JP2004015292A - 周波数変換装置 - Google Patents

周波数変換装置 Download PDF

Info

Publication number
JP2004015292A
JP2004015292A JP2002164145A JP2002164145A JP2004015292A JP 2004015292 A JP2004015292 A JP 2004015292A JP 2002164145 A JP2002164145 A JP 2002164145A JP 2002164145 A JP2002164145 A JP 2002164145A JP 2004015292 A JP2004015292 A JP 2004015292A
Authority
JP
Japan
Prior art keywords
frequency
signal
local oscillation
radio
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002164145A
Other languages
English (en)
Other versions
JP3913114B2 (ja
Inventor
Chitayoshi Manabe
真鍋 知多佳
Mitsuyoshi Kegasa
毛笠 光容
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002164145A priority Critical patent/JP3913114B2/ja
Publication of JP2004015292A publication Critical patent/JP2004015292A/ja
Application granted granted Critical
Publication of JP3913114B2 publication Critical patent/JP3913114B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Superheterodyne Receivers (AREA)

Abstract

【課題】準ミリ波或いはミリ波の如く高周波数信号に対して,互いに周波数が異なる複数の局部発振周波数の信号を順次混合することによって所定の周波数に周波数変換する周波数変換装置において,周波数精度を損なうことなく,低コスト化,小型化,及び省電力化を実現可能な周波数変換装置を提供すること。
【解決手段】周波数が既知である電波信号を外部から受信する電波受信部20と,順次混合される上記局部発振周波数の信号のうち少なくとも一つの信号における周波数を,上記電波受信部20により受信される上記電波信号に基づいて制御する周波数制御部12dとを具備してなることを特徴とする周波数変換装置Aとして構成する。
【選択図】図1

Description

【0001】
【発明の属する技術分野】
本発明は,受信された無線周波数の信号を中間周波数の信号に周波数変換したり,送信する中間周波数の信号を無線周波数の信号に周波数変換する周波数変換装置に係り,詳しくは,外部より受信する高精度な標準電波或いはこれに類する高精度の電波信号を用いることによって高精度な周波数変換を実現するものに関する。
【0002】
【従来の技術】
近年におけるデータ通信の急速な普及に伴って高速な回線網への需要はますます増加している。しかしながら,有線網によって供給される高速回線は,一般の消費者にとっては依然高価なものであり,より低価格なサービスを提供することができるローカルな無線通信網の研究開発が盛んに行われている。このローカル無線網は,小さなアンテナで十分な利得を得ることができる準ミリ波(3GHz〜30GHz),或いはミリ波(30GHz〜300GHz)という高周波帯域を利用して,例えば電話交換局等に設けられたハブ局から所定の範囲内に存在する複数の子局に高速な双方向データ通信回線を提供したり,ローカルなテレビ電話サービスを提供する場合等に利用される。
上述した準ミリ波やミリ波といった高周波帯域の信号を利用して無線通信を行う場合,例えば数十〜数百MHz程度の中間周波数の信号を介して,分離復号化等の受信処理,符号化合成等の送信処理,或いは信号の増幅処理等を行うことにより,これら受信,送信及び増幅処理に必要な回路構成を簡素化し,低価格化するのが一般的である。
上記無線周波数の信号を上記中間周波数の信号に周波数変換したり,上記中間周波数の信号を無線周波数の信号に周波数変換する周波数変換装置の一般的な構成及びその装置における周波数の変移を図6(a)に示す。
同図に示すブロック図の如く,一般的な周波数変換装置Dは,ミキサ11aと,局部発振器12a(発振周波数f_1)と,周波数選択フィルタ13aと,ミキサ11bと,局部発振器12b(発振周波数f_2)と,周波数選択フィルタ13bとを具備して概略構成される。
上記周波数変換装置Dがダウンコンバータである場合,受信した信号の周波数は,同図に示す如く変移する。即ち,受信した入力周波数f_inは上記ミキサ11aにより上記局部発振器12aの発振周波数f_1と混合され,両者の和或いは差の周波数成分を含む信号となる。このうち,両者の差の信号である中間周波数f_mが上記周波数選択フィルタ13aにより選択される。更に,上記中間周波数f_mに対して,上記ミキサ11b,上記局部発振器12b,及び上記周波数フィルタ13bによって上記同様な処理が施され,出力周波数f_outの信号として周波数変換される。
このように,従来公知の周波数変換装置では,ミキサ11,局部発振器12,周波数選択フィルタ13とにより構成される混合段を必要に応じて複数設けることにより,受信した信号の周波数を所定の中間周波数を介して,所定の出力周波数へと変換し,出力することが可能である。
【0003】
【発明が解決しようとする課題】
ここで,入力周波数に対して混合される所定の発振周波数を発振する上記局部発振器12a(12bも同様である)の一般的な構成を図6(b)に示す。
図6(b)に示す如く,上記局部発振器12aは,基準発振器18,1/R分周器17,位相比較器16,1/N分周器15,ループフィルタ19,VCO(電圧制御発振器)14を具備して構成される。
これにより,上記ループフィルタ19により形成される制御ループが負帰還特性であれば,上記1/R分周器17を介して上記位相比較器16に入力される上記基準発振器18の周波数(参照周波数:f_ref)と,上記1/N分周器15を介して上記位相比較器16に入力される上記VCO14の周波数(発振周波数:f_osc)との周波数偏差が無くなるところで安定する。即ち,上記局部発振器12aの発振周波数f_oscは(N/R)×f_refとなる。
従って,上記局部発振器12aの発振周波数f_oscは,分周比N/R(周波数指令設定)に応じて任意に設定可能であり,且つその周波数精度は上記基準発振器18の周波数精度に応じたものとすることができる。例えば,上記基準発振器18として水晶発振器を用いれば,水晶発振器と同等の周波数精度で種々の周波数帯域の信号を生成することができる。
従来の周波数変換装置における局部発振器では,このような構成を有することによって,所定の周波数帯域の発振周波数を要求される周波数精度で生成している。
ところで,上記周波数変換装置Dでは,混合段によって混合される周波数が異なり,例えば,上記周波数変換装置Dがダウンコンバータの場合には,一段目(準ミリ波帯)の混合段での上記局部発振器の周波数が最も高い。従って,同じ周波数誤差に対する相対精度は,最も周波数の高い混合段に設けられる上記局部発振器において最も厳しくなる。
例えば,上記周波数変換装置Dが,26GHz程度(f_inに該当)の入力信号を24GHz程度(f_1に該当)の局部発振器12aを用いて2GHz程度(f_mに該当)の中間周波数に変換し,更にこれを1.5GHz程度(f_2に該当)の局部発振器12bを用いて500MHz(f_outに該当)程度の出力信号を得るダウンコンバータであって,その許容される周波数誤差が30kHz程度である場合を考える。
この場合,最も周波数の高い混合段である一段目の局部発振器12aに対して求められる周波数精度は,30kHz/24GHz=1.25×10−6,即ち1.25ppm(安全を見れば1ppm程度が望ましい)という極めて高い周波数精度となる。
このような高精度な周波数を発生するために,従来の周波数変換装置では,上記局部発振器12aにおける上記基準発振器18として,その装置が使用される全温度範囲(例えば−30〜50℃程度)において,高い周波数精度を達成し得る恒温槽付き水晶発振器を用いることが一般的であった。
しかしながら,上記恒温槽付き水晶発振器は,その構成上大型で且つ高価とならざるを得ず,更には消費電力も大きい。
そこで本発明は,上記課題に鑑みてなされたものであり,その目的とするところは,準ミリ波或いはミリ波の如く高周波数信号に対して,互いに周波数が異なる複数の局部発振周波数の信号を順次混合することによって所定の周波数に周波数変換する周波数変換装置において,周波数精度を損なうことなく,低コスト化,小型化,及び省電力化を実現可能な周波数変換装置を提供することにある。
【0004】
【課題を解決するための手段】
上記目的を達成するために本発明は,第一の周波数帯の信号に対して,互いに周波数が異なる複数の局部発振周波数の信号を順次混合することにより,上記第一の周波数帯の信号を第二の周波数帯の信号に周波数変換する周波数変換装置において,周波数が既知である電波信号を外部から受信する電波受信手段と,順次混合される上記局部発振周波数の信号のうち少なくとも一つの信号における周波数を,上記電波受信手段により受信される上記電波信号に基づいて制御する周波数制御手段とを具備してなることを特徴とする周波数変換装置として構成される。
例えば,上記周波数制御手段としては,上記電波受信手段により受信される上記電波信号の周波数に基づいて所定の周波数の信号を生成する位相同期ループ回路を具備し,生成される上記所定の周波数の信号を順次混合される上記局部発振周波数の信号における参照周波数として用いるものが考えられる。
これにより,上記電波信号として,例えば標準電波その他の高精度な信号を用いた場合には,上記位相同期ループ回路により生成され,上記局部発振周波数の信号における参照周波数として用いられる上記所定の周波数の信号の精度を高精度な周波数精度の信号とすることができる。
その結果,従来公知の周波数変換装置では高精度の周波数を得るためには不可欠であった恒温槽付き水晶発振器を用いることなく,高精度な参照周波数を生成することが可能となり,装置の小型化,製造コストの低減,更には消費電力の低減を実現し得る装置として構成することができる。
【0005】
また,上記周波数調整手段としては,順次混合される上記局部発振周波数の信号のうち任意の信号における周波数を上記電波受信手段により受信される上記電波信号に基づいて測定する周波数測定手段と,上記周波数測定手段により測定された周波数と所定の上記局部発振周波数との間の周波数偏差を算出する周波数偏差算出手段と,上記周波数偏差算出手段により算出された上記周波数偏差に基づいて,順次混合される上記局部発振周波数の信号のいずれかの信号における周波数を補正する第一の補正手段とを具備してなるものであっても良い。
この場合には,上記電波信号として,標準電波その他の高精度な信号を用いることによって,上記任意の信号における周波数,及び該任意の信号における周波数と所定の上記局部発振周波数との間の周波数偏差を高精度に測定することが可能となる。
従って,測定された上記周波数偏差を打ち消すように,順次混合される上記局部発振周波数の信号のいずれかの信号における周波数を補正することによって,装置の入出力における周波数精度を所定の精度とすることができる。
尚,上記第一の補正手段により周波数を補正される上記局部発振周波数の信号は,順次混合される上記局部発振周波数の信号のうち上記任意の信号と異なる信号とすることが望ましい。
この場合には,最も厳しい周波数精度を要求される混合段(ダウンコンバータの場合には準ミリ波帯である一段目)での周波数偏差を,その混合段と異なる混合段(ダウンコンバータの場合には後段)において補正することが可能となる。
これにより,最も厳しい周波数精度を要求される混合段の局部発振周波数を発振する局部発振器としては誘電体発振器その他制御ループを有しない安価な発振器を用い,そこで発生した周波数偏差を異なる混合段において補正するような装置として構成することが可能となり,製造コスト低減に寄与することができる。
【0006】
更にまた,上記周波数調整手段としては,上記任意の信号を発振する局部発振器の温度を測定する温度測定手段と,上記周波数偏差算出手段により算出された上記周波数偏差と,上記温度測定手段により測定された上記温度とを対応させたデータテーブルを作成するテーブル作成手段と,上記テーブル作成手段により作成された上記データテーブルに基づいて,順次混合される上記局部発振周波数の信号のいずれかの信号における周波数を補正する第二の補正手段とを具備してなるものも考えられよう。
ところで,順次混合される上記局部発振周波数の信号を発振する局部発振器の周波数特性は,もっぱら該局部発振器の温度に応じて変動する。
そこで,測定された上記周波数偏差と検出された上記局部発振器の温度とを対応させたデータテーブルを作成し,検出される温度に応じてデータテーブルから読み出されるデータを用いることによって好適な補正を行うことができる。
この形態によれば,例えば上記電波信号の受信状態が悪化し,上記周波数偏差を測定できない状況に陥った場合であっても,過去の運転実績により蓄積された上記データテーブルにより好適な補正を行うことが可能である。
尚,この形態の場合にも,上記第二の補正手段により周波数を補正される上記局部発振周波数の信号は,順次混合される上記局部発振周波数の信号のうち上記任意の信号と異なる信号であることが望ましい。
その結果,上述した形態同様,最も厳しい周波数精度を要求される混合段の局部発振周波数を発振する局部発振器として誘電体発振器その他制御ループを有しない安価な発振器を用いることが可能となり,製造コスト低減に寄与し得る。
【0007】
ここで,上記電波受信手段により受信される上記電波信号としては,標準電波,GPS(全地球測位システム),或いはそれと同等の人工衛星測位システムの搬送波周波数,カラーテレビ放送の色搬送波信号のいずれかを用いることが考えられる。
【0008】
【発明の実施の形態】
以下添付図面を参照しながら,本発明の実施の形態及び実施例について説明し,本発明の理解に供する。尚,以下の実施の形態及び実施例は,本発明を具体化し
た一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の第一の実施形態に係る周波数変換装置の概略構成を示す図,図2は本発明の第二の実施形態に係る周波数変換装置の概略構成を示す図,図3は本発明の第三の実施形態に係る周波数変換装置の概略構成を示す図,図4はデータテーブルの作成手順を示すフロー図,図5はデータテーブルの一例を示す図,図6は従来公知の周波数変換装置の概略構成を示す図である。
【0009】
本発明の第一の実施の形態に係る周波数変換装置Aは,図1(a)として具現化される。
同図に示す如く,該周波数変換装置Aは,ミキサ11aと,局部発振器12a(発振周波数f_1)と,周波数選択フィルタ13aと,ミキサ11bと,局部発振器12b(発振周波数f_2)と,周波数選択フィルタ13bとを具備して概略構成される。
上記周波数変換装置Aにおいて,受信した入力周波数f_inは,上記ミキサ11aにより上記局部発振器12aの発振周波数f_1と混合された後に上記周波数選択フィルタ13aによってフィルタリングされ中間周波数f_mとなる。更に,上記中間周波数f_mは,上記ミキサ11bにより上記局部発振器12bの発振周波数f_2と混合された後に上記周波数選択フィルタ13bによってフィルタリングされ出力周波数f_outの信号として出力される。このように,受信した信号の周波数を所定の中間周波数を介して,所定の出力周波数へ変換し,出力するという基本的な動作については図6に示す従来公知の周波数変換装置Dと同様である。
ここで,上記周波数変換装置Aは,従来公知の上記波数変換装置Dに対し,周波数が既知である電波信号を外部から受信する電波受信部20(電波受信手段に該当)と,該電波受信部20により受信される上記電波信号に基づいて所定の周波数の信号を生成する位相同期ループ回路を有する周波数制御部12dとを具備すると共に,該周波数制御部12dで生成される上記所定の周波数を上記局部発振器12aの参照周波数として用いる点で異なる。
即ち,上記周波数変換装置Aは,従来公知の周波数変換機Dにおいて,上記局部発振器12aに対して参照周波数を供給する上記基準発振器18(図6(b)参照)を,上記電波受信部20及び上記周波数制御部12dに置き換えたものと見なすことができる。
ここで,図1(b)を参照しつつ,上記周波数制御部12dの構成について詳説する。
該周波数制御部12dは,分周器21と,位相比較器22と,分周器23と,VCXO(電圧制御水晶発振器)24と,ループフィルタ25と,D/A(デジタル/アナログ変換部)26と,A/D(アナログ/デジタル変換部)27と,CPU28と,メモリ29とを具備して構成される。
つまり,該周波数制御部12dは,上記分周器21,上記位相比較器22,上記分周器23,上記VCXO(電圧制御水晶発振器)24,上記ループフィルタ25により構成される位相同期ループ回路(PLL回路)に対し,上記D/A26,上記A/D27,上記CPU28,上記メモリ29により構成される制御系を組み合わせたものと考えられる。
そこで,先ず,上記位相同期ループ回路の機能について説明する。
該位相同期ループ回路では,上記電波受信部20により受信される上記電波信号が上記分周器21で分周され,一方で上記VCXO24の信号が上記分周器23で分周され,両者が上記位相比較器22で比較され,両者の差に相当する電圧が上記ループフィルタ25により適切な周波数特性にて増幅される。そして,上記ループフィルタ25からの電圧出力が上記VCXO24の制御入力としてフィードバックされる。
従って,当該位相同期ループ回路の発振周波数は上記ループフィルタ25からの電圧出力が無くなるところ,即ち上記電波信号の周波数に一定の比率(分周比)で関連付けられた周波数で安定し,その周波数精度は上記電波信号の周波数精度に応じた精度となる。
次に,上記制御系の機能について説明する。
該制御系は,上記ループフィルタ25から出力される電圧データを演算サンプリング毎に更新しながら上記メモリ29で記憶すると共に,上記電波受信部20で受信された上記電波信号を取得し,その入力信号レベルを所定の閾値と比較することによって上記電波信号が正常に受信されているか否かを判定している。そして,例えば電波障害その他の要因により,上記電波受信部20が上記電波信号を正常に受信していない(入力信号レベルが閾値以下である)と判定した場合には,上記ループフィルタ25からの電圧出力に代えて,上記メモリ29に記憶されているデータを読み出し,そのデータを現在の電圧出力として上記VCXO24へフィードバックする。
従って,当該制御系は,上記電波信号の電波伝播状況が変わった場合にも,上記位相同期ループの発振周波数を所定の周波数を保つべく,上記ループフィルタ25からの電圧出力を補完する機能を有する。更には,上記ループフィルタ25の作用を上記CPU28内で処理する,或いは位相同期ループ回路の利得をソフト的に調整する等,アナログ系のみでは実現が困難であることをデジタル処理により行う機能を有する。
以上のような構成により,上記周波数制御部12dは,上記電波受信部20によって受信された上記電波信号に関連付けられた周波数の信号を上記局部発振器12aの参照周波数として供給することが可能であり,更には,上記電波信号が微弱となった場合にも,過去の正常な受信履歴に基づいて正常に発振周波数を安定的に発振させ得る機能を有する。
ここで,上記周波数制御部12dの発振周波数の周波数精度は,上記電波信号における周波数精度相当の精度となるため,上記電波信号として,後述するような高精度な信号を用いれば,上記波数制御部12dにより供給される信号の周波数精度は当然高精度な信号となる。
従って,上記電波受信部20及び上記周波数制御部12dは,あたかも高精度な発振周波数を発振する参照発振器として機能することが可能となり,そのために恒温槽付き水晶発振器を用いていた従来の装置と較べて,低コスト化,小型化,及び省電力化を実現することができる。
【0010】
ところで,周波数が常に高精度に管理され,且つ一般の用途に供されている電波の一例として,以下のものがある。
1.標準電波
標準電波とは,長波或いは短波で送信される電波であって,周波数が高精度に管理されたものである。我が国では,長波(40kHz,60kHz)が使用され,連続波として常時送信されており,その精度は10−12程度と見積もられる。
2.GPSの搬送波周波数
アメリカによって運用されるGPS(全地球測位システム)の搬送波周波数を用いることも考え得る。ここで,該搬送波周波数は,常時地球上より監視され,調整されるGPS衛星搭載のセシウム原子発振器からの信号であり,その精度は2.0×10−12程度と見積もられる。また,GPSと同等のものとしてロシアが運用するGLONASSの搬送波周波数を用いることも可能である。
3.カラーテレビ放送信号の色搬送波信号
更には,カラーテレビ放送信号に含まれる色搬送波信号を用いることも可能と考える。ここで,色搬送波信号はカラーサブキャリアと呼ばれ,この信号はルビジウム原子発振器を用いたものであり,その精度は,総務省通信総合研究所により測定された東京近郊局の実績値によれば,5.0×10−11程度と見積もられる。
このように,自由に利用可能で且つ高精度に管理され,周波数が公知である外部の電波信号を用いることにより,上記周波数制御部12dの上記位相同期ループ回路により安定化されて上記ミキサ11aに入力される発振周波数の周波数精度を,上述した電波信号の精度相当の高精度なものとすることができる。
また,上述した電波信号を用いれば,それらの電波を受信する受信装置の部品としても民生用途の電子部品を用いることが可能となり,製造コストの低減を図ることが可能となる。
【0011】
続いて,図2(a)を参照しつつ,本発明の第二の実施の形態に係る周波数変換装置Bについて説明する。
同図に示す如く,該周波数変換装置Bは,ミキサ11aと,局部発振器12a(発振周波数f_1)と,周波数選択フィルタ13aと,ミキサ11bと,局部発振器12b(発振周波数f_2)と,周波数選択フィルタ13bとを具備して概略構成される。
上記周波数変換装置Bにおいて,受信した入力周波数f_inは,上記ミキサ11aにより上記局部発振器12aの発振周波数f_1と混合された後に上記周波数選択フィルタ13aによってフィルタリングされ中間周波数f_mとなる。更に,上記中間周波数f_mは,上記ミキサ11bにより上記局部発振器12bの発振周波数f_2と混合された後に上記周波数選択フィルタ13bによってフィルタリングされ出力周波数f_outの信号として出力される。このように,受信した信号の周波数を所定の中間周波数を介して,所定の出力周波数へと変換し,出力するという基本的な動作については図6に示す従来公知の周波数変換装置Dと同様である。
ここで,上記周波数変換装置Bは,従来公知の上記周波数変換装置Dに対し,周波数が既知である電波信号を外部から受信する電波受信部20(電波受信手段に該当)と,該電波受信部20により受信される上記電波信号に基づいて所定の周上記局部発振器12aの周波数を測定する周波数測定部12e(周波数測定手段に該当)と,上記周波数測定部12eにより測定された周波数と所定の上記局部発振周波数との間の周波数偏差を算出する周波数偏差算出手段と,上記周波数偏差算出手段により算出された上記周波数偏差に基づいて,上記局部発振器12bの周波数を補正する周波数補正部12f(第一の補正手段に該当)とを具備する点で異なる。
ここで,図2(b)を参照しつつ,上記周波数測定部12e,上記周波数偏差算出手段,及び上記周波数補正部12fの構成について詳説する。
該周波数測定部12eは,分周器30と,ゲート信号生成回路31と,ゲート32と,カウンタ33と,A/D34と,CPU35と,メモリ36とを具備して構成される。
上記電波受信部20により受信される上記電波信号(ここでは,当該電波信号が40kHzの長波である標準電波を用いる場合を考える)は上記分周器30(ここでは,分周比を1/4000とする)に入力され,10Hzの信号に分周される。
続いて,上記分周器30により分周された信号は上記ゲート信号生成回路31においてゲート信号に変換される。ここで,10Hzは周期0.1secの信号であるので0.1secのゲート信号となる。
上記ゲート32は,上記ゲート信号生成回路31からのゲート信号が入力され,そのゲート信号に応じて開閉制御される。
ここで,上記ゲート32には,上記ゲート信号生成回路31からのゲート信号と共に,不図示である波形整形回路によって信号周期に対応したパルス信号に整形された上記局部発振器12aの発振周波数が入力される。
そして,上記ゲート32に入力された上記局部発振器12aの発振周波数に対応したパルス信号のうち,上記ゲート32が開いている場合にのみ,そのパルス信号は上記カウンタ33へ通過する。
上記カウンタ33では,所定のゲート信号(本実施形態では0.1sec)の期間内に存在したパルス信号のパルス数が積算される。そのため,該カウンタ33で積算されるパルス数は,測定対象である上記局部発振器12aの発振周波数に比例するものとなる。
従って,上記CPU35では,上記カウンタ33のパルス数に基づいて容易に上記局部発振器12aの発振周波数を取得することができる。例えば,本実施形態の如くゲート信号が0.1secであれば,積算されたパルス数を10倍すれば一秒あたりのパルス数,即ち周波数を取得することができる。
また,上記CPU35は,上記カウンタ33から出力されるパルス数を演算サンプリング毎に更新しながら上記メモリ36で記憶すると共に,上記電波受信部20で受信された上記電波信号を取得し,その入力信号レベルを所定の閾値を比較することによって上記電波信号が正常に受信されているか否かを判定している。そして,例えば電波障害その他の要因により,上記電波受信部20が上記電波信号を正常に受信していない(入力信号レベルが閾値以下である)と判定した場合には,上記カウンタ33からのパルス数に代えて,上記メモリ36に記憶されているパルス数を読み出し,現在のパルス数として上記局部発振器12aの発振周波数の演算に用いる。
以上のように,上記周波数測定部12eは,上記電波受信部20によって受信された上記電波信号に基づいて上記局部発振器12aの発振周波数を測定することが可能であり,更には,上記電波信号の電波伝播状況が変わり上記電波信号を受信できない状況に陥った場合にも,既に受信した正常なデータによる補完を行うことにより,その影響を受けることなく,上記局部発振器12aの発振周波数を測定することができる。
続いて,上記周波数偏差算出手段及び上記周波数補正部12fについて説明する。
上記周波数偏差算出手段は,上記CPU35上で実行され,上述した手順に従い上記周波数測定部12eにおいて測定された周波数と,上記メモリに予め記憶された上記局部発振器12aの発振周波数が本来発振すべき所定の発振周波数との間で比較演算を行い,周波数偏差を算出するプログラムとして実現される。
また,上記周波数補正部12fも,上記周波数偏差算出手段と同様,上記CPU35上で実行されるプログラムであって,上記周波数偏差算出手段によって算出された周波数偏差に基づいて,上記局部発振器12bの周波数を補正するための補正指令を演算するものとして実現される。
ここで,上記周波数補正部12fが上記局部発振器12bの周波数を補正するため際には,上記周波数測定部12eにおいて算出された周波数偏差基づいて上記局部発振器12b(図6と同様の構成を有する)における上記基準発振器18の周波数(参照周波数:f_ref),或いは分周比N/R(周波数指令設定)を調整すれば良い。
ここでは,上記基準発振器18の周波数を調整する方法について説明する。
例えば,上記基準発振器18としては,図2(c)に示す如く,CPU38,D/A39,VCXO(電圧制御水晶発振器)40によって構成され,上記CPU38から上記D/A39を介して入力される制御指令に応じて上記VCXO40が所定の周波数を発振しているものが考えられる。
この場合には,上記CPU38に対して補正指令(周波数偏差)を入力し,上記局部発振器12aで生じた周波数偏差を当該局部発振器12bによって打ち消すような制御電圧(例えば,周波数偏差がXXHzある場合には,上記局部発振器12bの発振周波数f_2が(f_2−XX)Hzとなるように演算された制御電圧)を上記D/Aを介して上記VCXO40に入力すれば良い。
その他には,上記基準発振器18としては,図2(d)に示す如く,CPU41,シンセサイザ42,固定基準発振器43によって構成される場合も考え得る。
この場合にも,上述と同様に,上記CPU41に対して補正指令(周波数偏差)を入力し,上記局部発振器12aで生じた周波数偏差を当該局部発振器12bによって打ち消すような制御電圧を演算した後に,上記シンセサイザ42に入力すれば良い。
このような構成によって,上記周波数制御装置Bでは,最も厳しい周波数精度を要求される混合段(ダウンコンバータの場合には準ミリ波帯である一段目)で発生した周波数偏差を,その混合段と異なる混合段(ダウンコンバータの場合には後段)において補正し,装置の出入口での周波数精度としては所定の精度を達成するような装置として構成することが可能となる。
即ち,最も厳しい周波数精度を要求される混合段の局部発振周波数を発振する局部発振器としては誘電体発振器その他制御ループを有しない安価な発振器を用い,そこで発生した周波数偏差を後段の混合段で補正するように構成することが可能となり,従来の装置と較べて,低コスト化,小型化,及び省電力化を実現することができる。
ここで,装置の入出力の周波数精度は,上記ゲート信号即ち上記電波信号の精度に応じて決定される。即ち,上記電波信号として,上述したような高精度な信号を用いることにより,上記局部発振器12aの発振周波数を厳密に測定し,その測定値(周波数偏差)に応じた高精度な補正を行うことが可能となり,装置の出入口での周波数精度を高くできる。
【0012】
最後に,図3(a)を参照しつつ,本発明の第三の実施の形態に係る周波数変換装置Cについて説明する。
同図に示す如く,該周波数変換装置Cは,ミキサ11aと,局部発振器12a(発振周波数f_1)と,周波数選択フィルタ13aと,ミキサ11bと,局部発振器12b(発振周波数f_2)と,周波数選択フィルタ13bとを具備して概略構成される。
上記周波数変換装置Cにおいて,受信した入力周波数f_inは,上記ミキサ11aにより上記局部発振器12aの発振周波数f_1と混合された後に上記周波数選択フィルタ13aによってフィルタリングされ中間周波数f_mとなる。更に,上記中間周波数f_mは,上記ミキサ11bにより上記局部発振器12bの発振周波数f_2と混合された後に上記周波数選択フィルタ13bによってフィルタリングされ出力周波数f_outの信号として出力される。このように,受信した信号の周波数を所定の中間周波数を介して,所定の出力周波数へと変換し,出力するという基本的な動作については図6に示す従来公知の周波数変換装置Dと同様である。
ここで,本実施形態は,上記局部発振器12aの周波数特性が,もっぱら該局部発振器12aの温度に応じて変動することに着目したものである。
即ち,当該周波数変換装置Cは,図3(b)に示す如く,上述した上記波数変換装置Bに対し,上記周波数測定部により発振周波数を測定される上記局部発振器12aの温度を測定する温度測定部12h(温度測定手段に該当)と,上記周波数偏差算出手段により算出された周波数偏差と,上記温度測定部12hにより測定された温度とを対応させたデータテーブルを作成するデータテーブル作成部37と,上記データテーブル作成部37により作成されたデータテーブルに基づいて,上記局部発振器12bの周波数を補正する周波数補正部12g(第二の補正手段に該当)とを更に具備して構成される。
ここで,上記温度測定部12hとしては,上記局部発振器12a内に使用される半導体部品中の未使用のPN接合を使用して温度検出することが可能であるし,新たにサーミスタ等を設けても良い。
また,上記周波数測定部12eで発振周波数を測定し,所定の発振周波数との間の周波数偏差を求める手法,及び上記周波数補正部12gがデータテーブルから読み出されるデータ(周波数偏差)に基づいて上記局部発振器12bを調整する手法については,上記周波数変換装置Bと同様であるため,ここでは説明を省略する。
ここでは,上記周波数変換装置Bに対して新たに付加された上記データテーブル作成部37におけるデータテーブルの作成手順の流れについて図4及び図5を参照しつつ,説明する。以下,S1,S2・・は図4に示す処理手順の番号と対応する。
先ず,上記データテーブル作成部37においては,一定時間ごとにデータテーブルの更新が行われる。
そこで,データベースを更新すべき所定の時間になった際には,上記周波数変換装置Bと同様の手順に従い,上記CPU35において算出される上記局部発振器12aにおける周波数偏差と,上記温度測定部12hにおいて測定される上記局部発振器12aにおける測定温度とが,上記データテーブル作成部37に入力される(S1)。
ここで,データテーブル作成部37により作成されるデータテーブルの温度刻み(図4中に示す判定式にはTtで示す)は,その装置に対して求められる周波数精度から決定されるものであり,予め装置の代表特性例から好適な間隔に設定されているものとする。
そして,上記温度検出部12hにより測定された測定温度が,その温度刻みTtから所定の範囲内(図4中に示す判定式にはΔtで示す)の温度であれば,その上記局部発振器12aの測定温度と,その際の周波数偏差(以後単にデータという)とが,その温度刻みTtに相当するデータとして記憶される。(S2のY側,S3のN側,及びS5)
ここで,上記局部発振器12aの温度変化の推移によっては,既にデータを記憶している温度刻みTtに対して,新たなデータを記憶しようとする状況も考え得る。(S3のY側)
その場合,本実施形態では,前回記憶されたデータと今回記憶しようとするデータとの差が僅少である場合には更新しないものとする。(S4のY側)無論,前回のデータと今回のデータとの間で平均値を取る,或いは今回のデータを優先して上書き記憶するものであっても良い。
このような手順に従って作成されたデータテーブルの一例を図5に示す。
このデータテーブルを作成する際の上記データテーブル作成部37における初期条件(設定)は,温度刻みTtが0℃から5℃刻みであり,温度刻みに対する許容温度Δtが1.5℃としている。
先ず,データテーブルの作成が開始されたP1点において,20℃に相当するデータを取得している。
所定の時間が経過しデータテーブルの更新が行われ,P2点(25℃に相当)のデータを取得,以下同様にP3点(15℃に相当),P4点(10℃に相当)・・がデータとして順次記憶されている。
しかしながら,P5点では,データを取得すべき次の温度刻み(5℃)に達していないため,データは記憶されない。(図4におけるS2のN側に該当)
そして,所定の時間が経過した後にP6点において,5℃に相当するデータを取得している。また,P7点においても,上記P5点と同様に,データは記憶されていない。
以上のような手順に従って,上記データテーブル作成部37では,上記局部発振器12aの測定温度と,該局部発振器12aにおける周波数偏差とを対応付けたデータテーブルを作成することが出来る。
従って,上記周波数補正部12gは,上記局部発振器12aの温度に応じて上記データテーブル作成部37におけるデータテーブルからデータを読み出すだけで,上記局部発振器12bの周波数に対する最適な補正量を決定することができる。
その結果,本実施形態によれば,例えば上記電波信号の受信状態が悪化し,周波数偏差を測定できない状況で,且つ上記局部発振器12aの温度が変動した場合であっても,過去の運転実績により蓄積されたデータテーブルの補正データを用いることにより正常に機能することが可能であり,高い信頼性を有する装置として構成することができる。
また,装置の組み立て/試験を実施する工場において,最小限の初期データさえ与えておけば,その装置の実際の使用に伴って逐次必要なデータを蓄積することが可能であり,製造コストの低減に寄与することも可能である。
或いは逆に,工場において,その装置に対して想定され得る温度サイクルを加える工程を加えた場合には,予め全温度域において略最適に調整されたデータテーブルを構築した後に,装置を出荷することも可能である。
【0013】
【実施例】
上記実施形態においては,単一の上記電波信号に基づいた処理を行うことにより,上記周波数変換装置の周波数精度を向上させる形態について説明している。
しかしながら,複数の上記電波信号の中から,その時点で最も受信し易い(信号レベルの高い)信号を選定すると共に,選定された上記電波信号に応じて必要な制御設定値等を変更する機能を有するものも考え得る。
そのような形態とすれば,上記電波信号の電波伝播状況により上記電波信号が受信できない状況に陥る可能性を少なくすることが可能であり,装置としての信頼性,使用性を向上させることができる。
【0014】
【発明の効果】
以上説明したように,本発明は,第一の周波数帯の信号に対して,互いに周波数が異なる複数の局部発振周波数の信号を順次混合することにより,上記第一の周波数帯の信号を第二の周波数帯の信号に周波数変換する周波数変換装置において,周波数が既知である電波信号を外部から受信する電波受信手段と,順次混合される上記局部発振周波数の信号のうち少なくとも一つの信号における周波数を,上記電波受信手段により受信される上記電波信号に基づいて制御する周波数制御手段とを具備してなることを特徴とする周波数変換装置として構成される。
例えば,上記周波数制御手段としては,上記電波受信手段により受信される上記電波信号の周波数に基づいて所定の周波数の信号を生成する位相同期ループ回路を具備し,生成される上記所定の周波数の信号を順次混合される上記局部発振周波数の信号における参照周波数として用いるものが考えられる。
これにより,上記電波信号として,例えば標準電波その他の高精度な信号を用いた場合には,上記位相同期ループ回路により生成され,上記局部発振周波数の信号における参照周波数として用いられる上記所定の周波数の信号の精度を高精度な周波数精度の信号とすることができる。
その結果,従来公知の周波数変換装置では高精度の周波数を得るためには不可欠であった恒温槽付き水晶発振器を用いることなく,高精度な参照周波数を生成することが可能となり,装置の小型化,製造コストの低減,更には消費電力の低減を実現し得る装置として構成することができる。
【0015】
また,上記周波数調整手段としては,順次混合される上記局部発振周波数の信号のうち任意の信号における周波数を上記電波受信手段により受信される上記電波信号に基づいて測定する周波数測定手段と,上記周波数測定手段により測定された周波数と所定の上記局部発振周波数との間の周波数偏差を算出する周波数偏差算出手段と,上記周波数偏差算出手段により算出された上記周波数偏差に基づいて,順次混合される上記局部発振周波数の信号のいずれかの信号における周波数を補正する第一の補正手段とを具備してなるものであっても良い。
この場合には,上記電波信号として,標準電波その他の高精度な信号を用いることによって,上記任意の信号における周波数,及び該任意の信号における周波数と所定の上記局部発振周波数との間の周波数偏差を高精度に測定することが可能となる。
従って,測定された上記周波数偏差を打ち消すように,順次混合される上記局部発振周波数の信号のいずれかの信号における周波数を補正することによって,装置の入出力における周波数精度を所定の精度とすることができる。
尚,上記第一の補正手段により周波数を補正される上記局部発振周波数の信号は,順次混合される上記局部発振周波数の信号のうち上記任意の信号と異なる信号とすることが望ましい。
この場合には,最も厳しい周波数精度を要求される混合段(ダウンコンバータの場合には準ミリ波帯である一段目)での周波数偏差を,その混合段と異なる混合段(ダウンコンバータの場合には後段)において補正することが可能となる。
これにより,最も厳しい周波数精度を要求される混合段の局部発振周波数を発振する局部発振器としては誘電体発振器その他制御ループを有しない安価な発振器を用い,そこで発生した周波数偏差を異なる混合段において補正するような装置として構成することが可能となり,製造コスト低減に寄与することができる。
【0016】
更にまた,上記周波数調整手段としては,上記任意の信号を発振する局部発振器の温度を測定する温度測定手段と,上記周波数偏差算出手段により算出された上記周波数偏差と,上記温度測定手段により測定された上記温度とを対応させたデータテーブルを作成するテーブル作成手段と,上記テーブル作成手段により作成された上記データテーブルに基づいて,順次混合される上記局部発振周波数の信号のいずれかの信号における周波数を補正する第二の補正手段とを具備してなるものも考えられよう。
ところで,順次混合される上記局部発振周波数の信号を発振する局部発振器の周波数特性は,もっぱら該局部発振器の温度に応じて変動する。
そこで,測定された上記周波数偏差と検出された上記局部発振器の温度とを対応させたデータテーブルを作成し,検出される温度に応じてデータテーブルから読み出されるデータを用いることによって好適な補正を行うことができる。
この形態によれば,例えば上記電波信号の受信状態が悪化し,上記周波数偏差を測定できない状況に陥った場合であっても,過去の運転実績により蓄積された上記データテーブルにより好適な補正を行うことが可能である。
尚,この形態の場合にも,上記第二の補正手段により周波数を補正される上記局部発振周波数の信号は,順次混合される上記局部発振周波数の信号のうち上記任意の信号と異なる信号であることが望ましい。
その結果,上述した形態同様,最も厳しい周波数精度を要求される混合段の局部発振周波数を発振する局部発振器として誘電体発振器その他制御ループを有しない安価な発振器を用いることが可能となり,製造コスト低減に寄与し得る。
【0017】
ここで,上記電波受信手段により受信される上記電波信号としては,標準電波,GPS(全地球測位システム),或いはそれと同等の人工衛星測位システムの搬送波周波数,カラーテレビ放送の色搬送波信号のいずれかを用いることが考えられる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る第一の周波数変換装置の概略構成を示す図。
【図2】本発明の実施形態に係る第二の周波数変換装置の概略構成を示す図。
【図3】本発明の実施形態に係る第三の周波数変換装置の概略構成を示す図。
【図4】データテーブルの作成手順を示すフロー図。
【図5】データテーブルの一例を示す図。
【図6】従来公知の周波数変換装置の概略構成を示す図。
【符号の説明】
11…ミキサ
12…局部発振器
13…周波数選択フィルタ
14…VCO(電圧制御発振器)
15…1/N分周器
16…位相比較器
17…1/R分周器
18…基準発振器
19…ループフィルタ
20…電波受信部
21…分周器
22…位相比較器
23…分周器
24…VCXO(電圧制御水晶発振器)
25…ループフィルタ
26…D/A
27…A/D
28…CPU
29…メモリ
30…分周器
31…ゲート信号生成回路
32…ゲート
33…カウンタ
34…A/D
35…CPU
36…メモリ
37…データベース作成部
38…CPU
39…D/A
40…VCXO(電圧制御水晶発振器)
41…CPU
42…シンセサイザ
43…固定基準発振器

Claims (9)

  1. 第一の周波数帯の信号に対して,互いに周波数が異なる複数の局部発振周波数の信号を順次混合することにより,上記第一の周波数帯の信号を第二の周波数帯の信号に周波数変換する周波数変換装置において,
    周波数が既知である電波信号を外部から受信する電波受信手段と,
    順次混合される上記局部発振周波数の信号のうち少なくとも一つの信号における周波数を,上記電波受信手段により受信される上記電波信号に基づいて制御する周波数制御手段と,
    を具備してなることを特徴とする周波数変換装置。
  2. 前記周波数制御手段が,前記電波受信手段により受信される前記電波信号の周波数に基づいて所定の周波数の信号を生成する位相同期ループ回路を具備し,生成される上記所定の周波数の信号を順次混合される前記局部発振周波数の信号における参照周波数として用いるものである請求項1に記載の周波数変換装置。
  3. 前記周波数制御手段が,順次混合される前記局部発振周波数の信号のうち任意の信号における周波数を前記電波受信手段により受信される前記電波信号に基づいて測定する周波数測定手段と,
    上記周波数測定手段により測定された周波数と所定の上記局部発振周波数との間の周波数偏差を算出する周波数偏差算出手段と,
    上記周波数偏差算出手段により算出された上記周波数偏差に基づいて,順次混合される上記局部発振周波数の信号のいずれかの信号における周波数を補正する第一の補正手段と,
    を具備してなる請求項1に記載の周波数変換装置。
  4. 前記第一の補正手段により周波数を補正される前記局部発振周波数の信号が,順次混合される前記局部発振周波数の信号のうち前記任意の信号と異なる信号である請求項3に記載の周波数変換装置。
  5. 前記任意の信号を発振する局部発振器の温度を測定する温度測定手段と,
    前記周波数偏差算出手段により算出された前記周波数偏差と,上記温度測定手段により測定された上記温度とを対応させたデータテーブルを作成するテーブル作成手段と,
    上記テーブル作成手段により作成された上記データテーブルに基づいて,順次混合される前記局部発振周波数の信号のいずれかの信号における周波数を補正する第二の補正手段と,
    を具備してなる請求項3に記載の周波数変換装置。
  6. 前記第二の補正手段により周波数を補正される前記局部発振周波数の信号が,順次混合される前記局部発振周波数の信号のうち前記任意の信号と異なる信号である請求項5に記載の周波数変換装置。
  7. 周波数が既知である前記電波信号が,国家標準の標準電波である請求項1〜6のいずれかに記載の周波数変換装置。
  8. 周波数が既知である前記電波信号が,GPS(全地球測位システム),或いはそれと同等の人工衛星測位システムの搬送波周波数である請求項1〜6のいずれかに記載の周波数変換装置。
  9. 周波数が既知である前記電波信号が,カラーテレビ放送の色搬送波信号である請求項1〜6のいずれかに記載の周波数変換装置。
JP2002164145A 2002-06-05 2002-06-05 周波数変換装置 Expired - Fee Related JP3913114B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002164145A JP3913114B2 (ja) 2002-06-05 2002-06-05 周波数変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002164145A JP3913114B2 (ja) 2002-06-05 2002-06-05 周波数変換装置

Publications (2)

Publication Number Publication Date
JP2004015292A true JP2004015292A (ja) 2004-01-15
JP3913114B2 JP3913114B2 (ja) 2007-05-09

Family

ID=30432375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002164145A Expired - Fee Related JP3913114B2 (ja) 2002-06-05 2002-06-05 周波数変換装置

Country Status (1)

Country Link
JP (1) JP3913114B2 (ja)

Also Published As

Publication number Publication date
JP3913114B2 (ja) 2007-05-09

Similar Documents

Publication Publication Date Title
US7139530B2 (en) Method and apparatus for calibrating a reference oscillator
JP3085511B2 (ja) 基準周波数発生装置
US7742785B2 (en) Reference signal generation for multiple communication systems
JP5681746B2 (ja) 多出力周波数シンセサイザにおける周波数制御のための装置と方法
JP2006506832A (ja) 通信測位装置における周波数管理
US7146143B2 (en) Communication semiconductor integrated circuit device and wireless communication system
US7020444B2 (en) High frequency semiconductor integrated circuit and radio communication system
KR100819363B1 (ko) 다채널 수신기들에서의 자동 주파수 제어 프로세싱
US8841973B2 (en) Circuit arrangement for generation of radio frequency output signals which form a broadband frequency ramp
KR100717134B1 (ko) 자동 주파수 제어 루프 회로
JP2007033447A (ja) 周波数誤差を補正するスペクトルアナライザ及びその方法
JP2011518317A (ja) デュアルモード衛星信号受信装置及び衛星信号受信方法
US8280330B2 (en) Crystal-less clock generation for radio frequency receivers
JP5844795B2 (ja) 発振周波数調整装置、発振周波数調整方法及び無線通信装置
JP2008547345A (ja) 適合性の基準周波数補正による同期方式
JP2007298317A (ja) 周波数変調回路及びfm−cwレーダ装置並びに通信統合レーダ装置
JP2010081247A (ja) 周波数シンセサイザ及び無線送信装置
US8362843B2 (en) Method and apparatus for multi-point calibration for synthesizing varying frequency signals
US20010048330A1 (en) Clock generator and digital or telephone poratble terminal using the same
US8781045B2 (en) Communication apparatuses and wireless communications modules
JP3913114B2 (ja) 周波数変換装置
GB2455717A (en) Frequency synthesis in a wireless basestation
JP2005051428A (ja) 周波数シンセサイザおよび通信装置
JPH0537414A (ja) 局部発振周波数の校正機能を持つ通信装置
JPH10284997A (ja) Afc回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Effective date: 20061012

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20061017

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070130

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees