JP2004014735A - Heat sink - Google Patents

Heat sink Download PDF

Info

Publication number
JP2004014735A
JP2004014735A JP2002165222A JP2002165222A JP2004014735A JP 2004014735 A JP2004014735 A JP 2004014735A JP 2002165222 A JP2002165222 A JP 2002165222A JP 2002165222 A JP2002165222 A JP 2002165222A JP 2004014735 A JP2004014735 A JP 2004014735A
Authority
JP
Japan
Prior art keywords
heat sink
thickness direction
carbon fiber
composite material
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002165222A
Other languages
Japanese (ja)
Other versions
JP4260426B2 (en
Inventor
Toshiji Hiraoka
平岡 利治
Naoto Ota
太田 直人
Yasuhisa Ogita
荻田 泰久
Hirotake Shibata
柴田 寛丈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2002165222A priority Critical patent/JP4260426B2/en
Publication of JP2004014735A publication Critical patent/JP2004014735A/en
Application granted granted Critical
Publication of JP4260426B2 publication Critical patent/JP4260426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat sink which has layer heat emissivity than that of a conventional heat sink made of metal such as aluminum and copper and is free of problems of peeling caused by a difference in the coefficient of thermal expansion from a semiconductor element due to heat generation by the semiconductor element. <P>SOLUTION: The heat sink is formed of a carbon fiber reinforced carbon compound material obtained by aligning and molding a carbon fiber material with high heat conductivity in a thickness direction. Heat conductivity in the thickness direction is ≥500 W/(m K) and in ≥(20:1) proportion to heat conductivity in a plane direction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、一方向の熱伝導率が高く、放熱性に優れたヒートシンクに関し、特に、半導体製造工程に用いられる半導体冷却基板として用いられるヒートシンクに関する。
【0002】
【従来の技術】
半導体素子のパワーレベルが向上し、部品密度が増加するにつれて、半導体素子から発生する熱も高熱化している。半導体素子は接合部温度が上昇すると、機能、性能及び信頼性が低下しついには破壊してしまうことがある。そのため、安全な動作温度範囲まで半導体の接合部温度を下げる必要があり、現在、その接合部温度を下げるヒートシンクが必要不可欠な部品となっている。
【0003】
現在、ヒートシンクに使用されている材料としては、アルミニウムや銅等の金属が一般的である。
【0004】
【発明が解決しようとする課題】
ところが、これら従来のアルミニウムや銅等の金属製のヒートシンクは、熱膨張係数が2×10−5/℃程度であり、近年の半導体素子の発熱量の高熱化によって、半導体素子との熱膨張率との違いにより発生する接合部の剥離が新たな問題となりつつある。
【0005】
そこで、本発明は、従来のアルミニウムや銅等の金属製のヒートシンクと同等以上の放熱性を有するとともに、半導体素子の発熱により半導体素子と熱膨張率の違いによる剥離の問題のないヒートシンクを提供することを目的とする。
【0006】
【課題を解決するための手段】
前記課題を解決するために、本発明者らは高い放熱性を有するとともに、半導体素子の発熱により半導体素子と熱膨張率の違いによる剥離の問題のないヒートシンクを得るべく、種々検討を行い、半導体素子と同等の熱膨張率を有するとともに、一方向の熱伝導率を大きくした炭素繊維強化炭素複合材料(以下、C/C複合材料という。)を得て、本発明を完成した。
【0007】
すなわち、本発明のヒートシンクは、高熱伝導性の炭素繊維材料が厚さ方向に配向されて成形されてなるC/C複合材料で形成されたヒートシンクであって、前記厚さ方向の熱伝導率が500W/(m・K)以上であり、前記厚さ方向の熱伝導率が平面方向の熱伝導率に対して10以上の比率であることを特徴とする。また、前記C/C複合材料の熱膨張係数が8〜12×10−6/℃であるものである。また、前記厚さ方向に配向される炭素繊維材料の繊維密度(V)が40以上であるものである。また、前記厚さ方向に配向される炭素繊維材料が、太径の繊維材料と細径の繊維材料とが交互に配向されているものである。また、前記C/C複合材料にCVI処理によって、ラフコラムナー(Rough columnar)組織の熱分解炭素を含浸、被覆してなるものである。そして、前記CVI処理後に、前記C/C複合材料に、HIPあるいは熔湯鍛造法で高熱伝導の金属材料が含浸されているものである。また、前記金属材料が、黒鉛及び銅との反応による標準生成エンタルピーがそれぞれ1モルあたり−50kJ以下である元素群から選ばれる少なくとも1種の金属材料であり、この元素群から選ばれる金属材料を1〜7質量%含有し、残部が実質的に銅からなる銅合金であるものである。さらに、前記金属材料が、シリコンを10%以上含有したアルミニウム合金であるものである。
【0008】
以下、本発明を詳細に説明する。
本発明で使用する炭素繊維は、ポリアクリロニトリル(PAN)系、ピッチ系炭素繊維あるいは気相成長法炭素繊維等、いずれの種類でもよいが、特に繊維軸方向の熱伝導率が高い高特性のピッチ系炭素繊維が好適である。
【0009】
本発明に係るC/C複合材料はこのような炭素繊維を用いて得られ、炭素繊維が実質的に厚さ方向に配向しており、厚さ方向に直角の方向である平面方向の熱伝導率に対する厚さ方向の熱伝導率の比率が10以上、好ましくは20以上であり、かつ厚さ方向の熱伝導率が500W/(m・K)以上、好ましくは600W/(m・K)以上である。
【0010】
また、室温〜1000℃までの平均熱膨張係数が8×10−6/℃〜12×10−6/℃であるものである。これによって、半導体素子との熱膨張係数を略同等とすることが可能となり、半導体素子の発熱によって、その接合部において剥離することを防止できる。
【0011】
また、厚さ方向に配向される炭素繊維の繊維密度(V)が40以上、好ましくは45以上とすることが好ましい。これによって、厚さ方向に直角の方向である平面方向の熱伝導率に対する厚さ方向の熱伝導率の比率が10以上、好ましくは20以上であり、かつ厚さ方向の熱伝導率が500W/(m・K)以上、好ましくは600W/(m・K)以上に確実に形成できる。
【0012】
また、厚さ方向に配向される炭素繊維が、太径の繊維材料と細径の繊維材料とが交互に配向されていることが好ましい。これによって、前述の繊維密度を確実に高めることができる。
【0013】
また、C/C複合材料に、CVI処理によって、ラフコラムナー(Roughcolumnar)組織の熱分解炭素を含浸、被覆してなるものであるものが好ましい。これによって、厚さ方向の熱伝導率をより高めることができる。また、平面方向の各炭素繊維間の接合強度を高めることができ、ヒートシンクとして十分な強度を得ることが可能となる。
【0014】
さらに、前述のように、熱分解炭素を含浸し、黒鉛化処理を行った後に、高熱伝導の金属材料をHIPあるいは熔湯鍛造法で含浸することで、熱伝導率をさらに向上させることが可能である。
【0015】
含浸させる高熱伝導の金属材料としては、黒鉛及び銅との反応による標準生成エンタルピーがそれぞれ1モルあたり−50kJ以下である元素群から選ばれる少なくとも1種の金属材料であり、この元素群から選ばれる金属材料を1〜7質量%含有し、残部が実質的に銅からなる銅合金であることが好ましい。一般に、銅は黒鉛に対して濡れ性が悪く、銅を含浸した場合は、気孔壁に十分に密着せずに微視的に含浸むらを生じるため、熱伝導率の向上が得られない。ところが、黒鉛及び銅との反応による標準生成エンタルピーがそれぞれ1モルあたり−50kJ以下である元素群から選ばれる金属材料を銅に1〜7質量%含有させることで、銅と黒鉛との濡れ性が改善され、銅がC/C複合材料中に均等に含浸されて、熱伝導率が向上する。
【0016】
ここで、黒鉛及び銅との反応による標準生成エンタルピーがそれぞれ1モルあたり−50kJ以下である元素群から選ばれる金属材としては、例えば、スカンジウム、イットリウム、ジルコニウム、ランタン、ハフニウム等が例示できる。
【0017】
また、含浸させる高熱伝導の金属材料としては、シリコンを10%以上含有したアルミニウム合金を使用することもできる。シリコンを10%以上含浸させることで、アルミニウム合金の融点が低下し、アルミニウム合金を含浸する際に炭化アルミニウムを形成することがなく、アルミニウム合金を含浸した後であっても、空気中で保管することが可能となる。
【0018】
そして、このようなC/C複合材料は、次のような方法によって得られる。
【0019】
まず、炭素繊維の長繊維を熱硬化性樹脂に含浸し、これを加熱して半硬化させる。
【0020】
熱硬化性樹脂としては、例えばフェノール樹脂、フラン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂等が挙げられるが、フェノール樹脂、特にレゾール型のフェノール樹脂が好適に使用できる。これらの熱硬化性樹脂は通常、エタノールのようなアルコール類、ヘキサンのような炭化水素あるいはアセトンといった溶剤で溶解希釈して用いる。
【0021】
熱硬化性樹脂溶液の濃度としては通常10〜70wt%、好ましくは20〜60wt%の範囲のものを使用する。
【0022】
また、フラン樹脂、エポキシ樹脂等硬化剤を要するものは硬化剤も溶液中に添加されるがその量はそれぞれの樹脂に適した量が添加される。
【0023】
かかる熱硬化性樹脂溶液に炭素繊維の長繊維を含浸する方法としては、溶液中に炭素繊維を浸漬するといった簡単な方法で良いが、長繊維ロービングであれば溶液の満たされた槽内を連続的に走行させる方法が処理の効率の点から好ましい。また、この際に溶液の満された槽に超音波を作用させておくと各単繊維間、織目間の気泡等による処理むらの影響を防ぐことができるので好ましい。
【0024】
熱硬化性樹脂溶液に含浸した炭素繊維は例えばローラーを通すなどして余分な溶液を除去し、次いで加熱処理を施される。
【0025】
この加熱処理により、熱硬化性樹脂は熱硬化される。加熱処理の条件は使用する熱硬化性樹脂の種類によってそれぞれ適正条件は異なるが通常50〜300℃、好ましくは80〜200℃の温度で0.2〜5時間、好ましくは0.2〜2時間加熱処理される。この際、炭素繊維に塗布された熱硬化性樹脂溶液からの急激な溶剤の脱離をさけるため所定の温度への昇温を徐々に行なわれることが望ましい。また、加熱処理は炭素繊維を連続的に加熱炉内を走行させる方法で行なうことが処理の効率の点から好ましい。
【0026】
ついで、得られた炭素繊維/樹脂の複合体を目的とするC/C複合材料の厚み方向より長く切断する。この長さは通常は所望する目的物の厚さより少し長い範囲から選定され、たとえば15〜100mmから選ばれる。切断された複合体は、互いに実質的に平行となるように一方向に揃えられ、その繊維の長さ方向に直角の方向に圧力を加え、加熱、成型する。
【0027】
例えば、金型にロート状の道具を使用して複合体を供給することにより金型内に実質的に平行になるように揃え、樹脂の硬化のために必要な温度の加熱下に、繊維の長さ方向に直角の方向に圧力を加えて樹脂を硬化させることにより成型体を得る。
【0028】
その後、成型体を容器に入れ、成型体をコークスブリーズで取囲むような形とした後、容器を電気炉に入れ、必要に応じて窒素ガス流通下で1000℃程度まで昇温して炭化する。必要に応じては、さらに黒鉛化炉に入れ、不活性雰囲気下で2000℃以上の温度まで熱処理する。
【0029】
