspecting these surfaces.

先端径が数十μmの塗布針や、スポット径が数μm〜十μmのレーザ光を用いたパターン加工技術は、マイクロメートルオーダーの精密位置決め技術と組み合わせることにより、微細なパターンでも所定の位置を正確に加工することができる。このため、従来より、フラットパネルディスプレイの修正作業や、太陽電池のスクライブ作業などに、前記パターン加工技術が利用されてきた(例えば、特許文献1〜3参照)。   Pattern processing technology using an application needle with a tip diameter of several tens of μm and laser light with a spot diameter of several μm to 10 μm can be used in combination with precision positioning technology on the order of micrometers, so that a predetermined position can be obtained even in a fine pattern. It can be processed accurately. For this reason, the said pattern processing technique has conventionally been utilized for the correction | amendment operation | work of a flat panel display, the scribe operation | work of a solar cell, etc. (for example, refer patent documents 1-3).

特に、塗布針を用いる加工技術は、ディスペンサが不得意とする粘度の高いペーストも塗布できることから、最近では、フラットパネルディスプレイと比較して厚い10μm以上の膜の形成にも利用されている。例えば、MEMSやセンサなど半導体デバイスの電子回路パターンやプリント基板配線の形成に用いられる。また、将来的に有望な製造技術であるプリンテッドエレクトロニクス技術で作製されるパターンも厚膜に分類され、今後の用途拡大が期待される加工技術である。   In particular, the processing technique using an application needle can also apply a paste having a high viscosity, which is not good for a dispenser, and has recently been used to form a film having a thickness of 10 μm or more as compared with a flat panel display. For example, it is used for forming electronic circuit patterns and printed circuit board wiring of semiconductor devices such as MEMS and sensors. Patterns produced by printed electronics technology, which is a promising manufacturing technology in the future, are also classified as thick films, and are expected to be used in the future.

以上のような微細加工では、加工後に、正常に加工されたか否かを判定することは重要であり、例えば、液晶パネルを構成するカラーフィルタ基板の修正において、修正後に加工部の品位を検査する手法が特許文献2で提案されている。   In the fine processing as described above, it is important to determine whether or not the processing is normally performed after the processing. For example, in the correction of the color filter substrate constituting the liquid crystal panel, the quality of the processed portion is inspected after the correction. A technique is proposed in Patent Document 2.

特開2009−122259号公報JP 2009-122259 A 特開2009−237086号公報JP 2009-237086 A 特開2012−6077号公報JP 2012-6077 A

特許文献2では、修正処理前後における欠陥を含む領域の画像を撮像し、修正処理前後の画像の明るさを比較し、比較結果に基づいて修正処理の異常を検出している。
しかしながら、例えば、カラーフィルタ基板では、修正箇所にインクを盛り過ぎると突起欠陥となり、TFT基板との貼り合わせができない。また、プリント基板配線においては、配線パターンの欠損部にインクを塗布して修正する場合、塗布量が不十分であると抵抗値が大きくなり基板が正常に動作しないことがある。
In Patent Document 2, images of regions including defects before and after the correction process are captured, the brightness of the images before and after the correction process are compared, and abnormality in the correction process is detected based on the comparison result.
However, for example, in the case of a color filter substrate, if ink is excessively applied to the correction portion, a protrusion defect is formed, and bonding to the TFT substrate is impossible. In addition, in the printed circuit board wiring, when the ink is applied to the defective portion of the wiring pattern to correct it, if the coating amount is insufficient, the resistance value increases and the board may not operate normally.

形状測定に関しては、非接触測定が可能で、比較的単純な構成の白色干渉計を用いる手法がある。白色干渉計は、検査装置の顕微鏡筒を利用することが可能であり、装置に付加することは容易である。また、レーザなどの特別な照明装置を用いる必要はなく、顕微鏡で一般的に用いられている白色光源を用いることができ、低価格な形状測定機能を提供することができる。   As for shape measurement, there is a method using a white interferometer having a relatively simple configuration that can perform non-contact measurement. The white interferometer can use a microscope tube of an inspection apparatus and can be easily added to the apparatus. In addition, it is not necessary to use a special illumination device such as a laser, a white light source generally used in a microscope can be used, and an inexpensive shape measurement function can be provided.

しかしながら、対象物に焦点を合わせると干渉縞が障害となり、撮影した画像を用いた外観検査は難しい。また、外観検査用の顕微鏡筒を追加すると、装置の価格はアップしてしまう。   However, when focusing on an object, interference fringes become an obstacle, and appearance inspection using a photographed image is difficult. Moreover, if a microscope tube for visual inspection is added, the price of the apparatus increases.

