JP3670627B2 - Method and apparatus for measuring dimension of minute shape portion - Google Patents

Method and apparatus for measuring dimension of minute shape portion Download PDF

Info

Publication number
JP3670627B2
JP3670627B2 JP2002171219A JP2002171219A JP3670627B2 JP 3670627 B2 JP3670627 B2 JP 3670627B2 JP 2002171219 A JP2002171219 A JP 2002171219A JP 2002171219 A JP2002171219 A JP 2002171219A JP 3670627 B2 JP3670627 B2 JP 3670627B2
Authority
JP
Japan
Prior art keywords
measurement
minute shape
measuring
height
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002171219A
Other languages
Japanese (ja)
Other versions
JP2004020202A (en
Inventor
好実 戸田
忠仁 井澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takano Co Ltd
Original Assignee
Takano Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takano Co Ltd filed Critical Takano Co Ltd
Priority to JP2002171219A priority Critical patent/JP3670627B2/en
Publication of JP2004020202A publication Critical patent/JP2004020202A/en
Application granted granted Critical
Publication of JP3670627B2 publication Critical patent/JP3670627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、被測定物における微小形状部の高さを光干渉法により測定する際に用いて好適な微小形状部の寸法測定方法及び装置に関する。
【0002】
【従来の技術】
従来、被測定物における微小形状部の形状を光干渉法により測定する方法(装置)は、特表平8−502828号公報,特表平9−503065号公報及び特開平10−62139号公報等で知られており、また、特に、微小形状部の高さを測定する方法(装置)としては、特開平8−327327号公報等で開示される高さ測定方法及び装置が知られている。
【0003】
光干渉法(白色光干渉法)を用いた形状測定(高さ測定方法)では、まず、白色光光源から可干渉距離の短い白色光を二光束干渉光学系におけるハーフミラーに照射し、参照光と測定光に分けるとともに、この参照光と測定光を干渉させて干渉縞を発生させる。この際、測定光路と参照光路の距離が一致すれば、干渉縞の輝度は最大となるため、参照光路に対して測定光路の距離を相対的に変化させるとともに、発生する干渉縞を撮像し、画像処理により最大となる光路差を求めることにより、被測定物の三次元形状(Z軸高さ)を測定する。
【0004】
【発明が解決しようとする課題】
ところで、液晶表示器に用いるカラーフィルタでは、微小ギャップを設ける必要性から、基板上にスペーサ用突起を一体形成する。このスペーサ用突起は、通常、高さが5ミクロンメートル程度に形成され、また、数百ミクロンメートル程度の間隔で設けられるとともに、このスペーサ用突起の高さは、一定の公差に収める必要があるため、検査工程において高さの測定を行い、公差内に収まっているか否かをチェックしている。
【0005】
しかし、このようなスペーサ用突起を生産ライン上で検査する場合、光干渉法を用いた従来の高さ測定方法及び装置では、光干渉法により測定を開始する基準位置を見つけることが容易でなく、通常は推定した位置へ移動させる方法に頼っている。このため、正確な位置を見つける確実性が小さく、結局、測定に時間がかかることによる測定能率の低下を招くとともに、測定時の自動化を確立することが容易でなく、量産性に劣るという問題があった。
【0006】
本発明は、このような従来の技術に存在する課題を解決したものであり、測定時の自動化を容易にして量産性を高めるとともに、測定時間の短縮化により生産時の測定能率を高めることができる微小形状部の寸法測定方法及び装置の提供を目的とする。
【0007】
【課題を解決するための手段及び実施の形態】
本発明に係る微小形状部の寸法測定方法は、被測定物Wにおける微小ギャップを設けるための基板Bに一体形成した微小形状部Wsとなるスペーサ用突起Wssの高さHを光干渉法により測定するに際し、微小形状部Wsの少なくとも高さ方向を含む位置を検出する予備測定部2と微小形状部Wsの高さHを白色光干渉法により測定する主測定部3を一定の位置関係に設定し、測定時に、予備測定部2により微小形状部Wsを検出して当該微小形状部Wsに対する位置決めを行うとともに、この後、主測定部3を一定の位置関係に基づく設定距離Lsだけ移動させ、主測定部3を基準位置Psに位置させることにより微小形状部Wsの高さ測定を行うようにしたことを特徴とする。
【0008】
一方、本発明に係る微小形状部Wsの寸法測定装置1は、被測定物Wにおける微小ギャップを設けるための基板Bに一体形成した微小形状部Wsとなるスペーサ用突起Wssの高さHを光干渉法により測定する装置であって、微小形状部Wsの少なくとも高さ方向を含む位置を検出する予備測定部2と微小形状部Wsの高さHを白色光干渉法により測定する主測定部3を一定の位置関係に設定した測定機構部Fsと、予備測定部2による微小形状部Wsの検出により当該微小形状部Wsに対する位置決めを行うとともに、主測定部3を一定の位置関係に基づく設定距離Lsだけ移動させることにより微小形状部Wsの高さ測定を行う基準位置Psに位置させる移動機構部Fmとを有する測定ユニットMを備えてなることを特徴とする。
【0009】
この場合、寸法測定装置1は、複数の被測定物W…を順次搬送し、かつ所定の測定位置で停止させる搬送機構部4を備えるとともに、搬送機構部4の搬送方向Tに対する垂直方向に、測定ユニットM…を複数配列させて構成することができる。
【0010】
【実施例】
次に、本発明に係る好適な実施例を挙げ、図面に基づき詳細に説明する。
【0011】
まず、本実施例に係る寸法測定装置1の構成について、図1〜図5を参照して説明する。なお、実施例の被測定物Wは、液晶表示器に用いられるカラーフィルタの基板Bであり、微小形状部Wsは、この基板B上に一体形成されたスペーサ用突起Wssである。本実施例に係る寸法測定装置1(寸法測定方法)は、このようなスペーサ用突起Wssに適用して、特に良好な結果
(効果)を期待することができる。
【0012】
寸法測定装置1は、図1に示すように、測定機構部Fsと移動機構部Fmを有する測定ユニットMを備える。また、測定機構部Fsは、予備測定部2と主測定部3を備え、この予備測定部2と主測定部3は、結合部材51を介して一体化し、両者間に一定の位置関係をもたせる。
