JP2004014774A - Printed wiring board and its manufacturing method - Google Patents

Printed wiring board and its manufacturing method Download PDF

Info

Publication number
JP2004014774A
JP2004014774A JP2002165577A JP2002165577A JP2004014774A JP 2004014774 A JP2004014774 A JP 2004014774A JP 2002165577 A JP2002165577 A JP 2002165577A JP 2002165577 A JP2002165577 A JP 2002165577A JP 2004014774 A JP2004014774 A JP 2004014774A
Authority
JP
Japan
Prior art keywords
connection terminal
etching
printed wiring
wiring board
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002165577A
Other languages
Japanese (ja)
Inventor
Kazuhisa Ide
井手 和久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002165577A priority Critical patent/JP2004014774A/en
Publication of JP2004014774A publication Critical patent/JP2004014774A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a printed wiring board and a method of manufacturing the same, wherein the electrodes of an electronic part to be mounted on the board and the connection electrodes of the printed wiring board are surely joined together with an anisotropic conductive resin or an anisotropic conductive film a free from a short circuit or discontinuity. <P>SOLUTION: The printed wiring board is equipped with conductive connectors 2 formed on an insulating board 1. The connector 2 has such a structure wherein at least a part of the surface peripheral part of the connector 2 is made to protrude. The connector 2 is manufactured through a method wherein an etching resist is formed on the surface of a metal foil laminated on the insulating board 1, the disused part of the metal foil is removed by a first etching process to form the connector 2 having a prescribed wiring pattern, an etching-resistant layer is formed on the side of the connector 2 in a state wherein the etching resist is left unremoved, then the etching resist is separated off, and the surface of the connector 2 is etched as thick as prescribed through a second etching process. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体チップなどの電子部品を接続する高密度フレキシブル配線板等のプリント配線板及びその製造方法に関する。
【0002】
【従来の技術】
プリント配線板は、樹脂やセラミックなどの絶縁性基板に銅やアルミニウム等の金属箔を積層した基板の表面に、フォトリソグラフィー法や印刷法などによって配線パターン形状のエッチングレジストを形成し、エッチングにより金属箔の不要部分を除去して配線パターンを形成した後、エッチングレジストを剥離して作製する。
【0003】
プリント配線板の金属箔は数μm厚から数100μm厚が配線パターンの細密度に応じて使用される。
【0004】
近年の電子機器の小型軽量化に沿って電子部品が小型化し、接続(実装)基板としてプリント配線板の配線パターンも微細化されて接続端子及びその間隔が狭幅となってきており、リード接続端子の強度や狭幅化に課題があるフライングリードを用いたTABに比較して本質的に狭幅化が容易なCOF基板を用いたFC実装が行われている。
【0005】
FC実装ではAu−Sn接合方式、異方導電性材料による接合方式が用いられているが、異方導電性材料による接合方式は、Au−Sn接合方式に比較して低温工程で実装できるため、基板の耐熱性や熱膨張による累積寸法の誤差に於いて優位性があり、また、アンダーフィル樹脂の注入工程が不要であるなどの理由により用いられている。
【0006】
この異方導電性材料を用いた実装では、樹脂中に直径数μmから数十μm程度の導電粒子を分散させた異方導電性樹脂を塗布、あるいは異方導電性フィルムを貼り付けしたプリント配線板の接続端子に、実装される電子部品を高温・高圧で押しつけることによって異方導電性材料に含まれる導電粒子を挟んで、電子部品の電極とプリント配線板の接続端子が電気的に接合される。よって、接合信頼性を得るためには、接続端子上に充分な量の導電粒子を保持しておくことが重要となる。
【0007】
この異方導電性材料の樹脂中の導電粒子の密度を高くすると、導電粒子どうしが接触して電極間を電気的に短絡してしまい、また導電粒子の密度が小さいと、接続端子上に充分な量の導電粒子が保持できず電気的に開放してしまうので、中庸で最適な導電粒子密度が必要である。
【0008】
特に、半導体チップ等の電子部品の回路が細密化し電極の間隔が小さくなると、電極をプリント配線板の接続端子に確実に接続するためには導電粒子の密度を厳密に管理する必要があり、また、実装工程でのプリント基板と電子部品の位置合わせや、温度や圧力などの実装条件の制御等も高度なものが必要となる。
【0009】
これに対し、例えば、特開平10−98069号公報には半導体チップのバンプ電極の接合面の周縁の一部を突出させて導電粒子が実装時の樹脂流動とともに流出することを防ぎ、半導体チップのバンプ面に多くの導電粒子を保持する半導体チップが提案されている。また特開平10−200243号公報には、異方導電性樹脂の導電粒子密度分布を厚さ方向に変化して接合に寄与する導電粒子を増加しかつ隣接電極間の短絡につながる導電粒子を減少する接続方法が提案されている。
【0010】
【発明が解決しようとする課題】
しかしながら、従来のプリント配線板及びその製造方法は、電子部品が実装される接合面は平面であり、特に高密度で狭間隔の配線となった場合、異方導電性材料中の導電粒子を充分に保持して接合信頼性を得ることが難しかった。また、半導体チップのバンプ電極を導電粒子を保持する構造とするためには特殊なバンプ形成工程が必要であり、またバンプは金などの高価な材料で構成されるため、コスト低減等を目的としてバンプを形成しないバンプレスとした場合に適応できない。また、樹脂中の導電粒子密度を適切に分布させるのはプロセス的に難しいという問題があった。
【0011】
本発明は、上記問題点を解決するもので、高密度化でピッチが小さく接合面の面積が狭くなっても、実装される電子部品の電極とプリント配線板の接続電極の異方導電性樹脂や異方導電性フィルムによる接合を、電気的短絡や開放が無く確実に行うことができるプリント配線板及びその製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記課題を解決するために本発明のプリント配線板は、絶縁性基板上に導電性の接続端子を備え、接続端子表面の周縁部の少なくとも一部が突出している構成としたものである。
【0013】
また、本発明のプリント配線板の製造方法は、絶縁性基板に積層した金属箔の表面にエッチングレジストを形成し、第1のエッチングによって金属箔の不要部分を除去して所定の配線パターンを有する接続端子を形成し、エッチングレジストを残した状態で接続端子の側面に耐エッチング層を形成し、エッチングレジストを剥離し、第2のエッチングによって接続端子表面を所定の厚さまでエッチングする構成としたものである。
【0014】
【発明の実施の形態】
請求項1に記載の発明は、絶縁性基板上に導電性の接続端子を備え、接続端子表面の周縁部の少なくとも一部が突出していることを特徴とするプリント配線板であって、異方導電性材料の導電粒子の密度を高くしなくても、異方導電性材料を用いた実装で接続端子上に充分な量の導電粒子を保持できるので、導電粒子どうしが接触して電極間を電気的に短絡したり、接続端子上に充分な量の導電粒子が保持できす電気的に開放してしまう確率が小さく、半導体チップ等の被接続電子部品の回路が細密化し電極の間隔が小さいものでも、導電粒子の密度の厳密な管理や、実装工程でのプリント基板と被接続電子部品の位置合わせ及び温度や圧力などの実装条件の制御等も高度なものを必要とせず実装の容易なプリント配線板を得ることができる。
【0015】
請求項2に記載の発明は、絶縁性基板上に導電性の接続端子を備え、接続端子表面の周縁部が突出していることを特徴とするプリント配線板であって、異方導電性材料の導電粒子の密度を高くしなくても、異方導電性材料を用いた実装で接続端子上に充分な量の導電粒子を保持できるので、導電粒子どうしが接触して電極間を電気的に短絡したり、接続端子上に充分な量の導電粒子が保持できす電気的に開放してしまう確率が小さく、半導体チップ等の被接続電子部品の回路が細密化し電極の間隔が小さいものでも、導電粒子の密度の厳密な管理や、実装工程でのプリント基板と被接続電子部品の位置合わせ及び温度や圧力などの実装条件の制御等も高度なものを必要とせず実装の容易なプリント配線板を得ることができる。
【0016】
請求項3に記載の発明は、請求項2において、周縁部がメッキ層で構成されることを特徴とするプリント配線板であって、簡単な方法で接続端子表面の周縁部を突出させることができる。
【0017】
請求項4に記載の発明は、絶縁性基板上に導電性の接続端子を備え、接続端子の側面にメッキ層を備え、メッキ層は接続端子表面から突出していることを特徴とするプリント配線板であって、異方導電性材料の導電粒子の密度を高くしなくても、異方導電性材料を用いた実装で接続端子上に充分な量の導電粒子を保持できるので、導電粒子どうしが接触して電極間を電気的に短絡したり、接続端子上に充分な量の導電粒子が保持できす電気的に開放してしまう確率が小さく、半導体チップ等の被接続電子部品の回路が細密化し電極の間隔が小さいものでも、導電粒子の密度の厳密な管理や、実装工程でのプリント基板と被接続電子部品の位置合わせ及び温度や圧力などの実装条件の制御等も高度なものを必要とせず実装の容易なプリント配線板を得ることができる。
【0018】
請求項5に記載の発明は、絶縁性基板上に導電性の接続端子を備え、接続端子の断面形状が略凹状であることを特徴とするプリント配線板であって、異方導電性材料の導電粒子の密度を高くしなくても、異方導電性材料を用いた実装で接続端子上に充分な量の導電粒子を保持できるので、導電粒子どうしが接触して電極間を電気的に短絡したり、接続端子上に充分な量の導電粒子が保持できす電気的に開放してしまう確率が小さく、半導体チップ等の被接続電子部品の回路が細密化し電極の間隔が小さいものでも、導電粒子の密度の厳密な管理や、実装工程でのプリント基板と被接続電子部品の位置合わせ及び温度や圧力などの実装条件の制御等も高度なものを必要とせず実装の容易なプリント配線板を得ることができる。
【0019】
請求項6に記載の発明は、絶縁性基板上に導電性の接続端子を備え、接続端子の電子部品との接続面の周縁部が、周縁部以外の接続面よりも高いことを特徴とするプリント配線板であって、異方導電性材料の導電粒子の密度を高くしなくても、異方導電性材料を用いた実装で接続端子上に充分な量の導電粒子を保持できるので、導電粒子どうしが接触して電極間を電気的に短絡したり、接続端子上に充分な量の導電粒子が保持できす電気的に開放してしまう確率が小さく、半導体チップ等の被接続電子部品の回路が細密化し電極の間隔が小さいものでも、導電粒子の密度の厳密な管理や、実装工程でのプリント基板と被接続電子部品の位置合わせ及び温度や圧力などの実装条件の制御等も高度なものを必要とせず実装の容易なプリント配線板を得ることができる。
【0020】
請求項7に記載の発明は、絶縁性基板上に導電性接続端子を備え、接続端子の接続される面の周縁部が周縁部以外の接続端子の接続される面より高いプリント配線板の製造方法であって、絶縁性基板に積層した金属箔の表面にエッチングレジストを形成し、第1のエッチングによって金属箔の不要部分を除去して接続端子を含む配線パターンを形成し、エッチングレジストを残した状態で金属箔の化学処理により接続端子の側面に接続端子の化合物層を形成し、エッチングレジストを剥離し、第2のエッチングによって接続端子の周縁部以外の接続端子の接続される他の面を所定の厚さまでエッチングすることを特徴とするプリント配線板の製造方法であって、従来のプリント配線板の製造方法に工程を付加するだけで、容易に接続端子側面層部分に第2のエッチングに対する耐エッチング層を形成し、接続端子の接続される面の周縁部の厚さが周縁部以外の接続端子の接続される他の面より大きい構成を形成することができる。
【0021】
請求項8に記載の発明は、絶縁性基板上に導電性接続端子を備え、接続端子の接続される面の周縁部が周縁部以外の接続端子の接続される面より高いプリント配線板の製造方法であって、絶縁性基板に積層した金属箔の表面にエッチングレジストを形成し、第1のエッチングによって金属箔の不要部分を除去して接続端子を含む配線パターンを形成し、エッチングレジストを残した状態でメッキ処理により接続端子の側面にメッキ層を形成し、エッチングレジストを剥離し、第2のエッチングによって接続端子の周縁部以外の接続端子の接続される他の面を所定の厚さまでエッチングすることを特徴とするプリント配線板の製造方法であって、従来のプリント配線板の製造方法に工程を付加するだけで、容易に接続端子側面層部分に第2のエッチングに対する耐エッチング層を形成し、接続端子の接続される面の周縁部の厚さが周縁部以外の接続端子の接続される他の面より大きい構成を形成することができる。
【0022】
請求項9に記載の発明は、絶縁性基板に積層した金属箔の表面にエッチングレジストを形成し、第1のエッチングによって金属箔の不要部分を除去して所定の配線パターンを有する接続端子を形成し、エッチングレジストを残した状態で接続端子の側面に耐エッチング層を形成し、エッチングレジストを剥離し、第2のエッチングによって接続端子表面を所定の厚さまでエッチングすることを特徴とするプリント配線板の製造方法であって、従来のプリント配線板の製造方法に工程を付加するだけで、容易に接続端子側面に第2のエッチングに対する耐エッチング層を形成し、接続端子の接続される面の周縁部の厚さが周縁部以外の接続端子の接続される他の面より大きい構成を形成することができる。
【0023】
請求項10に記載の発明は、請求項9において、耐エッチング層がメッキ処理により形成されることを特徴とするプリント配線板の製造方法であって、簡単な方法で耐エッチング層を形成することができる。
【0024】
以下、本発明の一実施の形態について、図面を用いて説明する。
【0025】
(実施の形態1)
図1は、本発明の実施の形態1におけるプリント配線板を示す図であり、図1(a)は部分断面図を示し、図1(b)は部分平面図を示している。また、図1において、1は絶縁性基板、2は接続端子、3は突出部である。
【0026】
絶縁性基板1には、例えば、ポリイミド樹脂を用いることができ、接続端子2はこれに積層された導電膜としての銅箔をフォトエッチング法により所定の配線パターンとして形成されたものである。
【0027】
そして、接続端子2の表面周縁部には突出部3を備えている。即ち、接続端子2の電子部品と接続される表面の周縁部は他の部分よりもその厚さが厚く、他の面より高くなっており、断面形状は略凹状である。詳細は後述するが、プリント配線板と電子部品の接合を異方導電性樹脂や異方導電性フィルム等の異方導電性材料によって行う場合、突出部3が異方導電性材料の導電粒子の流出を抑制すると共に、この略凹状である窪み部に多数の導電粒子が捕捉されることによって、両者の電気的接続を確実なものとすることができる。
【0028】
なお、突出部3は接続端子2の表面周縁部の少なくとも一部に形成されていればよいが、導電粒子を捕捉するために、周縁部全てに形成することが好ましい。
【0029】
(実施の形態2)
図2は、本発明の実施の形態2におけるプリント配線板を示す図であり、図2(a)は部分断面図を示し、図2(b)は部分平面図を示している。
【0030】
更に、図3は、本発明の実施の形態2におけるプリント配線板の製造方法を示す部分断面図である。
【0031】
また、図2,3において、図1と同様、1は絶縁性基板、2は接続端子、3は突出部であり、4は金メッキ層、5は銅箔、6はエッチングレジストを示す。
