JP2004018280A - 改質システム - Google Patents

改質システム Download PDF

Info

Publication number
JP2004018280A
JP2004018280A JP2002172483A JP2002172483A JP2004018280A JP 2004018280 A JP2004018280 A JP 2004018280A JP 2002172483 A JP2002172483 A JP 2002172483A JP 2002172483 A JP2002172483 A JP 2002172483A JP 2004018280 A JP2004018280 A JP 2004018280A
Authority
JP
Japan
Prior art keywords
hydrogen
reforming
reactor
chamber
hydrogen separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002172483A
Other languages
English (en)
Inventor
Yoshiharu Nakaji
中路 義晴
Yasukazu Iwasaki
岩崎 靖和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002172483A priority Critical patent/JP2004018280A/ja
Publication of JP2004018280A publication Critical patent/JP2004018280A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】燃料電池に水素を充分な量で供給可能な改質システムを得る。
【解決手段】炭素および水素を含む化合物の燃料を改質反応器1内で水素を含む燃料ガスに変換し、燃料ガスを貯蔵タンク15に貯える改質システムであり、改質室2での化合物から水素を含む燃料ガスを水蒸気改質反応により製造し、改質室2の燃料ガスから水素分離膜3、4を透過させて水素分離室5、6に水素を分離し、上流の水素分離室5を貯蔵タンクに連通させ、水素分離膜3は改質室2の化合物入口11付近の領域を外して配置した。
【選択図】  図1

Description

【0001】
【発明の属する技術分野】
本発明は、水素を製造する改質システムに関し、特に、負荷変動が大きい移動体用の燃料電池等の消費手段に対して水素を含む化合物から改質して燃料ガスを供給する改質システムに関するものである。
【0002】
【従来の技術】
従来から燃料電池の負荷変動に応答するために貯蔵タンクを備えた改質システムは知られており、例えば、特許第3220438号に記載されたものがある。
【0003】
このものは、移動体用の燃料電池として好適な固体高分子型燃料電池の燃料ガスである水素を、取り扱いの簡便なアルコールやガソリンのような炭化水素等の水素を含む化合物から水蒸気改質反応手段により得る改質システムである。そして、貯蔵タンクに水蒸気改質反応手段から得られた水素を含む燃料ガスを貯蔵し、水蒸気改質反応手段の応答速度が不充分な時には貯蔵タンクからも燃料ガスを供給可能としている。
【0004】
【発明が解決しようとする課題】
ところで、アルコールやガソリンのような炭化水素等の化合物を水蒸気改質反応等によって水素リッチな改質ガスに変換する場合、反応圧力を高めると水素とともにメタンガスが多く生成されることが知られている。
【0005】
しかしながら、上記従来例では、貯蔵タンクに水素を含む燃料ガスを貯蔵するよう水蒸気改質反応手段の圧力を燃料電池の動作圧力よりも高く設定し、その圧力差を利用して貯蔵タンクに水素を含む燃料ガスを貯蔵するようにしている。
【0006】
このため、水蒸気改質反応手段でメタンガスが多く発生され、このメタンガスは下流のシフトコンバータとCO選択酸化器を通過して燃料電池に供給され、燃料電池で消費すべき十分な量の水素を供給できない恐れがあった。
【0007】
さらに、上記メタンガスは水蒸気改質に必要な熱を発生させるよう燃焼器で燃焼させることもできるが、多く発生されたメタンガスの熱量は水蒸気改質に必要な熱量を上回ることとなり、結果として燃焼熱の一部は再利用できずに捨てることとなり、燃費効率の悪化を招く虞がある。
【0008】
そこで本発明は、上記問題点に鑑みてなされたもので、燃料電池に水素を充分な量で供給可能な改質システムを提供することを目的とする。
【0009】
【課題を解決するための手段】
第1の発明は、炭素および水素を含む化合物の燃料を改質反応器内で水素を含む燃料ガスに変換し、消費手段に消費させるべく燃料ガスから分離した水素を貯蔵手段に貯える改質システムであって、前記化合物から水素を含む燃料ガスを製造する反応が水蒸気改質反応であり、前記反応器の種類が水素分離膜を備える膜反応器であり、前記反応器の化合物入口付近の領域には水素分離膜を備えないことを特徴とする。
【0010】
前記消費手段としては、燃料ガスを用いて発電する燃料電池のみでなく、例えば、水素リッチなガスを燃料とする内燃機関である改質ガスエンジンである場合も含む。
【0011】
第2の発明は、第1の発明において、反応器に前記化合物を水蒸気改質する改質室から水素分離膜を介して水素を取出す水素分離室を、化合物の入口に近い上流側水素分離室と遠い下流側水素分離室とに独立させ、上流側水素分離室を前記貯蔵手段に連通させることを特徴とする。
【0012】
第3の発明は、第2の発明において、上流側水素分離室が改質室と連通する水素分離膜と下流側水素分離室が改質室と連通する水素分離膜との間に水素を透過しない領域を設けたことを特徴とする。
【0013】
第4の発明は、第1の発明において、直列に接続した少なくとも二つの改質反応器を、上流側の反応器は、化合物から水蒸気改質反応により水素を含むガスを製造し、反応器の化合物入口付近の領域を除いて位置する水素分離膜の膜反応により水素を分離し、分離した水素を貯蔵手段に貯蔵させ、下流側の反応器は、上流側の反応器のブリードガスから水蒸気改質反応により水素を含むガスを製造し水素分離膜の膜反応により水素を分離することを特徴とする。
【0014】
第5の発明は、第4の発明において、上流側の反応器と下流側の反応器との間に圧力調整弁を備えることを特徴とする。圧力調整弁は上流側の反応器の反応圧力を調整できる。
【0015】
第6の発明は、第4または第5の発明において、上流側の反応器の触媒が下流側の触媒よりも低温で活性を示すことを特徴とする。
【0016】
第7の発明は、第1の発明において、改質システムは、圧力調整弁を介して供給される改質反応器のブリードガスの一酸化炭素を除去するCO除去装置を備えることを特徴とする。
【0017】
第8の発明は、炭素および水素を含む化合物の燃料を改質反応器内で水素を含む燃料ガスに変換し、消費手段に消費させるべく燃料ガスから分離した水素を貯蔵手段に貯える改質システムであって、前記改質反応器は、化合物から水蒸気改質反応により水素を含む燃料ガスを製造する反応器と、前記水蒸気改質反応により生じた燃料ガスから水素分離膜によって水素を分離して前記貯蔵手段に貯蔵させる分離器とからなる一段目の反応手段と、一段目の反応手段のブリードガスから水蒸気改質反応により水素を含む燃料ガスを製造し、水素を透過する水素分離膜の膜反応により水素を分離する二段目の反応手段と、で構成したことを特徴とする。
【0018】
第9の発明は、第8の発明において、一段目の反応手段と二段目の反応手段との間に圧力調整弁を備えることを特徴とする。
【0019】
第10の発明は、第8または第9の発明において、一段目の反応手段の触媒が、二段目の反応手段の触媒よりも低温で活性を示すことを特徴とする。
【0020】
【発明の効果】
したがって、第1の発明では、炭素および水素を含む化合物の燃料を改質反応器内で水素を含む燃料ガスに変換し、消費手段に消費させるべく燃料ガスから分離した水素を貯蔵手段に貯える改質システムであって、前記化合物から水素を含む燃料ガスを製造する反応が水蒸気改質反応であり、前記反応器の種類が水素分離膜を備える膜反応器であり、前記反応器の化合物入口付近の領域には水素分離膜を備えない。
【0021】
このため、反応器の入口付近では水素が透過しないので、改質により燃料ガスが入口付近を通過する間に反応器内で水素分圧を上昇させ、水素分圧を上昇した後に水素を分離することができ、効果的に高い分圧の水素を得ることができる。
【0022】
しかも、その後にも水素を透過させながら水蒸気改質反応を行わせるため、ブリードガスがメタン寄りの組成になることを防ぐことができ、燃料電池に供給する燃料ガスに水素不足を生じることがなく、燃費効率の悪化を防ぐことができる。
【0023】
第2の発明では、第1の発明の効果に加えて、反応器に前記化合物を水蒸気改質する改質室から水素分離膜を介して水素を取出す水素分離室を、化合物の入口に近い上流側水素分離室と遠い下流側水素分離室とに独立させ、上流側水素分離室を前記貯蔵手段に連通させるため、水素を多く含む上流側の改質ガスから効果的に高い分圧で水素を分離して貯蔵手段に送るとともに、下流側では残った改質ガスから改質反応によって水素を生じさせながら分離膜で分離することでメタン寄りの組成になることを防いでより多くの水素を取出し、前述したような水素の不足や燃費効率の悪化を防ぐことができる。
【0024】
第3の発明では、第2の発明の効果に加えて、上流側水素分離室が改質室と連通する水素分離膜と下流側水素分離室が改質室と連通する水素分離膜との間に水素を透過しない領域を設けたため、下流側でも反応器内の水素分圧を適切な圧力まで上昇させた後に水素を分離させることで、効果的に水素を得ることができる。
【0025】
第4の発明では、第1の発明の効果に加えて、直列に接続した少なくとも二つの改質反応器を、上流側の反応器は、化合物から水蒸気改質反応により水素を含むガスを製造し、反応器の化合物入口付近の領域を除いて位置する水素分離膜により水素を分離し、分離した水素を貯蔵手段に貯蔵させ、下流側の反応器は、上流側の反応器のブリードガスから水蒸気改質反応により水素を含むガスを製造し水素分離膜により水素を分離する。
【0026】
このため、効果的に高い分圧で水素を分離して貯蔵手段に送るとともに、メタン寄りの組成になることを防いでより多くの水素を取出して、前述したような水素の不足や燃費効率の悪化を防ぐことができる。
【0027】
第5の発明では、第4の発明の効果に加えて、上流側の反応器と下流側の反応器との間に圧力調整弁を備えるため、貯蔵手段に送られる水素の分圧をより高いものとすることができる。
【0028】
第6の発明では、第4または第5の発明の効果に加えて、上流側の反応器の触媒が下流側の触媒よりも低温で活性を示すため、システムの起動時には上流側の反応器の起動時間を短縮でき、システムの起動性を向上することができる。
【0029】
第7の発明では、第1の発明の効果に加えて、改質システムは、圧力調整弁を介して供給される改質反応器のブリードガスの一酸化炭素を除去するCO除去装置を備えるため、メタン寄りの組成になることを防いで効果的に水素を生じさせることができるとともに、前記化合物から前記水素を分離した後のブリードガスに含まれる水素や、ブリードガスに含まれる一酸化炭素と水をシフト反応させて得られる水素を燃料電池で使用することができ、燃費効率を向上することができる。
【0030】
第8の発明では、炭素および水素を含む化合物の燃料を改質反応器内で水素を含む燃料ガスに変換し、消費手段に消費させるべく燃料ガスから分離した水素を貯蔵手段に貯える改質システムであって、前記改質反応器は、化合物から水蒸気改質反応により水素を含む燃料ガスを製造する反応器と、前記水蒸気改質反応により生じた燃料ガスから水素分離膜によって水素を分離して前記貯蔵手段に貯蔵させる分離器とからなる1段目の反応手段と、一段目の反応手段のブリードガスから水蒸気改質反応により水素を含む燃料ガスを製造し、水素を透過する水素分離膜により水素を分離する二段目の反応手段と、で構成した。
【0031】
このため、一段目の反応で生じた高い分圧の水素を水素分離膜で分離して貯蔵手段に送ることができるとともに、二段目の反応器でメタン寄りの組成になることを防いでより多くの水素を得ることができる。
【0032】
第9の発明では、第8の発明の効果に加えて、一目の反応手段と二段目の反応手段との間に圧力調整弁を備えるため、一段目の水素分圧をより高くできる。
【0033】
第10の発明では、第8または第9の発明の効果に加えて、一段目の反応手段の触媒が、二段目の反応手段の触媒よりも低温で活性を示すため、システムの起動時には一段目の反応器の起動時間を短縮でき、システムの起動性を向上することができる。
【0034】
【発明の実施の形態】
以下、本発明の改質システムを実現する実施の形態を添付図面に基づいて説明する。
【0035】
(第1実施形態)
図1〜図4は、本発明を適用した改質システムの一例を示し、図1は改質システムの概要構成図、図2は改質室の上流から下流に向かっての水素分圧の様子を示すグラフ、図3、4は各ガスの出入口の具体的構成を示す斜視図および断面図である。
【0036】
図1において、本発明の実施形態の改質システムは、原料である水素を含む化合物が投入される改質室2と、改質室2で発生した水素を水素分離膜3、4を通って分離させる水素分離室5、6と、化合物から水素を発生させる水蒸気改質反応に必要な熱を改質室2に供給する燃焼室7とが、改質室2を中央に挟んで積層して反応器1を構成している。図示例では、改質室2、水素分離室5、6、燃焼室7を1層ずつ備えるものであるが、例えば、燃料電池車両に用いる実際の反応器1では、それぞれの層の厚さが0.1mm単位〜1mm単位であり、それらを図示のごとく積層したものを1セットとして10セットから100セット程度積層したものとなる。また、各層の幅および奥行きは、数cm四方から数十cm四方程度のものとなる。
【0037】
前記改質室2には、上流側(図示例では、左端)にアルコールやガソリン等の炭化水素等の原料化合物と水との混合物を投入する入口11を、下流側(図示例では、右端)に水素分離室5、6に移動しなかった水素、二酸化炭素の他、一酸化炭素、メタンガス、改質されずに残ったわずかな原料化合物ガス等からなるブリードガスの出口12を備える。ブリードガスは改質室2を高圧に保つための圧力調整弁13を経由して燃焼室7に送られる。前記改質室2には、水素分離室5、6との隔壁および燃焼室7との隔壁の夫々の改質室2側に、前記原料化合物を水蒸気改質させるのに適した触媒層を設けている。前記触媒層は上記二つの隔壁のいずれか一方のみに配置してもよく、また、触媒層は前記両方またはいずれか一方の隔壁の改質室2側に担持させるのでなく改質室2内に充填したペレット触媒により構成してもよい。前記改質室2と水素分離室5、6との隔壁には、改質室2で発生した水素を水素分離室5、6に分離させる水素分離膜3、4を、改質室2の入口11に続く上流から距離Aだけ隔たった位置から始まる区間Bの範囲、および、区間Bの下流端から距離Cだけ下流に隔たった位置から改質室2の下流端までの区間Dの範囲に設けている。水素分離膜3、4が存在しない距離Aの範囲および距離Cの範囲は隔壁等により水素等のガスの透過を阻止している。
【0038】
前記水素分離室5、6は、前記隔壁の距離Cの位置で上流側水素分離室5と下流側水素分離室6とに分離され、上流側水素分離室5は区間Bに配置された水素分離膜3を介して改質室2に連通し、下流側水素分離室6は区間Dに配置された水素分離膜4を介して改質室2に連通する。上流側水素分離室5の出口14は貯蔵手段としての貯蔵タンク16に接続され、分離した水素を貯蔵させる。下流側水素分離室6の出口15は図示されない消費手段としての燃料電池(CSA)に接続され、分離した水素を供給する。夫々の水素分離室5、6の上流側(図中左側)には、スイープガスの入口17、18を設け、夫々水素分離室5、6の下流側の出口14、15に向かって水素を掃き出すようにしている。なお、スイープガスは必須ではなく、燃料ガスの出口14、15のみを設ける構造としてもよいが、下記の理由により、改質室2から水素分離膜3、4を透過した水素をスイープガスによりスイープすることが望ましい。即ち、水素分離膜3、4両側の水素分圧の平方根の差に比例して水素分子が移動するので、水素以外の気体を多く含むスイープガスによって水素分離室5、6の水素分圧を低下させて、改質室2で生じた水素分子が水素分離膜3、4を透過して水素分離室5、6に移動することを促進できる。
【0039】
前記燃焼室7は、壁面に担持された触媒または燃焼室7内に充填されたペレット触媒を備える触媒燃焼器である。そして、入口から前記改質室2からのブリードガスと図示されない燃料電池(CSA)からの排ガス、空気、必要に応じて原料化合物が送り込まれ、空気に含まれる酸素との酸化反応を促進して発熱して、原料化合物ガスから水素を発生させる水蒸気改質反応のための必要な熱を供給する。燃焼室7に送られるCSA排ガスは、少なくともCSAの水素極の排ガスを含み、CSAでの発電に利用されずに残った水素を含んでいる。従って、CSA排ガスや空気、原料化合物は、夫々が流量を調節された上でブリードガスに混入される。
【0040】
以上の構成になる改質システムの作動について以下に説明する。
【0041】
前記改質室2には、前記した水素を含む化合物である炭化水素と水の混合物が、液相の水を高圧で図示されない蒸発器に噴霧して高温高圧水蒸気とし、その水蒸気中に前記炭化水素を噴霧して水蒸気の顕熱により蒸発させた状態で入口11から投入される。
【0042】
前記燃焼室7には、前記改質室2からのブリードガスと図示されない燃料電池(CSA)からの排ガス、空気、必要に応じて原料化合物が送り込まれ、空気に含まれる酸素との酸化反応を促進して発熱して、原料化合物ガスの水蒸気改質反応のための必要な熱を供給する。
【0043】
前記改質室2内では、燃焼室7からの熱により入口11から投入された原料化合物ガスが、水蒸気改質反応により改質されながら上流から下流に向かって流れる。生成された水素は水素分離膜3、4を透過して水素分離室5、6へ透過し、下流に進むにつれて水素分圧が下がる。即ち、水素分離膜3、4両側の水素分圧の平方根の差に比例して、水素分子が移動する。
【0044】
図2は、水蒸気改質反応により生じた水素が水素分離膜3、4を透過して水素分離室5、6に移動することにより、改質室2の上流から下流に向かって水素分圧が下がっていく様子を示したものである。
【0045】
図2において、Aの領域、即ち、水素を透過しない隔壁が配された前記原料化合物の入口11に続く領域においては、ガスが入口11から進むにつれて水蒸気改質反応が進み、水素分圧が増加していく。
【0046】
Bの領域、即ち、Aの領域に続き水素分離膜3が配された領域においては、水蒸気改質反応によって生成された水素が水素分離膜3を透過して水素分離室5に移動するため、結果として水素分圧が低下していく。
【0047】
Cの領域、即ち、上流側水素分離室5と下流側水素分離室6の仕切り付近に設けられた水素を透過しない隔壁をもつ領域においては、Aの領域と同じく水素が透過しないために、再び水素分圧が増加する。
【0048】
最後のDの領域、即ち、水素分離膜4が配された領域では、上記Bの領域と同じく水蒸気改質反応によって生成された水素が水素分離膜4を透過して水素分離室6に移動するため、結果として水素分圧が徐々に低下していく。
【0049】
このように、原料化合物ガスが改質されながら下流に進むにつれて水素分圧が下がっていくため、水素分離膜3、4を用いない反応器に比べて、水素寄りの平衡になる。
【0050】
比較対象である一般の炭化水素と水との混合物の水蒸気改質反応では、例えば、オクタンと水との反応では、C18+16HO⇔8CO+25Hとなる。ただし、その反応は平衡反応であり、二酸化炭素と水素が圧力や温度の条件に応じた比率で生成され、反応しなかったオクタンと水が残るだけでなく、中間物質としてのメタンや一酸化炭素も圧力や温度の条件に応じて生成される。圧力一定の条件下では、オクタン等から生じるメタンの比率は、温度が高くなるほど小さくなることが知られている。また、ガソリンのような組成の炭化水素を大気圧付近で水蒸気改質反応させる場合、700℃以上、望ましくは750℃以上の反応温度にすることで改質反応後の燃料ガス中のメタンの比率を極めて小さいものとすることができる。そして、同じ温度条件下での反応後の組成は、メタン1分子(CH)中には水素原子が4個含まれることからも分かるように、圧力が高くなるほど、水素寄りでなく、メタン寄りのものとなる。
【0051】
しかしながら、本実施形態の反応器1では、水素分離膜3、4を備えた膜反応器であることから多くのメタンガスを生じることを避けることができる。即ち、水蒸気改質反応により生じた水素が水素分離膜3、4を透過して水素分離室5、6に移動することにより、反応後の燃料ガスに含まれる水素が少なるため、水素が増える方向、すなわちメタンが減る方向に平衡がずれる。
【0052】
前記改質室2、水素分離室5、6、燃焼室7への化合物ガス、スイープガス、燃料ガス等の出入口は、各層に平行に出入するように図示したが、各室2、5〜7を積層するものでは、例えば、図3、図4に示す構造とすることがより望ましい。
【0053】
即ち、図3(A)〜(C)に示すように、上下に連通した複数の穴E〜Gを共通して備え、夫々の穴E〜Gに種類の異なるガスを通過させる通路ブロック21〜23を設ける。この通路ブロック21〜23を各層の隔壁間に介挿して各室2、5〜7の壁面となるよう配置し、ブロック21〜23同士で挟まれた隔壁にも同様に複数の穴を設ける。そして、通路は通路ブロック21〜23の室5〜7側(図示例では、手前側)の縁を切欠くことで目的とする室に連通させる。
【0054】
図4は、各穴E〜Gの断面を(E)断面〜(G)断面として示すものであり、Eの孔は切欠き24を介してのみ連通しているため、例えば、水素分離室5にスイープガスを供給する通路とし、同様に、F,Gの孔は夫々切欠き25、26を介してのみ連通しているため、例えば、改質室2へ燃料を供給する通路および燃焼室7から燃焼ガスを排出する通路とする。もちろん穴E〜穴Gの形状や、前記孔E〜Gを各層に連通させるための切欠き24〜26の形状は、図3に示すものに限られるものではない。
【0055】
ここでは、説明を解かり易くするために、それらの形状を単純なものとしているが、圧力損失を小さくするために、各孔E〜Gの面積を大きくすることや、各孔E〜Gから各室2、5〜7に均一な分布でガスを拡散させるために、各切欠き24〜26の開口部をさらに広げることが望ましい。
【0056】
以上のように、本実施形態では、上流側水素分離室5の出口14は貯蔵タンク16に接続され、図2に示すように、原料化合物ガスの入口11付近では水素分圧が高くなるため、上流側水素分離室5の出口から得られる燃料ガスも水素分圧が高く、貯蔵タンク16に貯蔵するのに適している。しかも、前述のように、改質室2の圧力を高くしながらも、メタン寄りの組成になることを防ぐことができるので、燃料電池で発電に用いられる燃料ガス中の水素の不足や燃費効率の悪化を防ぐことができる。なお、より一層水素貯蔵の効率を高めるために、図示されないコンプレッサを上流側水素分離室5の出口14に接続しても良い。また、図2のCの領域は上流側と下流側の水素分離室5、6を仕切る構造を、水素を透過しない部材で支持するものとして設けているが、図示しないが、この部分を水素分離膜3、4の支持体で兼用させてもよい。
【0057】
本実施形態にあっては、下記に記載した効果を奏することができる。
【0058】
(ア)炭素および水素を含む化合物の燃料を改質反応器1内で水素を含む燃料ガスに変換し、消費手段としての燃料電池等に消費させるべく燃料ガスを貯蔵手段としての貯蔵タンク16に貯える改質システムであって、前記化合物から水素を含むガスを製造する反応が水蒸気改質反応であり、前記反応器1の種類が水素分離膜を備える膜反応器であり、前記反応器1の化合物入口11付近の領域には水素分離膜3を備えないよう構成している。
【0059】
このため、反応器1の入口11付近は水素を透過しないので、化合物燃料が入口11付近を通過する間に反応器1内で水素分圧が上昇した後に水素を分離することができ、効果的に高い分圧の水素を得ることができる。
【0060】
しかも、その後にも水素を透過させながら水蒸気改質反応を行わせるため、燃料ガスがメタン寄りの組成になることを防ぐことができ、燃料電池に供給する燃料ガスに水素不足を生じることがなく、燃費効率の悪化を防ぐことができる。
【0061】
(イ)加えて、反応器1に前記化合物を水蒸気改質する改質室2から水素分離膜3、4を透過させて水素を取出す水素分離室5、6を、化合物の入口11に近い上流側水素分離室5と遠い下流側水素分離室6とに独立させ、上流側水素分離室5を前記貯蔵手段としての貯蔵タンク16に連通させるため、水素を多く含む上流側の改質ガスから効果的に高い分圧で水素を分離して貯蔵タンク16に送るとともに、下流側では残った燃料ガスから改質反応によって水素を分離させ分離膜3、4を透過させることで燃料ガスがメタン寄りの組成になることを防いでより多くの水素を取出して、前述したような水素の不足、燃費効率の悪化を防ぐことができる。
【0062】
(ウ)しかも、上流側水素分離室5を改質室2へ連通させる水素分離膜3と下流側水素分離室6を改質室2へ連通させる水素分離膜4との間に水素を透過しない領域Cを設けたため、下流側でも反応器1内の水素分圧を適切な圧力まで上昇させた後に水素を分離させることで、効果的に水素を得ることができる。
【0063】
(第2実施形態)
図5〜図7は、本発明の改質システムの第2の実施形態を示し、図5は反応器の外観斜視図、図6はその断面図、図7は変形例を示す断面図である。本実施形態においては、燃焼室7、改質室2および水素分離室5、6を積層することに代えて円筒状のケース28内に内蔵するようにしたものである。
【0064】
図5、6において、反応器1は、環状の空間に形成した燃焼室7と、環状の燃焼室7の内側に筒状に形成した改質室2と、燃焼室7および改質室2の両端に配置した上流側水素分離室5および下流側水素分離室6とで形成している。改質室2には、図中左側に入口11が、右側に出口12が形成され、図中左側が上流となっている。
【0065】
前記上流側水素分離室5と改質室2との仕切り壁29には、上流側水素分離室5から改質室2内に突出させて先端が閉じたチューブ30が配置される。チューブ30は仕切り壁29から所定長さの領域Aではチューブ30の内外が連通されてなく、先端側の領域Bでは破線図示されているように内外が多数の穴等により連通可能であり、その領域Bは水素分離膜3で覆われている。チューブ30は複数(図示例では、3本)本が配置されている。
【0066】
同様にして、下流側水素分離室6と改質室2との仕切り壁31には、下流側水素分離室6から改質室2内に突出させて先端が閉じたチューブ32が配置される。チューブ32先端は前記上流側水素分離室5から突出されたチューブ30の先端と寸法Cだけ離間させて突出され、先端までの領域Dでは破線図示されているように内外が多数の穴等により連通可能であり且つ水素分離膜4で覆われている。チューブ32は複数(図示例では、3本)本が配置されている。
【0067】
なお、燃焼室7、改質室2、上流側水素分離室5、および下流側水素分離室6へ夫々供給若しくは排出するガスは前実施態様と同様である。また、改質室2には、水蒸気改質反応に適したペレット触媒が充填され、前記チューブ30、32を覆う水素分離膜3、4上にも触媒を担持させるようにしてもよい。また、燃焼室7にも酸化反応を促進させるペレット触媒が充填されている。
【0068】
上記の領域A〜Dは、第1実施形態の領域A〜Dと同様に作用し、水素は、領域Bにおいて水素分離膜3を透過して上流側水素分離室5に分離され、領域Dにおいて水素分離膜4を透過して下流側水素分離室6に分離される。
【0069】
図7に示す変形例においては、改質室2の片側にのみに水素分離室が形成され、上流側水素分離室5と下流側水素分離室6に壁により分割している。夫々の水素分離室5、6と改質室2との仕切り壁33には、各水素分離室5、6から改質室2内に突出させて先端が閉じた複数のチューブ34、35を配置する。上流側水素分離室5に通じるチューブ34は、改質室2の上流(図中左側)の壁面から領域Aだけ隔てた長さに形成され、先端から領域Bの長さに亙ってチューブ34内外が多数の穴等によって連通可能となっている。下流側水素分離室6に通じるチューブ35は、改質室2の下流(図中右側)の壁面33から領域Dの範囲に突出し、チューブ35内外が連通可能となっている。夫々のチューブ34、35の内外が連通可能となった領域B、Dは水素分離膜3、4で覆っている。その他の構造は、図5、6と同様である。
【0070】
この構成においても、領域A〜Dは、第1実施形態の領域A〜Dと同様に作用し、水素は、領域Bにおいて水素分離膜3を透過して上流側水素分離室5に分離され、領域Dにおいて水素分離膜4を透過して下流側水素分離室6に分離される。
【0071】
本実施形態においては、第1の実施形態と同様の効果(ア)〜(ウ)に加えて、ケース28は円筒形状であるため耐圧構造にし易く、多数のチューブ30、32、34、35を内部に設ける構造としているため水素分離膜3、4の表面積を大きくし易い、という効果(エ)が得られる。
【0072】
(第3実施形態)
図8は、本発明の改質システムの第3の実施形態を示すシステム図であり、夫々一つの水素分離室5または6を備える二つの水蒸気改質膜反応器1A、1Bを圧力調整弁13Aを介して接続して構成したものである。
【0073】
前記上流側および下流側の膜反応器1A、1Bは、改質室2A、2B、水素分離室5、6、および、燃焼室7A、7Bを夫々備え、原料化合物は上流側改質室2Aから下流側改質室2Bに流れ、ブリードガスは下流側燃焼室7Bを経由して上流側燃焼室7Aに流れる。
【0074】
上流側膜反応器1Aの改質室2A(上流側改質室)の圧力は出口に配置した圧力調整弁13Aにより調整可能となっており、投入される原料である化合物の水蒸気改質反応の圧力条件を設定する。出口ガスは下流側膜反応器1Bの改質室2B(下流側改質室)に供給する。下流側膜反応器1Bの改質室2B(下流側改質室)の圧力は出口に配置した圧力調整弁13Bにより調整可能となっており、上流側改質室2Aからの出口ガスの水蒸気改質反応の圧力条件を設定する。ブリードガスは下流側燃焼室7Bに供給する。そして、上流側改質室2Aの改質触媒の活性は下流側改質室2Bの改質触媒に対して低温で活性を示す触媒が用いられている。
【0075】
上流側改質室2Aの上流付近の領域Aおよび下流側改質室2Bの上流付近の領域Cには、第1の実施形態と同様に水素を透過しない隔壁が構成され、改質により分離された水素の水素分圧を上昇させる。各改質室2A、2Bは水素分離膜3、4を介して各水素分離室5、6に連通している。各水素分離室5、6にスイープガスが供給され、上流側水素分離室5は貯蔵タンク16に連通し、下流側水素分離室6は燃料電池(CSA)に連通している。
【0076】
下流側の反応器1Bの改質室2Bから出たブリードガスとCSA排ガス、空気、原料化合物を混合したものが下流側反応器1Bの燃焼室7Bに送られ、下流側反応器1Bの改質室2Bでの水蒸気改質反応に必要な熱を発生させる。CSA排ガス、空気、原料化合物は第1の実施例と同様に、それぞれ流量を調節されてブリードガスに混合される。
【0077】
下流側反応器1Bの燃焼室7Bの排ガスは、それぞれ流量を調節されたCSA排ガス、空気、原料化合物と混合して上流側反応器1Aの燃焼室7Aに送られ、上流側反応器1Aの改質室2Aでの水蒸気改質反応に必要な熱を発生させる。
【0078】
上流側改質室2Aは圧力制御弁13Aの上流において上流側燃焼器7Aの入口とバイパス弁38を介して連通可能であり、圧力制御弁13Aが閉じられた時にバイパス弁38を開いて上流側改質室2Aの出口ガスを上流側燃焼室7Aに供給可能としている。バイパス弁38は改質室2Aの圧力を高圧に維持する。
【0079】
本実施形態でも上流側反応器1Aの改質室2Aの上流の領域Aに水素を透過しない部材が配されているため、水素分圧が適切に上昇し、貯蔵タンク16ヘの貯蔵に適した圧力を生じる。
【0080】
さらに、圧力調整弁13Aで上流側反応器1Aの改質室2A内を高圧に保つことにより、さらに高い水素分圧を得ることができる。上流側反応器1Aの改質室2Aの出口ガスは、膜反応器である下流側反応器1Bの改質室2Bでさらに改質されてメタン寄りの組成になることを防いで、燃料電池での発電に用いられる燃料ガス中の水素の不足や燃費効率の悪化を防ぐことができる。
【0081】
以上のように、本実施形態においては、第1、2実施形態と同様に作動させて同様の効果を発揮させることができる他、上流側と下流側とに反応器1A、1Bを分離したため、いずれか一方のみを単独で運転することができる。このため、下記のような運転をさせることで起動時間を短縮することもできる。
【0082】
即ち、システムの起動時、上流側圧力制御弁13Aを閉じ、バイパス弁38を開放した状態で起動させる。上流側改質室2Aに供給される化合物は低温活性の改質触媒により低温から改質反応を行い、水素分離膜3により水素を透過させて水素分離室5を経由して燃料電池の発電に必要な水素を含む燃料ガスを発生させる。
【0083】
前記改質室2Aは、バイパス弁38で設定された高圧に維持され、低温であるため、上流側反応器1Aの改質室2Aの出口ガスには多くのメタンが含まれる。しかしながら、この出口ガスはバイパス弁38を介して上流側反応器1Aの燃焼室7Aに投入される。即ち、出口ガスに含まれるメタンは上流側反応器1Aの燃焼室7Aで発熱反応して上流側反応器1Aを加熱する。このように、上流側反応器1Aだけの加熱であれば、反応に適した温度まで反応器を昇温させるのに要する時間が、二つの反応器を加熱する場合に比較して短くなる。この時点では下流側反応器1Bが起動していないため、燃料電池で定格出力を発電するのに必要な量の燃料ガスを発生させることはできず、燃料電池を全負荷運転することはできないが、部分負荷運転に必要な燃料ガスを発生させるには充分である。このように、上流側反応器1Aを起動させながら、下流側反応器1Bの燃焼室7Bに可燃ガスと空気を送って下流側反応器1Bを起動させる。また、図示しないが、上流側反応器1Aで発生させた燃料ガスにより燃料電池を運転する際に生じる廃熱を利用して上流側反応器1Aおよびまたは下流側反応器1Bを加熱してもよい。以上のように、起動時間を短くできるという効果もある。
【0084】
本実施形態では、第1実施形態における効果(ア)に加えて、下記に記載する効果を奏することができる。
【0085】
(オ)直列に接続した少なくとも二つの改質反応器1A、1Bを、上流側の反応器1Aは、化合物から水蒸気改質反応により水素を含む燃料ガスを製造し、反応器1Aの化合物入口付近の領域Aを除いて位置する水素分離膜3の膜反応により水素を分離し、分離した水素を貯蔵タンク16に貯蔵させ、下流側の反応器1Bは、上流側の反応器1Aのブリードガスから水蒸気改質反応により水素を含む燃料ガスを製造し水素分離膜4の膜反応により水素を分離する。
【0086】
このため、効果的に高い分圧で水素を分離して貯蔵タンク16に送るとともに、メタン寄りの組成になることを防いでより多くの水素を取出して、前述したような水素の不足や燃費効率の悪化を防ぐことができる。
【0087】
(カ)上流側の反応器1Aと下流側の反応器1Bとの間に圧力調整弁13Aを備えるため、貯蔵タンク16に送られる水素の分圧をより高いものとすることができる。
【0088】
(キ)上流側の反応器1Aの触媒が下流側の反応器1Bの触媒よりも低温で活性を示すため、システムの起動時には上流側の反応器1Aの起動時間を短縮でき、システムの起動性を向上することができる。
【0089】
(第4実施形態)
図9は、本発明の改質システムの第4の実施形態を示すシステム図であり、第3の実施形態の下流側膜反応器1Bに代えてCO除去装置としてのシフト反応器39とCO選択酸化器40(以下、PrOx反応器という)を用いるようにしたものである。
【0090】
図9において、膜反応器1Aの改質室2Aの出口側には、圧力調整弁13A、CO除去装置としてのシフト反応器39およびPrOx反応器40を介して燃料電池(CSA)に接続され、改質室2Aの改質ガスは、これら圧力調整弁13A、シフト反応器39、PrOx反応器40を経由してCSAに供給される。
【0091】
膜反応器1Aの燃焼室7Aには、少なくともCSA水素極の排ガスを含むCSAの排ガスが導入され、図示されない流量調節装置によって夫々調節された流量の原料化合物および空気も投入される。
【0092】
また、第3の実施形態と同様に、膜反応器1Aに原料化合物を投入し、水素分離室5からスイープガスとともに取出した水素を貯蔵タンク16に貯蔵する。
【0093】
前記シフト反応器39は、一酸化炭素と水を反応させて、二酸化炭素と水素に生成する反応器である。即ち、CO+HO⇔CO+Hとなる。この反応のために、十分な水が含まれない改質ガスに対しては、シフト反応器39の入口において水を加える。この反応は平衡反応であり、温度が低いほど水素が増える方向に反応が進む。具体的な反応温度範囲は、150℃〜400℃、望ましくは200℃〜350℃である。
【0094】
一方、改質室12Aでの水蒸気改質に適した反応温度は、原料化合物によって異なるが、ガソリンのような組成の原料化合物では700℃以上であり、膜反応器1Aを採用すれば600℃〜550℃程度まで下げることができる。また、原料化合物がメタノールのような組成の場合には、改質反応温度が400℃、あるいはそれ以下でよい。ガソリンのような原料化合物の改質反応器に適した反応温度はシフト反応器39に適した反応温度との間に大きな温度差があり、シフト反応器39の入口で水を加える場合の方法として、液相の水を噴霧により蒸発させてその気化熱でシフト反応器39への入口ガス温度を下げるようにするのが望ましい。
【0095】
前記PrOx反応器40は、改質ガス中に含まれる一酸化炭素を選択的に酸化し、その濃度を低減させる反応器である。PrOx反応器40の入口においては、酸化剤としての空気を加える。
【0096】
以上の構成においても、第3の実施形態と同様に、圧力調整弁13Aで膜反応器を高圧に保つことで、水素分離室5から取出される燃料ガスの水素分圧が、貯蔵に適した高い分圧とできる。
【0097】
また、シフト反応器39およびPrOx反応器40は、膜反応器1Aで生じたメタンを水素に改質する機能を持たないため、改質ガス中に含まれるメタンはそのままCSAに送られる。そして、燃料電池CSAとして固体高分子型燃料電池であるので、メタンはそのまま排ガスとなってCSA水素極から戻されて燃焼室7Aに至り、改質室2Aでの水蒸気改質に必要な熱を生じさせるのに利用される。
【0098】
即ち、圧力調整弁13Aを膜反応器1Aの改質室2Aの出口に備えることで、貯蔵に好適な高い分圧の水素を膜反応器1Aで生成する一方、膜反応器1Aで生じたメタンを有効に利用して、燃費効率の悪化を防いでいる。
【0099】
なお、第3の実施形態と同様に、起動時に膜反応器1Aの改質室2Aの出口ガスをバイパス弁38を経由して直接燃焼室7Aに投入して、膜反応器1Aだけを先に起動するようにしてもよい。
【0100】
本実施形態においては、第1の実施形態の効果(ア)に加えて、下記に記載した効果を奏する。
【0101】
(ク)改質システムは、圧力調整弁13Aを介して供給される改質反応器1Aのブリードガスの一酸化炭素を除去するCO除去装置としてのシフト反応器39とPrOx反応器40を備えるため、メタン寄りの組成になることを防いで効果的に水素を生じさせることができるとともに、前記化合物から前記水素を分離した後のブリードガスに含まれる水素や、ブリードガスに含まれる一酸化炭素と水をシフト反応させて得られる水素を燃料電池で使用することができ、燃費効率を向上することができる。
【0102】
(第5実施形態)
図10は、本発明の改質システムの第5の実施形態を示すシステム図であり、第3の実施形態の上流側膜反応器1Aに代えてSR反応器1Cと水素分離ユニット1Dからなる一段目の反応手段を用いるようにしたものである。
【0103】
図10において、SR反応器1Cと水素分離ユニット1Dからなる一段目の反応手段と、二段目の反応手段としての下流側膜反応器1Bとから構成している。
【0104】
前記SR反応器1Cは、改質室2Aと燃焼室7Aとを合体させたものであり、下流側膜反応器1Bの燃焼室7Bの出口ガスとCSA排ガス、原料化合物、空気とが混合されて燃焼室7Aに導入され、燃焼室7Aよりの熱により供給された原料化合物を改質室2Aで水蒸気改質反応により改質する。このCSA排ガスは、少なくともCSA水素極の排ガスを含むものである。
【0105】
前記水素分離ユニット1Dは、改質ガスが通過する室41と水素分離室5とを水素分離膜3により画成したものであり、水素分離室5にはスイープガスの入口17と貯蔵タンク16に連通した燃料ガスの出口14とが設けられている。前記SR反応器1Cで改質された水素リッチな改質ガスは水素分子のみが水素分離膜3を透過して水素分離室5に移動し、スイープガスとともに貯蔵タンク16に送られる。
【0106】
前記水素分離ユニット1Dの出口は圧力調整弁13Aを介して、第3の実施形態の下流側反応器1Bと同様の下流側膜反応器1Bに接続される。この下流側膜反応器1Bのブリードガスは圧力調整弁13Bを介して、CSA排ガス、原料化合物、空気と混合されて、下流側膜反応器1Bの燃焼室7Bに送られる。CSA排ガスは少なくともCSA水素極の排ガスを含み、CSA排ガス、原料化合物、空気はそれぞれ流量を調節されてブリードガスと混合される。
【0107】
以上の構成でも、水素分離ユニット1Dの下流の圧力調整弁13AでSR反応器1Cの改質室2A内が高圧に保たれることにより、水素分離ユニット1Dで得られる燃料ガスは貯蔵に適した高圧の水素分圧のものとなる。
【0108】
また、上流のSR反応器1Cが水素分離膜を備えないので、SR反応器1Cの改質室2Aの出口ガスの組成はメタンが少なからず含まれるものの、SR反応器1Cの改質室2Aの出口ガスは膜反応器1Bで再び水蒸気改質され、すでに述べたような膜反応器の作用により、効率的に水素リッチなガスとなる。もちろんブリードガスには改質し切れなかったメタンや、水素分離膜4を透過しなかった水素が残るが、膜反応器1BとSR反応器1Cの燃焼室7B、7Aで触媒燃焼され、水蒸気改質のために必要な熱を生じるのに用いられるので、燃費効率の悪化を防ぐことができる。
【0109】
さらに、起動時には、水素分離ユニット1Dの出口ガスを直接SR反応器1Cの燃焼室7Aに送ることにより、SR反応器1Cだけを先に起動するようにして、起動時間を短くできるという効果が得られる。その場合、SR反応器1Cの触媒を、膜反応器1Bと比較して比較的低い温度から高い活性を示す触媒とすることが望ましい。またSR反応器1Cと水素分離ユニット1Dの間に図示されない熱交換器を設け、SR反応器1Cの改質室2Aの出口ガスの温度を下げることにより、耐熱性の低い水素分離膜3を使うことができ、コストを低減し、信頼性を向上することもできる。
【0110】
本実施形態においては、下記に記載した効果を奏することができる。
【0111】
(ケ)炭素および水素を含む化合物の燃料を改質反応器内で水素を含む燃料ガスに変換し、消費手段としての燃料電池等に消費させるべく燃料ガスを貯蔵タンク16に貯える改質システムであり、前記改質反応器は、化合物から水蒸気改質反応により水素を含む燃料ガスを製造する反応器としてのSR反応器1Cと、前記水蒸気改質反応により生じた改質ガスから水素分離膜3によって水素を分離して前記貯蔵タンク16に貯蔵させる分離器としての水素分離ユニット1Dとからなる一段目の反応手段と、一段目の反応手段のブリードガスから水蒸気改質反応により水素を含むガスを製造し、水素を透過する膜の表面に触媒を担持した水素分離膜4の膜反応により水素を分離する二段目の反応手段としての膜反応器1Bと、で構成した。
【0112】
このため、一段目の反応で生じた高い分圧の水素を水素分離膜3で分離して貯蔵タンク16に送ることができるとともに、二段目の反応器1Bでメタン寄りの組成になることを防いでより多くの水素を得ることができる。
【0113】
(コ)一段目の反応手段と二段目の反応手段との間に圧力調整弁13Aを備えるため、一段目の水素分圧をより高くすることができる。
【0114】
(サ)一段目の反応手段の触媒が、二段目の反応手段の触媒よりも低温で活性を示すため、システムの起動時には一段目の反応器としてのSR反応器1Cの起動時間を短縮でき、システムの起動性を向上することができる。
【0115】
なお、上記実施形態において、燃料電池の燃料ガスを生成するための改質システムとして説明しているが、燃料電池ではなく、水素リッチなガスを燃料とする内燃機関である改質ガスエンジンを用いるシステムにおいて、本発明を前記改質ガスエンジンに燃料ガスを供給する改質システムとして使用することも好適である。
【0116】
また、上記実施形態において、膜反応器1A、1Bや水素分離ユニット1Dの燃料ガスをスイープガスとともに取出すものとして説明しているが、図示しないが、貯蔵タンク16に接続される燃料ガスは貯蔵により適した純粋な水素とするために、スイープガスを用いずに取出すものとしてもよい。
【0117】
また、第3から第5の実施形態における膜反応器1A、1Bを図で説明したような積層型とする場合には、第1の実施形態で説明したような積層構造、寸法、ガス出入口構造とすればよい。
【0118】
また、第3から第5の実施形態における膜反応器1A、1Bは、第1の実施形態と同様の図としているが、積層型反応器に限られるものではなく、第2の実施形態と同様の構成としてもよい。
【0119】
また、第5の実施形態におけるSR反応器1Cを図で説明したような積層型とする場合にも、第1の実施形態における膜反応器1から水素分離室5、6を除いたような積層構造、寸法、ガス出入口構造とすればよい。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す改質システムの概略構成図。
【図2】同じく改質室の上流から下流に向かっての水素分圧の様子を示すグラフ。
【図3】各ガスの出入口の具体的構成を示す斜視図。
【図4】各ガスの出入口の具体的構成を(A)〜(C)に夫々示す断面図。
【図5】本発明の第2実施形態を示す改質システムの外観斜視図。
【図6】図5に示した改質システムの断面図。
【図7】図6の変形例を示す改質システムの断面図。
【図8】本発明の第3実施形態を示す改質システムの概略構成図。
【図9】本発明の第4実施形態を示す改質システムの概略構成図。
【図10】本発明の第5実施形態を示す改質システムの概略構成図。
【符号の説明】
1、1A、1B 反応器(膜反応器)
1C SR反応器
1D 水素分離ユニット
2、2A、2B 改質室
3、4 水素分離膜
5、6 水素分離室
7、7A、7B 燃焼室
11 改質室への入口
12 改質室からの出口
13、13A、13B 圧力調整弁
39 シフト反応器
40 PrOx反応器

Claims (10)

  1. 炭素および水素を含む化合物の燃料を改質反応器内で水素を含む燃料ガスに変換する改質システムと、前記燃料ガスから分離した水素を消費する消費手段と、前記改質システムと前記消費手段との間にあって、前記水素を貯える貯蔵手段とを備え、前記改質システムの前記水素圧力が前記消費手段の動作圧力より高く、前記改質システムの前記水素圧力と前記消費手段の動作圧力との圧力差を用いて、前記貯蔵手段に水素を貯える改質システムであって、
    前記化合物から水素を含む燃料ガスを製造する反応が水蒸気改質反応であり、
    前記反応器の種類が水素分離膜を備える膜反応器であり、
    前記反応器の化合物入口付近の領域には水素分離膜を備えないことを特徴とする改質システム。
  2. 前記反応器は、前記化合物を水蒸気改質する改質室から水素分離膜を透過させて水素を取出す水素分離室を備え、
    前記水素分離室は、化合物の入口に近い上流側水素分離室と遠い下流側水素分離室とに独立しており、上流側水素分離室が前記貯蔵手段に連通されていることを特徴とする請求項1記載の改質システム。
  3. 前記上流側水素分離室が改質室と連通する水素分離膜と下流側水素分離室が改質室と連通する水素分離膜との間には、水素を透過しない領域を設けたことを特徴とする請求項2記載の改質システム。
  4. 前記改質システムは、直列に接続された少なくとも二つの改質反応器からなり、
    上流側の反応器は、化合物から水蒸気改質反応により水素を含む燃料ガスを製造し、反応器の化合物入口付近の領域を除いて位置する水素分離膜により水素を分離し、分離した水素を貯蔵手段に貯蔵するものであり、
    下流側の反応器は、上流側の反応器のブリードガスから水蒸気改質反応により水素を含む燃料ガスを製造し、水素分離膜により水素を分離するものである、ことを特徴とする請求項1記載の改質システム。
  5. 前記上流側の反応器と下流側の反応器との間に圧力調整弁を備えることを特徴とする請求項4記載の改質システム。
  6. 前記上流側の反応器の触媒が下流側の反応器の触媒よりも低温で活性を示すことを特徴とする請求項4または請求項5に記載の改質システム。
  7. 前記改質システムは、一酸化炭素を除去するCO除去装置を備え、
    前記CO除去装置には、圧力調整弁を介して前記改質反応器のブリードガスを供給することを特徴とする請求項1記載の改質システム。
  8. 炭素および水素を含む化合物の燃料を改質反応器内で水素を含む燃料ガスに変換する改質システムと、前記燃料ガスから分離した水素を消費する消費手段と、前記改質システムと前記消費手段との間にあって、燃料ガスから分離した水素を貯える貯蔵手段とを備え、前記改質システムの前記水素圧力が前記消費手段の動作圧力より高く、前記改質システムの前記水素圧力と前記消費手段の動作圧力との圧力差を用いて、前記貯蔵手段に水素を貯える改質システムであって、
    前記改質反応器は、化合物から水蒸気改質反応により水素を含む燃料ガスを製造する反応器と、前記水蒸気改質反応により生じた燃料ガスから水素分離膜によって水素を分離して前記貯蔵手段に貯蔵させる水素分離器とからなる一段目の反応手段と、
    前記一段目の反応手段のブリードガスから水蒸気改質反応により水素を含む燃料ガスを製造し、水素を透過する水素分離膜により水素を分離する二段目の反応手段と、で構成したことを特徴とする改質システム。
  9. 前記一段目の反応手段と前記二段目の反応手段との間に圧力調整弁を備えることを特徴とする請求項8記載の改質システム。
  10. 前記一段目の反応手段の触媒が、前記二段目の反応手段の触媒よりも低温で活性を示すことを特徴とする請求項8または請求項9に記載の改質システム。
JP2002172483A 2002-06-13 2002-06-13 改質システム Pending JP2004018280A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002172483A JP2004018280A (ja) 2002-06-13 2002-06-13 改質システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002172483A JP2004018280A (ja) 2002-06-13 2002-06-13 改質システム

Publications (1)

Publication Number Publication Date
JP2004018280A true JP2004018280A (ja) 2004-01-22

Family

ID=31172025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002172483A Pending JP2004018280A (ja) 2002-06-13 2002-06-13 改質システム

Country Status (1)

Country Link
JP (1) JP2004018280A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006001816A (ja) * 2004-06-21 2006-01-05 Mitsubishi Heavy Ind Ltd 水素製造装置及び水素製造方法
JP2009263183A (ja) * 2008-04-28 2009-11-12 Japan Energy Corp 膜分離型水素製造装置及びそれを用いた水素製造方法
JP2010153254A (ja) * 2008-12-25 2010-07-08 Japan Petroleum Exploration Co Ltd 水素生成装置を備える燃料電池システム
JP2010153253A (ja) * 2008-12-25 2010-07-08 Japan Petroleum Exploration Co Ltd 酸素生成装置と水素生成装置とを備える燃料電池システム
JP2010153255A (ja) * 2008-12-25 2010-07-08 Japan Petroleum Exploration Co Ltd 水素生成装置を多段に備える燃料電池システム
JP2011144088A (ja) * 2010-01-15 2011-07-28 Tokyo Gas Co Ltd 2段式水素分離型改質器
JP2012530352A (ja) * 2009-06-16 2012-11-29 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー 燃料電池システムを運転するためのシステムおよび方法
JP2014133696A (ja) * 2014-03-10 2014-07-24 Tokyo Gas Co Ltd 2段式水素分離型改質器
EP2521210A3 (de) * 2011-05-05 2015-01-14 ThyssenKrupp Marine Systems GmbH Verfahren zum Betreiben einer Reformer-Brennstoffzellenanlage

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006001816A (ja) * 2004-06-21 2006-01-05 Mitsubishi Heavy Ind Ltd 水素製造装置及び水素製造方法
JP2009263183A (ja) * 2008-04-28 2009-11-12 Japan Energy Corp 膜分離型水素製造装置及びそれを用いた水素製造方法
JP2010153254A (ja) * 2008-12-25 2010-07-08 Japan Petroleum Exploration Co Ltd 水素生成装置を備える燃料電池システム
JP2010153253A (ja) * 2008-12-25 2010-07-08 Japan Petroleum Exploration Co Ltd 酸素生成装置と水素生成装置とを備える燃料電池システム
JP2010153255A (ja) * 2008-12-25 2010-07-08 Japan Petroleum Exploration Co Ltd 水素生成装置を多段に備える燃料電池システム
JP2012530352A (ja) * 2009-06-16 2012-11-29 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー 燃料電池システムを運転するためのシステムおよび方法
JP2011144088A (ja) * 2010-01-15 2011-07-28 Tokyo Gas Co Ltd 2段式水素分離型改質器
EP2521210A3 (de) * 2011-05-05 2015-01-14 ThyssenKrupp Marine Systems GmbH Verfahren zum Betreiben einer Reformer-Brennstoffzellenanlage
JP2014133696A (ja) * 2014-03-10 2014-07-24 Tokyo Gas Co Ltd 2段式水素分離型改質器

Similar Documents

Publication Publication Date Title
US6649291B1 (en) Method for driving a fuel cell vehicle and fuel cell vehicle
US5741474A (en) Process for production of high-purity hydrogen
EP1893858B1 (en) Reforming process for production of hydrogen from hydrocarbon fuel
US20060183009A1 (en) Fuel cell fuel processor with hydrogen buffering
JP6204605B2 (ja) 液体及びガス状の燃料両用の改質器及び改質方法
JP4491653B2 (ja) 燃料電池システム及びその発電方法
JP4664709B2 (ja) 水素生成装置および燃料電池システム
JP2011218349A (ja) 段階的膜酸化反応器システムの操作
US20100104903A1 (en) Power Plant With Membrane Water Gas Shift Reactor System
Prigent On board hydrogen generation for fuel cell powered electric cars. A review of various available techniques
Vasileiadis et al. Biomass reforming process for integrated solid oxide-fuel cell power generation
JP2002198074A (ja) 制御可能な改質温度プロフィールを維持するための多段階燃焼プロセス
JP2004018280A (ja) 改質システム
JP4656985B2 (ja) 水素生成装置および燃料電池システム
US20090155640A1 (en) System and process for generating electrical power
US20070275278A1 (en) Integrated catalytic and turbine system and process for the generation of electricity
JP2007524553A (ja) 膜セパレータを有する燃料処理システム
US20090155638A1 (en) System and process for generating electrical power
JP2009280426A (ja) 水素生成装置
JP2009242216A (ja) 水素生成分離装置、これを用いた燃料電池システム及び内燃機関システム
US8409306B2 (en) Fuel reformer
JP2005022936A (ja) 燃料改質装置および燃料改質方法
JP5136958B2 (ja) パワーソースシステム
FR2919118A1 (fr) Procede de generation d'electricite et d'hydrogene comportant un reformeur hybride
FR2901410A1 (fr) Dispositif et procede de demarrage d'un systeme de pile a combustible comprenant un reservoir de carburant et d'eau