JP2004014836A - 半導体装置及び半導体装置の製造方法 - Google Patents
半導体装置及び半導体装置の製造方法 Download PDFInfo
- Publication number
- JP2004014836A JP2004014836A JP2002166806A JP2002166806A JP2004014836A JP 2004014836 A JP2004014836 A JP 2004014836A JP 2002166806 A JP2002166806 A JP 2002166806A JP 2002166806 A JP2002166806 A JP 2002166806A JP 2004014836 A JP2004014836 A JP 2004014836A
- Authority
- JP
- Japan
- Prior art keywords
- film
- semiconductor device
- forming
- gate insulating
- insulating film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004065 semiconductor Substances 0.000 title claims description 80
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 48
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 48
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims abstract description 25
- 239000010410 layer Substances 0.000 claims description 46
- 150000002500 ions Chemical class 0.000 claims description 20
- 238000002955 isolation Methods 0.000 claims description 17
- 230000005669 field effect Effects 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- 229910017052 cobalt Inorganic materials 0.000 claims description 13
- 239000010941 cobalt Substances 0.000 claims description 13
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical group [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 13
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 239000010703 silicon Substances 0.000 claims description 12
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 10
- 229920005591 polysilicon Polymers 0.000 claims description 10
- 229910021332 silicide Inorganic materials 0.000 claims description 9
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 9
- 239000002344 surface layer Substances 0.000 claims description 5
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 25
- 239000001257 hydrogen Substances 0.000 abstract description 25
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 25
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 abstract description 25
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 19
- 230000015572 biosynthetic process Effects 0.000 abstract description 19
- 238000005530 etching Methods 0.000 abstract description 12
- 230000006866 deterioration Effects 0.000 abstract description 3
- 238000000926 separation method Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 53
- 238000005468 ion implantation Methods 0.000 description 19
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 11
- 230000003647 oxidation Effects 0.000 description 11
- 238000007254 oxidation reaction Methods 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- -1 boron ions Chemical class 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 5
- 150000002431 hydrogen Chemical class 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 238000009413 insulation Methods 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 238000001427 incoherent neutron scattering Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66575—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
- H01L29/6659—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/6656—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
【課題】成膜時の水素の放出を低減するとともに、シリコン窒化膜と同等以上のエッチング耐性を有するサイドウォール又はエッチストップ膜を形成する。
【解決手段】MOS型FETを形成するに際し、プラズマCVD法により形成されるサイドウォール又はエッチストップ膜をシリコン炭化膜にする。シリコン炭化膜を形成することにより、シリコン窒化膜に比べて成膜時の水素放出量を低減することができる。従って、MOS型FETの電気的な特性劣化を抑制することができる。さらに、エッチング耐性もシリコン窒化膜と同等以上であることから、素子分離領域を形成されるエッチストップ膜により素子間の絶縁性を確保することができる。
【選択図】図7
【解決手段】MOS型FETを形成するに際し、プラズマCVD法により形成されるサイドウォール又はエッチストップ膜をシリコン炭化膜にする。シリコン炭化膜を形成することにより、シリコン窒化膜に比べて成膜時の水素放出量を低減することができる。従って、MOS型FETの電気的な特性劣化を抑制することができる。さらに、エッチング耐性もシリコン窒化膜と同等以上であることから、素子分離領域を形成されるエッチストップ膜により素子間の絶縁性を確保することができる。
【選択図】図7
Description
【0001】
【発明の属する技術分野】
本発明は、ゲート絶縁型電界効果トランジスタが形成された半導体装置及び半導体装置の製造方法に関する。さらに詳しくは、ゲート絶縁型電界効果トランジスタの電気的な特性の劣化を低減することが可能である半導体装置及び半導体装置の製造方法に関する。
【0002】
【従来の技術】
ゲート絶縁型電界効果トランジスタが形成さえた半導体装置の製造プロセスにおいては、一般に、ウェル領域の形成、素子間分離領域の形成、チャネル領域の形成、ゲートの形成、ソース・ドレイン領域の形成、配線の形成及び保護膜の形成が行われる。例えば、図14に示すようなMOS型FETを形成するに際しては、ゲート電極43及びゲート絶縁膜42を保護するサイドウォール45、又はMOS型FETの表面及び素子分離領域41を保護するエッチストップ膜48として、シリコン窒化膜をCVD法によって形成する。サイドウォール45又はエッチストップ膜48を形成するに際しては、既に形成されているエクステンション領域44やソース・ドレイン領域46を高温にさらすことにより拡散させないことが重要となる。よって、減圧CVD法よりも比較的低い温度である400℃程度で良質なシリコン窒化膜を形成することができるプラズマCVD法により、サイドウォール45又はエッチストップ膜48が形成される。
【0003】
【発明が解決しようとする課題】
ところで、プラズマCVD法で成膜したシリコン窒化膜は、成膜時に大量の水素を放出することが知られている。プラズマCVD法で成膜されたシリコン窒化膜から放出された水素の一部は、後工程の熱処理によりゲート絶縁膜42まで拡散し、MOS型FETのホットキャリア耐性や負バイアス・温度不安定性等の電気的な特性劣化を引き起こすことが考えられる。従って、サイドウォール45又はエッチストップ膜48を形成するに際して、水素の放出量を低減することが重要となる。また、シリコン基板上に形成されたMOS型FETの上側に、さらにMOS型FET及び配線層などが形成された多層構造を有する半導体装置を形成するに際しては、再度これら多層構造を構成する絶縁膜等をエッチングする工程が必要となる場合もあり、シリコン窒化膜と同等以上のエッチング耐性を有するエッチストップ膜によりMOS型FET本体及び素子分離領域がエッチングされないように保護することも重要となる。
【0004】
よって、本発明は、上記問題に鑑み、成膜時の水素の放出を低減することができるサイドウォールが形成された半導体装置及び半導体装置の製造方法を提供することを目的とする。また、成膜時の水素の放出を低減することができるとともに、シリコン窒化膜と同等以上のエッチング耐性を有するエッチストップ膜が形成された半導体装置及び半導体装置の製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の半導体装置は、一導電型の半導体層の表面に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に形成されるゲート電極と、前記半導体層に形成され、ソース・ドレイン領域とされる一対の逆導電型の半導体層とからなる絶縁ゲート型電界効果トランジスタを有し、前記ゲート絶縁膜の周縁に形成されるサイドウォールが、シリコン炭化膜であることを特徴とする。ゲート絶縁膜を保護するサイドウォールをシリコン炭化膜とすることにより、成膜時の水素の拡散を低減することができ、後工程における電気的な特性劣化を低減することができる。
【0006】
また、本発明の半導体装置は、一導電型の半導体層の表面に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に形成されるゲート電極と、前記半導体層に形成され、ソース・ドレイン領域とされる一対の逆導電型の半導体層とからなる絶縁ゲート型電界効果トランジスタを有し、前記一導電型の半導体層に形成された複数の絶縁ゲート型電界効果トランジスタの間を分離する素子分離領域に形成されるエッチストップ膜が、シリコン炭化膜であることを特徴とする。ゲート絶縁膜を含むMOS型FET本体及び素子分離領域を覆うエッチングストッパ膜としてシリコン炭化膜を形成することにより、半導体装置の製造プロセスにおけるエッチング工程において素子分離領域がエッチングされることを抑制することができ、素子間の絶縁性を確保することが可能となる。
【0007】
また、本発明の半導体装置の製造方法は、一導電型の半導体層の表面にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上にゲート電極を形成する工程と、前記半導体層にソース・ドレイン領域とされる一対の逆導電型の半導体層を形成する工程と、前記ゲート絶縁膜の周縁にシリコン炭化膜を形成する工程とを有し、これら一連の工程により絶縁ゲート型電界効果トランジスタを形成することを特徴とする。ゲート絶縁膜の周縁に形成されるサイドウォールをプラズマCVD法により形成されたシリコン炭化膜とすることで、MOS型FETのホットキャリア耐性や負バイアス・温度不安定性等の電気的な特性劣化が低減された半導体装置を製造することができる。
【0008】
さらに、本発明の半導体装置の製造方法は、一導電型の半導体層の表面にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上にゲート電極を形成する工程と、前記半導体層にソース・ドレイン領域とされる一対の逆導電型の半導体層を形成する工程とからなる一連の工程により絶縁ゲート型電界効果トランジスタを形成し、前記一導電型の半導体層に形成された複数の絶縁ゲート型電界効果トランジスタを分離する素子分離領域にシリコン炭化膜を形成することを特徴とする。素子分離領域を保護するエッチストップ膜としてシリコン炭化膜を形成することにより、成膜時の水素放出量を低減することができるとともに、基板に形成された複数のMOS型FETの素子分離領域がエッチングされることなく半導体装置を製造することができる。
【0009】
【発明の実施の形態】
以下、図面を参照しながら本発明の半導体装置及び半導体装置の製造方法について説明する。先ず、一例として、シリコン炭化膜をエッチストップ膜とするPチャネルMOS型FETが形成される半導体装置の製造方法について、図1乃至図7を参照しながら詳細に説明する。
【0010】
まず、図1に示すように、P型のシリコン基板10に素子分離領域11を形成した後、イオン注入法によりN型のウェル領域19を形成する。イオンを注入するに際しては、半導体装置の製造工程で行われる一般に行われるイオン注入方法によりイオンを注入することができ、例えば高エネルギーイオン注入装置、中電流イオン注入装置、大電流イオン注入装置、高濃度酸素イオン注入装置、低エネルギーイオン注入装置などにより所要のイオン注入領域を形成することができる。本例では、例えば、中電流イオン注入装置又は大電流イオン注入装置により、600keVのビームエネルギーとされた燐(P)イオンを打ち込み、シリコン基板10にN型のウェル領域19を形成する。このとき、Pイオンのドーズ量は3×1013/cm2とされる。
【0011】
次に、閾値電圧(Vth)調整用の不純物をウェル領域19に導入した後、図2に示すように、ゲート絶縁膜12を形成する。ゲート絶縁膜12は、ウェル領域19の表層が酸化されて形成されるシリコン酸化膜であり、例えば、本例のPチャネルMOS型FETの製造プロセスにおいては、汎用の熱酸化装置であるドライ酸化装置により形成される。このとき、ゲート絶縁膜12を形成するに際しては、窒素で希釈されたドライ酸素中において、酸化温度が750℃、膜厚が2.5nm程度となるようにウェル領域19の表層を酸化させ、ゲート絶縁膜12を形成する。また、後工程で形成されるゲート電極12の下側の空乏層幅より十分浅いところに不純物が注入されていると、この不純物の量にほぼ比例してVthが変化する。つまり、不純物の注入量を適正な値にすることにより、Vthを決めることができる。従って、イオン注入法によりイオンの注入量を精密に制御することが出来るうえ、イオン注入の深さも正確に制御することにより、イオンの注入量を適正な値にすることが可能となり、正確にVthを設定することができる。
【0012】
次に、ゲート絶縁膜12の上に、減圧CVD法によってポリシリコン膜を約100nm形成した後、フォトレジストによるパターンニングと異方性エッチングとにより、ゲート絶縁膜12及びその上に形成されたポリシリコン膜を所要の形状にパターニングして、図3に示すようにゲート電極13を形成する。尚、所要の形状にパターニングされてゲート電極13とされるポリシリコン膜を形成するに際しては、例えば、減圧CVD法により、チャンバー内の圧力を0.2Torrとし、成膜温度は620℃とされる。また、成膜ガスとしては、SiH4が用いられる。
【0013】