【0032】
図2に示すように、接続端子2の側面には金メッキ層4が形成されており、金メッキ層4は接続端子2の表面周縁部で突出し、突出部3を構成している。
【0033】
そして、プリント配線板と電子部品の接合を異方導電性樹脂や異方導電性フィルム等の異方導電性材料によって行う場合、突出部3が異方導電性材料の導電粒子の流出を抑制すると共に、この略凹状である窪み部に多数の導電粒子が捕捉されることによって、両者の電気的接続を確実なものとすることができる。
【0034】
なお、突出部3は接続端子2の表面周縁部の少なくとも一部に形成されていればよいが、導電粒子をより効率よく捕捉するため、更に、突出部3を構成する金メッキ層4の形成が容易であることから、周縁部全てに形成することが好ましい。
【0035】
次に、図3を用いて、プリント配線板の製造方法を順次説明する。
【0036】
まず、図3(a)に、絶縁性基板1に銅箔5が積層された積層板を示す。そして、例えば、銅箔5の表面に感光性レジストを塗布し、フォトマスクを用いて紫外線露光、更に、現像を行って、図3(b)に示すように、この銅箔5の表面に所定の配線パターンを有するエッチングレジスト6を形成する。
【0037】
次に、図3(c)に示すように、エッチングレジスト6に被覆されていない不要な部分の銅箔5を例えば塩化第二鉄水溶液を用いた第1のエッチングにより溶解し、所定の配線パターンを有する接続端子2を形成する。
【0038】
次に、図3(d)に示すように、エッチングレジスト6を除去する前に金メッキ処理を行う。これにより、エッチングレジスト6に覆われていない接続端子2の側面に金メッキ層4を形成する。そして、金メッキ層4は後述する第2のエッチングに対して耐エッチング性を備えた耐エッチング層となる。
【0039】
その後、図3(e)に示すように、エッチングレジスト6をアルカリ溶液で除去する。
【0040】
更に、図3(f)に示すように、例えば硫酸と過酸化水素水の混合溶液を用いた第2のエッチングによって、銅で構成される接続端子2の表面をハーフエッチングする。このとき、接続端子2の電子部品が接続される面の銅部分がハーフエッチングされても、金メッキ層4はその作用を受けないので残存し、接続端子2の表面周縁部で突出部3を備えた断面構造が形成される。
【0041】
ここで、図4は、本発明の実施の形態2におけるプリント配線板と電子部品との接続状態を示す部分断面図である。図4において、7は被接続電子部品としての半導体チップであり、8はバンプ電極を示す。更に、9は異方導電性樹脂、10は導電粒子である。
【0042】
図4に示すように、プリント配線板と半導体チップ7を異方導電性樹脂9を介して加熱しながら加圧することによって、プリント配線板の接続端子2とバンプ電極8との間に導電粒子10を挟みこんで電気的に導通させた状態で接続する。
【0043】
このとき、導電粒子10は異方導電性樹脂9の流動によって流れ出すが、接続端子2には突出部3を備えているため、導電粒子10の流出を抑制し、接続端子2とバンプ電極8の間に残存する導電粒子10を多くすることができ、接続が容易になる。
【0044】
なお、以上説明した本実施の形態において、接続端子2をエッチング形成した後、接続端子2の側面に耐エッチング層として金メッキ層4を形成したが、接続端子2を構成する材料である銅をハーフエッチする第2の任意のエッチング液によるエッチングに対して、銅よりも耐性の大きい任意のメッキ層、あるいは、化合物層を形成してもよい。
【0045】
更に、第2のエッチングをエッチング液による化学的エッチングではなく、レーザートリミング、イオンミーリング、サンドブラスト、プラズマエッチング等の物理的エッチングを用いてもよい。このとき、接続端子2を構成する導電膜である銅よりも硬度が高い等の物理的エッチングに対する耐エッチング性を備えた任意の材料、好ましくは導電性材料、更に好ましくは金属材料からなる耐エッチング層をその側面に形成すればよい。
【0046】
また、プリント配線板は、絶縁性基板1としてポリイミド樹脂で構成されるフィルムを用い、エポキシ系接着剤を介して、接続端子2を構成する導電膜として銅箔を積層した構成があげられ、このポリイミドフィルム、エポキシ系接着剤、銅箔からなる組み合わせは、加工適正、汎用性に優れるものであり好ましい形態と言える。なお、ポリイミドフィルム以外にも、従来公知のプリント配線板に使用される絶縁性基板材料を用いることもできる。また、この絶縁性基板は、連続加工、巻き取り加工を行う場合には、可撓性、柔軟性を有していることが好ましい。また、その接着剤もエポキシ系接着剤以外に、他の熱硬化性接着剤を用いることができるのは言うまでもない。更に、接着剤を設けなくてもよい。接着剤を使用せず銅箔に絶縁性樹脂をキャストして形成するタイプのものは、その後の加工で接着剤の影響を排除できるので特に好ましい。また、接続端子2を構成する材料としては銅以外にも、アルミニウム等のエッチング加工の可能な他の導電性を有する金属材料を用いてもよい。
【0047】
また、本発明は異方導電性材料による実装のみならず、Au−Sn等の半田による実装においても、プリント配線板の接続端子と被接合電子部品の電極の接合部分に於ける半田の流れ出しを抑制し、細密ピッチの接合を容易にできる。
【0048】
【発明の効果】
本発明のプリント配線板によれば、高密度化でピッチが小さく接合面の面積が狭くなっても、実装される電子部品の電極とプリント配線板の接続電極の異方導電性樹脂や異方導電性フィルムによる接合を、電気的短絡や開放が無く確実に行うことができるプリント配線板を提供することができる。
【0049】
本発明のプリント配線板の製造方法によれば、従来のプリント配線板の製造方法に工程を付加するだけで、容易に接続端子側面層部分にエッチング耐性層を形成し、接続端子の接続される面の周縁部の厚さが周縁部以外の接続端子の接続される他の面より大きい構成を形成することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1におけるプリント配線板を示す図
【図2】本発明の実施の形態2におけるプリント配線板を示す図
【図3】本発明の実施の形態2におけるプリント配線板の製造方法を示す部分断面図
【図4】本発明の実施の形態2におけるプリント配線板と電子部品との接続状態を示す部分断面図
【符号の説明】
1 絶縁性基板
2 接続端子
3 突出部
4 金メッキ層
5 銅箔
6 エッチングレジスト
7 半導体チップ
8 バンプ電極
9 異方導電性樹脂
10 導電粒子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a printed wiring board such as a high-density flexible wiring board for connecting electronic components such as semiconductor chips, and a method for manufacturing the same.
[0002]
[Prior art]
Printed wiring boards use a photolithography method or printing method to form an etching resist in the form of a wiring pattern on the surface of a substrate in which a metal foil such as copper or aluminum is laminated on an insulating substrate such as a resin or ceramic. After the unnecessary portion of the foil is removed to form a wiring pattern, the etching resist is peeled off to manufacture.
[0003]
The thickness of the metal foil of the printed wiring board is from several μm to several hundred μm depending on the fineness of the wiring pattern.
[0004]
In recent years, electronic components have been miniaturized along with the miniaturization and weight reduction of electronic devices, and wiring patterns of printed wiring boards have been miniaturized as connection (mounting) substrates, and connection terminals and their intervals have become narrower. FC mounting using a COF substrate, which is inherently easier to narrow than TAB using flying leads, which has a problem in the strength and narrowing of terminals, has been performed.
[0005]
In the FC mounting, an Au-Sn bonding method and a bonding method using an anisotropic conductive material are used, but the bonding method using an anisotropic conductive material can be mounted in a lower temperature process as compared with the Au-Sn bonding method. It is used because it has advantages in terms of heat resistance of the substrate and errors in cumulative dimensions due to thermal expansion, and does not require a step of injecting an underfill resin.
[0006]
In mounting using this anisotropic conductive material, an anisotropic conductive resin in which conductive particles having a diameter of several μm to several tens μm are dispersed in a resin is applied, or printed wiring on which an anisotropic conductive film is adhered. The electrodes of the electronic component and the connection terminals of the printed wiring board are electrically joined by pressing the mounted electronic components at high temperature and high pressure onto the connection terminals of the board, sandwiching the conductive particles contained in the anisotropic conductive material. You. Therefore, it is important to keep a sufficient amount of conductive particles on the connection terminals in order to obtain bonding reliability.
[0007]
If the density of the conductive particles in the resin of the anisotropic conductive material is increased, the conductive particles come into contact with each other to electrically short-circuit between the electrodes. Since a large amount of conductive particles cannot be held and are electrically opened, a moderate and optimum conductive particle density is required.
[0008]
In particular, when the circuit of electronic components such as semiconductor chips becomes finer and the distance between the electrodes becomes smaller, it is necessary to strictly control the density of the conductive particles in order to reliably connect the electrodes to the connection terminals of the printed wiring board, and In addition, the positioning of the printed circuit board and the electronic components in the mounting process and the control of the mounting conditions such as the temperature and the pressure need to be advanced.
[0009]
On the other hand, for example, in Japanese Patent Application Laid-Open No. 10-98069, a part of the peripheral edge of the bonding surface of the bump electrode of the semiconductor chip is projected to prevent the conductive particles from flowing out together with the resin flow at the time of mounting. A semiconductor chip holding many conductive particles on a bump surface has been proposed. Japanese Patent Application Laid-Open No. Hei 10-200243 discloses that the conductive particle density distribution of an anisotropic conductive resin is changed in the thickness direction to increase the number of conductive particles contributing to bonding and reduce the number of conductive particles leading to a short circuit between adjacent electrodes. Connection methods have been proposed.
[0010]
[Problems to be solved by the invention]
However, the conventional printed wiring board and the method of manufacturing the same have a flat joining surface on which electronic components are mounted, and particularly when the wiring is dense and at a narrow interval, the conductive particles in the anisotropic conductive material can be sufficiently removed. , And it was difficult to obtain bonding reliability. In addition, a special bump formation step is required to make the bump electrodes of the semiconductor chip hold conductive particles, and the bumps are made of an expensive material such as gold. It cannot be applied to a bumpless press that does not form a bump. In addition, there is a problem that it is difficult to appropriately distribute the conductive particle density in the resin in terms of process.
[0011]
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and anisotropic conductive resin for an electrode of an electronic component to be mounted and a connection electrode of a printed wiring board even if the pitch is small due to the high density and the area of the bonding surface is small. It is an object of the present invention to provide a printed wiring board and a method for manufacturing the printed wiring board, which can securely perform joining with an anisotropic conductive film without an electrical short circuit or opening.
[0012]
[Means for Solving the Problems]
In order to solve the above-described problems, a printed wiring board according to the present invention has a configuration in which conductive connection terminals are provided on an insulating substrate, and at least a part of a peripheral portion of a surface of the connection terminal protrudes.
[0013]
The method of manufacturing a printed wiring board according to the present invention has a predetermined wiring pattern in which an etching resist is formed on a surface of a metal foil laminated on an insulating substrate, and unnecessary portions of the metal foil are removed by a first etching. A structure in which a connection terminal is formed, an etching-resistant layer is formed on the side surface of the connection terminal while the etching resist is left, the etching resist is peeled off, and the connection terminal surface is etched to a predetermined thickness by a second etching. It is.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 is a printed wiring board comprising a conductive connection terminal on an insulating substrate, wherein at least a part of a peripheral portion of a surface of the connection terminal is projected. Even if the density of the conductive particles of the conductive material is not increased, a sufficient amount of the conductive particles can be held on the connection terminals by mounting using the anisotropic conductive material. There is a low probability that an electrical short will occur or a sufficient amount of conductive particles can be held on the connection terminals, and the probability of electrical opening will be small, the circuit of the connected electronic component such as a semiconductor chip will be finer, and the spacing between the electrodes will be small. In addition, strict control of the density of conductive particles, alignment of the printed circuit board and the connected electronic components in the mounting process, and control of mounting conditions such as temperature and pressure are not required, and mounting is easy and easy. Printed wiring board can be obtained
[0015]
The invention according to claim 2 is a printed wiring board comprising a conductive connection terminal on an insulating substrate, and a peripheral portion of the connection terminal surface protruding. Even if the density of the conductive particles is not increased, a sufficient amount of conductive particles can be held on the connection terminals by mounting using an anisotropic conductive material, so that the conductive particles come into contact and electrically short-circuit between the electrodes. And the possibility of holding a sufficient amount of conductive particles on the connection terminal is low, and the probability of electrical opening is small. Strict control of particle density, alignment of the printed circuit board and the connected electronic components in the mounting process, and control of mounting conditions such as temperature and pressure do not require sophisticated printed wiring boards that are easy to mount. Obtainable.
[0016]
According to a third aspect of the present invention, there is provided the printed wiring board according to the second aspect, wherein the peripheral portion is formed of a plating layer, and the peripheral portion of the surface of the connection terminal is projected by a simple method. it can.
[0017]
The printed wiring board according to claim 4, wherein a conductive connection terminal is provided on the insulating substrate, a plating layer is provided on a side surface of the connection terminal, and the plating layer protrudes from the connection terminal surface. Even if the density of the conductive particles of the anisotropic conductive material is not increased, a sufficient amount of conductive particles can be held on the connection terminals by mounting using the anisotropic conductive material. There is a small probability that the electrodes will be electrically short-circuited by contact, or that a sufficient amount of conductive particles will be retained on the connection terminals, and that they will be electrically opened, and the circuit of the connected electronic component such as a semiconductor chip will be fine. Even if the distance between electrodes is small, strict control of the density of conductive particles, alignment of the printed circuit board and connected electronic components in the mounting process, and control of mounting conditions such as temperature and pressure are also required to be advanced. Printed wiring for easy mounting It is possible to obtain.
[0018]
The invention according to claim 5 is a printed wiring board comprising a conductive connection terminal on an insulating substrate, wherein the cross-sectional shape of the connection terminal is substantially concave. Even if the density of the conductive particles is not increased, a sufficient amount of conductive particles can be held on the connection terminals by mounting using an anisotropic conductive material, so that the conductive particles come into contact and electrically short-circuit between the electrodes. And the possibility of holding a sufficient amount of conductive particles on the connection terminal is low, and the probability of electrical opening is small. Strict control of particle density, alignment of the printed circuit board and the connected electronic components in the mounting process, and control of mounting conditions such as temperature and pressure do not require sophisticated printed wiring boards that are easy to mount. Obtainable.
[0019]
The invention according to claim 6 is characterized in that a conductive connection terminal is provided on the insulating substrate, and the periphery of the connection surface of the connection terminal with the electronic component is higher than the connection surface other than the periphery. It is a printed wiring board that can maintain a sufficient amount of conductive particles on connection terminals by mounting using anisotropic conductive material without increasing the density of conductive particles of anisotropic conductive material. There is a small probability that the particles will contact each other and cause an electrical short circuit between the electrodes, or that a sufficient amount of conductive particles will be held on the connection terminals and that they will be electrically opened. Even if the circuit is fine and the spacing between the electrodes is small, strict control of the density of conductive particles, alignment of the printed board and connected electronic components in the mounting process, and control of mounting conditions such as temperature and pressure are also advanced. Printed wiring board that does not require anything and is easy to mount It is possible to obtain.
[0020]
According to a seventh aspect of the present invention, there is provided a printed wiring board comprising a conductive connection terminal provided on an insulating substrate, wherein a periphery of a surface to which the connection terminal is connected is higher than a surface to which the connection terminal other than the periphery is connected. Forming an etching resist on a surface of a metal foil laminated on an insulating substrate, removing unnecessary portions of the metal foil by a first etching to form a wiring pattern including connection terminals, and leaving the etching resist. In this state, a compound layer of the connection terminal is formed on the side surface of the connection terminal by chemical treatment of the metal foil, the etching resist is peeled off, and the other surface to which the connection terminal is connected other than the peripheral portion of the connection terminal by the second etching Is a method of manufacturing a printed wiring board, characterized by etching to a predetermined thickness, by simply adding a process to the conventional method of manufacturing a printed wiring board, and easily connecting terminal side surfaces. An etching-resistant layer against the second etching is formed in the portion, so that a configuration in which the thickness of the peripheral portion of the surface to which the connection terminal is connected is larger than the other surface to which the connection terminal other than the peripheral portion is connected can be formed. .