この発明の目的は、従来技術よりも装置のコスト低減を図りながら、対象物の形状および表面を測定または検査することができる形状等測定装置を提供することである。   An object of the present invention is to provide a measuring apparatus for shape and the like that can measure or inspect the shape and surface of an object while reducing the cost of the apparatus as compared with the prior art.

この発明の形状等測定装置は、対象物の形状および表面を測定または検査する形状等測定装置であって、
広帯域光を出力する照明装置と、
この照明装置から出力された前記広帯域光を前記対象物の表面に照射し、この対象物の表面からの反射光を分岐させて二つの光路に導く光学系と、
この光学系で分岐させた反射光をそれぞれ撮像する二つの撮像装置と、
を備え、
前記光学系は、前記二つの撮像装置の各撮像面にそれぞれ反射光を結像させる結像レンズを有し、
前記二つの撮像装置における一方の撮像装置の撮像面を、前記一方の撮像装置に対応する結像レンズの焦点位置に配置し、他方の撮像装置の撮像面を、前記他方の撮像装置に対応する結像レンズの焦点位置に対し、光軸方向にずらして配置したことを特徴とする。
The shape measuring device of the present invention is a shape measuring device for measuring or inspecting the shape and surface of an object,
A lighting device that outputs broadband light;
An optical system that irradiates the surface of the object with the broadband light output from the illuminating device, branches the reflected light from the surface of the object, and guides it to two optical paths;
Two imaging devices for imaging the reflected light branched by the optical system,
With
The optical system includes an imaging lens that forms an image of reflected light on each imaging surface of the two imaging devices,
The imaging surface of one imaging device in the two imaging devices is arranged at the focal position of the imaging lens corresponding to the one imaging device, and the imaging surface of the other imaging device corresponds to the other imaging device. It is characterized by being shifted in the optical axis direction with respect to the focal position of the imaging lens.

前記光学系は、前記照明装置と前記対象物との光路途中に介在された干渉対物レンズを有し、この干渉対物レンズは、前記照明装置から出射された前記広帯域光を二光束に分離して一方の光束を前記対象物の表面に照射すると共に、他方の光束を定められた参照面に照射し、これら対象物の表面および参照面からの反射光を干渉させる干渉光とするレンズであり、前記一方の撮像装置の撮像面に、前記干渉対物レンズからの干渉光を結像させ、前記他方の撮像装置の撮像面に反射光を結像させるものとしても良い。   The optical system has an interference objective lens interposed in the middle of the optical path between the illumination device and the object, and the interference objective lens separates the broadband light emitted from the illumination device into two light beams. A lens that irradiates the surface of the object with one light beam and irradiates the other light beam onto a predetermined reference surface to interfere with reflected light from the surface of the object and the reference surface, The interference light from the interference objective lens may be imaged on the imaging surface of the one imaging device, and the reflected light may be imaged on the imaging surface of the other imaging device.

この場合、干渉対物レンズの焦点が対象物の表面に合っているとき、干渉光を観察し得る。したがって、結像レンズの焦点位置に配置した一方の撮像装置の撮像面では、干渉対物レンズと対象物との距離が前記干渉対物レンズの作動距離に等しいとき、干渉光を観察することができる。他方の撮像装置の撮像面では、結像レンズの焦点位置から光軸方向にずれているため、干渉対物レンズの作動距離は短くなっており、合焦画像が撮像される位置で干渉光を観察することはない。以上のことから、複数の光学系を用いることなく一つの光学系のみで、干渉光を利用した対象物の形状測定と、反射光を利用した対象物の表面検査を行うことができる。   In this case, the interference light can be observed when the interference objective lens is focused on the surface of the object. Therefore, on the imaging surface of one imaging device arranged at the focal position of the imaging lens, the interference light can be observed when the distance between the interference objective lens and the object is equal to the working distance of the interference objective lens. On the imaging surface of the other imaging device, the working distance of the interference objective lens is shortened because it is displaced in the optical axis direction from the focal position of the imaging lens, and the interference light is observed at the position where the focused image is captured. Never do. From the above, it is possible to measure the shape of an object using interference light and perform surface inspection of the object using reflected light with only one optical system without using a plurality of optical systems.

したがって、対象物の形状および表面を測定または検査するに際し、例えば、外観検査用の顕微鏡筒を追加する必要のある従来技術よりもコスト低減を図ることができる。   Therefore, when measuring or inspecting the shape and surface of the object, for example, the cost can be reduced as compared with the prior art in which a microscope tube for appearance inspection needs to be added.

前記他方の撮像装置の撮像面に対し、前記他方の撮像装置に対応する結像レンズを光軸方向に相対的にずらす位置調整手段を設けても良い。
前記位置調整手段は、前記他方の撮像装置と前記光学系との間に配置したスペーサであっても良い。例えば、前記他方の撮像装置を光学系に取り付ける際、接写リング等のスペーサを、光学系における前記撮像装置の取り付け部に設けることで容易に位置調整を行える。
You may provide the position adjustment means which shifts the imaging lens corresponding to the said other imaging device relatively to an optical axis direction with respect to the imaging surface of said other imaging device.
The position adjusting means may be a spacer disposed between the other imaging device and the optical system. For example, when the other imaging device is attached to the optical system, the position can be easily adjusted by providing a spacer such as a close-up ring on the mounting portion of the imaging device in the optical system.

前記位置調整手段は、前記結像レンズを前記撮像面に対し光軸方向に相対的に位置調整可能なステージであっても良い。この場合、撮像面に対し結像レンズを相対的に遠ざけるだけでなく近づけて配置することができる。   The position adjusting unit may be a stage capable of adjusting the position of the imaging lens relative to the imaging surface in the optical axis direction. In this case, the imaging lens can be arranged close to the imaging surface as well as relatively far away.

この発明の形状等測定装置は、対象物の形状および表面を測定または検査する形状等測定装置であって、広帯域光を出力する照明装置と、この照明装置から出力された前記広帯域光を前記対象物の表面に照射し、この対象物の表面からの反射光を分岐させて二つの光路に導く光学系と、この光学系で分岐させた反射光をそれぞれ撮像する二つの撮像装置とを備え、前記光学系は、前記二つの撮像装置の各撮像面にそれぞれ反射光を結像させる結像レンズを有し、前記二つの撮像装置における一方の撮像装置の撮像面を、前記一方の撮像装置に対応する結像レンズの焦点位置に配置し、他方の撮像装置の撮像面を、前記他方の撮像装置に対応する結像レンズの焦点位置に対し、光軸方向にずらして配置した。このため、従来技術よりも装置のコスト低減を図りながら、対象物の形状および表面をそれぞれ測定することができる。   The shape and the like measuring device of the present invention is a shape and the like measuring device for measuring or inspecting the shape and surface of an object, the lighting device outputting broadband light, and the broadband light output from the lighting device as the target An optical system that irradiates the surface of the object, divides the reflected light from the surface of the object and guides it to the two optical paths, and two imaging devices that respectively image the reflected light branched by the optical system, The optical system includes an imaging lens that forms an image of reflected light on each imaging surface of the two imaging devices, and the imaging surface of one imaging device in the two imaging devices is connected to the one imaging device. The imaging lens of the other imaging device is arranged at the focal position of the corresponding imaging lens, and the imaging surface of the other imaging device is arranged shifted in the optical axis direction with respect to the focal position of the imaging lens corresponding to the other imaging device. For this reason, it is possible to measure the shape and the surface of the object while reducing the cost of the apparatus as compared with the prior art.

この発明の実施形態に係る形状等測定装置の構成を概略示す図である。It is a figure which shows roughly the structure of the shape etc. measuring apparatus which concerns on embodiment of this invention. 同形状等測定装置で対象物と光学系の作動距離を変更した例を示す図である。It is a figure which shows the example which changed the working distance of a target object and an optical system with the same shape etc. measuring apparatus. この発明の他の実施形態に係る形状等測定装置の構成を概略示す図である。It is a figure which shows schematically the structure of the shape etc. measuring apparatus which concerns on other embodiment of this invention. この発明のさらに他の実施形態に係る形状等測定装置の構成を概略示す図である。It is a figure which shows schematically the structure of the shape etc. measuring apparatus which concerns on other embodiment of this invention. この発明のさらに他の実施形態に係る形状等測定装置の構成を概略示す図である。It is a figure which shows schematically the structure of the shape etc. measuring apparatus which concerns on other embodiment of this invention. この発明のさらに他の実施形態に係る形状等測定装置の構成を概略示す図である。It is a figure which shows schematically the structure of the shape etc. measuring apparatus which concerns on other embodiment of this invention.

この発明の実施形態に係る形状等測定装置を図1および図2と共に説明する。
図1に示すように、この形状等測定装置は、対象物の形状および表面を測定し、前記対象物の表面を検査する装置である。前記対象物として、例えば、金属や樹脂およびそれらの加工品、半導体や電子回路、太陽電池となる素材となる基板、フラットディスプレイなどの基板が挙げられる。但し、これらの対象物に限定されるものではない。
A shape measuring apparatus according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, this shape measuring device is a device that measures the shape and surface of an object and inspects the surface of the object. Examples of the object include substrates such as metals and resins and processed products thereof, semiconductors and electronic circuits, substrates serving as materials for solar cells, and flat displays. However, it is not limited to these objects.