次に、P型のエクステンション領域14をイオン注入法により形成する。このとき、ゲート絶縁膜12及びゲート電極13がマスクとなり、ゲート絶縁膜12の下側を除いたウェル領域19にエクステンション領域14が形成される。エクステンション領域14は、ゲート絶縁膜12からソース・ドレイン領域へのキャリアのリークを低減するために形成され、このエクステンション領域14によりゲート絶縁膜12の下側にイオンが拡散してソース・ドレイン領域が形成されないことになる。また、本例の場合、エクステンション領域14を形成するに際しては、ホウ素イオン(B)をビームエネルギーが0.5keVとなるように加速して注入する。また、Bイオンのドーズ量は、4×1014/cm2とされる。続いて、減圧CVD法によりシリコン窒化膜をエクステンション領域14及びゲート電極13を覆うように形成し、エッチバックすることによって、図4に示すように、ゲート絶縁膜12の周縁とゲート電極13の周縁とにサイドウォール15を形成する。尚、減圧CVD法によりサイドウォールとしてシリコン窒化膜を形成するに際しては、例えば、チャンバー内の圧力を0.26Torr、成膜温度を700℃とし、成膜ガスとしてSiCl2H2+NH3+N2を用いることにより、膜厚が約70nmのシリコン窒化膜を成膜することができる。
【0014】
次に、エクステンション領域14のうち、サイドウォール15の下側を除いた領域にP型のソース・ドレイン領域16を形成するとともに、ゲート電極13へのドーピングをイオン注入法にて行い、図5に示すように、サイドウォール15の下側以外のエクステンション領域14をソース・ドレイン領域16とする。ソース・ドレイン領域16を形成するに際しては、例えばホウ素(B)イオンをビーム状に照射して、注入する。このとき、Bイオンのビームエネルギーは5keVとされ、ドーズ量が2×1015/cm2となるようにBイオンを注入する。また、Bイオンが注入されたゲート電極13は、イオン注入されない場合に比べて低抵抗を有することになる。また、ソース・ドレイン領域16とゲート絶縁膜12との間をエクステンション領域14で隔絶することにより、ゲート電極13から電流がリークすることが殆どなく、ソースとドレインとの間のチャネル領域を確保することができる。続いて、エクステンション領域14及びソース・ドレイン領域16に注入された不純物を、温度が1025℃のN2雰囲気中で3秒間熱処理して活性化させる。
【0015】
次に、ゲート電極13及びソース・ドレイン領域16の表面にコバルトをPVD法により堆積させ、熱処理及び洗浄を行うことによりゲート電極13及びソース・ドレイン領域16の表層にコバルトシリサイド層17を形成する。ゲート電極13及びソース・ドレイン領域16に形成されたコバルトシリサイド層17はゲート電極13を形成するポリシリコン膜の電気抵抗に比べて低い電気抵抗を有するとともに、ゲート電極13及びソース・ドレイン領域16を形成した後、ゲート電極13の側部以外のゲート電極13の上面とソース・ドレイン領域16とが露出した状態でゲート電極13及びソース・ドレイン領域16の表面に同時に電極を形成することができる。従って、マスクにより電極をパターングすることなく、低抵抗の電極を形成することができる。
【0016】
続いて、これらコバルトシリサイド層17の表面およびサイドウォール15の表面にエッチストップ膜18を形成し、図6に示すように、PチャネルMOS型FETを形成する。本例では、エッチストップ膜18を形成するに際して、表1に示す条件でプラズマCVD法によりコバルトシリサイド層17表面全体にシリコン炭化膜を形成する。プラズマCVD法によりシリコン炭化膜を形成することにより、減圧CVD法などの成膜方法に比べて比較的低温でカバレッジ性が良好なエッチストップ膜18を形成することができる。また、エッチストップ膜18を形成するに際しての成膜条件をそれぞれ表1に示す値に設定することにより略均一にシリコン炭化膜を形成することができる。
【0017】
【表1】
ここで、表1に示す時間は成膜時間であり、圧力は本例のPチャネルMOS型FETが形成される基板が配置されるプラズマCVD装置のチャンバー内の圧力であり、温度はこのチャンバー内の成膜時の温度である。また、Powerは、プラズマCVD装置に接続され、チャンバー内にプラズマを発生させるRF電源の出力電力であり、周波数はこのRF電源の出力周波数である。また、ソースガスとして、Si(CH3)4及びCO2ガスをそれぞれチャンバー内に供給しながらシリコン炭化膜18を減圧CVD法に比べて低い温度で形成することができ、本例のPチャネルMOS型FET本体を高温に曝すことがなく、エクステンション領域14及びソース・ドレイン領域16を拡散させることを低減することができる。
【0018】
エッチストップ膜18は、PチャネルMOS型FET上にさらに多層配線又は絶縁膜を形成して複数の素子を有する半導体装置を形成するに際して、PチャネルMOS型FETがエッチングされることを防止することができる。さらに、シリコン炭化膜は、シリコン窒化膜に比べてエッチング耐性が略同等であり、シリコン窒化膜の代わりにシリコン炭化膜をエッチストップ膜18とした場合でも、PチャネルMOS型FETの素子本体を十分に保護することができる。
【0019】
ここで、プラズマCVD法により形成されるシリコン炭化膜とシリコン窒化膜の成膜時の水素放出量を比較するために、図7にプラズマCVD法により形成されたシリコン炭化膜とシリコン窒化膜の2次イオン電子分光法(SIMS)による膜の深さ方向に対する水素分布を示すグラフを示す。試料として、Cu(400nm)/Ta(25nm)/SiO2(100nm)/Si基板からなる積層体を用い、最上層のCuの上にプラズマCVD法で膜を堆積すると、水素が表面からCu中を拡散し、その水素がTaに吸蔵される。従って、Taに吸蔵された水素量を比べることにより、シリコン炭化膜とシリコン窒化膜の成膜時の水素放出量を比較することができる。図7によれば、Cu上にシリコン炭化膜及びシリコン窒化膜を形成しない場合(図中(C))に比べて、Cu上にシリコン窒化膜を形成した場合(図中(A))とCu上にシリコン炭化膜を形成した場合(図中(B))とは、Ta層における水素濃度が高い。しかしながら、(A)と(B)とを比較すると、(A)におけるTa層での水素濃度が高くなっている。従って、成膜時の水素放出量は、シリコン窒化膜に比べてシリコン炭化膜のほうが低いと判断することができ、MOSFETに形成されたサイドウォール又はエッチストップ膜として、シリコン窒化膜の代わりにシリコン炭化膜を形成することにより、ゲート絶縁膜への水素拡散を低減することができると考えられる。
【0020】
従って、プラズマCVD法により形成されたシリコン炭化膜をサイドウォール又はエッチストップ膜とすることにより、ゲート絶縁膜に対する水素イオンの如きキャリアの拡散量を低減することが可能となり、MOSFETのホットキャリア耐性や負バイアス・温度不安定性等の電気的な特性劣化を抑制された半導体装置を提供することができる。
【0021】
次に、本発明の半導体装置及び半導体装置の製造方法の別の例について、図8乃至図13を参照しながら詳細に説明する。本例の半導体装置は、プラズマCVDによりシリコン炭化膜を、NチャネルMOS型FETのサイドウォールとエッチストップ膜の両方に利用する。
【0022】
図8に示すように、N型のシリコン基板20に素子分離領域21を形成した後、イオン注入法によりP型のウェル領域31を形成する。注入するイオン種は例えばホウ素イオン(B)であり、ビームエネルギーが300keVとなるようにシリコン基板20に照射し、ホウ素イオンのシリコン基板20へのドーズ量は3×1013/cm2とされる。
【0023】
次に、閾値電圧調整用の不純物をウェル領域31に導入した後、図9に示すように、シリコン酸化膜を形成し、ゲート絶縁膜22とする。このシリコン酸化膜は、熱酸化法によりウェル領域31の表層を酸化することにより形成される。本例では、熱酸化法としては、酸化温度が750℃、酸化雰囲気として窒素で希釈したドライ酸素による希釈酸素酸化により、シリコン酸化膜を膜厚が約2.5nmになるように形成する。また、希釈酸素酸化に限定されず、そのほかの熱酸化法によりシリコン酸化膜を形成しても良く、さらに熱酸化法以外の表面処理法によりシリコン酸化膜を形成しても良い。
【0024】
次に、ゲート絶縁膜22の上に、減圧CVD法によってポリシリコン膜を100nm形成した後、フォトレジストのパターンニングと異方性エッチングとにより、図10に示すように、所定の領域にゲート絶縁膜22及びゲート電極23を形成する。なお、減圧CVD法によりポリシリコン膜を形成するに際しては、例えば、大気圧に対して減圧されたチャンバー内で圧力を0.2Torrに設定し、成膜温度が620℃の状態で成膜ガスとしてSiH4ガスを供給しながらポリシリコン膜をゲート絶縁膜22上に成膜すれば良い。
【0025】
次に、ウェル領域31にイオン注入法によりイオンを注入してN型のエクステンション領域24を形成する。ウェル領域31に砒素(As)イオンをそのビームエネルギーが3keV程度になるように注入し、ウェル領域31へのドーズ量は約8×1014/cm2とされる。
【0026】
続いて、プラズマCVD法によりシリコン炭化膜32を約20nm成膜し、その上に減圧CVD法によりシリコン酸化膜33を約80nm成膜する。さらにシリコン炭化膜32とシリコン酸化膜33とをエッチバックすることによって、図11に示すように、シリコン炭化膜32とシリコン酸化膜33とからなるサイドウォール25を形成する。プラズマCVD法によりシリコン炭化膜32を形成するに際しては、例えば表1に示す条件で成膜すれば良い。また、シリコン酸化膜33を減圧CVD法により形成する場合の成膜条件としては、例えば圧力が0.4Torrであるチャンバー内で成膜温度が620℃とされ、成膜ガスとしてTEOS(テトラエトキシシラン(Si(OC2H5)4))と酸素を供給することにより、膜厚が約80nmとなるようにシリコン酸化膜33を形成することができる。
【0027】
次に、エクステンション領域24にイオンをドープすることによりN型のソース・ドレイン領域26を形成するとともに、ゲート電極23に対してもイオンを注入し、低抵抗化する。ソース・ドレイン領域26を形成するに際しては、マスクによりパターニングすることなくゲート電極23、サイドウォール25及びシリコン炭化膜32の下側を除いたエクステンション領域24にイオンが注入され、ソース・ドレイン領域26を形成することができる。また、注入されるイオンは、例えば燐(P)イオンとされ、燐イオンをビーム状の照射するに際しては、そのビームエネルギーが15keVとなるように照射し、ソース・ドレイン領域26を形成する。また、ソース・ドレイン領域26に注入された燐イオンのドーズ量は約7×1015/cm2とされる。続いて、熱処理によって注入された不純物を活性化し、図12に示すように、エクステンション領域24及びソース・ドレイン領域26を形成する。エクステンション領域24及びソース・ドレイン領域26を熱処理するに際しては、例えば温度が1025℃に設定されたN2雰囲気中で、約3秒間熱処理を行えば良い。また、ゲート絶縁膜22の周縁に形成されたシリコン炭化膜32と、さらにシリコン炭化膜32の表面に形成されたシリコン酸化膜33とからなるサイドウォール25の下側には、イオンが注入されることがないために、ソース・ドレイン領域26とされないエクステンション領域24が残ることになり、その外側のウェル領域31の表層にソース・ドレイン領域26が形成されることになる。
【0028】
次に、PVD法によりゲート電極23及びソース・ドレイン領域26にコバルトを堆積させ、熱処理と洗浄とを行うことにより、コバルトシリサイド層27を形成する。マスクによるパターニングすることなくソース・ドレイン領域26に低抵抗の電極を形成することができるとともに、ゲート電極23の上面を低抵抗とすることができ、ゲート電極23と、その上層に形成され、多層構造を有する半導体装置とするための配線との間の接続抵抗を低減することもできる。さらに、プラズマCVD法によりコバルトシリサイド層27、サイドウォール25及び素子分離領域21を覆うようにエッチストップ膜28としてシリコン炭化膜を形成し、図13に示すように、NチャネルMOS型FETを完成させる。尚、本例のようにプラズマCVD法でシリコン炭化膜の如きエッチストップ膜28を形成するに際しては、例えば表1に示した成膜条件と同じ成膜条件によりシリコン炭化膜を形成することができる。図13に示すように、ゲート絶縁膜22の周縁に形成されるサイドウォール25がシリコン炭化膜により形成されていることにより、サイドウォール25がシリコン窒化膜により形成される場合に比べて放出される水素量を低減することができ、ゲート絶縁膜22の絶縁性を高めることが可能となる。よって、ホットキャリア耐性や負バイアス・温度不安定性などに起因する半導体装置の動作不良を低減することができる。
【0029】
さらに、シリコン窒化膜のエッチング耐性に比べてシリコン炭化膜の耐性は同等以上であることから、NチャネルMOS型FETの上側を覆うように形成されたエッチストップ膜28により、NチャネルMOS型FETの上側に多層配線構造を形成する場合にエッチングが行われるに際しても、NチャネルMOS型FETの素子本体がエッチングされることを抑制することができる。さらに、素子分離領域21が過剰にエッチングされることを低減することも可能となり、素子間の絶縁性が高められた半導体装置を製造することができる。
【0030】
【発明の効果】
本発明の半導体装置によれば、絶縁ゲート型電界効果トランジスタが形成するに際して、ゲート絶縁膜の周縁に形成されるサイドウォールを膜形成時の水素放出量の少ないシリコン炭化膜により形成することで、サイドウォールをプラズマCVD法により形成されるシリコン窒化膜とする場合に比べて熱処理による水素の拡散を低減することができ、MOSFETのホットキャリア耐性や負バイアス・温度不安定性等の電気的な特性劣化を低減することが可能となる。従って、高い信頼性を有する半導体装置を提供することができる。
【0031】
また、MOSFETの上側を覆うように形成されるエッチストップ膜をプラズマCVD法により形成されるシリコン炭化膜とすることにより、エッチストップ膜をシリコン窒化膜とした場合と同等のエッチング耐性を確保することもでき、エッチストップ膜が素子分離領域への過剰なエッチングを低減し、素子間の絶縁性を確保された半導体装置を提供することができる。
【0032】
さらに、本発明の半導体装置の製造方法によれば、プラズマCVD法による比較的低温における膜形成を可能とするとともにプラズマCVD法によりシリコン炭化膜を形成することにより、MOSFETの如き半導体素子の本体を形成した後、これら素子が形成された半導体装置を高温に曝すことなく、ゲート絶縁膜への水素拡散量が低減された半導体装置を製造することができる。
【図面の簡単な説明】
【図1】P型のシリコン基板にN型のウェル領域を形成する工程を示す工程断面図である。
【図2】ゲート絶縁膜を形成する工程を示す工程断面図である。
【図3】所要の領域にゲート電極を形成する工程を示す工程断面図である。
【図4】サイドウォールを形成する工程を示す工程断面図である。
【図5】ソース・ドレイン領域を形成する工程を示す工程断面図である。
【図6】シリコン炭化膜を成膜してPチャネルMOS型FETを形成する工程を示す工程断面図である。
【図7】プラズマCVD法により形成された膜の深さ方向に対する水素分布の関係を示す図である。
【図8】N型のシリコン基板にP型のウェル領域を形成する工程を示す工程断面図である。
【図9】ゲート絶縁膜を形成する工程を示す工程断面図である。
【図10】所要の領域にゲート電極を形成する工程を示す工程断面図である。
【図11】サイドウォールを形成する工程を示す工程断面図である。
【図12】エクステンション領域にソース・ドレイン領域を形成する工程を示す工程断面図である。
【図13】シリコン炭化膜を成膜してNチャネルMOS型FETを形成する工程を示す工程断面図である。
【図14】従来のMOSFETの構造を示す概略構造図である。
【符号の説明】
10、20シリコン基板、11素子分離領域、12、22、42ゲート絶縁膜、13、23、43ゲート電極、14、24、44エクステンション領域、15、25、45サイドウォール、16、26、46ソース・ドレイン領域、17、27コバルトシリサイド層、18、28、48エッチストップ膜、21、41素子分離領域
【発明の属する技術分野】
本発明は、ゲート絶縁型電界効果トランジスタが形成された半導体装置及び半導体装置の製造方法に関する。さらに詳しくは、ゲート絶縁型電界効果トランジスタの電気的な特性の劣化を低減することが可能である半導体装置及び半導体装置の製造方法に関する。
【0002】
【従来の技術】
ゲート絶縁型電界効果トランジスタが形成さえた半導体装置の製造プロセスにおいては、一般に、ウェル領域の形成、素子間分離領域の形成、チャネル領域の形成、ゲートの形成、ソース・ドレイン領域の形成、配線の形成及び保護膜の形成が行われる。例えば、図14に示すようなMOS型FETを形成するに際しては、ゲート電極43及びゲート絶縁膜42を保護するサイドウォール45、又はMOS型FETの表面及び素子分離領域41を保護するエッチストップ膜48として、シリコン窒化膜をCVD法によって形成する。サイドウォール45又はエッチストップ膜48を形成するに際しては、既に形成されているエクステンション領域44やソース・ドレイン領域46を高温にさらすことにより拡散させないことが重要となる。よって、減圧CVD法よりも比較的低い温度である400℃程度で良質なシリコン窒化膜を形成することができるプラズマCVD法により、サイドウォール45又はエッチストップ膜48が形成される。
【0003】
【発明が解決しようとする課題】
ところで、プラズマCVD法で成膜したシリコン窒化膜は、成膜時に大量の水素を放出することが知られている。プラズマCVD法で成膜されたシリコン窒化膜から放出された水素の一部は、後工程の熱処理によりゲート絶縁膜42まで拡散し、MOS型FETのホットキャリア耐性や負バイアス・温度不安定性等の電気的な特性劣化を引き起こすことが考えられる。従って、サイドウォール45又はエッチストップ膜48を形成するに際して、水素の放出量を低減することが重要となる。また、シリコン基板上に形成されたMOS型FETの上側に、さらにMOS型FET及び配線層などが形成された多層構造を有する半導体装置を形成するに際しては、再度これら多層構造を構成する絶縁膜等をエッチングする工程が必要となる場合もあり、シリコン窒化膜と同等以上のエッチング耐性を有するエッチストップ膜によりMOS型FET本体及び素子分離領域がエッチングされないように保護することも重要となる。
【0004】
よって、本発明は、上記問題に鑑み、成膜時の水素の放出を低減することができるサイドウォールが形成された半導体装置及び半導体装置の製造方法を提供することを目的とする。また、成膜時の水素の放出を低減することができるとともに、シリコン窒化膜と同等以上のエッチング耐性を有するエッチストップ膜が形成された半導体装置及び半導体装置の製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の半導体装置は、一導電型の半導体層の表面に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に形成されるゲート電極と、前記半導体層に形成され、ソース・ドレイン領域とされる一対の逆導電型の半導体層とからなる絶縁ゲート型電界効果トランジスタを有し、前記ゲート絶縁膜の周縁に形成されるサイドウォールが、シリコン炭化膜であることを特徴とする。ゲート絶縁膜を保護するサイドウォールをシリコン炭化膜とすることにより、成膜時の水素の拡散を低減することができ、後工程における電気的な特性劣化を低減することができる。
【0006】
また、本発明の半導体装置は、一導電型の半導体層の表面に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に形成されるゲート電極と、前記半導体層に形成され、ソース・ドレイン領域とされる一対の逆導電型の半導体層とからなる絶縁ゲート型電界効果トランジスタを有し、前記一導電型の半導体層に形成された複数の絶縁ゲート型電界効果トランジスタの間を分離する素子分離領域に形成されるエッチストップ膜が、シリコン炭化膜であることを特徴とする。ゲート絶縁膜を含むMOS型FET本体及び素子分離領域を覆うエッチングストッパ膜としてシリコン炭化膜を形成することにより、半導体装置の製造プロセスにおけるエッチング工程において素子分離領域がエッチングされることを抑制することができ、素子間の絶縁性を確保することが可能となる。
【0007】
また、本発明の半導体装置の製造方法は、一導電型の半導体層の表面にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上にゲート電極を形成する工程と、前記半導体層にソース・ドレイン領域とされる一対の逆導電型の半導体層を形成する工程と、前記ゲート絶縁膜の周縁にシリコン炭化膜を形成する工程とを有し、これら一連の工程により絶縁ゲート型電界効果トランジスタを形成することを特徴とする。ゲート絶縁膜の周縁に形成されるサイドウォールをプラズマCVD法により形成されたシリコン炭化膜とすることで、MOS型FETのホットキャリア耐性や負バイアス・温度不安定性等の電気的な特性劣化が低減された半導体装置を製造することができる。
【0008】
さらに、本発明の半導体装置の製造方法は、一導電型の半導体層の表面にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上にゲート電極を形成する工程と、前記半導体層にソース・ドレイン領域とされる一対の逆導電型の半導体層を形成する工程とからなる一連の工程により絶縁ゲート型電界効果トランジスタを形成し、前記一導電型の半導体層に形成された複数の絶縁ゲート型電界効果トランジスタを分離する素子分離領域にシリコン炭化膜を形成することを特徴とする。素子分離領域を保護するエッチストップ膜としてシリコン炭化膜を形成することにより、成膜時の水素放出量を低減することができるとともに、基板に形成された複数のMOS型FETの素子分離領域がエッチングされることなく半導体装置を製造することができる。
【0009】
【発明の実施の形態】
以下、図面を参照しながら本発明の半導体装置及び半導体装置の製造方法について説明する。先ず、一例として、シリコン炭化膜をエッチストップ膜とするPチャネルMOS型FETが形成される半導体装置の製造方法について、図1乃至図7を参照しながら詳細に説明する。
【0010】
まず、図1に示すように、P型のシリコン基板10に素子分離領域11を形成した後、イオン注入法によりN型のウェル領域19を形成する。イオンを注入するに際しては、半導体装置の製造工程で行われる一般に行われるイオン注入方法によりイオンを注入することができ、例えば高エネルギーイオン注入装置、中電流イオン注入装置、大電流イオン注入装置、高濃度酸素イオン注入装置、低エネルギーイオン注入装置などにより所要のイオン注入領域を形成することができる。本例では、例えば、中電流イオン注入装置又は大電流イオン注入装置により、600keVのビームエネルギーとされた燐(P)イオンを打ち込み、シリコン基板10にN型のウェル領域19を形成する。このとき、Pイオンのドーズ量は3×1013/cm2とされる。
【0011】
次に、閾値電圧(Vth)調整用の不純物をウェル領域19に導入した後、図2に示すように、ゲート絶縁膜12を形成する。ゲート絶縁膜12は、ウェル領域19の表層が酸化されて形成されるシリコン酸化膜であり、例えば、本例のPチャネルMOS型FETの製造プロセスにおいては、汎用の熱酸化装置であるドライ酸化装置により形成される。このとき、ゲート絶縁膜12を形成するに際しては、窒素で希釈されたドライ酸素中において、酸化温度が750℃、膜厚が2.5nm程度となるようにウェル領域19の表層を酸化させ、ゲート絶縁膜12を形成する。また、後工程で形成されるゲート電極12の下側の空乏層幅より十分浅いところに不純物が注入されていると、この不純物の量にほぼ比例してVthが変化する。つまり、不純物の注入量を適正な値にすることにより、Vthを決めることができる。従って、イオン注入法によりイオンの注入量を精密に制御することが出来るうえ、イオン注入の深さも正確に制御することにより、イオンの注入量を適正な値にすることが可能となり、正確にVthを設定することができる。
【0012】
次に、ゲート絶縁膜12の上に、減圧CVD法によってポリシリコン膜を約100nm形成した後、フォトレジストによるパターンニングと異方性エッチングとにより、ゲート絶縁膜12及びその上に形成されたポリシリコン膜を所要の形状にパターニングして、図3に示すようにゲート電極13を形成する。尚、所要の形状にパターニングされてゲート電極13とされるポリシリコン膜を形成するに際しては、例えば、減圧CVD法により、チャンバー内の圧力を0.2Torrとし、成膜温度は620℃とされる。また、成膜ガスとしては、SiH4が用いられる。
【0013】
次に、P型のエクステンション領域14をイオン注入法により形成する。このとき、ゲート絶縁膜12及びゲート電極13がマスクとなり、ゲート絶縁膜12の下側を除いたウェル領域19にエクステンション領域14が形成される。エクステンション領域14は、ゲート絶縁膜12からソース・ドレイン領域へのキャリアのリークを低減するために形成され、このエクステンション領域14によりゲート絶縁膜12の下側にイオンが拡散してソース・ドレイン領域が形成されないことになる。また、本例の場合、エクステンション領域14を形成するに際しては、ホウ素イオン(B)をビームエネルギーが0.5keVとなるように加速して注入する。また、Bイオンのドーズ量は、4×1014/cm2とされる。続いて、減圧CVD法によりシリコン窒化膜をエクステンション領域14及びゲート電極13を覆うように形成し、エッチバックすることによって、図4に示すように、ゲート絶縁膜12の周縁とゲート電極13の周縁とにサイドウォール15を形成する。尚、減圧CVD法によりサイドウォールとしてシリコン窒化膜を形成するに際しては、例えば、チャンバー内の圧力を0.26Torr、成膜温度を700℃とし、成膜ガスとしてSiCl2H2+NH3+N2を用いることにより、膜厚が約70nmのシリコン窒化膜を成膜することができる。
【0014】
次に、エクステンション領域14のうち、サイドウォール15の下側を除いた領域にP型のソース・ドレイン領域16を形成するとともに、ゲート電極13へのドーピングをイオン注入法にて行い、図5に示すように、サイドウォール15の下側以外のエクステンション領域14をソース・ドレイン領域16とする。ソース・ドレイン領域16を形成するに際しては、例えばホウ素(B)イオンをビーム状に照射して、注入する。このとき、Bイオンのビームエネルギーは5keVとされ、ドーズ量が2×1015/cm2となるようにBイオンを注入する。また、Bイオンが注入されたゲート電極13は、イオン注入されない場合に比べて低抵抗を有することになる。また、ソース・ドレイン領域16とゲート絶縁膜12との間をエクステンション領域14で隔絶することにより、ゲート電極13から電流がリークすることが殆どなく、ソースとドレインとの間のチャネル領域を確保することができる。続いて、エクステンション領域14及びソース・ドレイン領域16に注入された不純物を、温度が1025℃のN2雰囲気中で3秒間熱処理して活性化させる。
【0015】
次に、ゲート電極13及びソース・ドレイン領域16の表面にコバルトをPVD法により堆積させ、熱処理及び洗浄を行うことによりゲート電極13及びソース・ドレイン領域16の表層にコバルトシリサイド層17を形成する。ゲート電極13及びソース・ドレイン領域16に形成されたコバルトシリサイド層17はゲート電極13を形成するポリシリコン膜の電気抵抗に比べて低い電気抵抗を有するとともに、ゲート電極13及びソース・ドレイン領域16を形成した後、ゲート電極13の側部以外のゲート電極13の上面とソース・ドレイン領域16とが露出した状態でゲート電極13及びソース・ドレイン領域16の表面に同時に電極を形成することができる。従って、マスクにより電極をパターングすることなく、低抵抗の電極を形成することができる。
【0016】
続いて、これらコバルトシリサイド層17の表面およびサイドウォール15の表面にエッチストップ膜18を形成し、図6に示すように、PチャネルMOS型FETを形成する。本例では、エッチストップ膜18を形成するに際して、表1に示す条件でプラズマCVD法によりコバルトシリサイド層17表面全体にシリコン炭化膜を形成する。プラズマCVD法によりシリコン炭化膜を形成することにより、減圧CVD法などの成膜方法に比べて比較的低温でカバレッジ性が良好なエッチストップ膜18を形成することができる。また、エッチストップ膜18を形成するに際しての成膜条件をそれぞれ表1に示す値に設定することにより略均一にシリコン炭化膜を形成することができる。
【0017】
【表1】
ここで、表1に示す時間は成膜時間であり、圧力は本例のPチャネルMOS型FETが形成される基板が配置されるプラズマCVD装置のチャンバー内の圧力であり、温度はこのチャンバー内の成膜時の温度である。また、Powerは、プラズマCVD装置に接続され、チャンバー内にプラズマを発生させるRF電源の出力電力であり、周波数はこのRF電源の出力周波数である。また、ソースガスとして、Si(CH3)4及びCO2ガスをそれぞれチャンバー内に供給しながらシリコン炭化膜18を減圧CVD法に比べて低い温度で形成することができ、本例のPチャネルMOS型FET本体を高温に曝すことがなく、エクステンション領域14及びソース・ドレイン領域16を拡散させることを低減することができる。
【0018】
エッチストップ膜18は、PチャネルMOS型FET上にさらに多層配線又は絶縁膜を形成して複数の素子を有する半導体装置を形成するに際して、PチャネルMOS型FETがエッチングされることを防止することができる。さらに、シリコン炭化膜は、シリコン窒化膜に比べてエッチング耐性が略同等であり、シリコン窒化膜の代わりにシリコン炭化膜をエッチストップ膜18とした場合でも、PチャネルMOS型FETの素子本体を十分に保護することができる。
【0019】
ここで、プラズマCVD法により形成されるシリコン炭化膜とシリコン窒化膜の成膜時の水素放出量を比較するために、図7にプラズマCVD法により形成されたシリコン炭化膜とシリコン窒化膜の2次イオン電子分光法(SIMS)による膜の深さ方向に対する水素分布を示すグラフを示す。試料として、Cu(400nm)/Ta(25nm)/SiO2(100nm)/Si基板からなる積層体を用い、最上層のCuの上にプラズマCVD法で膜を堆積すると、水素が表面からCu中を拡散し、その水素がTaに吸蔵される。従って、Taに吸蔵された水素量を比べることにより、シリコン炭化膜とシリコン窒化膜の成膜時の水素放出量を比較することができる。図7によれば、Cu上にシリコン炭化膜及びシリコン窒化膜を形成しない場合(図中(C))に比べて、Cu上にシリコン窒化膜を形成した場合(図中(A))とCu上にシリコン炭化膜を形成した場合(図中(B))とは、Ta層における水素濃度が高い。しかしながら、(A)と(B)とを比較すると、(A)におけるTa層での水素濃度が高くなっている。従って、成膜時の水素放出量は、シリコン窒化膜に比べてシリコン炭化膜のほうが低いと判断することができ、MOSFETに形成されたサイドウォール又はエッチストップ膜として、シリコン窒化膜の代わりにシリコン炭化膜を形成することにより、ゲート絶縁膜への水素拡散を低減することができると考えられる。
【0020】
従って、プラズマCVD法により形成されたシリコン炭化膜をサイドウォール又はエッチストップ膜とすることにより、ゲート絶縁膜に対する水素イオンの如きキャリアの拡散量を低減することが可能となり、MOSFETのホットキャリア耐性や負バイアス・温度不安定性等の電気的な特性劣化を抑制された半導体装置を提供することができる。
【0021】
次に、本発明の半導体装置及び半導体装置の製造方法の別の例について、図8乃至図13を参照しながら詳細に説明する。本例の半導体装置は、プラズマCVDによりシリコン炭化膜を、NチャネルMOS型FETのサイドウォールとエッチストップ膜の両方に利用する。
【0022】
図8に示すように、N型のシリコン基板20に素子分離領域21を形成した後、イオン注入法によりP型のウェル領域31を形成する。注入するイオン種は例えばホウ素イオン(B)であり、ビームエネルギーが300keVとなるようにシリコン基板20に照射し、ホウ素イオンのシリコン基板20へのドーズ量は3×1013/cm2とされる。
【0023】
次に、閾値電圧調整用の不純物をウェル領域31に導入した後、図9に示すように、シリコン酸化膜を形成し、ゲート絶縁膜22とする。このシリコン酸化膜は、熱酸化法によりウェル領域31の表層を酸化することにより形成される。本例では、熱酸化法としては、酸化温度が750℃、酸化雰囲気として窒素で希釈したドライ酸素による希釈酸素酸化により、シリコン酸化膜を膜厚が約2.5nmになるように形成する。また、希釈酸素酸化に限定されず、そのほかの熱酸化法によりシリコン酸化膜を形成しても良く、さらに熱酸化法以外の表面処理法によりシリコン酸化膜を形成しても良い。
【0024】
次に、ゲート絶縁膜22の上に、減圧CVD法によってポリシリコン膜を100nm形成した後、フォトレジストのパターンニングと異方性エッチングとにより、図10に示すように、所定の領域にゲート絶縁膜22及びゲート電極23を形成する。なお、減圧CVD法によりポリシリコン膜を形成するに際しては、例えば、大気圧に対して減圧されたチャンバー内で圧力を0.2Torrに設定し、成膜温度が620℃の状態で成膜ガスとしてSiH4ガスを供給しながらポリシリコン膜をゲート絶縁膜22上に成膜すれば良い。
【0025】
次に、ウェル領域31にイオン注入法によりイオンを注入してN型のエクステンション領域24を形成する。ウェル領域31に砒素(As)イオンをそのビームエネルギーが3keV程度になるように注入し、ウェル領域31へのドーズ量は約8×1014/cm2とされる。
【0026】
続いて、プラズマCVD法によりシリコン炭化膜32を約20nm成膜し、その上に減圧CVD法によりシリコン酸化膜33を約80nm成膜する。さらにシリコン炭化膜32とシリコン酸化膜33とをエッチバックすることによって、図11に示すように、シリコン炭化膜32とシリコン酸化膜33とからなるサイドウォール25を形成する。プラズマCVD法によりシリコン炭化膜32を形成するに際しては、例えば表1に示す条件で成膜すれば良い。また、シリコン酸化膜33を減圧CVD法により形成する場合の成膜条件としては、例えば圧力が0.4Torrであるチャンバー内で成膜温度が620℃とされ、成膜ガスとしてTEOS(テトラエトキシシラン(Si(OC2H5)4))と酸素を供給することにより、膜厚が約80nmとなるようにシリコン酸化膜33を形成することができる。
【0027】
次に、エクステンション領域24にイオンをドープすることによりN型のソース・ドレイン領域26を形成するとともに、ゲート電極23に対してもイオンを注入し、低抵抗化する。ソース・ドレイン領域26を形成するに際しては、マスクによりパターニングすることなくゲート電極23、サイドウォール25及びシリコン炭化膜32の下側を除いたエクステンション領域24にイオンが注入され、ソース・ドレイン領域26を形成することができる。また、注入されるイオンは、例えば燐(P)イオンとされ、燐イオンをビーム状の照射するに際しては、そのビームエネルギーが15keVとなるように照射し、ソース・ドレイン領域26を形成する。また、ソース・ドレイン領域26に注入された燐イオンのドーズ量は約7×1015/cm2とされる。続いて、熱処理によって注入された不純物を活性化し、図12に示すように、エクステンション領域24及びソース・ドレイン領域26を形成する。エクステンション領域24及びソース・ドレイン領域26を熱処理するに際しては、例えば温度が1025℃に設定されたN2雰囲気中で、約3秒間熱処理を行えば良い。また、ゲート絶縁膜22の周縁に形成されたシリコン炭化膜32と、さらにシリコン炭化膜32の表面に形成されたシリコン酸化膜33とからなるサイドウォール25の下側には、イオンが注入されることがないために、ソース・ドレイン領域26とされないエクステンション領域24が残ることになり、その外側のウェル領域31の表層にソース・ドレイン領域26が形成されることになる。
【0028】
次に、PVD法によりゲート電極23及びソース・ドレイン領域26にコバルトを堆積させ、熱処理と洗浄とを行うことにより、コバルトシリサイド層27を形成する。マスクによるパターニングすることなくソース・ドレイン領域26に低抵抗の電極を形成することができるとともに、ゲート電極23の上面を低抵抗とすることができ、ゲート電極23と、その上層に形成され、多層構造を有する半導体装置とするための配線との間の接続抵抗を低減することもできる。さらに、プラズマCVD法によりコバルトシリサイド層27、サイドウォール25及び素子分離領域21を覆うようにエッチストップ膜28としてシリコン炭化膜を形成し、図13に示すように、NチャネルMOS型FETを完成させる。尚、本例のようにプラズマCVD法でシリコン炭化膜の如きエッチストップ膜28を形成するに際しては、例えば表1に示した成膜条件と同じ成膜条件によりシリコン炭化膜を形成することができる。図13に示すように、ゲート絶縁膜22の周縁に形成されるサイドウォール25がシリコン炭化膜により形成されていることにより、サイドウォール25がシリコン窒化膜により形成される場合に比べて放出される水素量を低減することができ、ゲート絶縁膜22の絶縁性を高めることが可能となる。よって、ホットキャリア耐性や負バイアス・温度不安定性などに起因する半導体装置の動作不良を低減することができる。
【0029】
さらに、シリコン窒化膜のエッチング耐性に比べてシリコン炭化膜の耐性は同等以上であることから、NチャネルMOS型FETの上側を覆うように形成されたエッチストップ膜28により、NチャネルMOS型FETの上側に多層配線構造を形成する場合にエッチングが行われるに際しても、NチャネルMOS型FETの素子本体がエッチングされることを抑制することができる。さらに、素子分離領域21が過剰にエッチングされることを低減することも可能となり、素子間の絶縁性が高められた半導体装置を製造することができる。
【0030】
【発明の効果】
本発明の半導体装置によれば、絶縁ゲート型電界効果トランジスタが形成するに際して、ゲート絶縁膜の周縁に形成されるサイドウォールを膜形成時の水素放出量の少ないシリコン炭化膜により形成することで、サイドウォールをプラズマCVD法により形成されるシリコン窒化膜とする場合に比べて熱処理による水素の拡散を低減することができ、MOSFETのホットキャリア耐性や負バイアス・温度不安定性等の電気的な特性劣化を低減することが可能となる。従って、高い信頼性を有する半導体装置を提供することができる。
【0031】
また、MOSFETの上側を覆うように形成されるエッチストップ膜をプラズマCVD法により形成されるシリコン炭化膜とすることにより、エッチストップ膜をシリコン窒化膜とした場合と同等のエッチング耐性を確保することもでき、エッチストップ膜が素子分離領域への過剰なエッチングを低減し、素子間の絶縁性を確保された半導体装置を提供することができる。
【0032】
さらに、本発明の半導体装置の製造方法によれば、プラズマCVD法による比較的低温における膜形成を可能とするとともにプラズマCVD法によりシリコン炭化膜を形成することにより、MOSFETの如き半導体素子の本体を形成した後、これら素子が形成された半導体装置を高温に曝すことなく、ゲート絶縁膜への水素拡散量が低減された半導体装置を製造することができる。
【図面の簡単な説明】
【図1】P型のシリコン基板にN型のウェル領域を形成する工程を示す工程断面図である。
【図2】ゲート絶縁膜を形成する工程を示す工程断面図である。
【図3】所要の領域にゲート電極を形成する工程を示す工程断面図である。
【図4】サイドウォールを形成する工程を示す工程断面図である。
【図5】ソース・ドレイン領域を形成する工程を示す工程断面図である。
【図6】シリコン炭化膜を成膜してPチャネルMOS型FETを形成する工程を示す工程断面図である。
【図7】プラズマCVD法により形成された膜の深さ方向に対する水素分布の関係を示す図である。
【図8】N型のシリコン基板にP型のウェル領域を形成する工程を示す工程断面図である。
【図9】ゲート絶縁膜を形成する工程を示す工程断面図である。
【図10】所要の領域にゲート電極を形成する工程を示す工程断面図である。
【図11】サイドウォールを形成する工程を示す工程断面図である。
【図12】エクステンション領域にソース・ドレイン領域を形成する工程を示す工程断面図である。
【図13】シリコン炭化膜を成膜してNチャネルMOS型FETを形成する工程を示す工程断面図である。
【図14】従来のMOSFETの構造を示す概略構造図である。
【符号の説明】
10、20シリコン基板、11素子分離領域、12、22、42ゲート絶縁膜、13、23、43ゲート電極、14、24、44エクステンション領域、15、25、45サイドウォール、16、26、46ソース・ドレイン領域、17、27コバルトシリサイド層、18、28、48エッチストップ膜、21、41素子分離領域
Claims (14)
- 一導電型の半導体層の表面に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に形成されるゲート電極と、前記半導体層に形成され、ソース・ドレイン領域とされる一対の逆導電型の半導体層とからなる絶縁ゲート型電界効果トランジスタを有し、
前記ゲート絶縁膜の周縁に形成されるサイドウォールが、シリコン炭化膜であること
を特徴とする半導体装置。 - 前記シリコン炭化膜は、プラズマCVD法により形成されること
を特徴とする請求項1記載の半導体装置。 - 前記一導電型の半導体層は、基板にイオンが注入されて形成されるウェル領域であること
を特徴とする請求項1記載の半導体装置。 - 前記基板は、シリコン基板であること
を特徴とする請求項3記載の半導体装置。 - 前記ゲート絶縁膜は、シリコン酸化膜であること
を特徴とする請求項1記載の半導体装置。 - 前記ゲート電極は、ポリシリコン膜であること
を特徴とする請求項1記載の半導体装置。 - 前記ポリシリコン膜の上面に低抵抗層が形成されること
を特徴とする請求項6記載の半導体装置。 - 前記低抵抗層は、前記ポリシリコン膜にコバルトを注入して形成されるコバルトシリサイド層であること
を特徴とする請求項7記載の半導体装置。 - 前記逆導電型の半導体層の表層に低抵抗層を形成すること
を特徴とする請求項1記載の半導体装置。 - 前記低抵抗層は、前記逆導電型の半導体層にコバルトを注入して形成されるコバルトシリサイド層であること
を特徴とする請求項9記載の半導体装置。 - 一導電型の半導体層の表面に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に形成されるゲート電極と、前記半導体層に形成され、ソース・ドレイン領域とされる一対の逆導電型の半導体層とからなる絶縁ゲート型電界効果トランジスタを有し、
前記一導電型の半導体層に形成された複数の絶縁ゲート型電界効果トランジスタの間を分離する素子分離領域に形成されるエッチストップ膜が、シリコン炭化膜であること
を特徴とする半導体装置。 - 前記シリコン炭化膜は、プラズマCVD法により形成されること
を特徴とする請求項11記載の半導体装置。 - 一導電型の半導体層の表面にゲート絶縁膜を形成する工程と、
前記ゲート絶縁膜上にゲート電極を形成する工程と、
前記半導体層にソース・ドレイン領域とされる一対の逆導電型の半導体層を形成する工程と、
前記ゲート絶縁膜の周縁にシリコン炭化膜を形成する工程とを有し、
これら一連の工程により絶縁ゲート型電界効果トランジスタを形成すること
を特徴とする半導体装置の製造方法。 - 一導電型の半導体層の表面にゲート絶縁膜を形成する工程と、
前記ゲート絶縁膜上にゲート電極を形成する工程と、
前記半導体層にソース・ドレイン領域とされる一対の逆導電型の半導体層を形成する工程とからなる一連の工程により絶縁ゲート型電界効果トランジスタを形成し、
前記一導電型の半導体層に形成された複数の絶縁ゲート型電界効果トランジスタを分離する素子分離領域にシリコン炭化膜を形成すること
を特徴とする半導体装置の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002166806A JP2004014836A (ja) | 2002-06-07 | 2002-06-07 | 半導体装置及び半導体装置の製造方法 |
PCT/JP2003/007076 WO2003105234A1 (ja) | 2002-06-07 | 2003-06-04 | 半導体装置及び半導体装置の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002166806A JP2004014836A (ja) | 2002-06-07 | 2002-06-07 | 半導体装置及び半導体装置の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004014836A true JP2004014836A (ja) | 2004-01-15 |
Family
ID=29727641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002166806A Abandoned JP2004014836A (ja) | 2002-06-07 | 2002-06-07 | 半導体装置及び半導体装置の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2004014836A (ja) |
WO (1) | WO2003105234A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006005124A (ja) * | 2004-06-17 | 2006-01-05 | Rohm Co Ltd | 半導体装置の製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3060976B2 (ja) * | 1997-01-21 | 2000-07-10 | 日本電気株式会社 | Mosfetおよびその製造方法 |
US6306712B1 (en) * | 1997-12-05 | 2001-10-23 | Texas Instruments Incorporated | Sidewall process and method of implantation for improved CMOS with benefit of low CGD, improved doping profiles, and insensitivity to chemical processing |
TW510017B (en) * | 1999-12-31 | 2002-11-11 | Winbond Electronics Corp | Method for producing self-aligned contact having sacrificial filling pillar |
-
2002
- 2002-06-07 JP JP2002166806A patent/JP2004014836A/ja not_active Abandoned
-
2003
- 2003-06-04 WO PCT/JP2003/007076 patent/WO2003105234A1/ja unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006005124A (ja) * | 2004-06-17 | 2006-01-05 | Rohm Co Ltd | 半導体装置の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2003105234A1 (ja) | 2003-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7759260B2 (en) | Selective nitridation of gate oxides | |
JP4313065B2 (ja) | シリコンゲルマニウムゲートを利用した半導体素子及びその製造方法 | |
KR100554830B1 (ko) | 플래시 메모리 소자의 제조 방법 | |
KR20030037347A (ko) | 반도체 소자의 시모스(cmos) 및 그의 제조 방법 | |
US20080280391A1 (en) | Methods of manufacturing mos transistors with strained channel regions | |
US20140175557A1 (en) | Semiconductor device having insulating film with different stress levels in adjacent regions and manufacturing method thereof | |
US20050151203A1 (en) | Temporary self-aligned stop layer is applied on silicon sidewall | |
JP2004014875A (ja) | 半導体装置及びその製造方法 | |
US20070246781A1 (en) | Mos semiconductor device and method of fabricating the same | |
JP4093855B2 (ja) | 半導体素子の製造方法 | |
US20080054363A1 (en) | Dual gate cmos semiconductor device and method for manufacturing the same | |
JP2802263B2 (ja) | 半導体素子の製造方法 | |
KR100396709B1 (ko) | 반도체 소자의 제조방법 | |
JP3874716B2 (ja) | 半導体装置の製造方法 | |
KR100540341B1 (ko) | 반도체 소자 제조방법 | |
US6432780B2 (en) | Method for suppressing boron penetrating gate dielectric layer by pulsed nitrogen plasma doping | |
JP5445895B2 (ja) | 半導体素子の製造方法 | |
JPH05226593A (ja) | 半導体装置の製造方法 | |
JP2004014836A (ja) | 半導体装置及び半導体装置の製造方法 | |
US7517760B2 (en) | Semiconductor device manufacturing method including three gate insulating films | |
JP4186247B2 (ja) | 半導体装置の製造方法および導電性シリコン膜の形成方法 | |
JPS6158987B2 (ja) | ||
US6242295B1 (en) | Method of fabricating a shallow doped region for a shallow junction transistor | |
JP3965476B2 (ja) | 半導体装置の製造方法 | |
KR100357173B1 (ko) | 박막 트랜지스터의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A762 | Written abandonment of application |
Effective date: 20050215 Free format text: JAPANESE INTERMEDIATE CODE: A762 |