[0021]
The invention according to claim 8 is a method for manufacturing a printed wiring board, comprising a conductive connection terminal on an insulating substrate, wherein the periphery of the surface to which the connection terminal is connected is higher than the surface to which the connection terminal other than the periphery is connected. Forming an etching resist on a surface of a metal foil laminated on an insulating substrate, removing unnecessary portions of the metal foil by a first etching to form a wiring pattern including connection terminals, and leaving the etching resist. A plating layer is formed on the side surface of the connection terminal by a plating process in a state in which the connection terminal is connected, and the other surface to which the connection terminal is connected other than the peripheral portion of the connection terminal is etched to a predetermined thickness by a second etching. This is a method of manufacturing a printed wiring board, characterized in that a second step can be easily applied to the connection terminal side layer by simply adding a step to the conventional method of manufacturing a printed wiring board. Forming etching resistant layer against quenching, the thickness of the peripheral portion of the connected surface of the connection terminal can be formed other aspects larger structure to be connected to connection terminals other than the peripheral portion.
[0022]
According to a ninth aspect of the present invention, an etching resist is formed on a surface of a metal foil laminated on an insulating substrate, and unnecessary portions of the metal foil are removed by a first etching to form a connection terminal having a predetermined wiring pattern. A printed wiring board, wherein an etching resistant layer is formed on the side surface of the connection terminal while the etching resist is left, the etching resist is peeled off, and the connection terminal surface is etched to a predetermined thickness by a second etching. The method for manufacturing a printed wiring board according to claim 1, wherein an etching-resistant layer against the second etching is easily formed on the side surface of the connection terminal by simply adding a step to the conventional method for manufacturing a printed wiring board, and the periphery of the surface to which the connection terminal is connected is formed. A configuration in which the thickness of the portion is larger than the other surface to which the connection terminal is connected other than the peripheral portion can be formed.
[0023]
According to a tenth aspect of the present invention, there is provided a method of manufacturing a printed wiring board according to the ninth aspect, wherein the etching-resistant layer is formed by plating. Can be.
[0024]
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0025]
(Embodiment 1)
FIG. 1 is a diagram showing a printed wiring board according to Embodiment 1 of the present invention, wherein FIG. 1A shows a partial cross-sectional view, and FIG. 1B shows a partial plan view. In FIG. 1, 1 is an insulating substrate, 2 is a connection terminal, and 3 is a protruding portion.
[0026]
For example, a polyimide resin can be used for the insulating substrate 1, and the connection terminals 2 are formed by forming a predetermined wiring pattern on a copper foil as a conductive film laminated thereon by a photoetching method.
[0027]
The connection terminal 2 is provided with a protruding portion 3 on the peripheral edge of the surface. That is, the peripheral portion of the surface of the connection terminal 2 to be connected to the electronic component is thicker than other portions and higher than other surfaces, and has a substantially concave cross-sectional shape. Although details will be described later, when the printed wiring board and the electronic component are joined by an anisotropic conductive material such as an anisotropic conductive resin or an anisotropic conductive film, the protrusions 3 are formed of conductive particles of the anisotropic conductive material. The outflow is suppressed, and a large number of conductive particles are trapped in the substantially concave depression, so that the electrical connection between the two can be ensured.
[0028]
The protrusion 3 may be formed on at least a part of the peripheral edge of the surface of the connection terminal 2, but is preferably formed on the entire peripheral edge in order to capture the conductive particles.
[0029]
(Embodiment 2)
FIG. 2 is a view showing a printed wiring board according to Embodiment 2 of the present invention, where FIG. 2A shows a partial cross-sectional view, and FIG. 2B shows a partial plan view.
[0030]
FIG. 3 is a partial cross-sectional view illustrating a method for manufacturing a printed wiring board according to Embodiment 2 of the present invention.
[0031]
2 and 3, similarly to FIG. 1, 1 is an insulating substrate, 2 is a connection terminal, 3 is a protrusion, 4 is a gold plating layer, 5 is a copper foil, and 6 is an etching resist.
[0032]
As shown in FIG. 2, a gold plating layer 4 is formed on the side surface of the connection terminal 2, and the gold plating layer 4 protrudes at the peripheral edge of the surface of the connection terminal 2, and forms a protrusion 3.
[0033]
And when joining a printed wiring board and an electronic component with an anisotropic conductive material, such as an anisotropic conductive resin or an anisotropic conductive film, the protrusion part 3 suppresses outflow of the conductive particles of the anisotropic conductive material. At the same time, a large number of conductive particles are trapped in the substantially concave depression, so that electrical connection between them can be ensured.
[0034]
The protrusion 3 may be formed on at least a part of the peripheral edge of the surface of the connection terminal 2. In order to more efficiently capture the conductive particles, the formation of the gold plating layer 4 constituting the protrusion 3 is further required. Since it is easy, it is preferable to form it all over the periphery.
[0035]
Next, a method for manufacturing a printed wiring board will be sequentially described with reference to FIG.
[0036]
First, FIG. 3A shows a laminate in which a copper foil 5 is laminated on an insulating substrate 1. Then, for example, a photosensitive resist is applied to the surface of the copper foil 5, exposed to ultraviolet light using a photomask, and further developed to form a predetermined resist on the surface of the copper foil 5 as shown in FIG. An etching resist 6 having the above wiring pattern is formed.
[0037]
Next, as shown in FIG. 3C, an unnecessary portion of the copper foil 5 not covered with the etching resist 6 is dissolved by, for example, first etching using an aqueous solution of ferric chloride to form a predetermined wiring pattern. Is formed.
[0038]
Next, as shown in FIG. 3D, a gold plating process is performed before the etching resist 6 is removed. Thus, the gold plating layer 4 is formed on the side surfaces of the connection terminals 2 that are not covered with the etching resist 6. Then, the gold plating layer 4 becomes an etching resistant layer having etching resistance to a second etching described later.
[0039]
Thereafter, as shown in FIG. 3E, the etching resist 6 is removed with an alkaline solution.
[0040]
Further, as shown in FIG. 3F, the surface of the connection terminal 2 made of copper is half-etched by second etching using a mixed solution of sulfuric acid and hydrogen peroxide solution, for example. At this time, even if the copper portion of the surface of the connection terminal 2 to which the electronic component is connected is half-etched, the gold-plated layer 4 does not receive the action and remains, and the connection terminal 2 is provided with the protruding portion 3 at the peripheral edge of the surface. A cross-sectional structure is formed.
[0041]
Here, FIG. 4 is a partial cross-sectional view showing a connection state between the printed wiring board and the electronic component according to the second embodiment of the present invention. In FIG. 4, reference numeral 7 denotes a semiconductor chip as a connected electronic component, and reference numeral 8 denotes a bump electrode. Further, 9 is an anisotropic conductive resin, and 10 is conductive particles.
[0042]
As shown in FIG. 4, by applying pressure while heating the printed wiring board and the semiconductor chip 7 via the anisotropic conductive resin 9, the conductive particles 10 are placed between the connection terminals 2 and the bump electrodes 8 of the printed wiring board. Are connected in a state where they are electrically connected to each other.
[0043]
At this time, the conductive particles 10 flow out due to the flow of the anisotropic conductive resin 9, but since the connection terminals 2 are provided with the protrusions 3, the outflow of the conductive particles 10 is suppressed, and the connection terminals 2 and the bump electrodes 8 are separated. The number of conductive particles 10 remaining in between can be increased, and connection is facilitated.
[0044]
In the present embodiment described above, after the connection terminal 2 is formed by etching, the gold plating layer 4 is formed on the side surface of the connection terminal 2 as an etching-resistant layer. Any plating layer or compound layer having higher resistance than copper to etching by the second arbitrary etching solution to be etched may be formed.
[0045]
Further, physical etching such as laser trimming, ion milling, sandblasting, and plasma etching may be used for the second etching instead of chemical etching using an etching solution. At this time, any material having etching resistance to physical etching such as higher hardness than copper which is a conductive film constituting the connection terminal 2, preferably a conductive material, more preferably a metal material is used. A layer may be formed on the side surface.
[0046]
The printed wiring board has a structure in which a film made of a polyimide resin is used as the insulating substrate 1 and a copper foil is laminated as a conductive film forming the connection terminal 2 via an epoxy-based adhesive. A combination of a polyimide film, an epoxy-based adhesive, and a copper foil is excellent in processability and versatility, and can be said to be a preferable mode. In addition, other than the polyimide film, a conventionally known insulating substrate material used for a printed wiring board can be used. In addition, when performing continuous processing and winding processing, the insulating substrate preferably has flexibility and flexibility. It goes without saying that other thermosetting adhesives can be used in addition to the epoxy adhesive. Furthermore, it is not necessary to provide an adhesive. A type in which an insulating resin is cast on a copper foil without using an adhesive is particularly preferable because the influence of the adhesive can be eliminated in subsequent processing. In addition, other than copper, other conductive metal materials that can be etched, such as aluminum, may be used as a material for forming the connection terminal 2.
[0047]
In addition, the present invention can be applied to not only the mounting using the anisotropic conductive material but also the mounting using the solder such as Au-Sn to prevent the solder from flowing out at the connection portion between the connection terminal of the printed wiring board and the electrode of the electronic component to be bonded. Suppression can be achieved, and fine pitch bonding can be facilitated.
[0048]
【The invention's effect】
According to the printed wiring board of the present invention, even if the pitch is small due to the high density and the area of the bonding surface is reduced, the anisotropic conductive resin or the anisotropic conductive resin between the electrodes of the mounted electronic components and the connection electrodes of the printed wiring board is used. It is possible to provide a printed wiring board that can be reliably connected with a conductive film without an electrical short circuit or opening.
[0049]
ADVANTAGE OF THE INVENTION According to the manufacturing method of the printed wiring board of this invention, an etching resistant layer is easily formed in a connection terminal side layer part only by adding a process to the manufacturing method of the conventional printed wiring board, and the connection terminal is connected. It is possible to form a configuration in which the thickness of the peripheral edge of the surface is larger than the other surfaces to which the connection terminals other than the peripheral edge are connected.
[Brief description of the drawings]
FIG. 1 is a diagram showing a printed wiring board according to a first embodiment of the present invention; FIG. 2 is a diagram showing a printed wiring board according to a second embodiment of the present invention; FIG. 3 is a printed wiring according to a second embodiment of the present invention; FIG. 4 is a partial cross-sectional view illustrating a method of manufacturing a board. FIG. 4 is a partial cross-sectional view illustrating a connection state between a printed wiring board and an electronic component according to a second embodiment of the present invention.
REFERENCE SIGNS LIST 1 insulating substrate 2 connection terminal 3 protrusion 4 gold plating layer 5 copper foil 6 etching resist 7 semiconductor chip 8 bump electrode 9 anisotropic conductive resin 10 conductive particles

Claims (10)

絶縁性基板上に導電性の接続端子を備え、前記接続端子表面の周縁部の少なくとも一部が突出していることを特徴とするプリント配線板。A printed wiring board comprising conductive connection terminals on an insulating substrate, wherein at least a part of a peripheral portion of a surface of the connection terminal protrudes. 絶縁性基板上に導電性の接続端子を備え、前記接続端子表面の周縁部が突出していることを特徴とするプリント配線板。A printed wiring board, comprising a conductive connection terminal on an insulating substrate, wherein a peripheral portion of the surface of the connection terminal protrudes. 前記周縁部がメッキ層で構成されることを特徴とする請求項2に記載のプリント配線板。The printed wiring board according to claim 2, wherein the peripheral portion is formed of a plating layer. 絶縁性基板上に導電性の接続端子を備え、前記接続端子の側面にメッキ層を備え、前記メッキ層は前記接続端子表面から突出していることを特徴とするプリント配線板。A printed wiring board, comprising: a conductive connection terminal on an insulating substrate; and a plating layer on a side surface of the connection terminal, wherein the plating layer protrudes from a surface of the connection terminal. 絶縁性基板上に導電性の接続端子を備え、前記接続端子の断面形状が略凹状であることを特徴とするプリント配線板。A printed wiring board comprising a conductive connection terminal on an insulating substrate, wherein the connection terminal has a substantially concave cross-sectional shape. 絶縁性基板上に導電性の接続端子を備え、前記接続端子の電子部品との接続面の周縁部が、前記周縁部以外の接続面よりも高いことを特徴とするプリント配線板。A printed wiring board comprising a conductive connection terminal on an insulating substrate, wherein a peripheral portion of a connection surface of the connection terminal with an electronic component is higher than a connection surface other than the peripheral portion. 絶縁性基板上に導電性接続端子を備え、前記接続端子の接続される面の周縁部が前記周縁部以外の前記接続端子の接続される面より高いプリント配線板の製造方法であって、前記絶縁性基板に積層した金属箔の表面にエッチングレジストを形成し、第1のエッチングによって前記金属箔の不要部分を除去して前記接続端子を含む配線パターンを形成し、前記エッチングレジストを残した状態で前記金属箔の化学処理により前記接続端子の側面に前記接続端子の化合物層を形成し、前記エッチングレジストを剥離し、第2のエッチングによって前記接続端子の周縁部以外の前記接続端子の接続される他の面を所定の厚さまでエッチングすることを特徴とするプリント配線板の製造方法。A method for manufacturing a printed wiring board comprising a conductive connection terminal on an insulating substrate, wherein a periphery of a surface to which the connection terminal is connected is higher than a surface to which the connection terminal is connected other than the periphery. A state in which an etching resist is formed on the surface of a metal foil laminated on an insulating substrate, an unnecessary portion of the metal foil is removed by a first etching to form a wiring pattern including the connection terminal, and the etching resist is left. Forming a compound layer of the connection terminal on a side surface of the connection terminal by a chemical treatment of the metal foil, removing the etching resist, and connecting the connection terminal other than the peripheral portion of the connection terminal by a second etching. And etching another surface to a predetermined thickness. 絶縁性基板上に導電性接続端子を備え、前記接続端子の接続される面の周縁部が前記周縁部以外の前記接続端子の接続される面より高いプリント配線板の製造方法であって、前記絶縁性基板に積層した金属箔の表面にエッチングレジストを形成し、第1のエッチングによって前記金属箔の不要部分を除去して前記接続端子を含む配線パターンを形成し、前記エッチングレジストを残した状態でメッキ処理により前記接続端子の側面にメッキ層を形成し、前記エッチングレジストを剥離し、第2のエッチングによって前記接続端子の周縁部以外の前記接続端子の接続される他の面を所定の厚さまでエッチングすることを特徴とするプリント配線板の製造方法。A method for manufacturing a printed wiring board comprising a conductive connection terminal on an insulating substrate, wherein a periphery of a surface to which the connection terminal is connected is higher than a surface to which the connection terminal is connected other than the periphery. A state in which an etching resist is formed on the surface of a metal foil laminated on an insulating substrate, an unnecessary portion of the metal foil is removed by a first etching to form a wiring pattern including the connection terminal, and the etching resist is left. A plating layer is formed on the side surface of the connection terminal by plating, the etching resist is peeled off, and the other surface to be connected to the connection terminal other than the peripheral portion of the connection terminal by the second etching is formed to a predetermined thickness. A method for manufacturing a printed wiring board, characterized by etching. 絶縁性基板に積層した金属箔の表面にエッチングレジストを形成し、第1のエッチングによって前記金属箔の不要部分を除去して所定の配線パターンを有する接続端子を形成し、前記エッチングレジストを残した状態で前記接続端子の側面に耐エッチング層を形成し、前記エッチングレジストを剥離し、第2のエッチングによって前記接続端子表面を所定の厚さまでエッチングすることを特徴とするプリント配線板の製造方法。An etching resist was formed on the surface of the metal foil laminated on the insulating substrate, an unnecessary portion of the metal foil was removed by a first etching to form a connection terminal having a predetermined wiring pattern, and the etching resist was left. A method for manufacturing a printed wiring board, wherein an etching-resistant layer is formed on a side surface of the connection terminal in the state, the etching resist is peeled off, and the connection terminal surface is etched to a predetermined thickness by a second etching. 前記耐エッチング層がメッキ処理により形成されることを特徴とする請求項9に記載のプリント配線板の製造方法。The method according to claim 9, wherein the etching resistant layer is formed by plating.
JP2002165577A 2002-06-06 2002-06-06 Printed wiring board and its manufacturing method Withdrawn JP2004014774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002165577A JP2004014774A (en) 2002-06-06 2002-06-06 Printed wiring board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002165577A JP2004014774A (en) 2002-06-06 2002-06-06 Printed wiring board and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004014774A true JP2004014774A (en) 2004-01-15

Family

ID=30433381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002165577A Withdrawn JP2004014774A (en) 2002-06-06 2002-06-06 Printed wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004014774A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108820A (en) * 2006-10-24 2008-05-08 Sony Chemical & Information Device Corp Electrode member, semiconductor element, wiring board and electric apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108820A (en) * 2006-10-24 2008-05-08 Sony Chemical & Information Device Corp Electrode member, semiconductor element, wiring board and electric apparatus

Similar Documents

Publication Publication Date Title
US20060060558A1 (en) Method of fabricating package substrate using electroless nickel plating
JP2006032947A (en) Method of manufacturing high-density printed circuit board
JP2007311713A (en) Substrate for electronic apparatus, its manufacturing method, electronic apparatus, and its manufacturing method
TW201417196A (en) Package substrate, package structure and methods for manufacturing same
JPH09283925A (en) Semiconductor device and manufacture thereof
JP2002118204A (en) Semiconductor device, substrate for mounting semiconductor and method for manufacturing the same
JP2006013496A (en) Wiring film with bump, film package using the same, and method of fabricating the same
JP3925752B2 (en) Bumped wiring board and manufacturing method of semiconductor package
JP2001007248A (en) Package substrate
JP2009277987A (en) Film-carrier tape for mounting electronic component and its manufacturing method, and semiconductor device
JP2008204968A (en) Semiconductor package substrate and manufacturing method thereof
JP2005101170A (en) Semiconductor device, method for manufacturing same, circuit board, and electronic apparatus
JP2007158024A (en) Bga-type semiconductor device and its manufacturing method
JP2004014774A (en) Printed wiring board and its manufacturing method
JP2003209342A (en) Circuit board and method for manufacturing the same
JP3726891B2 (en) Mounting structure of film carrier tape for mounting electronic components and manufacturing method of film carrier tape for mounting electronic components
JP4326410B2 (en) Circuit board manufacturing method
JP2004253648A (en) Printed circuit board and method for manufacturing the same, and multi-layer printed wiring board and method for manufacturing the same
JPH07326853A (en) Ball bump forming method for printed wiring board
JP2003197812A (en) Wiring base board and manufacturing method thereof, semiconductor device and manufacturing method thereof, circuit base board and electronic instrument
JP4826103B2 (en) Semiconductor device substrate and BGA package for semiconductor element
JP2001007250A (en) Package substrate
JP4181149B2 (en) Semiconductor package
JP3929251B2 (en) Method for manufacturing two-layer wiring semiconductor device and semiconductor device
JP2002270715A (en) Manufacturing method of semiconductor device, and semiconductor device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050601

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050713

A761 Written withdrawal of application

Effective date: 20070730

Free format text: JAPANESE INTERMEDIATE CODE: A761