この形状等測定装置は、照明装置1と、光学系15と、二つの撮像装置10,11と、位置調整手段16とを備えている。照明装置1は白色光源を含む。この白色光源は、可視光線の範囲における周波数成分を万遍なく含む広帯域光を出力する。   This measuring apparatus for shape and the like includes an illumination device 1, an optical system 15, two imaging devices 10 and 11, and a position adjusting unit 16. The lighting device 1 includes a white light source. This white light source outputs broadband light that uniformly includes frequency components in the visible light range.

<光学系15について説明する。>
光学系15は、照明装置1から出力された広帯域光を対象物14の表面に照射し、この対象物14の表面からの反射光を分岐させて二つの光路に導く。この光学系15は、後述する対物レンズ5を通過した対象物14の反射光が平行光束として後述の結像レンズ8,9に入射するように構成された無限遠補正の光学系である。光学系15は、集光レンズ2、反射ミラー3、ハーフミラー4、対物レンズ5、ハーフミラー6、結像レンズ8、反射ミラー7、および結像レンズ9を有する。集光レンズ2は、照明装置1と反射ミラー3との間の光路途中に設けられ、照明装置1から出力された広帯域光を集光する。
<The optical system 15 is demonstrated. >
The optical system 15 irradiates the surface of the object 14 with the broadband light output from the illumination device 1, branches the reflected light from the surface of the object 14, and guides it to two optical paths. This optical system 15 is an optical system for infinity correction configured such that the reflected light of the object 14 that has passed through the objective lens 5 described later enters the imaging lenses 8 and 9 described later as a parallel light flux. The optical system 15 includes a condenser lens 2, a reflecting mirror 3, a half mirror 4, an objective lens 5, a half mirror 6, an imaging lens 8, a reflecting mirror 7, and an imaging lens 9. The condenser lens 2 is provided in the middle of the optical path between the illuminating device 1 and the reflecting mirror 3, and condenses the broadband light output from the illuminating device 1.

反射ミラー3は、集光レンズ2を通過した光をハーフミラー4の方向に反射する。ハーフミラー4は、反射ミラー3からの光を対物レンズ5の方向に反射し、この対物レンズ5を通過した対象物14の反射光を透過してハーフミラー6に導く。対物レンズ5は、ハーフミラー4の反射光を対象物14に照射し、対象物14の反射光をハーフミラー4に導く。   The reflection mirror 3 reflects the light that has passed through the condenser lens 2 toward the half mirror 4. The half mirror 4 reflects the light from the reflection mirror 3 in the direction of the objective lens 5, transmits the reflected light of the object 14 that has passed through the objective lens 5, and guides it to the half mirror 6. The objective lens 5 irradiates the object 14 with the reflected light of the half mirror 4 and guides the reflected light of the object 14 to the half mirror 4.

ハーフミラー6は、ハーフミラー4を透過した対象物14の反射光のうち、一部を結像レンズ8に、残りを反射ミラー7に分岐する。結像レンズ8は、一方の撮像装置10の撮像面12に対象物14の反射光を結像させる。反射ミラー7は、ハーフミラー6から分岐された対象物14の反射光を結像レンズ9の方向に反射する。この結像レンズ9は、他方の撮像装置11の撮像面13に対象物14の反射光を結像させる。結像レンズ8,9は同一のレンズが適用される。   The half mirror 6 branches a part of the reflected light of the object 14 transmitted through the half mirror 4 to the imaging lens 8 and the rest to the reflecting mirror 7. The imaging lens 8 forms an image of the reflected light of the object 14 on the imaging surface 12 of one imaging device 10. The reflection mirror 7 reflects the reflected light of the object 14 branched from the half mirror 6 in the direction of the imaging lens 9. The imaging lens 9 images the reflected light of the object 14 on the imaging surface 13 of the other imaging device 11. The same lens is applied as the imaging lenses 8 and 9.

<撮像装置10,11について説明する。>
二つの撮像装置10,11は、前述の光学系15で分岐させた反射光をそれぞれ撮像する。これら撮像装置10,11は、この例では光学系15に取り付けられている。これら撮像装置10,11における一方の撮像装置10の撮像面12は、この撮像装置10に対応する結像レンズ8の焦点位置に配置する。さらに他方の撮像装置11の撮像面13は、この撮像装置11に対応する結像レンズ9の焦点位置に対し、光軸方向に距離「D」だけ遠ざけて配置する。これにより、他方の撮像装置11の撮像面13では、一方の撮像装置10の撮像面12と比較し、対象物14と対物レンズ5との作動距離が短い近距離を撮影し得る。
<The imaging devices 10 and 11 will be described. >
The two imaging devices 10 and 11 respectively capture the reflected light branched by the optical system 15 described above. These imaging devices 10 and 11 are attached to the optical system 15 in this example. The imaging surface 12 of one of the imaging devices 10 and 11 is arranged at the focal position of the imaging lens 8 corresponding to the imaging device 10. Furthermore, the imaging surface 13 of the other imaging device 11 is disposed away from the focal position of the imaging lens 9 corresponding to the imaging device 11 by a distance “D” in the optical axis direction. As a result, the imaging surface 13 of the other imaging device 11 can capture a short distance in which the working distance between the object 14 and the objective lens 5 is shorter than the imaging surface 12 of the one imaging device 10.

<位置調整手段16等について説明する。>
図1および図2に示すように、位置調整手段16は、撮像装置11の撮像面12に対し、結像レンズ9を光軸方向に相対的にずらす手段である。この例では、位置調整手段16として、例えば、接写リング等のスペーサが適用される。具体的には、撮像装置11を光学系15に取り付ける際、前記接写リング等のスペーサを、光学系15における撮像装置11の取り付け部に挿入する。これにより、結像レンズ9の焦点位置に対し、撮像装置11の撮像面13を光軸方向に遠ざけて配置し得る。
<The position adjustment means 16 etc. are demonstrated. >
As shown in FIGS. 1 and 2, the position adjusting unit 16 is a unit that shifts the imaging lens 9 relative to the imaging surface 12 of the imaging device 11 in the optical axis direction. In this example, a spacer such as a close-up ring is applied as the position adjusting means 16. Specifically, when the imaging device 11 is attached to the optical system 15, a spacer such as the close-up ring is inserted into a mounting portion of the imaging device 11 in the optical system 15. Thereby, the imaging surface 13 of the imaging device 11 can be disposed away from the focal position of the imaging lens 9 in the optical axis direction.

図1は、同図左側の撮像装置10の撮像面12において合焦画像が撮像されているときの対象物14と形状等測定装置との位置関係を示しており、同図右側の撮像装置11の撮像面13には焦点が合っていない。   FIG. 1 shows the positional relationship between the object 14 and the shape measuring device when a focused image is being picked up on the imaging surface 12 of the imaging device 10 on the left side of the figure, and the imaging device 11 on the right side of the figure. The imaging surface 13 is not in focus.

一方、図2は、同図右側の撮像装置11の撮像面13において合焦画像が撮像されているときの対象物14と形状等測定装置との位置関係を示しており、同図左側の撮像装置10の撮像面12には焦点が合っていない。また、対象物14と対物レンズ5との作動距離は、図1の場合よりも図2の場合の方が短い。なお作動距離は、対物レンズ5の前面(この例では下面)から、焦点が合う位置までの光軸方向の距離である。
なお、これまで、撮像面13と結像レンズ9との距離を変更したが、撮像面12と結像レンズ8との距離を変更しても良い。
On the other hand, FIG. 2 shows the positional relationship between the object 14 and the shape measuring device when a focused image is captured on the imaging surface 13 of the imaging device 11 on the right side of the figure, and the imaging on the left side of the figure. The imaging surface 12 of the device 10 is not in focus. Further, the working distance between the object 14 and the objective lens 5 is shorter in the case of FIG. 2 than in the case of FIG. The working distance is a distance in the optical axis direction from the front surface (the lower surface in this example) of the objective lens 5 to the in-focus position.
Although the distance between the imaging surface 13 and the imaging lens 9 has been changed so far, the distance between the imaging surface 12 and the imaging lens 8 may be changed.

以上説明した形状等測定装置によると、例えば、対象物14の表面を修正後にその表面性状を検査する場合、対象物14と対物レンズ5との作動距離が長くなる部分については、他方の撮像装置11より作動距離を長く確保できる一方の撮像装置10を用いて検査し得る。逆に作動距離が短くなる部分については、他方の撮像装置11を用いて検査し得る。このように作動距離の違いに応じて一方または他方の撮像装置10,11を選択的に用いて精度良く、且つ、安価に表面性状を検査することができる。   According to the shape measuring apparatus described above, for example, when the surface property of the object 14 is inspected after the surface of the object 14 is corrected, the other imaging device is used for a portion where the working distance between the object 14 and the objective lens 5 becomes long. Inspection can be performed using one imaging device 10 that can ensure a working distance longer than 11. Conversely, a portion where the working distance is shortened can be inspected using the other imaging device 11. As described above, the surface property can be inspected with high accuracy and at low cost by selectively using one or the other imaging device 10 or 11 according to the difference in working distance.

他の実施形態について説明する。
以下の説明においては、各形態で先行する形態で説明している事項に対応している部分には同一の参照符を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
Another embodiment will be described.
In the following description, the same reference numerals are given to the portions corresponding to the matters described in the preceding forms in each embodiment, and the overlapping description is omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in advance unless otherwise specified. The same effect is obtained from the same configuration. Not only the combination of the parts specifically described in each embodiment, but also the embodiments can be partially combined as long as the combination does not hinder.

図1のスペーサ等の位置調整手段16の代わりに、図3に示すように、位置調整手段16Aとして、結像レンズ9を撮像面13に対し光軸方向に相対的に位置調整可能なステージを設けても良い。この場合、撮像面13に対し結像レンズ9を相対的に遠ざけるだけでなく近づけて配置することができる。   As shown in FIG. 3, instead of the position adjusting means 16 such as the spacer of FIG. 1, a stage capable of adjusting the position of the imaging lens 9 relative to the imaging surface 13 in the optical axis direction is used as the position adjusting means 16A. It may be provided. In this case, the imaging lens 9 can be arranged close to the imaging surface 13 as well as relatively far away.

図4は、他の実施形態に係る形状等測定装置の構成を概略示す図である。この形状等測定装置では、図1の対物レンズ5をミラウ型の干渉対物レンズ22に変更している。この干渉対物レンズ22は、対物レンズ17、参照鏡18、およびビームスプリッタ19を含む。対物レンズ17に入射した光は、ビームスプリッタ19において、対象物14の方向に通過する光と参照鏡18の方向に反射する光、すなわち二つの光に分けられる。   FIG. 4 is a diagram schematically illustrating the configuration of a shape measuring apparatus according to another embodiment. In this shape measuring apparatus, the objective lens 5 in FIG. 1 is changed to a Mirau-type interference objective lens 22. The interference objective lens 22 includes an objective lens 17, a reference mirror 18, and a beam splitter 19. The light incident on the objective lens 17 is divided by the beam splitter 19 into light that passes in the direction of the object 14 and light that reflects in the direction of the reference mirror 18, that is, two lights.

対象物14および参照鏡18の表面でそれぞれ反射した光は、再びビームスプリッタ19で合流し、対物レンズ17で集光される。この後、対物レンズ17から出た光は、ハーフミラー4を通過した後、前述の実施形態と同様に、結像レンズ8および結像レンズ9へと導かれ、撮像装置10,11の撮像面12,13にそれぞれ入射する。   The lights reflected from the surfaces of the object 14 and the reference mirror 18 are merged again by the beam splitter 19 and collected by the objective lens 17. Thereafter, the light emitted from the objective lens 17 passes through the half mirror 4 and is then guided to the imaging lens 8 and the imaging lens 9 in the same manner as in the above-described embodiment, and the imaging surfaces of the imaging devices 10 and 11 are detected. 12 and 13 respectively.

図4は、同図左側の撮像装置10の撮像面12において合焦画像が撮像されているときの対象物14とこの形状等測定装置との位置関係を示しており、同図右側の撮像装置11の撮像面13には焦点が合っていない。干渉光は、干渉対物レンズ22の焦点が対象物14の表面に合っているとき観察できるように設計されている。   FIG. 4 shows the positional relationship between the object 14 and the shape measuring device when a focused image is captured on the imaging surface 12 of the imaging device 10 on the left side of the figure, and the imaging device on the right side of the figure. 11 is not in focus. The interference light is designed to be observed when the interference objective lens 22 is focused on the surface of the object 14.

したがって、撮像面12では、対物レンズ17と対象物14との距離が、対物レンズ17の作動距離に等しいとき、干渉光を観察することができる。撮像面13は、この撮像装置11に対応する結像レンズ9の焦点位置に対し、光軸方向に距離「D」だけ遠ざけて配置しているため、対物レンズ17の作動距離は短くなっており、合焦画像が撮像される位置で干渉光を観察することはない。
以上のことから、複数の光学系を用いることなく一つの光学系のみで、撮像面12の干渉光を利用した対象物14の高さ測定と、撮像面13の画像を利用した外観検査等を行うことができる。
Therefore, the interference light can be observed on the imaging surface 12 when the distance between the objective lens 17 and the object 14 is equal to the working distance of the objective lens 17. Since the imaging surface 13 is arranged away from the focal position of the imaging lens 9 corresponding to the imaging device 11 by a distance “D” in the optical axis direction, the working distance of the objective lens 17 is short. The interference light is not observed at the position where the focused image is captured.
From the above, the height measurement of the object 14 using the interference light of the imaging surface 12 and the appearance inspection using the image of the imaging surface 13 are performed with only one optical system without using a plurality of optical systems. It can be carried out.

図5に示すように、干渉対物レンズ22と対象物14とを光軸方向に相対移動させるステージ20を設けても良い。このステージ20は、光学系15の全体を対象物14に対し相対移動可能に構成している。   As shown in FIG. 5, a stage 20 that relatively moves the interference objective lens 22 and the object 14 in the optical axis direction may be provided. The stage 20 is configured so that the entire optical system 15 can be moved relative to the object 14.

図6に示すように、干渉対物レンズ22と対象物14とを光軸方向に相対移動させるステージ21を、光学系15における干渉対物レンズ22の取り付け部分に配置しても良い。この場合、図5の構成よりもステージの小型化を図りコスト低減を図れる。なお図5のステージ20および図6のステージ21は、十分な位置決め分解能が得られるピエゾステージを用いることが望ましい。   As shown in FIG. 6, a stage 21 that relatively moves the interference objective lens 22 and the object 14 in the optical axis direction may be arranged in a portion where the interference objective lens 22 is attached in the optical system 15. In this case, it is possible to reduce the cost by reducing the size of the stage as compared with the configuration of FIG. Note that it is desirable that the stage 20 in FIG. 5 and the stage 21 in FIG. 6 use piezo stages capable of obtaining sufficient positioning resolution.

以上、実施形態に基づいてこの発明を実施するための形態を説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   As mentioned above, although the form for implementing this invention based on embodiment was demonstrated, embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1…照明装置
8,9…結像レンズ
10,11…撮像装置
12,13…撮像面
14…対象物
15…光学系
16,16A…位置調整手段
22…干渉対物レンズ
DESCRIPTION OF SYMBOLS 1 ... Illuminating device 8, 9 ... Imaging lens 10, 11 ... Imaging device 12, 13 ... Imaging surface 14 ... Object 15 ... Optical system 16, 16A ... Position adjustment means 22 ... Interference objective lens

Claims (5)

対象物の形状および表面を測定または検査する形状等測定装置であって、
広帯域光を出力する照明装置と、
この照明装置から出力された前記広帯域光を前記対象物の表面に照射し、この対象物の表面からの反射光を分岐させて二つの光路に導く光学系と、
この光学系で分岐させた反射光をそれぞれ撮像する二つの撮像装置と、
を備え、
前記光学系は、前記二つの撮像装置の各撮像面にそれぞれ反射光を結像させる結像レンズを有し、
前記二つの撮像装置における一方の撮像装置の撮像面を、前記一方の撮像装置に対応する結像レンズの焦点位置に配置し、他方の撮像装置の撮像面を、前記他方の撮像装置に対応する結像レンズの焦点位置に対し、光軸方向にずらして配置したことを特徴とする形状等測定装置。
A shape measuring device for measuring or inspecting the shape and surface of an object,
A lighting device that outputs broadband light;
An optical system that irradiates the surface of the object with the broadband light output from the illuminating device, branches the reflected light from the surface of the object, and guides it to two optical paths;
Two imaging devices for imaging the reflected light branched by the optical system,
With
The optical system includes an imaging lens that forms an image of reflected light on each imaging surface of the two imaging devices,
The imaging surface of one imaging device in the two imaging devices is arranged at the focal position of the imaging lens corresponding to the one imaging device, and the imaging surface of the other imaging device corresponds to the other imaging device. An apparatus for measuring a shape or the like, wherein the measuring device is arranged so as to be shifted in an optical axis direction with respect to a focal position of an imaging lens.
請求項1に記載の形状等測定装置において、前記光学系は、前記照明装置と前記対象物との光路途中に介在された干渉対物レンズを有し、この干渉対物レンズは、前記照明装置から出射された前記広帯域光を二光束に分離して一方の光束を前記対象物の表面に照射すると共に、他方の光束を定められた参照面に照射し、これら対象物の表面および参照面からの反射光を干渉させる干渉光とするレンズであり、前記一方の撮像装置の撮像面に、前記干渉対物レンズからの干渉光を結像させ、前記他方の撮像装置の撮像面に反射光を結像させる形状等測定装置。   The shape measurement apparatus according to claim 1, wherein the optical system includes an interference objective lens interposed in the optical path between the illumination device and the object, and the interference objective lens is emitted from the illumination device. The broadband light is separated into two light beams and one light beam is irradiated onto the surface of the object, and the other light beam is irradiated onto a predetermined reference surface and reflected from the surface of the object and the reference surface. An interference light that interferes with light, and forms an image of the interference light from the interference objective lens on the imaging surface of the one imaging device and an image of the reflected light on the imaging surface of the other imaging device Shape measuring device. 請求項1または請求項2に記載の形状等測定装置において、前記他方の撮像装置の撮像面に対し、前記他方の撮像装置に対応する結像レンズを光軸方向に相対的にずらす位置調整手段を設けた形状等測定装置。   3. The shape adjusting device according to claim 1 or 2, wherein a position adjusting unit that shifts an imaging lens corresponding to the other imaging device relative to the imaging surface of the other imaging device in the optical axis direction. Measuring device for shape etc. 請求項3に記載の形状等測定装置において、前記位置調整手段は、前記他方の撮像装置と前記光学系との間に配置したスペーサである形状等測定装置。   4. The shape or the like measuring apparatus according to claim 3, wherein the position adjusting means is a spacer disposed between the other imaging device and the optical system. 請求項3に記載の形状等測定装置において、前記位置調整手段は、前記結像レンズを前記撮像面に対し光軸方向に相対的に位置調整可能なステージである形状等測定装置。
4. The shape etc. measuring apparatus according to claim 3, wherein the position adjusting means is a stage capable of adjusting the position of the imaging lens relative to the imaging surface in the optical axis direction.
JP2014240989A 2014-11-28 2014-11-28 Shape measuring device Expired - Fee Related JP6415948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014240989A JP6415948B2 (en) 2014-11-28 2014-11-28 Shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014240989A JP6415948B2 (en) 2014-11-28 2014-11-28 Shape measuring device

Publications (2)

Publication Number Publication Date
JP2016102713A JP2016102713A (en) 2016-06-02
JP6415948B2 true JP6415948B2 (en) 2018-10-31

Family

ID=56089300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014240989A Expired - Fee Related JP6415948B2 (en) 2014-11-28 2014-11-28 Shape measuring device

Country Status (1)

Country Link
JP (1) JP6415948B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7181742B2 (en) 2018-09-14 2022-12-01 横河電機株式会社 Current input circuit and power measuring instrument

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110057337B (en) * 2019-04-04 2020-12-11 北京理工大学 Free-form surface measuring method and device based on reference plane comparison measurement
DE102022107897B4 (en) 2022-04-01 2023-12-28 Besi Switzerland Ag Measuring device based on combined optical 2D and 3D image capture methods, manufacturing system and inspection system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4987359B2 (en) * 2006-06-13 2012-07-25 浜松ホトニクス株式会社 Surface shape measuring device
EP1992905A1 (en) * 2007-05-16 2008-11-19 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Optical sensor with tilt error correction
JP2009293925A (en) * 2008-06-02 2009-12-17 Nidec-Read Corp Error correction apparatus of optical inspection apparatus
TWI500963B (en) * 2010-06-29 2015-09-21 Chroma Ate Inc An image capturing device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7181742B2 (en) 2018-09-14 2022-12-01 横河電機株式会社 Current input circuit and power measuring instrument

Also Published As

Publication number Publication date
JP2016102713A (en) 2016-06-02

Similar Documents

Publication Publication Date Title
CN101107558B (en) Tracking auto focus system
CN108172527B (en) Optical detection system
JP2021076853A (en) Optical system and method of correcting mask defects using the same
JP6415948B2 (en) Shape measuring device
JP3766835B2 (en) Lens system adjusting device and lens system adjusting method using the same
JP6650629B1 (en) Laser processing device and imaging device
JP6684992B2 (en) Projection inspection device and bump inspection device
JP2015108582A (en) Three-dimensional measurement method and device
KR101867081B1 (en) Confocal 3d sensing system with digital optical system
JP6574674B2 (en) Coating inspection device and inspection method
US10845185B2 (en) Measuring apparatus and method for measuring film thickness using relative heights in combination with refractive index
KR20070091236A (en) Defective particle measuring apparatus and defective particle measuring method
JP6665028B2 (en) Shape measuring device and coating device equipped with the same
TWM629084U (en) Automatic focusing and imaging system、microscope
JP7397096B2 (en) Autofocus methods for imaging devices
JP6190168B2 (en) Focusing method, focusing apparatus, exposure method, and device manufacturing method
US20140368635A1 (en) On-axis focus sensor and method
TWI813173B (en) Automatic focusing and imaging system and method、microscope
KR101846189B1 (en) Apparatus and method for adjusting the focus automatically
JP7531233B2 (en) Color optical inspection device and system including the same
CN116699823A (en) Automatic focusing and image capturing system, method thereof and microscope
US10180315B2 (en) Apparatus for measuring three-dimensional shape using prism
TWI509215B (en) A high accuracy apparatus and method of photoelectric glass substrate in real-time identification
JPH04282404A (en) Measuring device of three-dimensional shape
JP2012068433A (en) Optical system adjusting method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181003

R150 Certificate of patent or registration of utility model

Ref document number: 6415948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees