TWI813173B - Automatic focusing and imaging system and method、microscope - Google Patents
Automatic focusing and imaging system and method、microscope Download PDFInfo
- Publication number
- TWI813173B TWI813173B TW111105941A TW111105941A TWI813173B TW I813173 B TWI813173 B TW I813173B TW 111105941 A TW111105941 A TW 111105941A TW 111105941 A TW111105941 A TW 111105941A TW I813173 B TWI813173 B TW I813173B
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- optical element
- imaging
- plane
- sensor
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 82
- 238000000034 method Methods 0.000 title description 3
- 230000003287 optical effect Effects 0.000 claims abstract description 113
- 238000010586 diagram Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Automatic Focus Adjustment (AREA)
- Microscoopes, Condenser (AREA)
Abstract
Description
本發明係關於顯微鏡的自動對焦及取像系統,特別是一種用於電子產品的快速對焦及取像的系統。 The present invention relates to an automatic focusing and imaging system for a microscope, particularly a system for fast focusing and imaging of electronic products.
顯微鏡具有高影像放大率特性,可以將細小的物體放大來觀察,也因為高放大率的關係,景深(Depth of field)範圍相對會比較小,使用者需要花時間調整物鏡與被觀察物的距離才能夠清楚地看到被觀察物體,而市面上自動對焦系統因為對焦平面就是取像平面,所以可以快速的調整物鏡與被觀察物的距離,使用者不需要花太多時間就可以取得清楚的影像。 Microscopes have high image magnification characteristics, which can magnify small objects for observation. Because of the high magnification, the depth of field (Depth of field) range is relatively small, and the user needs to spend time adjusting the distance between the objective lens and the object being observed. Only then can the object being observed be clearly seen. Since the focus plane on the market is the imaging plane, the autofocus system on the market can quickly adjust the distance between the objective lens and the object being observed. Users do not need to spend too much time to obtain clear images. image.
然而目前的電子產品為了特殊功能性的設計,如屏下攝影機、LED玻璃基板封裝、液晶面板封裝(Chip on glass、Film on glass),大多會將相關電子元件放在一個介質材料上面,要檢查該電子元件時需要穿透該介質材料才能觀察,如果使用市面上的自動對焦系統就不容易達到快速對焦的目的,或者需要多道程序才能完成對焦,導致生產效率下降。 However, current electronic products are designed for special functions, such as under-screen cameras, LED glass substrate packaging, and LCD panel packaging (Chip on glass, Film on glass). Most of the relevant electronic components are placed on a dielectric material, which must be inspected. The electronic components need to penetrate the dielectric material before they can be observed. If you use the autofocus system on the market, it is not easy to achieve the purpose of rapid focusing, or multiple procedures are required to complete the focusing, resulting in a decrease in production efficiency.
基於上述缺失,本發明目的在於提供一種自動對焦系統,特別是一種用於電子產品的快速對焦及取像對焦系統。 Based on the above deficiencies, the purpose of the present invention is to provide an automatic focusing system, especially a fast focusing and image capturing focusing system for electronic products.
根據本發明目的,提供一種自動對焦及取像系統,包含一焦距調整模組,具有一光學模組用以將一第一光源發出的光線轉換成一直線光束,該直線光束經由一第一光學元件傳遞至一待測物的一對焦平面,該待測物沿著一XY方向設置,及一第二光學元件將從該對焦平面反射的該直線光束傳遞至一第一感測器以取得一對焦影像,一運算單元根據該對焦影像的位置數值控制一致動器調整該第一光學元件的一Z方向位置,以及一取像模組,具有一第三光學元件將一第二光源發出的一光線投射至該待測物的一取像平面,及一第四光學元件將經由該取像平面反射的該光線成像至一第二感測器以取得一目標影像,其中該對焦平面與該取像平面為不同平面。 According to the object of the present invention, an automatic focusing and imaging system is provided, which includes a focus adjustment module and an optical module for converting light emitted by a first light source into a linear beam. The linear beam passes through a first optical element. transmitted to a focal plane of an object to be measured, the object to be measured is arranged along an XY direction, and a second optical element transmits the linear beam reflected from the focal plane to a first sensor to obtain a focus image, a computing unit controls an actuator to adjust a Z-direction position of the first optical element according to the position value of the focus image, and an imaging module has a third optical element to convert a light emitted by a second light source Projecting to an imaging plane of the object to be measured, and a fourth optical element imaging the light reflected by the imaging plane to a second sensor to obtain a target image, wherein the focus plane and the imaging plane The planes are different planes.
其中還具有一第一分光元件及一第二分光元件位於該對焦平面與該第一感測器之間的光線路徑上,該第一分光元件用以將該直線光束的部分傳遞至該第二分光元件,該第二分光元件將該直線光束的部分反射至該第一光學元件並由該第一光學元件將該直線光束的部分傳遞至該對焦平面,該第二分光元件允許從該對焦平面反射回該第一光學元件的該直線光束的部分反射至該第一分光元件,該第一分光元件允許該直線光束的部分反射至該第二光學元件,並由該第二光學元件傳遞至該第一感測器。 There is also a first light splitting element and a second light splitting element located on the light path between the focus plane and the first sensor. The first light splitting element is used to pass part of the linear beam to the second light splitting element. The second beam splitting element reflects part of the linear beam to the first optical element and transmits the part of the linear beam to the focus plane by the first optical element. The second beam splitting element allows the beam to pass from the focus plane. The portion of the linear beam that is reflected back to the first optical element is reflected to the first splitting element, and the first splitting element allows the portion of the linear beam to be reflected to the second optical element and transmitted to the second optical element by the second optical element. First sensor.
其中該第二分光元件與一第三分光元件位於該第二感測器與該取像平面之間及該第三光學元件與該取像平面之間的光線路徑上,該 第三分光元件用以將該第二光源的部分光線反射至該第二分光元件,該第二分光元件將該光線的部分傳遞至該第一光學元件並由該第一光學元件將該光線的部分傳遞至該取像平面,該第二分光元件允許從該取像平面反射回該第一光學元件的該光線的部分傳遞至該第三分光元件,該第三分光元件允許將該光線的部分經過第四光學元件成像至該第二感測器。 Wherein the second spectroscopic element and a third spectroscopic element are located on the light path between the second sensor and the imaging plane and between the third optical element and the imaging plane, the The third light splitting element is used to reflect part of the light from the second light source to the second light splitting element. The second light splitting element transmits part of the light to the first optical element and the first optical element transmits part of the light. The second light splitting element allows the part of the light reflected back from the imaging plane to the first optical element to be transferred to the third light splitting element. The third light splitting element allows the part of the light to be The image is imaged to the second sensor through the fourth optical element.
較佳的,該取像模組還具有一吸光板及一第一反射元件,該第一反射元件將該第二光源的光線經由一第三分光元件後的部分該光線反射至該吸光板。 Preferably, the imaging module also has a light-absorbing plate and a first reflective element. The first reflective element reflects part of the light from the second light source after passing through a third light-splitting element to the light-absorbing plate.
較佳的,還具有一第三光源及一第二反射元件,該第二反射元件將該第三光源的一光線反射至一第四分光元件,該第四分光元件將該第三光源的該光線的部分並反射至該第一光學元件,該第一光學元件將該光線傳遞至該取像平面,該第三光源為高功率的雷射光。 Preferably, there is also a third light source and a second reflective element. The second reflective element reflects a light ray of the third light source to a fourth light splitting element. The fourth light splitting element reflects the third light source. Part of the light is reflected to the first optical element, the first optical element transmits the light to the imaging plane, and the third light source is high-power laser light.
較佳的,該對焦平面與該取像平面間的距離介於0mm至10mm。 Preferably, the distance between the focus plane and the imaging plane is between 0 mm and 10 mm.
較佳的,該第一光源為雷射光或發光二極體,該第二光源為發光二極體。 Preferably, the first light source is laser light or a light-emitting diode, and the second light source is a light-emitting diode.
本發明還具有一種顯微鏡,具有如前述的自動對焦及取像系統。 The present invention also provides a microscope with the aforementioned automatic focusing and imaging system.
本發明還包含一種自動對焦及取像方法,係包含下列步驟: The invention also includes an automatic focusing and imaging method, which includes the following steps:
(a)對焦步驟: (a) Focus steps:
(a1)產生一直線光束; (a1) Generate a straight beam;
(a2)使該直線光束經由一第一光學元件傳遞至一待測物的一對焦平面後反射至一第一感測器取得一對焦影像; (a2) The linear beam is transmitted to a pair of focal planes of an object to be measured through a first optical element and then reflected to a first sensor to obtain a focused image;
(a3)取得該對焦影像的一位置數值; (a3) Obtain a position value of the focused image;
(a4)根據該位置數值判定對焦狀態;以及 (a4) Determine the focus state based on the position value; and
(a5)根據步驟(a4)的判定結果調整該第一光學元件的一Z方向位置; (a5) Adjust a Z-direction position of the first optical element according to the determination result of step (a4);
(b)取像步驟: (b) Image acquisition steps:
(b1)產生一光線 (b1) Generate a light ray
(b2)使該光線投射至該待測物的一取像平面並反射至一第二感測器形成一目標影像,該對焦平面與該取像平面為不同平面; (b2) Project the light to an imaging plane of the object to be measured and reflect it to a second sensor to form a target image, and the focus plane and the imaging plane are different planes;
(b3)使一第二感測器取得該目標影像。 (b3) Allow a second sensor to obtain the target image.
A、B、C:對焦影像之局部線段 A, B, C: Local line segments of the focused image
a1~a5、a:對焦步驟 a1~a5, a: focus steps
b1~b3、b:取像步驟 b1~b3, b: imaging steps
h:取像距離 h: imaging distance
z:第一光學元件與對焦平面之間的距離 z: distance between the first optical element and the focus plane
10:第一光源 10:First light source
101:直線光束 101: Straight beam
11:光學模組 11: Optical module
13:第一感測器 13:First sensor
15:運算單元 15:Arithmetic unit
17:致動器 17: Actuator
20:第二光源 20:Second light source
22:第二感測器 22: Second sensor
31:第一分光元件 31: First spectroscopic element
32:第二分光元件 32: Second spectroscopic element
33:第三分光元件 33: The third spectroscopic element
41:第一光學元件 41:First optical element
42:第二光學元件 42: Second optical element
43:第三光學元件 43:Third optical element
44:第四光學元件 44: The fourth optical element
51:對焦平面 51:Focus plane
52:取像平面 52:Imaging plane
61:第一反射元件 61: First reflective element
62:吸光板 62:Light absorbing plate
71:第四分光元件 71: The fourth spectroscopic element
72:第二反射元件 72: Second reflective element
73:第三光源 73:Third light source
圖1是本發明第一實施例之光線路徑圖。 Figure 1 is a light path diagram of the first embodiment of the present invention.
圖2是本發明第一感測器取得的對焦影像畫面示意圖。 FIG. 2 is a schematic diagram of the focus image obtained by the first sensor of the present invention.
圖3是對焦影像的x位置與第一光學元件在Z方向位置呈線性關係圖。 Figure 3 is a diagram showing a linear relationship between the x position of the focused image and the position of the first optical element in the Z direction.
圖4是本發明之第二實施態樣的第一感測器取得的對焦影像畫面示意圖。 FIG. 4 is a schematic diagram of a focus image obtained by the first sensor according to the second embodiment of the present invention.
圖5是本發明的第三實施例之光線路徑圖。 Figure 5 is a light path diagram of the third embodiment of the present invention.
圖6是本發明的第四實施例之光線路徑圖。 Figure 6 is a light path diagram of the fourth embodiment of the present invention.
圖7是本發明自動對焦及取像的方法流程圖。 Figure 7 is a flow chart of the automatic focusing and imaging method of the present invention.
為了清楚說明本發明之具體實施方式、構造及所達成之效果,提供實施例並配合圖式說明如下: 請參閱圖1,繪示一種自動對焦及取像系統,包含一焦距調整模組以及一取像模組,該焦距調整模組具有一光學模組11用以將一第一光源10發出的光線轉換成一直線光束101,該直線光束101經由一第一光學元件41傳遞至一待測物的一對焦平面51,該待測物沿著一XY方向設置,及一第二光學元件42將從該對焦平面51反射的該直線光束101傳遞至一第一感測器13以取得一對焦影像,一運算單元15根據該對焦影像的位置數值控制一致動器17調整該第一光學元件41的一Z方向位置,該運算單元15進行影像處理及分析,該運算單元15可以是但不限於CPU、DSP、FPGA或混合訊號處理器等可編程訊號處理元件。 In order to clearly illustrate the specific implementation, structure and effects of the present invention, examples are provided and described with the drawings as follows: Please refer to Figure 1, which illustrates an automatic focusing and imaging system, including a focus adjustment module and an imaging module. The focus adjustment module has an optical module 11 for converting light emitted by a first light source 10. Converted into a linear beam 101, the linear beam 101 is transmitted to a focal plane 51 of an object to be measured through a first optical element 41, the object to be measured is arranged along an XY direction, and a second optical element 42 is ejected from the The linear beam 101 reflected by the focus plane 51 is transmitted to a first sensor 13 to obtain a focused image. A computing unit 15 controls an actuator 17 to adjust a Z of the first optical element 41 according to the position value of the focused image. Directional position, the computing unit 15 performs image processing and analysis. The computing unit 15 may be, but is not limited to, a programmable signal processing element such as a CPU, DSP, FPGA, or mixed signal processor.
進一步說明,該焦距調整模組還具有一第一分光元件31及一第二分光元件32位於該對焦平面51與該第一感測器13之間的光線路徑上,該第一分光元件31用以將該直線光束101的部分傳遞至該第二分光元件32,該第二分光元件32將該直線光束101的部分反射至該第一光學元件41並由該第一光學元件41將該直線光束101的部分傳遞至該對焦平面51形成第一光路;而該第二分光元件32允許從該對焦平面51反射回該第一光學元件41的該直線光束101的部分反射至該第一分光元件31,該第一分光元件31允許該直線光束101的部分反射至該第二光學元件42,而該第二光學元件42將該直線光束101的部分傳遞至一第一感測器13形成第二光路並使該第一感測器13取得一對焦影像。其中該第一光源10可以是雷射光或發光二極體(LED),該第一感測器13為線掃描相機或面相機。該第一光學元件41及第二光學元件42為光學透鏡。 To further explain, the focus adjustment module also has a first light splitting element 31 and a second light splitting element 32 located on the light path between the focus plane 51 and the first sensor 13. The first light splitting element 31 is used for To transmit part of the linear beam 101 to the second spectroscopic element 32 , the second spectroscopic element 32 reflects part of the linear beam 101 to the first optical element 41 and the first optical element 41 transmits the linear beam The part of the linear beam 101 that is reflected from the focus plane 51 back to the first optical element 41 is reflected to the first light splitting element 31 by the second beam splitting element 32 . , the first spectroscopic element 31 allows part of the linear beam 101 to be reflected to the second optical element 42, and the second optical element 42 transmits part of the linear beam 101 to a first sensor 13 to form a second optical path. And the first sensor 13 is allowed to obtain a focused image. The first light source 10 may be a laser light or a light emitting diode (LED), and the first sensor 13 may be a line scan camera or an area camera. The first optical element 41 and the second optical element 42 are optical lenses.
而該取像模組具有一第三光學元件43將一第二光源20發出的一光線投射至該待測物的一取像平面52,及一第四光學元件44將經由該取像平面52反射的該光線傳遞至一第二感測器22取得一目標影像,該第二光源20為可見光或紅外光的發光二極體(LED),該第二感測器22為線掃描相機或面相機。該第三光學元件43及該第四光學元件44為光學透鏡。其中該對焦平面51與該取像平面52為不同平面。 The imaging module has a third optical element 43 that projects a light emitted by a second light source 20 to an imaging plane 52 of the object to be measured, and a fourth optical element 44 that passes through the imaging plane 52 The reflected light is transmitted to a second sensor 22 to obtain a target image. The second light source 20 is a light emitting diode (LED) of visible light or infrared light. The second sensor 22 is a line scan camera or an area sensor. camera. The third optical element 43 and the fourth optical element 44 are optical lenses. The focus plane 51 and the imaging plane 52 are different planes.
進一步說明,該第二分光元件32與一第三分光元件33位於該第二感測器22與該取像平面52之間及該第三光學元件43與該取像平面52之間的光線路徑上,該第三分光元件33用以將該第二光源的光線的部分反射至該第二分光元件32,該第二分光元件32將該光線的部分傳遞至該第一光學元件41並由該第一光學元件41將該光線的部分傳遞至該取像平面52形成第三光路,該第二分光元件32允許從該取像平面52反射回該第一光學元件41的該光線的部分傳遞至該第三分光元件33,該第三分光元件33允許將該光線的部分傳遞至一第四光學元件44,該第四光學元件44將該光線的部分成像至該第二感測器22形成第四光路並使該第二感測器22取得目標影像。 To further explain, the second light splitting element 32 and a third light splitting element 33 are located in the light path between the second sensor 22 and the imaging plane 52 and between the third optical element 43 and the imaging plane 52 above, the third light splitting element 33 is used to reflect part of the light from the second light source to the second light splitting element 32, and the second light splitting element 32 transmits part of the light to the first optical element 41 and is transmitted from the second light splitting element 32 to the first optical element 41. The first optical element 41 transmits part of the light to the imaging plane 52 to form a third optical path. The second light splitting element 32 allows the part of the light reflected back from the imaging plane 52 to the first optical element 41 to pass to The third light splitting element 33 allows a part of the light to be transmitted to a fourth optical element 44, and the fourth optical element 44 images part of the light to the second sensor 22 to form a third light splitting element 33. Four optical paths are used to enable the second sensor 22 to obtain the target image.
前述的直線光束經由第一光路及第二光路到達第一感測器13進行對焦後,第二光源的光線經由第三光路及第四光路到達第二感測器22進行取像為一次完整的自動對焦及取像流程。 After the aforementioned linear light beam reaches the first sensor 13 through the first optical path and the second optical path for focusing, the light from the second light source reaches the second sensor 22 through the third optical path and the fourth optical path for image capture. Autofocus and imaging process.
進一步說明,請參閱圖2為第一感測器13取得的對焦影像畫面,該第一感測器13取得的對焦影像為直線光斑,當該第一光學元件41的Z方向位置改變(即影響該第一光學元件41與對焦平面51之間的距離z改變), 該直線光斑會在第一感測器13沿著X方向移動,因此運算單元15會根據對焦影像的位置控制該第一光學元件41的Z方向位置以使第二感測器22取得清晰的影像。在其他的實施態樣中,該直線光束101也可以是長條狀以外的形狀,例如三角形、弧形或圓形,只要能在第一感測器13形成可供測量的光斑即可。 For further explanation, please refer to FIG. 2 , which is a focus image obtained by the first sensor 13 . The focus image obtained by the first sensor 13 is a linear light spot. When the Z-direction position of the first optical element 41 changes (that is, affects The distance z between the first optical element 41 and the focus plane 51 changes), The linear spot will move along the X direction on the first sensor 13, so the computing unit 15 will control the Z direction position of the first optical element 41 according to the position of the focused image so that the second sensor 22 can obtain a clear image. . In other implementations, the linear beam 101 can also be in a shape other than a strip, such as a triangle, an arc, or a circle, as long as it can form a light spot for measurement on the first sensor 13 .
請參閱圖3,該致動器17調整第一光學元件41的位置數值是依據下列公式:
其中 C,C是第一光學元件41的數值孔徑,a、k為校正常數,z是第一光學元件41與對焦平面51之間的距離,x是第一感測器13上的對焦影像位置,當該對焦影像在x1位置時,對應第一光學元件41在Z方向位置z1,當對焦影像在x2位置時,對應第一光學元件41在Z方向位置z2,當對焦影像在x3位置時,對應第一光學元件41在Z方向位置z3,以此類推,該對焦影像的x位置與第一光學元件41在Z方向位置呈線性關係。 in C , C is the numerical aperture of the first optical element 41, a and k are calibration constants, z is the distance between the first optical element 41 and the focus plane 51, x is the focused image position on the first sensor 13, When the focus image is at the x1 position, it corresponds to the first optical element 41 being at the Z direction position z1. When the focus image is at the x2 position, it corresponds to the first optical element 41 being at the Z direction position z2. When the focus image is at the x3 position, it corresponds to The first optical element 41 is at position z3 in the Z direction, and by analogy, the x position of the focused image has a linear relationship with the position of the first optical element 41 in the Z direction.
請參閱圖4為本發明的第二實施例,於第二實施例中,待測物的取像平面處於不等高平面時,該第一感測器13上的對焦影像透過數位化方式處理,可以分解成一或多個線段做局部定位使用(圖中A、B、C線段),藉此,使用者可設定取像平面52上的任意x,y位置以對應取像距離h(即對焦平面與該取像平面間的距離),於本發明的實施例中,對焦平面與該取像平面間的距離介於0mm至10mm,而前述第一光學元件41與對焦平面51之間的距離z大於前述取像距離h。 Please refer to FIG. 4 for a second embodiment of the present invention. In the second embodiment, when the imaging plane of the object to be measured is at an unequal height plane, the focused image on the first sensor 13 is processed digitally. , can be decomposed into one or more line segments for local positioning (line segments A, B, C in the figure), whereby the user can set any x, y position on the imaging plane 52 to correspond to the imaging distance h (i.e. focus plane and the imaging plane), in the embodiment of the present invention, the distance between the focus plane and the imaging plane is between 0 mm and 10 mm, and the distance between the first optical element 41 and the focus plane 51 z is greater than the aforementioned imaging distance h.
請參閱圖5為本發明的第三實施例,於第三實施例中該取像模組還具有一吸光板62及一第一反射元件61,該第二光源20發出的光線經由第三光學元件43傳遞至第三分光元件33後,部分的光線會反射至第二分光元件32,另一部分的光線穿透至第一反射元件61,並經由第一反射元件61反射至吸光板62並吸收形成第五光路,藉由第五光路的形成能夠避免光線反射至第二感測器22影響取像畫面,並且能夠提升目標影像對比度。 Please refer to FIG. 5 for a third embodiment of the present invention. In the third embodiment, the imaging module also has a light-absorbing plate 62 and a first reflective element 61. The light emitted by the second light source 20 passes through the third optical element. After the element 43 is transmitted to the third light splitting element 33, part of the light will be reflected to the second light splitting element 32, and the other part of the light will pass through the first reflective element 61, and be reflected to the light absorbing plate 62 through the first reflective element 61 and absorbed. The formation of the fifth optical path can prevent light from being reflected to the second sensor 22 and affect the imaging screen, and can improve the contrast of the target image.
請參閱圖6為本發明的第四實施例,於第四實施例中還具有一第三光源73及一第二反射元件72,該第三光源73發出的光線為大於10W的高功率雷射光,雷射光經由第二反射元件72反射至一第四分光元件71,該第四分光元件71將該雷射光的部分反射至取像平面52,如此一來,可以直接藉由雷射光線對待測物進行加工(即取像平面52為加工平面),提高使用便利性。 Please refer to FIG. 6 , which is a fourth embodiment of the present invention. In the fourth embodiment, there is also a third light source 73 and a second reflective element 72 . The light emitted by the third light source 73 is a high-power laser light greater than 10W. , the laser light is reflected to a fourth spectroscopic element 71 through the second reflective element 72, and the fourth spectroscopic element 71 reflects part of the laser light to the imaging plane 52. In this way, the object to be measured can be directly detected by the laser light. The object is processed (that is, the imaging plane 52 is the processing plane), thereby improving the convenience of use.
其中該第三分光元件33、第二分光元件32及第一光學元件41皆位於該取像平面52與該第四分光元件71的光線路徑上,雷射光經由第二反射元件72反射至第四分光元件71,該第四分光元件71將該雷射光的部分反射至第四光學元件44,第四光學元件44將雷射光傳遞至第三分光元件33,第三分光元件33將雷射光的部分傳遞至第二分光元件32,第二分光元件32將雷射光的部分傳遞至第一光學元件41,最後再由第一光學元件41將雷射光傳遞至取像平面52形成第六光路,藉此可以直接對待測物進行雷射加工,減少使用者移動待測物後進行加工的成本,提高便利性。 The third light splitting element 33, the second light splitting element 32 and the first optical element 41 are all located on the light path of the imaging plane 52 and the fourth light splitting element 71, and the laser light is reflected to the fourth light splitting element through the second reflective element 72. Spectroscopic element 71. The fourth spectroscopic element 71 reflects part of the laser light to the fourth optical element 44. The fourth optical element 44 transmits the laser light to the third spectroscopic element 33. The third spectroscopic element 33 reflects part of the laser light. to the second spectroscopic element 32, which transfers part of the laser light to the first optical element 41, and finally the first optical element 41 transfers the laser light to the imaging plane 52 to form a sixth optical path, whereby Laser processing can be performed directly on the object to be tested, reducing the user's cost of processing the object after moving it and improving convenience.
本發明還具有一種顯微鏡,具有如前述的自動對焦及取像系統,請參閱圖7,該自動對焦及取像系統的自動對焦及取像的方法係包含下列步驟: The present invention also has a microscope with the aforementioned automatic focusing and imaging system. Please refer to Figure 7. The automatic focusing and imaging method of the automatic focusing and imaging system includes the following steps:
(a)對焦步驟: (a) Focus steps:
(a1)該第一光源10發出一光線並經由一光學模組11產生一直線光束101; (a1) The first light source 10 emits a light and generates a linear beam 101 through an optical module 11;
(a2)使該直線光束101經由一第一光學元件41傳遞至一待測物的一對焦平面51後反射至一第一感測器13取得一對焦影像; (a2) The linear beam 101 is transmitted to a focal plane 51 of an object to be measured through a first optical element 41 and then reflected to a first sensor 13 to obtain a focused image;
(a3)該運算單元15取得該對焦影像的一位置數值; (a3) The computing unit 15 obtains a position value of the focused image;
(a4)該運算單元15根據該位置數值判定對焦狀態;以及 (a4) The computing unit 15 determines the focus state based on the position value; and
(a5)該運算單元15根據步驟(a4)的判定結果控制該致動器17調整該第一光學元件41的一Z方向位置;以及 (a5) The computing unit 15 controls the actuator 17 to adjust a Z-direction position of the first optical element 41 according to the determination result of step (a4); and
(b)取像步驟: (b) Image acquisition steps:
(b1)該第二光源20產生一光線 (b1) The second light source 20 generates a light
(b2)使該光線投射至該待測物的一取像平面52並反射至一第二感測器22形成一目標影像; (b2) Project the light to an imaging plane 52 of the object to be measured and reflect it to a second sensor 22 to form a target image;
(b3)使該第二感測器22取得該目標影像。 (b3) Allow the second sensor 22 to obtain the target image.
h:取像距離 h: imaging distance
z:第一光學元件與對焦平面之間的距離 z: distance between the first optical element and the focus plane
10:第一光源 10:First light source
101:直線光束 101: Straight beam
11:光學模組 11: Optical module
13:第一感測器 13:First sensor
15:運算單元 15:Arithmetic unit
17:致動器 17: Actuator
20:第二光源 20:Second light source
22:第二感測器 22: Second sensor
31:第一分光元件 31: First spectroscopic element
32:第二分光元件 32: Second spectroscopic element
33:第三分光元件 33: The third spectroscopic element
41:第一光學元件 41:First optical element
42:第二光學元件 42: Second optical element
43:第三光學元件 43:Third optical element
44:第四光學元件 44: The fourth optical element
51:對焦平面 51:Focus plane
52:取像平面 52:Imaging plane
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111105941A TWI813173B (en) | 2022-02-18 | 2022-02-18 | Automatic focusing and imaging system and method、microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111105941A TWI813173B (en) | 2022-02-18 | 2022-02-18 | Automatic focusing and imaging system and method、microscope |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI813173B true TWI813173B (en) | 2023-08-21 |
TW202334701A TW202334701A (en) | 2023-09-01 |
Family
ID=88585722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111105941A TWI813173B (en) | 2022-02-18 | 2022-02-18 | Automatic focusing and imaging system and method、microscope |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI813173B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200825450A (en) * | 2006-12-12 | 2008-06-16 | Instr Technology Res Ct Nat Applied Res Lab | Automatic focus device and method thereof |
US20110068260A1 (en) * | 2008-05-26 | 2011-03-24 | Koninklijke Philips Electronics N.V. | Optical illumination apparatus and method |
TW201809778A (en) * | 2016-08-24 | 2018-03-16 | 由田新技股份有限公司 | Auto-focus system, method and optical imaging inspection apparatus |
CN109406478A (en) * | 2018-12-29 | 2019-03-01 | 上海市激光技术研究所 | Based on liquid lens automatic focusing laser-induced fluorescence spectroscopy detection device and method |
TW202136848A (en) * | 2018-03-14 | 2021-10-01 | 美商奈米創尼克影像公司 | Systems, Devices and Methods for Automatic Microscopic Focus |
CN114047203A (en) * | 2022-01-13 | 2022-02-15 | 武汉精立电子技术有限公司 | Spectrum confocal-based internal coaxial type automatic focusing device, method and system |
TWM629084U (en) * | 2022-02-18 | 2022-07-01 | 極智光電股份有限公司 | Automatic focusing and imaging system、microscope |
-
2022
- 2022-02-18 TW TW111105941A patent/TWI813173B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200825450A (en) * | 2006-12-12 | 2008-06-16 | Instr Technology Res Ct Nat Applied Res Lab | Automatic focus device and method thereof |
US20110068260A1 (en) * | 2008-05-26 | 2011-03-24 | Koninklijke Philips Electronics N.V. | Optical illumination apparatus and method |
TW201809778A (en) * | 2016-08-24 | 2018-03-16 | 由田新技股份有限公司 | Auto-focus system, method and optical imaging inspection apparatus |
TW202136848A (en) * | 2018-03-14 | 2021-10-01 | 美商奈米創尼克影像公司 | Systems, Devices and Methods for Automatic Microscopic Focus |
CN109406478A (en) * | 2018-12-29 | 2019-03-01 | 上海市激光技术研究所 | Based on liquid lens automatic focusing laser-induced fluorescence spectroscopy detection device and method |
CN114047203A (en) * | 2022-01-13 | 2022-02-15 | 武汉精立电子技术有限公司 | Spectrum confocal-based internal coaxial type automatic focusing device, method and system |
TWM629084U (en) * | 2022-02-18 | 2022-07-01 | 極智光電股份有限公司 | Automatic focusing and imaging system、microscope |
Also Published As
Publication number | Publication date |
---|---|
TW202334701A (en) | 2023-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI406025B (en) | Automatic focusing apparatus and method | |
CN102818528B (en) | Apparatus and method for inspecting an object with increased depth of field | |
CN110567970B (en) | Edge defect detection device and method | |
JP6662529B2 (en) | System and method for continuous asynchronous autofocus of optics | |
CN205562431U (en) | Wafer test equipment with auto focus function | |
JP3227106B2 (en) | Inner diameter measuring method and inner diameter measuring device | |
JPWO2019159427A1 (en) | Camera module adjustment device and camera module adjustment method | |
TWI699842B (en) | Method of improving lateral resolution for height sensor using differential detection technology for semiconductor inspection and metrology | |
TWI323125B (en) | An method for auto-adjusting the focus of the digital camera | |
JP2015108582A (en) | Three-dimensional measurement method and device | |
TWM629084U (en) | Automatic focusing and imaging system、microscope | |
TWI813173B (en) | Automatic focusing and imaging system and method、microscope | |
CN111366088A (en) | Laser confocal height measurement system and height measurement method | |
KR101447857B1 (en) | Particle inspectiing apparatus for lens module | |
JP6415948B2 (en) | Shape measuring device | |
KR20150114199A (en) | Defect inspecting apparatus for ir filter with automatic focus control unit | |
TWI738808B (en) | Method and system for measuring geometric parameters of through holes | |
US9958257B2 (en) | Increasing dynamic range of a height sensor for inspection and metrology | |
CN216848325U (en) | Automatic focusing and image capturing system and microscope | |
JP2012181341A (en) | Microscope device | |
US10761398B2 (en) | Imaging ellipsometer system utilizing a tunable acoustic gradient lens | |
CN116699823A (en) | Automatic focusing and image capturing system, method thereof and microscope | |
CN112859317A (en) | Automatic focusing microscopic imaging system | |
TW202009081A (en) | Laser processing apparatus | |
JP2008261829A (en) | Surface measuring device |