次いで、得られた炭化物もしくは黒鉛化物を石油系、石炭系ピッチあるいはフェノール樹脂、フラン樹脂等の熱硬化性樹脂に含浸した後、また、熱硬化性樹脂を用いた場合には樹脂を硬化後、炭化させる。その際、熱硬化性樹脂は、アルコール、アセトン、アントラセン油等の溶媒に溶解して適当な粘度に調整したものを使用するのが一般的である。また、この場合、加圧下で含浸する方法が好適に採用される。例えば、成型体の炭化物もしくは黒鉛化物を加圧含浸釜に収納し、ピッチ含浸を行い、更に、電気炉にて必要に応じて窒素ガス流通下で1000℃程度まで昇温し炭化する。また、必要に応じて黒鉛化することが好ましく、3000℃以上で黒鉛化することが更に好ましい。このピッチ含浸と炭化の工程を数回繰り返して行なうことにより比重1.6以上の緻密なC/Cを得ることができる。
【0030】
この際、炭素繊維/樹脂複合体の樹脂含有量や緻密化が不十分であったり、炭化、黒鉛化の際の昇温速度が速すぎると繊維の長さ方向に直角の方向の強度が小さくなり、場合によっては破壊に至るので適切な条件を選ぶ必要がある。
【0031】
得られたC/C複合材料は厚み方向に高い熱伝導率、電気伝導率を有する異方性の大きい材料となる。得られたC/C複合材料は、目的に応じ、厚み方向と直角方向の強度を向上させるために、炭素繊維を材料とした長繊維等を用いて周囲を巻くことができ、あるいはC/C複合材料等の炭素材料を適当な形にして結束することができる。また、複数の複合材の面間を、フェノール樹脂を主体とする樹脂などを用いて接着し、これを再びC/C複合材料が最終的に処理された温度程度にまで昇温させてC/C複合材料の小片を複数枚互いに接着させて目的とする大きさの複合材とすることもできる。
【0032】
さらに、CVI処理法によってC/C複合材料に光学組織がラフコラムナー組織の熱分解炭素を含浸、被覆することもできる。その後、2800℃以上、好ましくは3000℃以上で黒鉛化処理を行うこともできる。これによって、厚さ方向の熱伝導率を確実に高めることができるとともに、各炭素繊維間の接合強度を高くすることができる。なお、ここでいうCVI処理法とは、化学気相含浸法(Chemical Vapor Infiltration)のことであり、表面から内部に至る開気孔に熱分解炭素を含浸被覆し、緻密化させ、ガス不浸透化させるとともに、表面の面粗さを滑らかにすることを目的に行う。通常800〜1300℃、1.3〜13.3kPaの範囲下で、炭素数1〜8の炭化水素ガスを流量10〜100l/minで供給し、所望のかさ密度になるよう保持時間を調節する。
【0033】
本発明におけるC/C複合材料は、厚さ方向に熱伝導、電気伝導が一方向に高いものであり、優れた放熱性を有する。また、熱膨張係数も8×10−6〜12×10−6/℃であり、半導体素子とほぼ同じであり、半導体素子の接合部の剥離という問題も防止できる。なお、本発明において、繊維軸方向の熱伝導率が大きいピッチ系、特に石炭ピッチ系の高特性の炭素繊維を用いると、その効果がより大きくなるので好適である。
【0034】
【実施例】
以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0035】
(実施例1)
ピッチ系炭素繊維(三菱化学株式会社製”ダイアリード ”、4000フィラメント、繊維径10μm)の長繊維を、フェノール樹脂のエタノール溶液に浸漬し、ついでこれを乾燥器に入れ70℃でエタノールを除去した後、100℃以上に昇温してフェノール樹脂を半硬化させた。得られた繊維/樹脂の複合体(トウプリプレグ)(炭素繊維:樹脂=56:44重量比)を長さ40mmに切断した。このものは繊維が樹脂で固められ、棒状で剛直であった。この切断した複合体を互いに平行になるように金型内に一方向に揃えて並べ、目的とするC/C複合材料の寸法より大きくなるような形状に充填した。ついで、150℃で低圧を付加し、1時間で250℃まで昇温し、250℃で1時間保持し、成型、硬化した。成型後の寸法は、100×120×40mmであった。ついで、この成型品をコークスブリーズを詰めた容器の中に入れコークスブリーズで覆った状態で、約50時間かけて1000℃まで昇温し、樹脂の炭化を行なった。ついで、この炭化した複合材を加圧含浸釜を用いて、ピッチ含浸を行い、更に電気炉にて窒素ガスを流しながら1000℃で焼成した。その後、ピッチ含浸と焼成の工程を6回繰り返し、かさ密度1.80g/cm3 のC/C複合材料を得た。これを黒鉛化炉に入れアルゴン雰囲気中、2800℃まで昇温した後、冷却し、C/C複合材料を得た。得られたUD C/C複合材料のかさ密度は1.85g/cmで、厚み方向(繊維軸と同一方向)とそれに直角の方向の熱拡散率をレーザーフラッシュ法熱定数測定装置(真空理工製)で測定し、室温における比熱0.695J/g・Kとから熱伝導率を算出した。厚み方向の熱伝導率は670W/(m・K)、厚み方向に直角の方向の熱伝導率は30W/(m・K)であり、その比率は22.3であった。なお、このものは2500℃の加熱された黒鉛化炉内に急速に入れても破壊せず、耐熱衝撃性にも優れていた。また、室温〜1000℃における平均熱膨張係数も9.7×10−6/℃であり、半導体素子の熱膨張係数と略同等であった。
【0036】
(実施例2)
実施例1で製作したUD C/C複合材料(かさ密度:1.85g/cm)をCVI処理によって熱分解炭素を含浸する方法で、更に緻密化を行った。CVI処理の条件としては、温度1100℃、全圧20Torr(2.7kPa)、プロパンガスを6リットル/min、キャリアガスとして水素ガス70リットル/minで含浸処理後、2800℃で黒鉛化処理を行い、かさ密度1.92g/cmのC/Cを得た。
【0037】
(実施例3)
実施例1で製作したUD C/C複合材料(かさ密度:1.85g/cm)の緻密化前のC/C(1000℃焼成品、かさ密度1.46g/cm)をCVI処理によって熱分解炭素を含浸する方法で緻密化を行った。CVI処理の条件としては、温度1100℃、全圧20Torr(2.7kPa)、プロパンガスを6リットル/min、キャリアガスとして水素ガス70リットル/minで含浸処理後、2800℃で黒鉛化処理を行い、かさ密度1.83g/cmのC/C複合材料を得た。
【0038】
(実施例4)
実施例1に示すUD C/C複合材料(かさ密度:1.85g/cm)を耐圧容器に収納し、1150℃で溶融した7重量%のジルコニウムを添加した銅を窒素ガスにて12MPaの圧力で1時間加圧含浸して銅含浸C/C複合材料を得た。
【0039】
(実施例5)
実施例1に示すUD C/C複合材料(かさ密度:1.85g/cm)を耐圧容器に収納し、650℃で溶融した12%シリコン含有アルミニウム合金を窒素ガスにて12MPaの圧力で1時間加圧含浸してアルミニウム合金含浸C/C複合材料を得た。
【0040】
実施例1乃至5のC/C複合材料の各特性を表1にまとめて示す。
【0041】
【表1】

Figure 2004014735
【0042】
本発明の実施例1に係るC/C複合材料を図1に示す半導体用ヒートシンクとして使用した。その結果、本発明に係るC/Cは銅よりも熱の放散性に優れていることが確認できた。
【0043】
【発明の効果】
本発明に係るUD C/C複合材料は、その厚み方向に大きい熱伝導率を有し、優れた放熱性を発揮するとともに、熱膨張係数が半導体素子と略同等であることから、半導体冷却用のヒートシンクとして好適に使用することができる。
【図面の簡単な説明】
【図1】半導体用ヒートシンクの模式図である。
【符号の説明】
1 金ワイヤー
2 シリコンチップ
3 ヒートシンク
4 半田パンプ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat sink having high thermal conductivity in one direction and excellent heat dissipation, and more particularly to a heat sink used as a semiconductor cooling substrate used in a semiconductor manufacturing process.
[0002]
[Prior art]
As the power level of semiconductor devices has increased and the component density has increased, the heat generated by the semiconductor devices has also increased. As the junction temperature increases, the function, performance, and reliability of the semiconductor device decrease, and the semiconductor device may eventually be destroyed. Therefore, it is necessary to lower the junction temperature of the semiconductor to a safe operating temperature range. At present, a heat sink for lowering the junction temperature is an indispensable component.
[0003]
At present, as a material used for the heat sink, a metal such as aluminum or copper is generally used.
[0004]
[Problems to be solved by the invention]
However, these conventional heat sinks made of metal such as aluminum and copper have a coefficient of thermal expansion of about 2 × 10 −5 / ° C., and due to the recent increase in heat generation of the semiconductor element, the coefficient of thermal expansion with the semiconductor element has increased. The peeling of the joint generated due to the difference is becoming a new problem.
[0005]
Therefore, the present invention provides a heat sink that has heat dissipation equal to or higher than that of a conventional metal heat sink made of aluminum, copper, or the like, and has no problem of peeling due to a difference in thermal expansion coefficient from the semiconductor element due to heat generated by the semiconductor element. The purpose is to:
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted various studies to obtain a heat sink having high heat dissipation and having no problem of separation due to a difference in thermal expansion coefficient between the semiconductor element and the semiconductor element due to heat generated by the semiconductor element. The present invention was completed by obtaining a carbon fiber reinforced carbon composite material (hereinafter, referred to as a C / C composite material) having a thermal expansion coefficient equal to that of the element and having an increased thermal conductivity in one direction.
[0007]
That is, the heat sink of the present invention is a heat sink formed of a C / C composite material formed by molding a carbon fiber material having high thermal conductivity oriented in the thickness direction, and having a thermal conductivity in the thickness direction. 500 W / (m · K) or more, and the thermal conductivity in the thickness direction is a ratio of 10 or more to the thermal conductivity in the plane direction. Further, the C / C composite material has a coefficient of thermal expansion of 8 to 12 × 10 −6 / ° C. The carbon fiber material oriented in the thickness direction has a fiber density (V f ) of 40 or more. Further, in the carbon fiber material oriented in the thickness direction, a fiber material having a large diameter and a fiber material having a small diameter are alternately oriented. In addition, the C / C composite material is impregnated and coated with pyrolytic carbon having a rough columnar structure by CVI treatment. Then, after the CVI treatment, the C / C composite material is impregnated with a metal material having high thermal conductivity by HIP or molten forging. Further, the metal material is at least one metal material selected from an element group whose standard enthalpy of formation by reaction with graphite and copper is -50 kJ or less per mole, and the metal material selected from this element group is It is a copper alloy containing 1 to 7% by mass and the balance substantially consisting of copper. Further, the metal material is an aluminum alloy containing 10% or more of silicon.
[0008]
Hereinafter, the present invention will be described in detail.
The carbon fiber used in the present invention may be any type such as polyacrylonitrile (PAN) -based, pitch-based carbon fiber, or vapor-grown carbon fiber, and particularly high-performance pitch having high thermal conductivity in the fiber axis direction. System carbon fibers are preferred.
[0009]
The C / C composite material according to the present invention is obtained using such carbon fibers, wherein the carbon fibers are oriented substantially in the thickness direction, and the heat conduction in a plane direction perpendicular to the thickness direction. The ratio of the thermal conductivity in the thickness direction to the thermal conductivity is 10 or more, preferably 20 or more, and the thermal conductivity in the thickness direction is 500 W / (m · K) or more, preferably 600 W / (m · K) or more. It is.
[0010]
The average coefficient of thermal expansion from room temperature to 1000 ° C. is 8 × 10 −6 / ° C. to 12 × 10 −6 / ° C. This makes it possible to make the thermal expansion coefficient of the semiconductor element substantially equal to that of the semiconductor element, and it is possible to prevent the semiconductor element from peeling off at the joint due to heat generation.
[0011]
Further, the fiber density (V f ) of the carbon fibers oriented in the thickness direction is preferably 40 or more, and more preferably 45 or more. Thereby, the ratio of the thermal conductivity in the thickness direction to the thermal conductivity in the plane direction perpendicular to the thickness direction is 10 or more, preferably 20 or more, and the thermal conductivity in the thickness direction is 500 W / (MK) or more, preferably 600 W / (mK) or more.
[0012]
Further, it is preferable that the carbon fibers oriented in the thickness direction are arranged such that the large-diameter fiber material and the small-diameter fiber material are alternately oriented. Thereby, the above-mentioned fiber density can be reliably increased.
[0013]
Further, it is preferable that the C / C composite material is impregnated and coated with pyrolytic carbon having a rough columnar structure by CVI treatment. Thereby, the thermal conductivity in the thickness direction can be further increased. Also, the bonding strength between the carbon fibers in the planar direction can be increased, and sufficient strength as a heat sink can be obtained.
[0014]
Furthermore, as described above, after impregnating with pyrolytic carbon and performing graphitization treatment, it is possible to further improve the thermal conductivity by impregnating a metal material having high thermal conductivity by HIP or molten forging. It is.
[0015]
The high thermal conductive metal material to be impregnated is at least one metal material selected from an element group whose standard enthalpy of formation by reaction with graphite and copper is -50 kJ or less per mole, and is selected from this element group. It is preferable to use a copper alloy containing 1 to 7% by mass of a metal material and the balance substantially consisting of copper. In general, copper has poor wettability to graphite, and when impregnated with copper, it does not adhere sufficiently to the pore walls and causes microscopic unevenness of impregnation, so that an improvement in thermal conductivity cannot be obtained. However, by including 1 to 7% by mass of a metal material selected from an element group whose standard enthalpy of formation by reaction with graphite and copper is -50 kJ or less per mol, the wettability between copper and graphite is reduced. Improved, the copper is evenly impregnated in the C / C composite and the thermal conductivity is improved.
[0016]
Here, examples of the metal material selected from the group of elements having a standard enthalpy of formation by reaction with graphite and copper of -50 kJ or less per mol include, for example, scandium, yttrium, zirconium, lanthanum, hafnium and the like.
[0017]
Further, as the high thermal conductive metal material to be impregnated, an aluminum alloy containing 10% or more of silicon can be used. By impregnating silicon by 10% or more, the melting point of the aluminum alloy is lowered, so that aluminum carbide is not formed when impregnating the aluminum alloy. Even when the aluminum alloy is impregnated, it is stored in the air. It becomes possible.
[0018]
And such a C / C composite material is obtained by the following method.
[0019]
First, a long fiber of carbon fiber is impregnated with a thermosetting resin, and this is heated to be semi-cured.
[0020]
Examples of the thermosetting resin include a phenol resin, a furan resin, an epoxy resin, and an unsaturated polyester resin, and a phenol resin, particularly a resol-type phenol resin can be suitably used. These thermosetting resins are usually dissolved and diluted with a solvent such as alcohols such as ethanol, hydrocarbons such as hexane, or acetone.
[0021]
The concentration of the thermosetting resin solution is usually in the range of 10 to 70 wt%, preferably 20 to 60 wt%.
[0022]
For those requiring a curing agent, such as a furan resin and an epoxy resin, the curing agent is also added to the solution, but the amount is added in an amount suitable for each resin.
[0023]
Such a thermosetting resin solution may be impregnated with long fibers of carbon fibers by a simple method such as immersing carbon fibers in the solution. It is preferable to use a method of running the vehicle in terms of processing efficiency. At this time, it is preferable to apply ultrasonic waves to the tank filled with the solution, since the influence of unevenness of treatment due to air bubbles between the individual fibers and between the weaves can be prevented.
[0024]
The carbon fibers impregnated with the thermosetting resin solution are removed by removing excess solution by, for example, passing through a roller, and then subjected to a heat treatment.
[0025]
By this heat treatment, the thermosetting resin is thermoset. The appropriate conditions for the heat treatment vary depending on the type of thermosetting resin used, but are usually 50 to 300 ° C., preferably 80 to 200 ° C. for 0.2 to 5 hours, preferably 0.2 to 2 hours. Heat treated. At this time, it is desirable to gradually raise the temperature to a predetermined temperature in order to prevent rapid removal of the solvent from the thermosetting resin solution applied to the carbon fibers. In addition, it is preferable that the heat treatment is performed by a method in which carbon fibers are continuously run in a heating furnace from the viewpoint of processing efficiency.
[0026]
Next, the obtained carbon fiber / resin composite is cut so as to be longer than the thickness direction of the intended C / C composite material. This length is usually selected from a range slightly longer than the thickness of the desired object, for example, from 15 to 100 mm. The cut composites are aligned in one direction so that they are substantially parallel to each other, and are heated and molded by applying pressure in a direction perpendicular to the length of the fibers.
[0027]
For example, by feeding the composite using a funnel-shaped tool in the mold, the composite is aligned substantially parallel to the mold, and the fiber is heated under the temperature required for curing the resin. A molded body is obtained by applying pressure in a direction perpendicular to the length direction to cure the resin.
[0028]
Thereafter, the molded body is placed in a container, and the molded body is shaped so as to be surrounded by coke breeze. Then, the container is placed in an electric furnace, and if necessary, the temperature is raised to about 1000 ° C. and carbonized under nitrogen gas flow. . If necessary, it is further placed in a graphitization furnace and heat-treated to a temperature of 2000 ° C. or more in an inert atmosphere.
[0029]
Next, after impregnating the obtained carbide or graphitized material with a thermosetting resin such as a petroleum-based, coal-based pitch or phenolic resin, or a furan resin, and, after using a thermosetting resin, curing the resin, Carbonize. At that time, it is common to use a thermosetting resin which is dissolved in a solvent such as alcohol, acetone or anthracene oil and adjusted to an appropriate viscosity. In this case, a method of impregnating under pressure is preferably adopted. For example, the carbonized or graphitized material of the molded product is stored in a pressure impregnating tank, pitch impregnated, and further heated to about 1000 ° C. in an electric furnace under nitrogen gas flow as necessary, and carbonized. Further, it is preferably graphitized as needed, and more preferably at 3000 ° C. or higher. By repeating the steps of pitch impregnation and carbonization several times, a dense C / C having a specific gravity of 1.6 or more can be obtained.
[0030]
At this time, if the resin content or densification of the carbon fiber / resin composite is insufficient, or if the heating rate during carbonization or graphitization is too high, the strength in the direction perpendicular to the fiber length direction is low. Therefore, it is necessary to select appropriate conditions because it may lead to destruction in some cases.
[0031]
The obtained C / C composite material becomes a material with high anisotropy having high thermal conductivity and electrical conductivity in the thickness direction. Depending on the purpose, the obtained C / C composite material can be wound around using a long fiber or the like made of carbon fiber in order to improve the strength in the direction perpendicular to the thickness direction, or C / C A carbon material such as a composite material can be bound in an appropriate shape. Further, the surfaces of the plurality of composite materials are bonded using a resin mainly composed of phenol resin, and the temperature of the C / C composite material is raised again to a temperature at which the C / C composite material is finally processed. A plurality of small pieces of the C composite material may be bonded to each other to form a composite material having a desired size.
[0032]
Further, the C / C composite material can be impregnated and coated with pyrolytic carbon having a rough columnar structure in the C / C composite material by the CVI treatment method. Thereafter, a graphitization treatment can be performed at 2800 ° C. or higher, preferably 3000 ° C. or higher. As a result, the thermal conductivity in the thickness direction can be reliably increased, and the bonding strength between the carbon fibers can be increased. Here, the CVI treatment method is a chemical vapor infiltration method, in which open pores extending from the surface to the inside are impregnated and coated with pyrolytic carbon, densified, and gas-impermeable. And for the purpose of smoothing the surface roughness. Usually, a hydrocarbon gas having 1 to 8 carbon atoms is supplied at a flow rate of 10 to 100 l / min at a temperature of 800 to 1300 ° C. and 1.3 to 13.3 kPa, and the holding time is adjusted so as to obtain a desired bulk density. .
[0033]
The C / C composite material in the present invention has high heat conduction and electric conduction in one direction in the thickness direction, and has excellent heat dissipation. Further, the thermal expansion coefficient is also 8 × 10 −6 to 12 × 10 −6 / ° C., which is almost the same as that of the semiconductor element, and the problem of peeling of the junction of the semiconductor element can be prevented. In the present invention, it is preferable to use a pitch-based carbon fiber having a high thermal conductivity in the fiber axis direction, in particular, a coal pitch-based carbon fiber, because the effect is further enhanced.
[0034]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0035]
(Example 1)
A long fiber of pitch-based carbon fiber ("Dialead" manufactured by Mitsubishi Chemical Corporation, 4000 filaments, fiber diameter: 10 m) was immersed in an ethanol solution of a phenol resin, and then placed in a drier to remove ethanol at 70C. Thereafter, the temperature was raised to 100 ° C. or higher to semi-harden the phenol resin. The obtained fiber / resin composite (tow prepreg) (carbon fiber: resin = 56: 44 weight ratio) was cut into a length of 40 mm. The fiber was hardened with resin, and was rod-shaped and rigid. The cut composites were aligned in one direction in a mold so as to be parallel to each other, and filled into a shape larger than the target dimension of the C / C composite material. Then, a low pressure was applied at 150 ° C., the temperature was raised to 250 ° C. in one hour, and the temperature was held at 250 ° C. for one hour, followed by molding and curing. The dimensions after molding were 100 × 120 × 40 mm. Then, the molded article was placed in a container filled with coke breath, and the temperature was raised to 1000 ° C. over about 50 hours while covering with the coke breath, thereby carbonizing the resin. Then, the carbonized composite material was subjected to pitch impregnation using a pressure impregnation kettle, and was further baked at 1000 ° C. while flowing nitrogen gas in an electric furnace. Thereafter, the steps of pitch impregnation and firing were repeated six times to obtain a C / C composite material having a bulk density of 1.80 g / cm 3 . This was placed in a graphitization furnace, heated to 2800 ° C. in an argon atmosphere, and then cooled to obtain a C / C composite material. The bulk density of the obtained UD C / C composite material is 1.85 g / cm 3 , and the thermal diffusivity in the thickness direction (the same direction as the fiber axis) and the direction perpendicular thereto is measured by a laser flash method thermal constant measuring apparatus (Vacuum Science and Technology) The thermal conductivity was calculated from the specific heat at room temperature of 0.695 J / g · K. The thermal conductivity in the thickness direction was 670 W / (m · K), the thermal conductivity in the direction perpendicular to the thickness direction was 30 W / (m · K), and the ratio was 22.3. This product did not break even when rapidly placed in a heated graphitization furnace at 2500 ° C., and was excellent in thermal shock resistance. The average coefficient of thermal expansion from room temperature to 1000 ° C. was 9.7 × 10 −6 / ° C., which was substantially equal to the coefficient of thermal expansion of the semiconductor element.
[0036]
(Example 2)
The UD C / C composite material (bulk density: 1.85 g / cm 3 ) manufactured in Example 1 was further densified by impregnating pyrolytic carbon by CVI treatment. The conditions of the CVI treatment were as follows: temperature 1100 ° C., total pressure 20 Torr (2.7 kPa), impregnation with propane gas at 6 l / min, hydrogen gas at 70 l / min as carrier gas, and graphitization at 2800 ° C. C / C having a bulk density of 1.92 g / cm 3 was obtained.
[0037]
(Example 3)
UD C / C composite material (bulk density: 1.85g / cm 3) which was prepared in Example 1 densification previous C / C (1000 ° C. calcined product, the bulk density 1.46 g / cm 3) by the CVI treatment Densification was performed by impregnating pyrolytic carbon. The conditions of the CVI treatment were as follows: temperature 1100 ° C., total pressure 20 Torr (2.7 kPa), impregnation with propane gas at 6 l / min, hydrogen gas at 70 l / min as carrier gas, and graphitization at 2800 ° C. Thus, a C / C composite material having a bulk density of 1.83 g / cm 3 was obtained.
[0038]
(Example 4)
The UD C / C composite material (bulk density: 1.85 g / cm 3 ) shown in Example 1 was housed in a pressure-resistant container, and copper added with 7% by weight of zirconium, which was melted at 1150 ° C., was added with nitrogen gas at 12 MPa. Pressure impregnation for 1 hour under pressure gave a copper impregnated C / C composite.
[0039]
(Example 5)
The UD C / C composite material (bulk density: 1.85 g / cm 3 ) shown in Example 1 was housed in a pressure-resistant container, and a 12% silicon-containing aluminum alloy melted at 650 ° C. was subjected to nitrogen gas under a pressure of 12 MPa. Pressurized impregnation for a time to obtain an aluminum alloy impregnated C / C composite material.
[0040]
Table 1 summarizes the properties of the C / C composite materials of Examples 1 to 5.
[0041]
[Table 1]
Figure 2004014735
[0042]
The C / C composite material according to Example 1 of the present invention was used as a heat sink for a semiconductor shown in FIG. As a result, it was confirmed that the C / C according to the present invention had better heat dissipation than copper.
[0043]
【The invention's effect】
The UD C / C composite material according to the present invention has a large thermal conductivity in its thickness direction, exhibits excellent heat dissipation, and has a thermal expansion coefficient substantially equal to that of a semiconductor element. Can be suitably used as a heat sink.
[Brief description of the drawings]
FIG. 1 is a schematic view of a heat sink for a semiconductor.
[Explanation of symbols]
1 Gold wire 2 Silicon chip 3 Heat sink 4 Solder pump

Claims (8)

高熱伝導性の炭素繊維材料が厚さ方向に配向されて成形されてなる炭素繊維強化炭素複合材料で形成されたヒートシンクであって、前記厚さ方向の熱伝導率が500W/(m・K)以上であり、前記厚さ方向の熱伝導率が平面方向の熱伝導率に対して10以上の比率であるヒートシンク。A heat sink made of a carbon fiber reinforced carbon composite material formed by molding a carbon fiber material having high thermal conductivity oriented in the thickness direction, wherein the heat conductivity in the thickness direction is 500 W / (m · K). The heat sink, wherein the thermal conductivity in the thickness direction is 10 or more to the thermal conductivity in the plane direction. 前記炭素繊維強化炭素複合材料の平面方向の熱膨張係数が8〜12×10−6/℃で、厚さ方向(繊維方向)の熱膨張係数が1×10−6/℃以下である請求項1に記載のヒートシンク。The thermal expansion coefficient in the plane direction of the carbon fiber reinforced carbon composite material is 8 to 12 × 10 −6 / ° C., and the thermal expansion coefficient in the thickness direction (fiber direction) is 1 × 10 −6 / ° C. or less. 2. The heat sink according to 1. 前記厚さ方向に配向される炭素繊維材料の繊維密度(V)が40%以上である請求項1又は2に記載のヒートシンク。The heat sink according to claim 1, wherein a fiber density (V f ) of the carbon fiber material oriented in the thickness direction is 40% or more. 前記厚さ方向に配向される炭素繊維材料が、太径の繊維材料と細径の繊維材料とが交互に配向されている請求項1乃至3のいずれかに記載のヒートシンク。The heat sink according to any one of claims 1 to 3, wherein the carbon fiber material oriented in the thickness direction is such that a large diameter fiber material and a small diameter fiber material are alternately oriented. 前記炭素繊維強化炭素複合材料にCVI処理によって、ラフコラムナー(Rough columnar)組織の熱分解炭素を含浸、被覆してなる請求項1乃至4のいずれかに記載のヒートシンク。The heat sink according to any one of claims 1 to 4, wherein the carbon fiber reinforced carbon composite material is impregnated with pyrolytic carbon having a rough columnar structure by CVI treatment and coated. 前記CVI処理後に、前記炭素繊維強化炭素複合材料に、HIPあるいは熔湯鍛造法で高熱伝導の金属材料が含浸されている請求項1乃至5のいずれかに記載のヒートシンク。The heat sink according to any one of claims 1 to 5, wherein, after the CVI treatment, the carbon fiber reinforced carbon composite material is impregnated with a metal material having high thermal conductivity by HIP or molten forging. 前記金属材料が、黒鉛及び銅との反応による標準生成エンタルピーがそれぞれ1モルあたり−50kJ以下である元素群から選ばれる少なくとも1種の金属材料であり、この元素群から選ばれる金属材料を1〜7質量%含有し、残部が実質的に銅からなる銅合金である請求項6に記載のヒートシンク。The metal material is at least one metal material selected from an element group whose standard enthalpy of formation by reaction with graphite and copper is -50 kJ or less per mole, and the metal material selected from this element group is 1 to 7. The heat sink according to claim 6, wherein the heat sink is a copper alloy containing 7% by mass and the balance substantially consisting of copper. 前記金属材料が、シリコンを10%以上含有したアルミニウム合金である請求項6に記載のヒートシンク。The heat sink according to claim 6, wherein the metal material is an aluminum alloy containing 10% or more of silicon.
JP2002165222A 2002-06-06 2002-06-06 heatsink Expired - Lifetime JP4260426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002165222A JP4260426B2 (en) 2002-06-06 2002-06-06 heatsink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002165222A JP4260426B2 (en) 2002-06-06 2002-06-06 heatsink

Publications (2)

Publication Number Publication Date
JP2004014735A true JP2004014735A (en) 2004-01-15
JP4260426B2 JP4260426B2 (en) 2009-04-30

Family

ID=30433114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002165222A Expired - Lifetime JP4260426B2 (en) 2002-06-06 2002-06-06 heatsink

Country Status (1)

Country Link
JP (1) JP4260426B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086391A (en) * 2004-09-17 2006-03-30 Nec Schott Components Corp Led package
JP2007089691A (en) * 2005-09-27 2007-04-12 Sherwood Services Ag Cooled rf ablation needle
WO2011096542A1 (en) * 2010-02-05 2011-08-11 三菱マテリアル株式会社 Substrate for power module, and power module
JP2018104250A (en) * 2016-12-28 2018-07-05 東海カーボン株式会社 Manufacturing method of unidirectional carbon fiber-reinforced carbon composite
CN108581168A (en) * 2018-05-09 2018-09-28 西安君信电子科技有限责任公司 A kind of solid welding procedure of heat radiation chip
KR20200066825A (en) * 2018-12-03 2020-06-11 에스케이씨 주식회사 Heat releasing sheet and the manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086391A (en) * 2004-09-17 2006-03-30 Nec Schott Components Corp Led package
JP2007089691A (en) * 2005-09-27 2007-04-12 Sherwood Services Ag Cooled rf ablation needle
WO2011096542A1 (en) * 2010-02-05 2011-08-11 三菱マテリアル株式会社 Substrate for power module, and power module
CN102742008A (en) * 2010-02-05 2012-10-17 三菱综合材料株式会社 Substrate for power module, and power module
JPWO2011096542A1 (en) * 2010-02-05 2013-06-13 三菱マテリアル株式会社 Power module substrate and power module
JP5488619B2 (en) * 2010-02-05 2014-05-14 三菱マテリアル株式会社 Power module substrate and power module
JP2018104250A (en) * 2016-12-28 2018-07-05 東海カーボン株式会社 Manufacturing method of unidirectional carbon fiber-reinforced carbon composite
CN108581168A (en) * 2018-05-09 2018-09-28 西安君信电子科技有限责任公司 A kind of solid welding procedure of heat radiation chip
KR20200066825A (en) * 2018-12-03 2020-06-11 에스케이씨 주식회사 Heat releasing sheet and the manufacturing method thereof
KR102177752B1 (en) * 2018-12-03 2020-11-11 에스케이씨 주식회사 Heat releasing sheet and the manufacturing method thereof

Also Published As

Publication number Publication date
JP4260426B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP5352893B2 (en) Carbon fiber carbon composite molded body, carbon fiber reinforced carbon composite material, and method for producing the same
CN113563091B (en) Extreme-high-temperature ablation-resistant thermal dredging composite material and preparation method thereof
EP0339606B1 (en) Carbon fiber-reinforced carbon composite materials, processes for their production, and first walls of nuclear fusion reactors employing them
JP2009517321A (en) Carbon material
JP3673436B2 (en) Carbon-based metal composite material and manufacturing method thereof
FR2546878A1 (en) Lightweight supporting sheet for a ceramic substrate, of high thermal conductivity and expansion coefficient suited for all applications in the electronics field
JP4260426B2 (en) heatsink
JP6824601B2 (en) Reinforcing fiber material and its manufacturing method, and fiber reinforced ceramic composite material
TWI565795B (en) Method of manufacturing heat sink plate having excellent thermal conductivity in thickness direction and heat sink plate manufactured by the same
JP5769519B2 (en) Fiber material for reinforcement, fiber-reinforced ceramic composite material using fiber material for reinforcement, and method for producing the same
JP2004002096A (en) Carbon fiber-reinforced carbon composite material and its producing process as well as heat sink
KR101221060B1 (en) Carbon-based aluminium composite and method for fabricating the same which silicon carbide is formed at the interface of compacted or sintered carbon bulk and aluminium
JP2811681B2 (en) First wall of fusion device
WO2008050906A1 (en) Composite material and method for producing the same
JP2001073102A (en) Carbon fiber dispersed aluminum matrix composite material having high thermal conductivity and low thermal expansibility
JPH1041444A (en) Heat sink material and bonding method of the material to semiconductor
JP2004023088A (en) Heat dissipating material
Choi et al. Manufacturing of Carbon Nanotube Preform with High Porosity and Its Application in Metal Matrix Composites
JP3980887B2 (en) Circuit board substrate
JPH0291270A (en) Oxidation-resistant carbon fiber-reinforced carbon material and production thereof
JP2699443B2 (en) Carbon fiber reinforced carbon composite material bonded to metal and method for producing the same
JP2743397B2 (en) Carbon fiber reinforced carbon composite material and method of using the same
WO2010141828A1 (en) Carbon-containing matrix with additive that is not a metal
JP4437580B2 (en) High thermal conductivity carbon fiber composite material
JPH0274671A (en) Oxidation-resistant carbon fiber-reinforced carbonaceous material and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070206

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070406

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4260426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term