JP2004015060A - プログラム可能論理装置回路及びその製造方法 - Google Patents
プログラム可能論理装置回路及びその製造方法 Download PDFInfo
- Publication number
- JP2004015060A JP2004015060A JP2003158930A JP2003158930A JP2004015060A JP 2004015060 A JP2004015060 A JP 2004015060A JP 2003158930 A JP2003158930 A JP 2003158930A JP 2003158930 A JP2003158930 A JP 2003158930A JP 2004015060 A JP2004015060 A JP 2004015060A
- Authority
- JP
- Japan
- Prior art keywords
- transistor
- pld
- transistors
- volatile
- integrated circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 claims description 14
- 239000004065 semiconductor Substances 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 10
- 230000005669 field effect Effects 0.000 claims description 7
- 238000002955 isolation Methods 0.000 claims description 3
- 239000004020 conductor Substances 0.000 claims 8
- 238000010586 diagram Methods 0.000 abstract description 4
- 102100032983 Phospholipase D2 Human genes 0.000 description 12
- 108010002267 phospholipase D2 Proteins 0.000 description 10
- 239000002184 metal Substances 0.000 description 9
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 9
- 229920005591 polysilicon Polymers 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 3
- 101000730670 Homo sapiens Phospholipase D2 Proteins 0.000 description 2
- 101000761444 Loxosceles laeta Dermonecrotic toxin Proteins 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/02—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
- H03K19/173—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
- H03K19/1733—Controllable logic circuits
- H03K19/1735—Controllable logic circuits by wiring, e.g. uncommitted logic arrays
- H03K19/1736—Controllable logic circuits by wiring, e.g. uncommitted logic arrays in which the wiring can be modified
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/30—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B69/00—Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/90—Masterslice integrated circuits
- H10D84/903—Masterslice integrated circuits comprising field effect technology
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
- Logic Circuits (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
【課題】改良したプログラム可能論理装置(PLD)及びその製造方法を提供する。
【解決手段】本発明に基づくPLDは複数個のPLDセルからなるアレイを有している。各PLDセルはプログラム可能トランジスタと選択トランジスタとを有している。PLDアレイは少なくとも1つの第一区域と該少なくとも1つの第一区域に隣接した少なくとも1つの第二区域とに分割されている。該少なくとも1つの第二区域はプログラム可能トランジスタを包含しており、且つ該少なくとも1つの第二区域は選択トランジスタを包含している。
【選択図】 図1
【解決手段】本発明に基づくPLDは複数個のPLDセルからなるアレイを有している。各PLDセルはプログラム可能トランジスタと選択トランジスタとを有している。PLDアレイは少なくとも1つの第一区域と該少なくとも1つの第一区域に隣接した少なくとも1つの第二区域とに分割されている。該少なくとも1つの第二区域はプログラム可能トランジスタを包含しており、且つ該少なくとも1つの第二区域は選択トランジスタを包含している。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明はプログラム可能論理装置(PLD)に関するものであって、更に詳細には、より簡単に且つより廉価に製造することが可能なPLDに関するものである。
【0002】
【従来の技術】
プログラマブルロジックデバイス即ちプログラム可能論理装置(PLD)は従来公知である。従来のPLDは複数個のPLDセルを有しており、その各々は少なくとも2つの状態のうちのいずれかにプログラム可能(書込可能)/消去可能である。ある従来のPLDセルはEEPROM技術を使用しており、その場合に、プログラム可能な薄い酸化膜コンデンサが設けられており、それを横断して充分な電圧が印加された場合に小さな電流が流れる。このトンネル酸化膜は、検知トランジスタへ接続しているフローティングゲートへ電荷を注入するか又はそれから電荷を抽出するために使用され、検知トランジスタ自身は該薄い酸化膜コンデンサのプログラム即ち書込まれた状態を検知する。このEEPROMを基礎としたPLDセルにおいては、2個の付加的なトランジスタ(プログラムトランジスタ及び読取トランジスタ)と制御コンデンサが設けられている。
【0003】
部分的には、上述したEEPROMを基礎としたPLDセルによって占有される空間がかなり大きなものであるために、よりコンパクトなPLDセルを提供するためにその他の技術が使用されている。フラッシュメモリプロセスがPLDにおいて使用されている。フラッシュを基礎としたPLDセルにおいては、フラッシュフローティングゲートトランジスタがプログラム可能構成要素を形成する。このフラッシュを基礎としたPLDセルは、更に、フローティングゲートトランジスタと直列に接続した直列選択トランジスタを有している。この選択トランジスタのゲート/制御端子はワード線へ結合され、該ワード線はPLDセルを選択、即ち活性化させる。従来のフラッシュを基礎としたPLDセルにおけるトランジスタ(選択トランジスタ及びフラッシュフローティングゲートトランジスタ)はPLDチップ上において互いに隣接して配設されている。フラッシュを基礎としたPLDセルは、先導する非揮発性メモリ技術と比較的適合性があるものである一方、増加させた密度を提供する。
【0004】
従来のフラッシュを基礎としたPLDに関する欠点は、フラッシュフローティングゲートトランジスタを集積回路チップ内の通常の選択トランジスタと集積化させる点である。特に、選択トランジスタを製造するための処理の流れに対し、フローティングゲートトランジスタを製造するための処理の流れには違いがある。フラッシュフローティングゲートトランジスタ及び隣接する通常の選択トランジスタの各トランジスタにおいて、欠陥性及びトンネル酸化膜完全性に関連する信頼性の問題が発生している。
【0005】
従って、費用効果的な態様で製造され且つ比較的高いセル密度を提供する信頼性のあるPLDセルを提供することの必要性が存在している。
【0006】
【発明が解決しようとする課題】
本発明は、以上の点に鑑みなされたものであって、上述した如き従来技術の欠点を解消し、改良したプログラム可能論理装置(PLD)及びその製造方法を提供することを目的とする。本発明の別の目的とするところは、信頼性を向上し且つコストを低下させたプログラム可能論理装置(PLD)及びその製造方法を提供することである。
【0007】
【課題を解決するための手段】
本発明の例示的実施例では、従来のPLD装置の欠点を解消し、且つ容易に且つ効率的に製造されるPLD装置を提供することにより顕著な利点を提供している。本発明の例示的実施例に基づくPLD装置は、非揮発性メモリによって使用されるのと実質的に同一の設計基準を使用して製造される。このように、非揮発性メモリ装置とPLD装置の両方を具備する応用特定集積回路(ASIC)等の集積回路を減少させた組の製造ステップで製造することを可能としている。
【0008】
本発明の例示的実施例によれば、集積回路の少なくとも1つの第一区域内に配設した例えばフローティングゲートトランジスタ等の複数個の非揮発性及び/又はプログラム可能トランジスタを具備するPLD装置が提供される。尚、「非揮発性メモリトランジスタ」という用語は、少なくとも2つの別個の非揮発性動作状態のうちのいずれか1つにプログラム即ち書込むことが可能なトランジスタのことを意味するものとして本明細書全体にわたって使用される。複数個の選択トランジスタが、該少なくとも1つの第一区域に隣接した少なくとも1つの第二区域内に配設されている。第一区域内の非揮発性メモリトランジスタは、PLDのPLDセルを形成するために、第二区域内の選択トランジスタと結合される。非揮発性メモリトランジスタをそれらの対応する選択トランジスタから離隔させるか又は分離させることにより、従来のフラッシュメモリ装置のコアを製造するための設計/処理基準をPLDを製造する場合に比較的容易に使用することが可能であり、それにより、PLDアレイ動作に対する第一回目の成功をより良く確保する。
【0009】
【発明の実施の形態】
図1を参照すると、本発明の例示的実施例に基づく集積回路チップ1のブロック図が示されている。集積回路チップ1は、例えば、応用特定集積回路(ASIC)とすることが可能である。集積回路チップ1の一部はプログラム可能論理装置(PLD)2を有している。従来のPLDにおけるように、PLD2は多様な論理演算のうちの1つ又はそれ以上を実施するためにプログラム即ち書込むことが可能である。PLD2は複数個の入力を受取り且つその中にプログラム即ち書込まれている論理演算(操作)に基づいて1個又はそれ以上の出力信号を発生する。
【0010】
PLD2は、複数個のPLDセルからなるアレイ3を有している。PLD2における各PLDセルは、選択トランジスタと直列に接続されている非揮発性メモリトランジスタを有している。非揮発性メモリトランジスタと選択トランジスタとの直列接続は、ビット線とソース線との間に配設させることが可能である。従って、アレイ3は複数個のビット線とソース線とを有することが可能であり、その場合に、各対のビット線及び対応するソース線に対して、複数個のPLDセルがそれらの間に並列に接続される。PLD2は、更に、センスアンプ回路4を有しており、該センスアンプ回路4は、アレイ3からソース線を受取り、その上の電流レベルを測定し、且つ検知した電流レベルに対応する論理レベルを有する出力信号を発生するためにアレイ3に隣接して配設されている。センスアンプ回路4は従来公知であるので、センスアンプ回路4の詳細な説明は割愛する。
【0011】
センスアンプ回路4の出力信号は論理プレーン5によって受取られる。論理プレーン5は、センスアンプ回路4の出力信号を受取り且つ種々のブール論理演算を実行する回路を有している。例えば、論理プレーン5は、複数個の論理NOR演算を実施する回路を有することが可能である。論理プレーンを使用することはPLDの設計において公知であるので、論理プレーン5の詳細な説明については割愛する。
【0012】
PLD2は、PLD2の複数個の入力信号とアレイ3との間に結合されている入力回路6を有している。入力回路6は、入力信号の条件付けを行い且つその条件付けした入力信号をアレイ3内のPLDセルへ印加させる。該条件付けした入力信号はアレイ3内のPLDセルの選択トランジスタのゲート/制御端子へ結合させることが可能である。PLD2は、更に、基準発生器回路7を有しており、それは所定の電圧レベルを発生し且つアレイ3内の非揮発性メモリトランジスタの制御端子へ印加し、従って各PLDセルは、その選択トランジスタの活性化により、複数個の論理値のうちの1つを表わす信号を発生することが可能である。
【0013】
上述したように、アレイ3内の各PLDセルはソース線とビット線との間に配設されている非揮発性メモリトランジスタと選択トランジスタとの直列接続を包含している。各PLDセルの非揮発性メモリトランジスタと選択トランジスタとが互いに直接的に隣接して配置されている従来のPLDセルと対比して、本発明の例示的実施例によれば、各PLDセルの非揮発性メモリトランジスタと選択トランジスタとはアレイ3の異なる部分内に配設されている。特に、アレイ3は複数個のPLDセルブロック8に分割させることが可能であり(図8)、その各々は非揮発性メモリセルの第一区域9と選択トランジスタの第二区域10とを包含している。PLDセルからなる各ブロック8に対して、非揮発性メモリセルは第一区域9内に位置されており、且つ対応する選択トランジスタは第二区域10内に位置されている。各ブロック8に対して、第二区域10は第一区域9と隣接して配置することが可能である。集積回路チップ1の物理的レイアウトにおいて、非揮発性メモリトランジスタを対応する選択トランジスタから離隔させることにより、以下に更に詳細に説明するように、集積回路チップ1の製造が著しく簡単化される。更に、集積回路チップ1において非揮発性メモリトランジスタをそれらの対応する選択トランジスタから離隔させることは、公知のフラッシュメモリ技術を使用すること、特に、フラッシュメモリトランジスタとして非揮発性メモリトランジスタを実現させることを比較的容易に可能とさせる。
【0014】
図1は、PLDセルからなる各ブロック8が非揮発性メモリトランジスタの単一の第一区域9と選択トランジスタの単一の第二区域10とを具備するものとして示しているが、PLDセルからなる任意の1つ又はそれ以上のブロック8が非揮発性メモリトランジスタからなる1個を超える第一区域9、又は選択トランジスタからなる1個を超える第二区域10を有することが可能であることを理解すべきである。後者に関して、PLDセルからなるブロック8は、単一の第一区域9内の非揮発性メモリトランジスタと関連する選択トランジスタの二つの第二区域10を包含することが可能であり、単一の第一区域9はこれら二つの第二区域10の間に配設させることが可能である。
【0015】
図2はPLDセルからなる1つのブロック8の一部を示した概略図である。各PLDセルは、選択トランジスタと直列接続した非揮発性メモリトランジスタ2によって形成することが可能であり、その場合に、選択トランジスタのゲート端子はPLDセルの入力端を形成する。各非揮発性メモリトランジスタ20のゲート端子は、基準発生器回路7からの基準電圧へ結合される。第一区域9内の非揮発性メモリトランジスタ20は端部同士を並べて製造することが可能である。各非揮発性メモリトランジスタ20のドレイン端子は、ビット線BLへ結合されており、且つ各非揮発性メモリトランジスタ20のソース端子は別個の中間線IMへ結合している。第二区域10内の選択トランジスタ21は端部同士並べて接続/製造することが可能である。選択トランジスタ21は電界効果トランジスタとすることが可能である。選択トランジスタ21は対毎にグループ化することが可能である。各対の選択トランジスタ21に対して、選択トランジスタ21は、PLDセルの単一の選択トランジスタを実効的に形成するために並列接続することが可能である。各対の選択トランジスタにおける選択トランジスタ21のソース端子はソース線SLへ結合しており、且つそのドレイン端子は別個の中間線IMへ結合している。従って、中間線IMは非揮発性メモリトランジスタと対応する選択トランジスタとの間の接続を形成する。理解されるように、複数個のPLDセルをビット線BLとソース線SLとの間に形成することが可能である。
【0016】
PLDセルからなる各ブロック8は、複数個の対のビット線BLとソース線SLとを有することが可能であることを理解すべきであり、その場合に、各対のビット線BLとソース線SLとに対して、複数個のPLDセルがそれらの間に結合される。
【0017】
第一区域9の一部の例示的なレイアウトを図3に示してある。特に、図3は第一区域9内の複数個の非揮発性メモリトランジスタ20を示している。各非揮発性メモリトランジスタ20は、並列接続された複数個の非揮発性メモリトランジスタ20Aから形成することが可能である。この場合には、複数個のアクティブ区域31が互いに離隔された関係で隣接して配設される。自己整合型ソース領域32は多数のアクティブ区域31を横断して延在しており且つ隣接するアクティブ区域31における非揮発性メモリトランジスタ20Aのソース領域を接続する。ポリシリコン33、この場合にはポリシリコン33のストリップ、この場合には、ポリシリコンの第二層(ポリシリコンの第一層は非揮発性メモリトランジスタ20Aのフローティングゲートを形成し、説明の便宜上図3には示していない)がアクティブ区域31に関して実質的に垂直に延在しており、且つ非揮発性メモリトランジスタ20Aのゲート/制御端子を形成している。図3に示したように、アクティブ区域31、自己整合型ソース領域32、ポリシリコン区域33は、複数個の非揮発性メモリトランジスタ20Aを画定しており、それにより、非揮発性メモリトランジスタ20Aのドレイン領域及びソース領域は、ポリシリコンストリップ33及びアクティブ区域31の交差区域の両側に沿ってアクティブ区域31内に位置されている。各アクティブ区域31に沿って、隣接する非揮発性メモリトランジスタ20Aが共通のソース領域を共有している。
【0018】
コンタクト34及び第一金属層のセグメント(説明の便宜上図3には示していない)が非揮発性メモリトランジスタ20Aのドレイン領域をビット線BLへ接続させることが可能である。更に、各グループの並列接続した非揮発性メモリトランジスタ20Aの自己整合型ソース領域32は、中間線IMを形成するコンタクト37を介して、第一金属層のセグメント36へ接続されている。中間線IMは、PLDセルの非揮発性メモリトランジスタ20Aをその対応する選択トランジスタ21へ接続させるために、第一区域9から第二区域10へ延在している。
【0019】
図3に示した非揮発性メモリトランジスタ20Aのレイアウトの多数の特性について説明する。最初に、第一金属セグメントが5つの隣接するアクティブ(活性)区域31内の非揮発性メモリトランジスタ20Aを接続しているにも拘わらず、8個の非揮発性メモリトランジスタ20A(4つの隣接したアクティブ区域31において)が使用されている。特に、一対のダミートランジスタ20Bが各グループの並列接続した非揮発性メモリトランジスタ20Aに隣接して配設されており且つ分離を与える。第二に、各中間線IMに対するコンタクト37は、非揮発性メモリトランジスタ20Aの隣接するグループの間に分離を与え且つリークを回避するために、非揮発性メモリトランジスタ20Aの両側に沿って互い違いにされている。
【0020】
理解すべきことであるが、非揮発性メモリトランジスタ20は図3の物理的レイアウトに対して異なる物理的レイアウトを有することが可能である。
【0021】
第二区域10の一部の例示的な物理的レイアウトを図4に示してある。アクティブ(活性)区域41は半導体物質からなる基板内に画定されている。ポリシリコンの第二層等のポリシリコン層のセグメント42が選択トランジスタ21のゲート/制御端子を形成するためにアクティブ区域41を横断して横方向に画定されており、選択トランジスタ21のドレイン領域及びソース領域はセグメント42によってオーバーラップされたアクティブ区域41の部分の両側に沿って配設されている。ポリシリコンセグメント42は入力回路6に向かって延在しており、従ってPLD装置2の入力は選択トランジスタ21のゲート端子へ印加させることが可能である。第二金属層等の金属層内に画定されるソース線SLはアクティブ区域41に沿って延在し且つコンタクト43を使用して選択トランジスタ21のソース端子へ接続している。中間線IMは対応する第一区域9から延在し且つコンタクト44を使用して選択トランジスタ21のドレイン端子へ接続させることが可能である。ソース線SLは、図1に示したように、センスアンプ回路4に対して経路付けさせることが可能である。
【0022】
上述したように、PLDセルのブロック8の第一区域9は、対応する第二区域10に隣接して集積回路チップ1内に配設されている。図5はブロック8が二次元的配列とされたアレイ3の例示的レイアウトを示している。この場合には、X方向にPLDセルのブロック8を付加するとビット線の数を増加し、且つY方向にPLDセルのブロック8を付加するとビット線当たりのPLDセルの数(積項)を増加させる。
【0023】
対応する選択トランジスタ21から別個の区域内に配設した非揮発性メモリトランジスタ20を有することの利点は、処理の統合上の問題が実質的に減少されることである。上述したように非揮発性メモリトランジスタ20を選択トランジスタ21と離隔させる結果として、集積回路チップ1を製造する上での処理の流れ及び装置制御における変化はより少ない。更に、例えば欠陥性及びトンネル酸化物完全性に関連するような非揮発性メモリトランジスタ及び選択トランジスタを製造することに関連する信頼性の問題も実質的に減少される。
【0024】
更に、非揮発性メモリトランジスタ20を選択トランジスタ21から分離させることは、既存の処理ステップを使用し且つ非揮発性メモリ装置の製造に関連する設計基準を使用して、アレイ3をより容易に製造することを可能とする。このように、集積回路チップ1は、非揮発性メモリ11を製造するのに必要な処理ステップと相対的に処理ステップを著しく増加させることなしに、PLDアレイ2及び非揮発性メモリ11(図1)の両方を包含して製造することが可能である。例えば、非揮発性メモリ11はフラッシュメモリとすることが可能であり、且つ非揮発性メモリトランジスタ20はフラッシュメモリトランジスタとすることが可能であり、その場合に、PLDセルのアレイ3は、既存のフラッシュメモリ処理ステップ及び設計基準を使用して製造することが可能である。非揮発性メモリトランジスタ20は、非揮発性メモリ11におけるフローティングゲートトランジスタと同一のトランジスタアーキテクチャを有することが可能である。その結果、集積回路チップ1は、比較的廉価に且つ増加された信頼性で製造することが可能である。
【0025】
PLD2及び/又はPLD2を埋め込んだ集積回路チップ1を製造する方法について図6を参照して説明する。該方法は、図6に示したように、ステップ60において、半導体基板の第一区域内に複数個の非揮発性メモリトランジスタ20を形成し、該第一区域とは別個の半導体基板の第二区域内に複数個の選択トランジスタ21を形成し、PLD2に対する周辺回路(入力回路6、基準発生器回路7、センスアンプ4、NORプレーン回路5等)に対して専用の半導体基板の第三区域内にトランジスタを形成し、且つ(オプションとして)集積回路チップ1のフラッシュメモリ11に対して専用の半導体基板の第四区域内に非揮発性メモリトランジスタ及び選択トランジスタを形成する。非揮発性メモリトランジスタ20の各々は、上述した如く、複数個の非揮発性メモリトランジスタ20Aから形成することが可能である。
【0026】
次に、ステップ61において、半導体基板上に金属相互接続層を付着形成し且つパターニングして、各非揮発性メモリトランジスタ20に対して、非揮発性メモリトランジスタ20を形成する非揮発性メモリトランジスタ20Aを並列接続させる。更に、該金属相互接続層は、並列接続した選択トランジスタ21の対を形成するために、選択トランジスタ21を並列接続させることが可能である。更に、該金属層は、第一区域と第二区域との間において経路付けを行い、各非揮発性メモリトランジスタ20をそれに対応する選択トランジスタ21へ接続させることが可能である。該金属相互接続層は、又、第三区域内のトランジスタを接続してPLD2の周辺回路を形成し、且つ第四区域内のトランジスタを接続してフラッシュメモリ11を形成することが可能である。
【0027】
以上、本発明の具体的実施の態様について詳細に説明したが、本発明は、これら具体例にのみ制限されるべきものではなく、本発明の技術的範囲を逸脱することなしに種々の変形が可能であることは勿論である。
【図面の簡単な説明】
【図1】本発明の例示的実施例に基づくPLD装置を具備する集積回路チップを示した概略ブロック図。
【図2】図1のPLD装置の一部を示した概略図。
【図3】図1のPLD装置の非揮発性メモリトランジスタを示した概略平面図。
【図4】図1のPLD装置の選択トランジスタを示した概略平面図。
【図5】図1のPLD装置の一部を示した概略平面図。
【図6】図1のPLD装置を製造する方法を示したフローチャート。
【符号の説明】
1 集積回路チップ
2 プログラム可能論理装置(PLD)
3 アレイ
4 センスアンプ回路
5 論理プレーン
6 入力回路
7 基準発生器回路
8 PLDセルブロック
9 第一区域
10 第二区域
20 非揮発性メモリトランジスタ
21 選択トランジスタ
【発明の属する技術分野】
本発明はプログラム可能論理装置(PLD)に関するものであって、更に詳細には、より簡単に且つより廉価に製造することが可能なPLDに関するものである。
【0002】
【従来の技術】
プログラマブルロジックデバイス即ちプログラム可能論理装置(PLD)は従来公知である。従来のPLDは複数個のPLDセルを有しており、その各々は少なくとも2つの状態のうちのいずれかにプログラム可能(書込可能)/消去可能である。ある従来のPLDセルはEEPROM技術を使用しており、その場合に、プログラム可能な薄い酸化膜コンデンサが設けられており、それを横断して充分な電圧が印加された場合に小さな電流が流れる。このトンネル酸化膜は、検知トランジスタへ接続しているフローティングゲートへ電荷を注入するか又はそれから電荷を抽出するために使用され、検知トランジスタ自身は該薄い酸化膜コンデンサのプログラム即ち書込まれた状態を検知する。このEEPROMを基礎としたPLDセルにおいては、2個の付加的なトランジスタ(プログラムトランジスタ及び読取トランジスタ)と制御コンデンサが設けられている。
【0003】
部分的には、上述したEEPROMを基礎としたPLDセルによって占有される空間がかなり大きなものであるために、よりコンパクトなPLDセルを提供するためにその他の技術が使用されている。フラッシュメモリプロセスがPLDにおいて使用されている。フラッシュを基礎としたPLDセルにおいては、フラッシュフローティングゲートトランジスタがプログラム可能構成要素を形成する。このフラッシュを基礎としたPLDセルは、更に、フローティングゲートトランジスタと直列に接続した直列選択トランジスタを有している。この選択トランジスタのゲート/制御端子はワード線へ結合され、該ワード線はPLDセルを選択、即ち活性化させる。従来のフラッシュを基礎としたPLDセルにおけるトランジスタ(選択トランジスタ及びフラッシュフローティングゲートトランジスタ)はPLDチップ上において互いに隣接して配設されている。フラッシュを基礎としたPLDセルは、先導する非揮発性メモリ技術と比較的適合性があるものである一方、増加させた密度を提供する。
【0004】
従来のフラッシュを基礎としたPLDに関する欠点は、フラッシュフローティングゲートトランジスタを集積回路チップ内の通常の選択トランジスタと集積化させる点である。特に、選択トランジスタを製造するための処理の流れに対し、フローティングゲートトランジスタを製造するための処理の流れには違いがある。フラッシュフローティングゲートトランジスタ及び隣接する通常の選択トランジスタの各トランジスタにおいて、欠陥性及びトンネル酸化膜完全性に関連する信頼性の問題が発生している。
【0005】
従って、費用効果的な態様で製造され且つ比較的高いセル密度を提供する信頼性のあるPLDセルを提供することの必要性が存在している。
【0006】
【発明が解決しようとする課題】
本発明は、以上の点に鑑みなされたものであって、上述した如き従来技術の欠点を解消し、改良したプログラム可能論理装置(PLD)及びその製造方法を提供することを目的とする。本発明の別の目的とするところは、信頼性を向上し且つコストを低下させたプログラム可能論理装置(PLD)及びその製造方法を提供することである。
【0007】
【課題を解決するための手段】
本発明の例示的実施例では、従来のPLD装置の欠点を解消し、且つ容易に且つ効率的に製造されるPLD装置を提供することにより顕著な利点を提供している。本発明の例示的実施例に基づくPLD装置は、非揮発性メモリによって使用されるのと実質的に同一の設計基準を使用して製造される。このように、非揮発性メモリ装置とPLD装置の両方を具備する応用特定集積回路(ASIC)等の集積回路を減少させた組の製造ステップで製造することを可能としている。
【0008】
本発明の例示的実施例によれば、集積回路の少なくとも1つの第一区域内に配設した例えばフローティングゲートトランジスタ等の複数個の非揮発性及び/又はプログラム可能トランジスタを具備するPLD装置が提供される。尚、「非揮発性メモリトランジスタ」という用語は、少なくとも2つの別個の非揮発性動作状態のうちのいずれか1つにプログラム即ち書込むことが可能なトランジスタのことを意味するものとして本明細書全体にわたって使用される。複数個の選択トランジスタが、該少なくとも1つの第一区域に隣接した少なくとも1つの第二区域内に配設されている。第一区域内の非揮発性メモリトランジスタは、PLDのPLDセルを形成するために、第二区域内の選択トランジスタと結合される。非揮発性メモリトランジスタをそれらの対応する選択トランジスタから離隔させるか又は分離させることにより、従来のフラッシュメモリ装置のコアを製造するための設計/処理基準をPLDを製造する場合に比較的容易に使用することが可能であり、それにより、PLDアレイ動作に対する第一回目の成功をより良く確保する。
【0009】
【発明の実施の形態】
図1を参照すると、本発明の例示的実施例に基づく集積回路チップ1のブロック図が示されている。集積回路チップ1は、例えば、応用特定集積回路(ASIC)とすることが可能である。集積回路チップ1の一部はプログラム可能論理装置(PLD)2を有している。従来のPLDにおけるように、PLD2は多様な論理演算のうちの1つ又はそれ以上を実施するためにプログラム即ち書込むことが可能である。PLD2は複数個の入力を受取り且つその中にプログラム即ち書込まれている論理演算(操作)に基づいて1個又はそれ以上の出力信号を発生する。
【0010】
PLD2は、複数個のPLDセルからなるアレイ3を有している。PLD2における各PLDセルは、選択トランジスタと直列に接続されている非揮発性メモリトランジスタを有している。非揮発性メモリトランジスタと選択トランジスタとの直列接続は、ビット線とソース線との間に配設させることが可能である。従って、アレイ3は複数個のビット線とソース線とを有することが可能であり、その場合に、各対のビット線及び対応するソース線に対して、複数個のPLDセルがそれらの間に並列に接続される。PLD2は、更に、センスアンプ回路4を有しており、該センスアンプ回路4は、アレイ3からソース線を受取り、その上の電流レベルを測定し、且つ検知した電流レベルに対応する論理レベルを有する出力信号を発生するためにアレイ3に隣接して配設されている。センスアンプ回路4は従来公知であるので、センスアンプ回路4の詳細な説明は割愛する。
【0011】
センスアンプ回路4の出力信号は論理プレーン5によって受取られる。論理プレーン5は、センスアンプ回路4の出力信号を受取り且つ種々のブール論理演算を実行する回路を有している。例えば、論理プレーン5は、複数個の論理NOR演算を実施する回路を有することが可能である。論理プレーンを使用することはPLDの設計において公知であるので、論理プレーン5の詳細な説明については割愛する。
【0012】
PLD2は、PLD2の複数個の入力信号とアレイ3との間に結合されている入力回路6を有している。入力回路6は、入力信号の条件付けを行い且つその条件付けした入力信号をアレイ3内のPLDセルへ印加させる。該条件付けした入力信号はアレイ3内のPLDセルの選択トランジスタのゲート/制御端子へ結合させることが可能である。PLD2は、更に、基準発生器回路7を有しており、それは所定の電圧レベルを発生し且つアレイ3内の非揮発性メモリトランジスタの制御端子へ印加し、従って各PLDセルは、その選択トランジスタの活性化により、複数個の論理値のうちの1つを表わす信号を発生することが可能である。
【0013】
上述したように、アレイ3内の各PLDセルはソース線とビット線との間に配設されている非揮発性メモリトランジスタと選択トランジスタとの直列接続を包含している。各PLDセルの非揮発性メモリトランジスタと選択トランジスタとが互いに直接的に隣接して配置されている従来のPLDセルと対比して、本発明の例示的実施例によれば、各PLDセルの非揮発性メモリトランジスタと選択トランジスタとはアレイ3の異なる部分内に配設されている。特に、アレイ3は複数個のPLDセルブロック8に分割させることが可能であり(図8)、その各々は非揮発性メモリセルの第一区域9と選択トランジスタの第二区域10とを包含している。PLDセルからなる各ブロック8に対して、非揮発性メモリセルは第一区域9内に位置されており、且つ対応する選択トランジスタは第二区域10内に位置されている。各ブロック8に対して、第二区域10は第一区域9と隣接して配置することが可能である。集積回路チップ1の物理的レイアウトにおいて、非揮発性メモリトランジスタを対応する選択トランジスタから離隔させることにより、以下に更に詳細に説明するように、集積回路チップ1の製造が著しく簡単化される。更に、集積回路チップ1において非揮発性メモリトランジスタをそれらの対応する選択トランジスタから離隔させることは、公知のフラッシュメモリ技術を使用すること、特に、フラッシュメモリトランジスタとして非揮発性メモリトランジスタを実現させることを比較的容易に可能とさせる。
【0014】
図1は、PLDセルからなる各ブロック8が非揮発性メモリトランジスタの単一の第一区域9と選択トランジスタの単一の第二区域10とを具備するものとして示しているが、PLDセルからなる任意の1つ又はそれ以上のブロック8が非揮発性メモリトランジスタからなる1個を超える第一区域9、又は選択トランジスタからなる1個を超える第二区域10を有することが可能であることを理解すべきである。後者に関して、PLDセルからなるブロック8は、単一の第一区域9内の非揮発性メモリトランジスタと関連する選択トランジスタの二つの第二区域10を包含することが可能であり、単一の第一区域9はこれら二つの第二区域10の間に配設させることが可能である。
【0015】
図2はPLDセルからなる1つのブロック8の一部を示した概略図である。各PLDセルは、選択トランジスタと直列接続した非揮発性メモリトランジスタ2によって形成することが可能であり、その場合に、選択トランジスタのゲート端子はPLDセルの入力端を形成する。各非揮発性メモリトランジスタ20のゲート端子は、基準発生器回路7からの基準電圧へ結合される。第一区域9内の非揮発性メモリトランジスタ20は端部同士を並べて製造することが可能である。各非揮発性メモリトランジスタ20のドレイン端子は、ビット線BLへ結合されており、且つ各非揮発性メモリトランジスタ20のソース端子は別個の中間線IMへ結合している。第二区域10内の選択トランジスタ21は端部同士並べて接続/製造することが可能である。選択トランジスタ21は電界効果トランジスタとすることが可能である。選択トランジスタ21は対毎にグループ化することが可能である。各対の選択トランジスタ21に対して、選択トランジスタ21は、PLDセルの単一の選択トランジスタを実効的に形成するために並列接続することが可能である。各対の選択トランジスタにおける選択トランジスタ21のソース端子はソース線SLへ結合しており、且つそのドレイン端子は別個の中間線IMへ結合している。従って、中間線IMは非揮発性メモリトランジスタと対応する選択トランジスタとの間の接続を形成する。理解されるように、複数個のPLDセルをビット線BLとソース線SLとの間に形成することが可能である。
【0016】
PLDセルからなる各ブロック8は、複数個の対のビット線BLとソース線SLとを有することが可能であることを理解すべきであり、その場合に、各対のビット線BLとソース線SLとに対して、複数個のPLDセルがそれらの間に結合される。
【0017】
第一区域9の一部の例示的なレイアウトを図3に示してある。特に、図3は第一区域9内の複数個の非揮発性メモリトランジスタ20を示している。各非揮発性メモリトランジスタ20は、並列接続された複数個の非揮発性メモリトランジスタ20Aから形成することが可能である。この場合には、複数個のアクティブ区域31が互いに離隔された関係で隣接して配設される。自己整合型ソース領域32は多数のアクティブ区域31を横断して延在しており且つ隣接するアクティブ区域31における非揮発性メモリトランジスタ20Aのソース領域を接続する。ポリシリコン33、この場合にはポリシリコン33のストリップ、この場合には、ポリシリコンの第二層(ポリシリコンの第一層は非揮発性メモリトランジスタ20Aのフローティングゲートを形成し、説明の便宜上図3には示していない)がアクティブ区域31に関して実質的に垂直に延在しており、且つ非揮発性メモリトランジスタ20Aのゲート/制御端子を形成している。図3に示したように、アクティブ区域31、自己整合型ソース領域32、ポリシリコン区域33は、複数個の非揮発性メモリトランジスタ20Aを画定しており、それにより、非揮発性メモリトランジスタ20Aのドレイン領域及びソース領域は、ポリシリコンストリップ33及びアクティブ区域31の交差区域の両側に沿ってアクティブ区域31内に位置されている。各アクティブ区域31に沿って、隣接する非揮発性メモリトランジスタ20Aが共通のソース領域を共有している。
【0018】
コンタクト34及び第一金属層のセグメント(説明の便宜上図3には示していない)が非揮発性メモリトランジスタ20Aのドレイン領域をビット線BLへ接続させることが可能である。更に、各グループの並列接続した非揮発性メモリトランジスタ20Aの自己整合型ソース領域32は、中間線IMを形成するコンタクト37を介して、第一金属層のセグメント36へ接続されている。中間線IMは、PLDセルの非揮発性メモリトランジスタ20Aをその対応する選択トランジスタ21へ接続させるために、第一区域9から第二区域10へ延在している。
【0019】
図3に示した非揮発性メモリトランジスタ20Aのレイアウトの多数の特性について説明する。最初に、第一金属セグメントが5つの隣接するアクティブ(活性)区域31内の非揮発性メモリトランジスタ20Aを接続しているにも拘わらず、8個の非揮発性メモリトランジスタ20A(4つの隣接したアクティブ区域31において)が使用されている。特に、一対のダミートランジスタ20Bが各グループの並列接続した非揮発性メモリトランジスタ20Aに隣接して配設されており且つ分離を与える。第二に、各中間線IMに対するコンタクト37は、非揮発性メモリトランジスタ20Aの隣接するグループの間に分離を与え且つリークを回避するために、非揮発性メモリトランジスタ20Aの両側に沿って互い違いにされている。
【0020】
理解すべきことであるが、非揮発性メモリトランジスタ20は図3の物理的レイアウトに対して異なる物理的レイアウトを有することが可能である。
【0021】
第二区域10の一部の例示的な物理的レイアウトを図4に示してある。アクティブ(活性)区域41は半導体物質からなる基板内に画定されている。ポリシリコンの第二層等のポリシリコン層のセグメント42が選択トランジスタ21のゲート/制御端子を形成するためにアクティブ区域41を横断して横方向に画定されており、選択トランジスタ21のドレイン領域及びソース領域はセグメント42によってオーバーラップされたアクティブ区域41の部分の両側に沿って配設されている。ポリシリコンセグメント42は入力回路6に向かって延在しており、従ってPLD装置2の入力は選択トランジスタ21のゲート端子へ印加させることが可能である。第二金属層等の金属層内に画定されるソース線SLはアクティブ区域41に沿って延在し且つコンタクト43を使用して選択トランジスタ21のソース端子へ接続している。中間線IMは対応する第一区域9から延在し且つコンタクト44を使用して選択トランジスタ21のドレイン端子へ接続させることが可能である。ソース線SLは、図1に示したように、センスアンプ回路4に対して経路付けさせることが可能である。
【0022】
上述したように、PLDセルのブロック8の第一区域9は、対応する第二区域10に隣接して集積回路チップ1内に配設されている。図5はブロック8が二次元的配列とされたアレイ3の例示的レイアウトを示している。この場合には、X方向にPLDセルのブロック8を付加するとビット線の数を増加し、且つY方向にPLDセルのブロック8を付加するとビット線当たりのPLDセルの数(積項)を増加させる。
【0023】
対応する選択トランジスタ21から別個の区域内に配設した非揮発性メモリトランジスタ20を有することの利点は、処理の統合上の問題が実質的に減少されることである。上述したように非揮発性メモリトランジスタ20を選択トランジスタ21と離隔させる結果として、集積回路チップ1を製造する上での処理の流れ及び装置制御における変化はより少ない。更に、例えば欠陥性及びトンネル酸化物完全性に関連するような非揮発性メモリトランジスタ及び選択トランジスタを製造することに関連する信頼性の問題も実質的に減少される。
【0024】
更に、非揮発性メモリトランジスタ20を選択トランジスタ21から分離させることは、既存の処理ステップを使用し且つ非揮発性メモリ装置の製造に関連する設計基準を使用して、アレイ3をより容易に製造することを可能とする。このように、集積回路チップ1は、非揮発性メモリ11を製造するのに必要な処理ステップと相対的に処理ステップを著しく増加させることなしに、PLDアレイ2及び非揮発性メモリ11(図1)の両方を包含して製造することが可能である。例えば、非揮発性メモリ11はフラッシュメモリとすることが可能であり、且つ非揮発性メモリトランジスタ20はフラッシュメモリトランジスタとすることが可能であり、その場合に、PLDセルのアレイ3は、既存のフラッシュメモリ処理ステップ及び設計基準を使用して製造することが可能である。非揮発性メモリトランジスタ20は、非揮発性メモリ11におけるフローティングゲートトランジスタと同一のトランジスタアーキテクチャを有することが可能である。その結果、集積回路チップ1は、比較的廉価に且つ増加された信頼性で製造することが可能である。
【0025】
PLD2及び/又はPLD2を埋め込んだ集積回路チップ1を製造する方法について図6を参照して説明する。該方法は、図6に示したように、ステップ60において、半導体基板の第一区域内に複数個の非揮発性メモリトランジスタ20を形成し、該第一区域とは別個の半導体基板の第二区域内に複数個の選択トランジスタ21を形成し、PLD2に対する周辺回路(入力回路6、基準発生器回路7、センスアンプ4、NORプレーン回路5等)に対して専用の半導体基板の第三区域内にトランジスタを形成し、且つ(オプションとして)集積回路チップ1のフラッシュメモリ11に対して専用の半導体基板の第四区域内に非揮発性メモリトランジスタ及び選択トランジスタを形成する。非揮発性メモリトランジスタ20の各々は、上述した如く、複数個の非揮発性メモリトランジスタ20Aから形成することが可能である。
【0026】
次に、ステップ61において、半導体基板上に金属相互接続層を付着形成し且つパターニングして、各非揮発性メモリトランジスタ20に対して、非揮発性メモリトランジスタ20を形成する非揮発性メモリトランジスタ20Aを並列接続させる。更に、該金属相互接続層は、並列接続した選択トランジスタ21の対を形成するために、選択トランジスタ21を並列接続させることが可能である。更に、該金属層は、第一区域と第二区域との間において経路付けを行い、各非揮発性メモリトランジスタ20をそれに対応する選択トランジスタ21へ接続させることが可能である。該金属相互接続層は、又、第三区域内のトランジスタを接続してPLD2の周辺回路を形成し、且つ第四区域内のトランジスタを接続してフラッシュメモリ11を形成することが可能である。
【0027】
以上、本発明の具体的実施の態様について詳細に説明したが、本発明は、これら具体例にのみ制限されるべきものではなく、本発明の技術的範囲を逸脱することなしに種々の変形が可能であることは勿論である。
【図面の簡単な説明】
【図1】本発明の例示的実施例に基づくPLD装置を具備する集積回路チップを示した概略ブロック図。
【図2】図1のPLD装置の一部を示した概略図。
【図3】図1のPLD装置の非揮発性メモリトランジスタを示した概略平面図。
【図4】図1のPLD装置の選択トランジスタを示した概略平面図。
【図5】図1のPLD装置の一部を示した概略平面図。
【図6】図1のPLD装置を製造する方法を示したフローチャート。
【符号の説明】
1 集積回路チップ
2 プログラム可能論理装置(PLD)
3 アレイ
4 センスアンプ回路
5 論理プレーン
6 入力回路
7 基準発生器回路
8 PLDセルブロック
9 第一区域
10 第二区域
20 非揮発性メモリトランジスタ
21 選択トランジスタ
Claims (27)
- 集積回路において、
プログラム可能論理装置(PLD)、
を有しており、前記プログラム可能論理装置が、
複数個のPLDセルの各々がビット線とソース線との間に直列接続されている非揮発性トランジスタと選択トランジスタとを有しており、前記非揮発性トランジスタの制御端子が所定の電圧レベルへ接続しており且つ前記選択トランジスタの制御端子が前記PLDの入力端へ結合しており、前記非揮発性トランジスタがアレイ内の少なくとも1つの第一区域内に配設されており且つ前記選択トランジスタが前記アレイ内の少なくとも1つの第二区域内に配設されており、前記少なくとも1つの第二区域が前記少なくとも1つの第一区域に隣接して配設されている、複数個のPLDセルからなるアレイ、
各々が別個のソース線へ結合している複数個のセンスアンプ、
前記センスアンプへ結合している入力端と前記PLDの出力端へ結合している少なくとも1個の出力端とを具備している組合わせ論理からなるアレイ、
を有していることを特徴とする集積回路。 - 請求項1において、更に、非揮発性メモリ装置に対する1組の設計基準に準拠したレイアウトを具備する非揮発性メモリ装置を有しており、前記PLDセルからなるアレイのレイアウトが前記非揮発性メモリ装置に対する1組の設計基準に適合していることを特徴とする集積回路。
- 請求項2において、前記非揮発性メモリ装置がフラッシュメモリ装置を有しており、且つ前記PLDセルアレイの非揮発性トランジスタがフラッシュメモリトランジスタを有していることを特徴とする集積回路。
- 請求項2において、前記非揮発性メモリ装置が複数個のフローティングゲートトランジスタを有しており、前記PLDセルアレイの非揮発性トランジスタがフローティングゲートトランジスタを有しており、且つ前記非揮発性メモリ装置のフローティングゲートトランジスタ及び前記PLDセルアレイのフローティングゲートトランジスタが実質的に同一のトランジスタアーキテクチャを有していることを特徴とする集積回路。
- 請求項1において、前記非揮発性トランジスタが複数個の第一区域内に配設されており、且つ前記選択トランジスタが前記第一区域とは別の複数個の第二区域内に配設されていることを特徴とする集積回路。
- 請求項5において、各第一区域内の非揮発性トランジスタが、前記第一区域に隣接した別個の第二区域内の選択トランジスタと共にPLDセルを形成していることを特徴とする集積回路。
- 請求項1において、前記PLDセルを形成している電気的接続が導電性物質からなる三層からなるセグメントを有していることを特徴とする集積回路。
- 請求項1において、前記少なくとも1つの第一区域内の導電性物質からなるセグメント及び前記少なくとも1つの第二区域内の導電性物質からなるセグメントが、導電性物質からなる2つの層からのセグメントを有していることを特徴とする集積回路。
- 請求項1において、複数個の非揮発性トランジスタの各々が複数個の第一非揮発性トランジスタを有しており、単一の非揮発性トランジスタの第一非揮発性トランジスタが前記少なくとも1つの第一区域内のトランジスタからなる少なくとも2つの行内に配設されていることを特徴とする集積回路。
- 請求項1において、更に、前記第一区域内の隣接する非揮発性トランジスタ間に配設されている複数個の分離トランジスタを有していることを特徴とする集積回路。
- 請求項9において、対応する選択トランジスタへの電気的接続を可能とさせる前記非揮発性トランジスタに対するコンタクトが互い違いとされていることを特徴とする集積回路。
- 集積回路の製造方法において、
集積回路の第一区域内に複数個の非揮発性トランジスタを形成し、
前記集積回路の第二区域内に複数個の選択トランジスタを形成し且つ第三区域内に複数個のトランジスタを形成し、
各々が別個の選択トランジスタと直列接続している非揮発性トランジスタを有する複数個のプログラム可能論理装置(PLD)セルを形成し、組合わせ論理回路を形成するために前記第三区域内のトランジスタを互いに電気的に接続させ、且つ前記PLDセルを前記第三区域内のトランジスタへ電気的に接続させるために前記第一区域内の非揮発性トランジスタと前記第二区域内の選択トランジスタとの間に電気的相互接続を形成する、
ことを特徴とする方法。 - 請求項12において、更に、
前記集積回路の第四区域内に非揮発性トランジスタからなるアレイを形成し、
前記第一区域内の非揮発性トランジスタ及び前記第四区域内の非揮発性トランジスタが同一の組のレイアウト設計基準に従うことを特徴とする方法。 - 請求項12において、更に、
前記集積回路の第四区域内に非揮発性トランジスタからなるアレイを形成し、
前記第一区域内の非揮発性トランジスタと前記第四区域内の非揮発性トランジスタとが実質的に同一のトランジスタアーキテクチャを有していることを特徴とする方法。 - 請求項12において、前記非揮発性トランジスタがフローティングゲートトランジスタであることを特徴とする方法。
- 請求項12において、前記非揮発性トランジスタがフラッシュメモリトランジスタであることを特徴とする方法。
- 請求項12において、電気的相互接続を形成する場合に、少なくとも1つのビット線と少なくとも1つのソース線との間において複数個のPLDセルを並列接続させることを特徴とする方法。
- 請求項12において、前記非揮発性トランジスタを形成する場合に複数個の第一区域内に非揮発性トランジスタを形成し、前記選択トランジスタを形成する場合に複数個の第二区域内に選択トランジスタを形成し、各第二区域が第一区域と隣接していることを特徴とする方法。
- 請求項18において、電気的相互接続を形成する場合に、各第一区域内の非揮発性トランジスタをそれに隣接する第二区域内の選択トランジスタと接続してPLDセルを形成することを特徴とする方法。
- 請求項19において、第一区域からのPLDセル及びそれに隣接する第二区域内の選択トランジスタがPLDブロックを形成し、前記集積回路がPLDブロックからなるアレイを有していることを特徴とする方法。
- 集積回路において、
プログラム可能論理装置(PLD)、
を有しており、前記プログラム可能論理装置が、
半導体基板の少なくとも1つの第一区域内に配設されている複数個のフローティングゲートトランジスタ、
前記半導体基板の少なくとも1つの第二区域内に配設されている複数個の電界効果トランジスタ、
前記半導体基板上に配設されており且つ複数個のPLDセルを形成するために前記フローティングゲートトランジスタと前記電界効果トランジスタとを電気的に接続させる導電性物質からなる複数個の層、
を有しており、前記複数個のPLDセルの各々が少なくとも1個の別個の電界効果トランジスタと直列接続しているフローティングゲートトランジスタを有しており、前記複数個のPLDセルが少なくとも1つのソース線と少なくとも1つのビット線との間に接続されている、
ことを特徴とする集積回路。 - 請求項21において、前記PLD装置が、更に、前記半導体基板の第三区域内における複数個のトランジスタを有しており、前記導電性物質からなる層が前記第三区域内のトランジスタを互いに接続して組合わせ論理回路を形成し且つ前記少なくとも1つのビット線を前記組合わせ論理回路へ接続し、前記組合わせ論理回路が前記PLD装置の少なくとも1つの出力信号を発生する、
ことを特徴とする集積回路。 - 請求項21において、前記導電性物質からなる層が前記電界効果トランジスタのゲート端子を前記PLD装置の入力端へ結合させることを特徴とする集積回路。
- 請求項21において、前記フローティングゲートトランジスタが複数個の第一区域内に配設されており且つ前記複数個の電界効果トランジスタが複数個の第二区域内に配設されており、前記導電性物質からなる層が、第一区域内のフローティングゲートトランジスタ及び前記第一区域に隣接する第二区域内の電界効果トランジスタと共にPLDセルを形成していることを特徴とする集積回路。
- 請求項24において、第一区域とそれに隣接する対応する第二区域との各対が複数回繰返されていることを特徴とする集積回路。
- 請求項21において、更に、複数個の非揮発性メモリセルを具備する非揮発性メモリ装置を有しており、複数個の非揮発性メモリセルの各々が前記PLD装置のフローティングゲートトランジスタと実質的に同一のアーキテクチャを具備しているフローティングゲートトランジスタを有していることを特徴とする集積回路。
- 請求項21において、更に、複数個の非揮発性メモリセルを具備する非揮発性メモリ装置を有しており、複数個の非揮発性メモリセルの各々が、前記PLD装置のフローティングゲートトランジスタのレイアウトと同一の組の設計基準に適合するレイアウトを具備しているフローティングゲートトランジスタを有していることを特徴とする集積回路。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/164,245 US6856542B2 (en) | 2002-06-04 | 2002-06-04 | Programmable logic device circuit and method of fabricating same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004015060A true JP2004015060A (ja) | 2004-01-15 |
Family
ID=29549338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003158930A Pending JP2004015060A (ja) | 2002-06-04 | 2003-06-04 | プログラム可能論理装置回路及びその製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US6856542B2 (ja) |
EP (1) | EP1370000B1 (ja) |
JP (1) | JP2004015060A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8575960B2 (en) | 2011-05-20 | 2013-11-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US8581625B2 (en) | 2011-05-19 | 2013-11-12 | Semiconductor Energy Laboratory Co., Ltd. | Programmable logic device |
US8669781B2 (en) | 2011-05-31 | 2014-03-11 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
KR20140040155A (ko) | 2011-05-16 | 2014-04-02 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 프로그래머블 로직 디바이스 |
US8779799B2 (en) | 2011-05-19 | 2014-07-15 | Semiconductor Energy Laboratory Co., Ltd. | Logic circuit |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7212446B2 (en) * | 2002-09-16 | 2007-05-01 | Impinj, Inc. | Counteracting overtunneling in nonvolatile memory cells using charge extraction control |
US7283390B2 (en) | 2004-04-21 | 2007-10-16 | Impinj, Inc. | Hybrid non-volatile memory |
US8111558B2 (en) * | 2004-05-05 | 2012-02-07 | Synopsys, Inc. | pFET nonvolatile memory |
US7180813B2 (en) * | 2004-12-15 | 2007-02-20 | Stmicroelectronics, Inc. | Programmable system device having a shared power supply voltage generator for FLASH and PLD modules |
US7420248B2 (en) * | 2005-08-25 | 2008-09-02 | International Business Machines Corporation | Programmable random logic arrays using PN isolation |
US7894261B1 (en) | 2008-05-22 | 2011-02-22 | Synopsys, Inc. | PFET nonvolatile memory |
JP2012191455A (ja) * | 2011-03-10 | 2012-10-04 | Toshiba Corp | 半導体集積回路 |
US9659646B1 (en) | 2016-01-11 | 2017-05-23 | Crossbar, Inc. | Programmable logic applications for an array of high on/off ratio and high speed non-volatile memory cells |
US11934480B2 (en) * | 2018-12-18 | 2024-03-19 | Macronix International Co., Ltd. | NAND block architecture for in-memory multiply-and-accumulate operations |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4833646A (en) * | 1985-03-04 | 1989-05-23 | Lattice Semiconductor Corp. | Programmable logic device with limited sense currents and noise reduction |
US4761768A (en) * | 1985-03-04 | 1988-08-02 | Lattice Semiconductor Corporation | Programmable logic device |
JPS63310215A (ja) * | 1987-06-12 | 1988-12-19 | Fujitsu Ltd | プログラマブル論理回路 |
US5574857A (en) * | 1994-01-31 | 1996-11-12 | Intel Corporation | Error detection circuit for power up initialization of a memory array |
WO1996001499A1 (en) | 1994-07-05 | 1996-01-18 | Zycad Corporation | A general purpose, non-volatile reprogrammable switch |
US6252273B1 (en) * | 1996-08-09 | 2001-06-26 | Actel Corporation | Nonvolatile reprogrammable interconnect cell with FN tunneling device for programming and erase |
US5959891A (en) * | 1996-08-16 | 1999-09-28 | Altera Corporation | Evaluation of memory cell characteristics |
US5982683A (en) * | 1998-03-23 | 1999-11-09 | Advanced Micro Devices, Inc. | Enhanced method of testing semiconductor devices having nonvolatile elements |
US6144580A (en) * | 1998-12-11 | 2000-11-07 | Cypress Semiconductor Corp. | Non-volatile inverter latch |
US6038194A (en) * | 1998-12-28 | 2000-03-14 | Philips Electronics North America Corporation | Memory decoder with zero static power |
-
2002
- 2002-06-04 US US10/164,245 patent/US6856542B2/en not_active Expired - Lifetime
-
2003
- 2003-05-30 EP EP03253401.8A patent/EP1370000B1/en not_active Expired - Lifetime
- 2003-06-04 JP JP2003158930A patent/JP2004015060A/ja active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140040155A (ko) | 2011-05-16 | 2014-04-02 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 프로그래머블 로직 디바이스 |
US9344090B2 (en) | 2011-05-16 | 2016-05-17 | Semiconductor Energy Laboratory Co., Ltd. | Programmable logic device |
US9595964B2 (en) | 2011-05-19 | 2017-03-14 | Semiconductor Energy Laboratory Co., Ltd. | Programmable logic device |
US8581625B2 (en) | 2011-05-19 | 2013-11-12 | Semiconductor Energy Laboratory Co., Ltd. | Programmable logic device |
US9900007B2 (en) | 2011-05-19 | 2018-02-20 | Semiconductor Energy Laboratory Co., Ltd. | Programmable logic device |
US8779799B2 (en) | 2011-05-19 | 2014-07-15 | Semiconductor Energy Laboratory Co., Ltd. | Logic circuit |
US9397664B2 (en) | 2011-05-19 | 2016-07-19 | Semiconductor Energy Laboratory Co., Ltd. | Programmable logic circuit |
US8786311B2 (en) | 2011-05-20 | 2014-07-22 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US8575960B2 (en) | 2011-05-20 | 2013-11-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US9077333B2 (en) | 2011-05-31 | 2015-07-07 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US9490806B2 (en) | 2011-05-31 | 2016-11-08 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US8669781B2 (en) | 2011-05-31 | 2014-03-11 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
KR101899792B1 (ko) | 2011-05-31 | 2018-09-20 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
Also Published As
Publication number | Publication date |
---|---|
EP1370000A2 (en) | 2003-12-10 |
US6856542B2 (en) | 2005-02-15 |
EP1370000B1 (en) | 2014-04-16 |
EP1370000A3 (en) | 2007-12-26 |
US20030222309A1 (en) | 2003-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100423896B1 (ko) | 축소가능한 2개의 트랜지스터 기억 소자 | |
KR100212094B1 (ko) | 반도체 집적회로 장치 | |
US6937514B2 (en) | Semiconductor memory device including MOS transistors each having a floating gate and a control gate | |
JP2004015060A (ja) | プログラム可能論理装置回路及びその製造方法 | |
US20060027835A1 (en) | Semiconductor integrated circuit device | |
JP3725984B2 (ja) | フラッシュメモリ | |
JPH0555530A (ja) | 不揮発性記憶装置 | |
KR20020015971A (ko) | Mram 장치 | |
US5852570A (en) | Semiconductor memory using select transistors coupled to sub-bitlines from different blocks | |
JPH11186528A (ja) | 不揮発性半導体記憶装置及びその製造方法 | |
US7671399B2 (en) | Semiconductor storage device | |
JPH0878643A (ja) | 不揮発性半導体記憶装置 | |
US7440311B2 (en) | Single-poly non-volatile memory cell | |
US5107313A (en) | Floating gate type semiconductor memory device | |
US6284585B1 (en) | Electronic memory device having bit lines with block selector switches | |
US7180788B2 (en) | Nonvolatile semiconductor memory device | |
JPH01501746A (ja) | 厚い酸化膜のないフローティングゲート付不揮発性メモリ | |
US6157569A (en) | Non-volatile semiconductor memory | |
KR20020097486A (ko) | 극후반 프로그래밍 롬 및 제조 방법 | |
JP2001298166A (ja) | Dramメモリ用の書き込み/読み出し回路 | |
US6642587B1 (en) | High density ROM architecture | |
JPS5972742A (ja) | マスタスライスlsiのマスタ方法 | |
US6972454B2 (en) | Process for manufacturing a byte selection transistor for a matrix of non volatile memory cells and corresponding structure | |
JP2563803B2 (ja) | 半導体記憶装置 | |
JP3573589B2 (ja) | 半導体装置の製造方法 |