【0013】
予備測定部2は、微小形状部Wsの少なくとも高さ方向を含む位置を検出する機能を備える。実施例の予備測定部2は、微小形状部Wsに対して、X軸方向,Y軸方向及びZ軸方向の位置を検出する。X軸方向及びY軸方向の位置は、予備測定部2に備えるCCDカメラ10により、被測定物Wを上方から撮像し、画像処理により座標点として検出する。また、Z軸方向の位置は、測距センサ11により上方から微小形状部Wsまでの距離を測定する。この場合、Z軸方向については、位置の測定時に、移動機構部Fmを用いて測定ユニットMをZ軸方向に変位させ、フォーカシング処理を行うことにより高さ方向に対する位置決めを同時に行う。なお、後述する搬送機構部4における被測定物Wのセッティング位置(X軸方向位置)の設定と、被測定物Wに対する搬送量(Y軸方向位置)の設定を行えば、予備測定部2におけるX軸方向とY軸方向の位置検出(位置決め)を不要にできる。この予備測定部2に用いるCCDカメラ10は、被測定物Wの傷や異物付着等の不良を検出する画像処理検査工程のCCDカメラを兼用することができる。
【0014】
一方、主測定部3は、微小形状部Wsの高さHを光干渉法により測定する機能を備える。実施例の主測定部3は、ミラウ式干渉計を用いたものであり、図1に示すように、ハロゲンランプを用いた白色光光源12と、水平に対して45°に傾斜させたハーフミラー13と、このハーフミラー13の横側方に配した照明レンズ14と、白色光光源12からの白色光を照明レンズ14に対して水平方向から入射させる光ファイバ15と、ハーフミラー13の上方に配した結像レンズ16と、ハーフミラー13の下方に配した対物レンズ17と、対物レンズ17の下方に水平に配したハーフミラー18と、このハーフミラー18と対物レンズ17間に配した微小ミラー19と、測定光路(測定距離)を可変するピエゾアクチュエータ20と、結像レンズ16の上方に配したCCDカメラ21をそれぞれ備えて構成する。
【0015】
他方、移動機構部Fmは、予備測定部2による微小形状部Wsの検出により当該微小形状部Wsに対する位置決めを行うとともに、主測定部3を一定の位置関係に基づく設定距離Lsだけ移動させることにより微小形状部Wsの高さ測定を行う基準位置Psに位置させる機能を備える。即ち、移動機構部Fmは、測定機構部FsをX軸方向に移動させるX軸方向移動機構部25と、このX軸方向移動機構部25をZ方向に移動させるZ軸方向移動機構部26と、このZ軸方向移動機構部26をY方向に移動させるY軸方向移動機構部27をそれぞれ備え、これにより、測定機構部Fsを、X軸方向,Y軸方向及びZ軸方向に移動させることができる。
【0016】
さらに、31は、コンピュータ処理機能を内蔵したコントローラであり、本実施例に係る寸法測定方法のためのシーケンス制御やデータ処理などを実行する。コントローラ31は、測定機構部Fsに関連して、ピエゾアクチュエータ20を制御する位置制御部32と、白色光光源12を制御する光源制御部33と、予備測定部2及びCCDカメラ21から得る信号を処理(画像処理)する信号処理部34をそれぞれ備えるとともに、移動機構部Fmに関連して、X軸方向移動機構部25を駆動制御するX軸ドライバ部35と、Z軸方向移動機構部26を駆動制御するZ軸ドライバ部36と、Y軸方向移動機構部27を駆動制御するY軸ドライバ部37をそれぞれ備える。
【0017】
また、コントローラ31には、測定状態を監視するディスプレイ(モニター)を備える。図4及び図5には、ディスプレイにおける表示画面の一例を示す。図4は、主に、測定データ及びその測定データの判定結果等を示す表示画面V1であり、微小形状部WsのX軸方向及びY軸方向の位置をX−Y座標で示すイメージデータ表示部41,微小形状部WsのX軸方向及びZ軸方向の位置をX−Z座標で示すイメージデータ表示部42及び各種数値データを表示する数値データ表示部43等を有するとともに、図5に示す表示画面V2には、微小形状部Ws(スペーサ用突起Wss)を三次元表示する立体表示部44を有する。
【0018】
このような測定機構部Fsと移動機構部Fmを有する測定ユニットMは、図2に示すように、生産ラインを構成する搬送機構部4に付設して寸法測定装置1の全体を構成する。この場合、搬送機構部4は、横二列に配した複数の被測定物W…を順次搬送するとともに、所定の測定位置で停止させる機能を備える。また、測定ユニットM…は複数(実施例は四台)用意し、各測定ユニットM…を、搬送機構部4の搬送方向Tに対する垂直方向に配列させて設置する。測定ユニットM…を、このように複数配列させて構成すれば、さらなる量産性と測定能率の向上に寄与できる。
【0019】
次に、本実施例に係る寸法測定方法を含む寸法測定装置1の動作(機能)について、図1〜図5及び図7を参照しつつ、図6に示すフローチャートに従って説明する。
【0020】
まず、搬送機構部4を制御することにより、被測定物W…を矢印Tで示す搬送方向へ搬送する(ステップS1)。そして、予め設定された測定位置で搬送を停止する(ステップS2,S3)。この場合、測定機構部Fsは、X軸方向移動機構部25により、図7に示す位置、即ち、予備測定部2により微小形状部Wsを検出する検出位置Pdにセットされるため、この位置において、微小形状部Wsに対する検出処理を実行する(ステップS4)。なお、検出処理には、検出のみならず、検出結果に基づく微小形状部Wsに対する測定機構部Fsの位置決め処理が含まれる。
【0021】
検出処理は、予備測定部2におけるCCDカメラ10により被測定物Wを上方から撮像し、画像処理により座標点としてX軸方向及びY軸方向における微小形状部Wsの位置を検出する。X軸方向及びY軸方向の位置を検出したなら、X軸ドライバ部35及びY軸ドライバ部37により、X軸方向移動機構部25及びY軸方向移動機構部27をそれぞれ駆動制御し、予備測定部2における測距センサ11の検出中心が微小形状部Wsの上端になるように変位させるとともに、Z軸ドライバ部36によりZ軸方向移動機構部26を駆動制御し、予備測定部2をZ軸方向に変位させることによりフォーカシング処理を行う。なお、搬送機構部4における被測定物Wのセッティング位置(X軸方向位置)を設定するとともに、被測定物Wに対する搬送量(Y軸方向位置)の設定を行えば、予備測定部2におけるX軸方向及びY軸方向の位置検出(位置決め)は不要となる。
【0022】
そして、予備測定部2による検出処理が終了したなら、X軸ドライバ部35によりX軸方向移動機構部25を駆動制御し、測定機構部Fsを設定距離Lsだけ移動させる(ステップS5,S6)。これにより、主測定部3は、微小形状部Wsの高さHを測定する基準位置Psまで変位する。この場合、予備測定部2と主測定部3は一定の位置関係により設定されているため、設定距離Lsは、この一定の位置関係に基づいて設定、即ち、予備測定部2の検出中心と主測定部3の測定中心間の距離が設定距離Lsとして設定される。
【0023】
このように、予備測定部2を利用して測定機構部Fsに対する少なくとも高さ方向(Z軸方向)を含むX軸方向及びY軸方向の位置決めを行えば、X軸方向移動機構部25により測定機構部Fsを単に設定距離Lsだけ移動させるのみで、主測定部3を、微小形状部Wsの高さ測定を行うための基準位置Psに容易かつ確実にセットすることができる。
【0024】
主測定部3が基準位置Psにセットされたなら、主測定部3により微小形状部Wsの高さを測定する測定処理を実行する(ステップS7)。測定時には、白色光光源12の白色光が、光ファイバ15,照明レンズ14及びハーフミラー13を介して対物レンズ17に入射する。白色光は対物レンズ17により集束されるが、ハーフミラー18により半分の光量が反射されて微小ミラー19に入射するとともに、残りの半分の光量は、ハーフミラー18を透過して下方へ出射する。また、微小形状部Wsを反射した光と微小ミラー19を反射した光は、再びハーフミラー18に戻り、ここで干渉縞が発生する。干渉縞の輝度が最も大きくなるのはハーフミラー18から微小ミラー19までの距離と微小形状部Ws上で反射した光の光路長が一致する場合である。この際、光の波長に拘わらずに位相が一致するため、最も輝度の大きい干渉縞が発生するとともに、他方、一致点から離れることにより、光の波長ごとに位相差が大きくなるため、干渉縞の輝度(干渉強度)が急速に小さくなる。
【0025】
したがって、基準位置Psに着目して、対物レンズ17を連続的に光軸方向に動かせば、図3に示す干渉縞の強度曲線Kが得られる。即ち、干渉縞は結像レンズ16によりCCDカメラ21上に結像するため、コントローラ31によりピエゾアクチュエータ20を制御し、対物レンズ17を光軸方向へ間欠的に微小量移動させることにより画像を取り込めば、干渉縞の輝度データがコントローラ31におけるメモリに記憶され、一定の間隔でサンプリングした図3に示す強度曲線Kが得られる。よって、サンプリングしたデータから干渉中心点を求め、これを二次元的に捕らえれば、微小形状部Wsの高さHを高精度で測定することができる。
【0026】
このような処理は、図2に示す各測定ユニットM…毎に独立して並行処理が可能である。そして、各被測定物W…は、搬送機構部4により順次搬送され、同様の測定処理が繰り返して行われる(ステップS8,S9)。よって、このような微小形状部Wsの寸法測定方法(寸法測定装置1)によれば、予備測定部2を利用して微小形状部Wsに対する主測定部3の位置決めを正確かつ迅速に行うことができるため、測定時の自動化を容易にして量産性を高めることができるとともに、測定時間の短縮化により生産時の測定能率を高めることができる。
【0027】
以上、実施例について詳細に説明したが、本発明はこのような実施例に限定されるものではなく、細部の構成,形状,手法等において、本発明の要旨を逸脱しない範囲で任意に変更,追加,削除することができる。
【0028】
例えば、光干渉法を用いた光干渉計としてミラウ式干渉計を例示したが、リニック式干渉計やトワイマングリーン式干渉計等の他の光干渉計を排除するものではない。さらに、検出処理の段階でフォーカシング処理を行ったが、距離を測定し、移動させた後に、測定結果に基づいて高さを補正するなど、本発明の効果を失わない以上、細部の処理手順等の変更は任意である。
【0029】
一方、上述した実施例は、X軸方向移動機構部25を用いて測定機構部Fsを移動させる場合を示したが、図8に示すように、回転駆動部61を利用し、この回転駆動部61の回転シャフト62に固定したベース部63に、同様の予備測定部2と主測定部3を取付け、矢印Rで示す方向へ一定角度範囲回転させても同様に実施できる。
【0030】
【発明の効果】
このように、本発明に係る微小形状部の寸法測定方法(寸法測定装置)は、被測定物における微小ギャップを設けるための基板に一体形成した微小形状部となるスペーサ用突起の高さを光干渉法により測定するに際し、微小形状部の少なくとも高さ方向を含む位置を検出する予備測定部と微小形状部の高さを白色光干渉法により測定する主測定部を一定の位置関係に設定し、測定時に、予備測定部により微小形状部を検出して当該微小形状部に対する位置決めを行うとともに、この後、主測定部を一定の位置関係に基づく設定距離だけ移動させ、主測定部を基準位置に位置させることにより微小形状部の高さ測定を行うようにしたため、次のような顕著な効果を奏する。
【0031】
(1) 予備測定部を利用して、微小形状部に対する主測定部の位置決めを正確かつ迅速に行うことができるため、測定時の自動化を容易にして量産性を高めることができるとともに、測定時間の短縮化により生産時の測定能率を高めることができ、特に、微小ギャップを設けるための基板に一体形成したスペーサ用突起の測定に適用して、良好な結果を期待できる。
【0032】
(2) 好適な実施の形態により、複数の被測定物を順次搬送し、かつ所定の測定位置で停止させる搬送機構部を設けるとともに、搬送機構部の搬送方向に対する垂直方向に、測定ユニットを複数配列させて構成すれば、さらなる量産性と測定能率の向上に寄与できる。
【図面の簡単な説明】
【図1】 本発明の好適な実施例に係る寸法測定装置の模式的正面構成図、
【図2】 同寸法測定装置の搬送機構部を含む全体の模式的平面構成図、
【図3】 光干渉法を用いた場合に発生する干渉縞の強度曲線図、
【図4】 同寸法測定装置に備えるディスプレイの表示画面図、
【図5】 同寸法測定装置に備えるディスプレイの他の表示画面図、
【図6】 本発明の好適な実施例に係る寸法測定方法による処理手順を示すフローチャート、
【図7】 同寸法測定装置の測定機構部を検出位置にセットした状態の模式的正面構成図、
【図8】 本発明の変更実施例に係る寸法測定装置の一部を示す模式的平面構成図、
【符号の説明】
1 寸法測定装置
2 予備測定部
3 主測定部
4 搬送機構部
W 被測定物
Ws 微小形状部
Wss スペーサ用突起
H 微小形状部の高さ
Ls 設定距離
Ps 基準位置
B 基板
Fs 測定機構部
Fm 移動機構部
M 測定ユニット
T 搬送方向
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for measuring a dimension of a micro-shaped part suitable for use in measuring the height of a micro-shaped part in an object to be measured by an optical interference method.
[0002]
[Prior art]
Conventionally, methods (apparatuses) for measuring the shape of a minute shape portion in a measurement object by optical interference method are disclosed in Japanese Patent Laid-Open No. 8-502828, Japanese Patent Laid-Open No. 9-503065, Japanese Patent Laid-Open No. 10-62139, and the like. In particular, as a method (apparatus) for measuring the height of a minute shape portion, a height measuring method and apparatus disclosed in Japanese Patent Laid-Open No. 8-327327 are known.
[0003]
In shape measurement (height measurement method) using optical interferometry (white light interferometry), first, a white light with a short coherence distance is irradiated from a white light source onto a half mirror in a two-beam interference optical system, and the reference light And the reference light and the measurement light are caused to interfere with each other to generate interference fringes. At this time, if the distance between the measurement optical path and the reference optical path is the same, the luminance of the interference fringe is maximized, so the distance of the measurement optical path is changed relative to the reference optical path, and the generated interference fringe is imaged. By obtaining a maximum optical path difference by image processing, the three-dimensional shape (Z-axis height) of the object to be measured is measured.
[0004]
[Problems to be solved by the invention]
By the way, in the color filter used for the liquid crystal display, the spacer protrusion is integrally formed on the substrate because it is necessary to provide a minute gap. The spacer protrusions are usually formed to have a height of about 5 micrometers, and are provided at intervals of about several hundred micrometers, and the height of the spacer protrusions needs to be within a certain tolerance. Therefore, the height is measured in the inspection process to check whether it is within the tolerance.
[0005]
However, when such a spacer projection is inspected on the production line, it is not easy to find a reference position for starting measurement by the optical interferometry in the conventional height measuring method and apparatus using the optical interferometry. , Usually relies on how to move to the estimated position. For this reason, there is a low probability of finding an accurate position, which eventually leads to a decrease in measurement efficiency due to the time required for measurement, and it is not easy to establish automation at the time of measurement, resulting in inferior mass productivity. there were.
[0006]
The present invention solves such a problem existing in the prior art, facilitates automation during measurement and increases mass productivity, and improves measurement efficiency during production by reducing measurement time. An object of the present invention is to provide a method and an apparatus for measuring a dimension of a minute shape portion.
[0007]
[Means for Solving the Problems and Embodiments]
In the method for measuring the dimension of the minute shape portion according to the present invention, the height H of the spacer protrusion Wss that becomes the minute shape portion Ws integrally formed on the substrate B for providing the minute gap in the workpiece W is measured by the optical interference method. In this case, the preliminary measurement unit 2 that detects a position including at least the height direction of the minute shape portion Ws and the main measurement unit 3 that measures the height H of the minute shape portion Ws by white light interferometry are set in a certain positional relationship. During measurement, the preliminary measurement unit 2 detects the minute shape portion Ws and positions the minute shape portion Ws. Thereafter, the main measurement unit 3 is moved by a set distance Ls based on a certain positional relationship, The main measurement unit 3 is positioned at the reference position Ps to measure the height of the minute shape portion Ws.
[0008]
On the other hand, the dimension measuring device 1 of the minute shape portion Ws according to the present invention uses the height H of the spacer projection Wss that becomes the minute shape portion Ws integrally formed on the substrate B for providing a minute gap in the object W to be measured. An apparatus for measuring by interferometry, a preliminary measurement unit 2 for detecting a position including at least the height direction of the minute shape portion Ws, and a main measurement unit 3 for measuring the height H of the minute shape portion Ws by white light interferometry. Is positioned with respect to the minute shape portion Ws by detecting the minute shape portion Ws by the preliminary measurement unit 2, and the main measurement unit 3 is set with a set distance based on the certain position relationship. It is characterized by comprising a measuring unit M having a moving mechanism portion Fm positioned at a reference position Ps for measuring the height of the minute shape portion Ws by being moved by Ls.
[0009]
In this case, the dimension measuring apparatus 1 includes a transport mechanism unit 4 that sequentially transports a plurality of objects to be measured W and stops at a predetermined measurement position, and in a direction perpendicular to the transport direction T of the transport mechanism unit 4. A plurality of measurement units M can be arranged.
[0010]
【Example】
Next, preferred embodiments according to the present invention will be given and described in detail with reference to the drawings.
[0011]
First, the structure of the dimension measuring apparatus 1 according to the present embodiment will be described with reference to FIGS. In addition, the to-be-measured object W of an Example is the board | substrate B of the color filter used for a liquid crystal display, and the micro shape part Ws is the processus | protrusion Wss for spacers integrally formed on this board | substrate B. FIG. The dimension measuring apparatus 1 (dimension measuring method) according to the present example can be applied to such a spacer projection Wss, and a particularly good result (effect) can be expected.
[0012]
As shown in FIG. 1, the dimension measuring apparatus 1 includes a measurement unit M having a measurement mechanism unit Fs and a movement mechanism unit Fm. The measurement mechanism unit Fs includes a preliminary measurement unit 2 and a main measurement unit 3, and the preliminary measurement unit 2 and the main measurement unit 3 are integrated via a coupling member 51 so as to have a certain positional relationship therebetween. .
[0013]
The preliminary measurement unit 2 has a function of detecting a position including at least the height direction of the minute shape portion Ws. The preliminary measurement unit 2 according to the embodiment detects positions in the X axis direction, the Y axis direction, and the Z axis direction with respect to the minute shape portion Ws. The positions in the X-axis direction and the Y-axis direction are detected as coordinate points by picking up an image of the workpiece W from above by the CCD camera 10 provided in the preliminary measurement unit 2 and performing image processing. The position in the Z-axis direction is measured by the distance measuring sensor 11 from the upper side to the minute shape portion Ws. In this case, in the Z-axis direction, when measuring the position, the measuring unit M is displaced in the Z-axis direction by using the moving mechanism unit Fm, and the positioning in the height direction is simultaneously performed by performing a focusing process. In addition, if the setting position (X-axis direction position) of the workpiece W in the transport mechanism unit 4 to be described later and the transport amount (Y-axis direction position) with respect to the workpiece W are set, the preliminary measurement unit 2 Position detection (positioning) in the X-axis direction and the Y-axis direction can be eliminated. The CCD camera 10 used for the preliminary measurement unit 2 can also be used as a CCD camera in an image processing inspection process for detecting defects such as scratches or foreign matter adhesion on the workpiece W.
[0014]
On the other hand, the main measurement unit 3 has a function of measuring the height H of the minute shape portion Ws by an optical interference method. The main measuring unit 3 of the example uses a Mirau interferometer, and as shown in FIG. 1, a white light source 12 using a halogen lamp and a half mirror inclined at 45 ° with respect to the horizontal. 13, an illumination lens 14 disposed on the lateral side of the half mirror 13, an optical fiber 15 for causing white light from the white light source 12 to enter the illumination lens 14 from the horizontal direction, and above the half mirror 13. The image forming lens 16 disposed, the objective lens 17 disposed below the half mirror 13, the half mirror 18 disposed horizontally below the objective lens 17, and a micro mirror disposed between the half mirror 18 and the objective lens 17. 19, a piezo actuator 20 that changes the measurement optical path (measurement distance), and a CCD camera 21 disposed above the imaging lens 16.
[0015]
On the other hand, the movement mechanism unit Fm performs positioning with respect to the minute shape portion Ws by detecting the minute shape portion Ws by the preliminary measurement unit 2, and moves the main measurement unit 3 by a set distance Ls based on a certain positional relationship. It has a function of being positioned at the reference position Ps for measuring the height of the minute shape portion Ws. That is, the movement mechanism unit Fm includes an X-axis direction movement mechanism unit 25 that moves the measurement mechanism unit Fs in the X-axis direction, and a Z-axis direction movement mechanism unit 26 that moves the X-axis direction movement mechanism unit 25 in the Z direction. The Y-axis direction moving mechanism unit 27 for moving the Z-axis direction moving mechanism unit 26 in the Y direction is provided, thereby moving the measurement mechanism unit Fs in the X-axis direction, the Y-axis direction, and the Z-axis direction. Can do.
[0016]
Furthermore, 31 is a controller with a built-in computer processing function, which executes sequence control, data processing, and the like for the dimension measuring method according to the present embodiment. In relation to the measurement mechanism unit Fs, the controller 31 receives signals from the position control unit 32 that controls the piezo actuator 20, the light source control unit 33 that controls the white light source 12, the preliminary measurement unit 2, and the CCD camera 21. A signal processing unit 34 that performs processing (image processing) is provided, and an X-axis driver unit 35 that drives and controls the X-axis direction moving mechanism unit 25 and a Z-axis direction moving mechanism unit 26 are associated with the moving mechanism unit Fm. A Z-axis driver unit 36 that controls driving and a Y-axis driver unit 37 that controls driving of the Y-axis direction moving mechanism unit 27 are provided.
[0017]
The controller 31 includes a display (monitor) for monitoring the measurement state. 4 and 5 show examples of display screens on the display. FIG. 4 is a display screen V1 mainly showing measurement data and determination results of the measurement data, and an image data display unit showing the positions of the minute shape portion Ws in the X-axis direction and the Y-axis direction by XY coordinates. 41, an image data display unit 42 indicating the position of the minute shape portion Ws in the X-axis direction and the Z-axis direction in the X-Z coordinates, a numerical data display unit 43 for displaying various numerical data, and the display shown in FIG. The screen V2 includes a three-dimensional display unit 44 that three-dimensionally displays the minute shape portion Ws (spacer protrusion Wss).
[0018]
As shown in FIG. 2, the measurement unit M having such a measurement mechanism unit Fs and a movement mechanism unit Fm is attached to the transport mechanism unit 4 constituting the production line to constitute the entire dimension measurement apparatus 1. In this case, the transport mechanism unit 4 has a function of sequentially transporting the plurality of objects W to be measured arranged in two horizontal rows and stopping at a predetermined measurement position. Also, a plurality of measurement units M (four in the embodiment) are prepared, and each measurement unit M is arranged in a direction perpendicular to the transport direction T of the transport mechanism unit 4. If a plurality of measurement units M are arranged in this way, it can contribute to further improvement of mass productivity and measurement efficiency.
[0019]
Next, the operation (function) of the dimension measuring apparatus 1 including the dimension measuring method according to the present embodiment will be described according to the flowchart shown in FIG. 6 with reference to FIGS.
[0020]
First, the object to be measured W is transported in the transport direction indicated by the arrow T by controlling the transport mechanism 4 (step S1). Then, the conveyance is stopped at a preset measurement position (steps S2 and S3). In this case, the measurement mechanism unit Fs is set to the position shown in FIG. 7 by the X-axis direction moving mechanism unit 25, that is, the detection position Pd for detecting the minute shape portion Ws by the preliminary measurement unit 2, and therefore at this position. Then, detection processing for the minute shape portion Ws is executed (step S4). The detection processing includes not only detection but also positioning processing of the measurement mechanism unit Fs with respect to the minute shape portion Ws based on the detection result.
[0021]
In the detection process, the object to be measured W is imaged from above by the CCD camera 10 in the preliminary measurement unit 2, and the position of the minute shape portion Ws in the X-axis direction and the Y-axis direction is detected as a coordinate point by image processing. If the positions in the X-axis direction and the Y-axis direction are detected, the X-axis driver unit 35 and the Y-axis driver unit 37 drive and control the X-axis direction moving mechanism unit 25 and the Y-axis direction moving mechanism unit 27, respectively. The distance measuring sensor 11 in the part 2 is displaced so that the detection center is located at the upper end of the minute shape part Ws, and the Z-axis direction moving mechanism part 26 is driven and controlled by the Z-axis driver part 36 so that the preliminary measuring part 2 is moved to the Z-axis. Focusing processing is performed by displacing in the direction. If the setting position (X-axis direction position) of the workpiece W in the transport mechanism unit 4 is set and the transport amount (Y-axis direction position) with respect to the workpiece W is set, the X in the preliminary measurement unit 2 is set. Position detection (positioning) in the axial direction and the Y-axis direction is not necessary.
[0022]
When the detection process by the preliminary measuring unit 2 is completed, the X-axis driver unit 35 controls the X-axis direction moving mechanism unit 25 to move the measuring mechanism unit Fs by the set distance Ls (steps S5 and S6). Thereby, the main measurement part 3 is displaced to the reference position Ps for measuring the height H of the minute shape part Ws. In this case, since the preliminary measurement unit 2 and the main measurement unit 3 are set with a certain positional relationship, the set distance Ls is set based on this certain positional relationship, that is, the detection center of the preliminary measurement unit 2 and the main measurement unit 3 The distance between the measurement centers of the measurement unit 3 is set as the set distance Ls.
[0023]
As described above, if positioning is performed in the X-axis direction and the Y-axis direction including at least the height direction (Z-axis direction) with respect to the measurement mechanism unit Fs using the preliminary measurement unit 2, the measurement is performed by the X-axis direction moving mechanism unit 25. The main measurement unit 3 can be easily and reliably set at the reference position Ps for measuring the height of the minute shape portion Ws by simply moving the mechanism unit Fs by the set distance Ls.
[0024]
If the main measurement unit 3 is set at the reference position Ps, the main measurement unit 3 performs a measurement process for measuring the height of the minute shape portion Ws (step S7). At the time of measurement, white light from the white light source 12 enters the objective lens 17 through the optical fiber 15, the illumination lens 14, and the half mirror 13. The white light is focused by the objective lens 17, but half the amount of light is reflected by the half mirror 18 and is incident on the minute mirror 19, and the remaining half amount of light is transmitted through the half mirror 18 and emitted downward. Further, the light reflected from the minute shape portion Ws and the light reflected from the minute mirror 19 return to the half mirror 18 again, where interference fringes are generated. The luminance of the interference fringes becomes the highest when the distance from the half mirror 18 to the minute mirror 19 matches the optical path length of the light reflected on the minute shape portion Ws. At this time, since the phases match regardless of the wavelength of the light, an interference fringe with the highest luminance is generated, and on the other hand, the phase difference increases for each wavelength of the light by moving away from the coincidence point. The brightness (intensity of interference) decreases rapidly.
[0025]
Therefore, if the objective lens 17 is continuously moved in the optical axis direction while paying attention to the reference position Ps, an interference fringe intensity curve K shown in FIG. 3 is obtained. That is, since the interference fringes are imaged on the CCD camera 21 by the imaging lens 16, the controller 31 controls the piezo actuator 20, and the objective lens 17 is intermittently moved in the optical axis direction to capture an image. For example, the luminance data of the interference fringes is stored in the memory in the controller 31, and the intensity curve K shown in FIG. 3 sampled at regular intervals is obtained. Therefore, if the interference center point is obtained from the sampled data and captured two-dimensionally, the height H of the minute shape portion Ws can be measured with high accuracy.
[0026]
Such processing can be performed in parallel independently for each measurement unit M shown in FIG. And each to-be-measured object W ... is sequentially conveyed by the conveyance mechanism part 4, and the same measurement process is repeatedly performed (step S8, S9). Therefore, according to such a dimension measuring method (dimension measuring apparatus 1) of the minute shape portion Ws, the preliminary measurement unit 2 can be used to accurately and quickly position the main measurement unit 3 with respect to the minute shape portion Ws. Therefore, the automation during measurement can be facilitated to increase mass productivity, and the measurement efficiency during production can be increased by shortening the measurement time.
[0027]
As described above, the embodiments have been described in detail. However, the present invention is not limited to such embodiments, and the detailed configuration, shape, technique, and the like can be arbitrarily changed without departing from the gist of the present invention. Can be added or deleted.
[0028]
For example, although the Mirau interferometer is illustrated as an optical interferometer using the optical interferometry, other optical interferometers such as a linic interferometer and a Twiman Green interferometer are not excluded. Furthermore, focusing processing was performed at the detection processing stage. After measuring and moving the distance, the height is corrected based on the measurement result. The change of is optional.
[0029]
On the other hand, in the above-described embodiment, the measurement mechanism unit Fs is moved by using the X-axis direction moving mechanism unit 25. However, as shown in FIG. The same preliminary measurement unit 2 and main measurement unit 3 are attached to the base portion 63 fixed to the rotary shaft 62 of 61, and can be similarly implemented by rotating in a range of a predetermined angle in the direction indicated by the arrow R.
[0030]
【The invention's effect】
As described above, the dimension measuring method (dimension measuring apparatus) of the minute shape portion according to the present invention optically measures the height of the spacer projection that becomes the minute shape portion integrally formed on the substrate for providing the minute gap in the object to be measured. When measuring by interferometry, the preliminary measurement unit that detects the position including at least the height direction of the micro-shaped part and the main measurement unit that measures the height of the micro-shaped part by white light interferometry are set in a certain positional relationship. At the time of measurement, the preliminary measurement unit detects the minute shape portion and performs positioning with respect to the minute shape portion. Thereafter, the main measurement portion is moved by a set distance based on a certain positional relationship, and the main measurement portion is moved to the reference position. Since the height of the micro-shaped portion is measured by positioning it in the position, the following remarkable effects can be obtained.
[0031]
(1) Since the preliminary measurement unit can be used to accurately and quickly position the main measurement unit with respect to the minute shape part, it is easy to automate the measurement and increase the mass productivity, and the measurement time The measurement efficiency at the time of production can be increased by shortening the length, and in particular, good results can be expected when applied to the measurement of spacer protrusions integrally formed on a substrate for providing a minute gap.
[0032]
(2) According to a preferred embodiment, a transport mechanism unit that sequentially transports a plurality of objects to be measured and stops at a predetermined measurement position is provided, and a plurality of measurement units are arranged in a direction perpendicular to the transport direction of the transport mechanism unit. If arranged, it can contribute to further improvement of mass productivity and measurement efficiency.
[Brief description of the drawings]
FIG. 1 is a schematic front view of a dimension measuring apparatus according to a preferred embodiment of the present invention;
FIG. 2 is a schematic plan view of the entire structure including a transport mechanism of the same dimension measuring device,
FIG. 3 is an intensity curve diagram of interference fringes generated when optical interferometry is used;
FIG. 4 is a display screen diagram of a display provided in the same dimension measuring device,
FIG. 5 is another display screen diagram of a display provided in the same dimension measuring device.
FIG. 6 is a flowchart showing a processing procedure by a dimension measuring method according to a preferred embodiment of the present invention;
FIG. 7 is a schematic front configuration diagram of a state in which the measurement mechanism unit of the same dimension measurement device is set at a detection position;
FIG. 8 is a schematic plan configuration diagram showing a part of a dimension measuring apparatus according to a modified embodiment of the present invention;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Dimension measurement apparatus 2 Preliminary measurement part 3 Main measurement part 4 Conveyance mechanism part W Measured object Ws Minute shape part Wss Spacer protrusion H Height of minute shape part Ls Setting distance Ps Reference position B Substrate Fs Measurement mechanism part Fm Movement mechanism Part M Measuring unit T Transport direction

Claims (4)

被測定物における微小ギャップを設けるための基板に一体形成した微小形状部となるスペーサ用突起の高さを光干渉法により測定する微小形状部の寸法測定方法において、前記微小形状部の少なくとも高さ方向を含む位置を検出する予備測定部と前記微小形状部の高さを白色光干渉法により測定する主測定部を一定の位置関係に設定し、測定時に、前記予備測定部により前記微小形状部を検出して当該微小形状部に対する位置決めを行うとともに、この後、前記主測定部を前記一定の位置関係に基づく設定距離だけ移動させ、前記主測定部を基準位置に位置させることにより前記微小形状部の高さ測定を行うことを特徴とする微小形状部の寸法測定方法。  In a method for measuring a dimension of a micro-shaped part that measures the height of a spacer projection, which is a micro-shaped part integrally formed on a substrate for providing a micro gap in an object to be measured, by the optical interference method, at least the height of the micro-shaped part is measured. A preliminary measurement unit for detecting a position including a direction and a main measurement unit for measuring the height of the minute shape part by white light interferometry are set in a fixed positional relationship, and the minute shape part is measured by the preliminary measurement unit during measurement. Is detected and positioned with respect to the minute shape portion, and thereafter, the main measurement portion is moved by a set distance based on the fixed positional relationship, and the main measurement portion is positioned at a reference position to thereby position the minute shape. A method for measuring a dimension of a minute shape part, wherein the height of the part is measured. 被測定物における微小ギャップを設けるための基板に一体形成した微小形状部となるスペーサ用突起の高さを光干渉法により測定する微小形状部の寸法測定装置において、前記微小形状部の少なくとも高さ方向を含む位置を検出する予備測定部と前記微小形状部の高さを白色光干渉法により測定する主測定部を一定の位置関係に設定した測定機構部と、前記予備測定部による前記微小形状部の検出により当該微小形状部に対する位置決めを行うとともに、前記主測定部を前記一定の位置関係に基づく設定距離だけ移動させることにより前記微小形状部の高さ測定を行う基準位置に位置させる移動機構部とを有する測定ユニットを備えてなることを特徴とする微小形状部の寸法測定装置。  In a dimension measuring apparatus for a minute shape portion that measures the height of a spacer projection as a minute shape portion integrally formed on a substrate for providing a minute gap in an object to be measured by an optical interference method, at least the height of the minute shape portion is measured. A preliminary measurement unit that detects a position including a direction, a measurement mechanism unit that sets a main measurement unit that measures the height of the minute shape part by white light interferometry in a fixed positional relationship, and the minute shape by the preliminary measurement unit A moving mechanism for positioning the micro-shaped part by detecting the part and positioning the main measuring part at a reference position for measuring the height of the micro-shaped part by moving the main measuring part by a set distance based on the fixed positional relationship And a measurement unit having a measuring part. 複数の被測定物を順次搬送し、かつ所定の測定位置で停止させる搬送機構部を備えることを特徴とする請求項2記載の微小形状部の寸法測定装置。  The apparatus for measuring a dimension of a minute shape part according to claim 2, further comprising a conveyance mechanism unit that sequentially conveys a plurality of objects to be measured and stops at a predetermined measurement position. 前記搬送機構部の搬送方向に対する垂直方向に、前記測定ユニットを複数配列させて構成したことを特徴とする請求項3記載の微小形状部の寸法測定装置。  The apparatus for measuring a dimension of a minute shape part according to claim 3, wherein a plurality of the measurement units are arranged in a direction perpendicular to the conveyance direction of the conveyance mechanism unit.
JP2002171219A 2002-06-12 2002-06-12 Method and apparatus for measuring dimension of minute shape portion Expired - Fee Related JP3670627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002171219A JP3670627B2 (en) 2002-06-12 2002-06-12 Method and apparatus for measuring dimension of minute shape portion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002171219A JP3670627B2 (en) 2002-06-12 2002-06-12 Method and apparatus for measuring dimension of minute shape portion

Publications (2)

Publication Number Publication Date
JP2004020202A JP2004020202A (en) 2004-01-22
JP3670627B2 true JP3670627B2 (en) 2005-07-13

Family

ID=31171137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002171219A Expired - Fee Related JP3670627B2 (en) 2002-06-12 2002-06-12 Method and apparatus for measuring dimension of minute shape portion

Country Status (1)

Country Link
JP (1) JP3670627B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085809A (en) * 2005-09-21 2007-04-05 Hitachi High-Technologies Corp Height measuring instrument and height measuring method for minute projection
JP4197340B2 (en) * 2006-01-16 2008-12-17 アンリツ株式会社 3D shape measuring device
JP2011220712A (en) * 2010-04-05 2011-11-04 Hitachi High-Technologies Corp Height measuring method and apparatus
JP6189102B2 (en) * 2013-06-25 2017-08-30 Ntn株式会社 Coating apparatus and height detection method

Also Published As

Publication number Publication date
JP2004020202A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP4337999B2 (en) Focus position control mechanism and method, and semiconductor wafer inspection apparatus and method
KR102615578B1 (en) Characterizing a height profile of a sample by side view imaging
KR101808388B1 (en) Probe apparatus and probe method
KR20100023258A (en) Method and apparatus for inspecting of flat display panel
KR20040063131A (en) Substrate Inspection Apparatus
JP2009511932A (en) Image measuring apparatus and method
JP4632564B2 (en) Surface defect inspection equipment
JP2005189069A (en) Method and apparatus for measuring surface shape
JP2019074470A (en) Adjustment method of image measurement device
JP2002228422A (en) Online measuring device for measuring thickness of substrate and its measuring method
JP3670627B2 (en) Method and apparatus for measuring dimension of minute shape portion
JP5096852B2 (en) Line width measuring apparatus and inspection method of line width measuring apparatus
JP2010014444A (en) Shape measurement method and measurement device by phase shift method
JP2003042734A (en) Method and apparatus for measurement of surface shape
KR20080088946A (en) Apparatus for inspection of three-dimensional shape and method for inspection by the same
JP2015152379A (en) grazing incidence interferometer
CN110470250B (en) Detection device and detection method for surface flatness of part
JPH03108735A (en) Method and apparatus for comparison inspection
JP3481144B2 (en) Chamfer width measuring device
JP2002296020A (en) Surface shape measuring instrument
JP6775389B2 (en) Visual inspection equipment and visual inspection method
JPH10123016A (en) High speed synchronous image pickup inspection unit for liquid crystal display substrate
JP6333351B1 (en) Measuring device, coating device, and film thickness measuring method
KR100672166B1 (en) Line width measuring method
JP3966800B2 (en) Surface inspection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees