WO2008050906A1 - Composite material and method for producing the same - Google Patents

Composite material and method for producing the same Download PDF

Info

Publication number
WO2008050906A1
WO2008050906A1 PCT/JP2007/071278 JP2007071278W WO2008050906A1 WO 2008050906 A1 WO2008050906 A1 WO 2008050906A1 JP 2007071278 W JP2007071278 W JP 2007071278W WO 2008050906 A1 WO2008050906 A1 WO 2008050906A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
composite material
carbon fiber
material according
pitch
Prior art date
Application number
PCT/JP2007/071278
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuichiro Kon
Toru Sawaki
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited filed Critical Teijin Limited
Publication of WO2008050906A1 publication Critical patent/WO2008050906A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/06Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element
    • C22C47/062Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element from wires or filaments only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a composite material containing pitch-based carbon fibers and a matrix metal, and a method for producing the same.
  • the present invention relates to a composite material suitable for a heat dissipation member such as a semiconductor substrate or an integrated circuit substrate. For more details, see Mechanical Strength, Thermal Conductivity and Conductivity.
  • High-performance carbon fibers are carbon fibers derived from fiber-like chain polymers made from chain polymers such as cellulose, polyvinyl alcohol, polyacrylonitrile (PAN), etc., and petroleum consisting of cyclic hydrocarbons. It can be classified into pitch-based carbon fibers made from pitches such as coal.
  • the former carbon fiber derived from a chain polymer can be used for IJ as a tough fiber by simply carbonizing.
  • PAN-based carbon fiber has significantly higher strength and elastic modulus than ordinary synthetic polymers. Because of its high performance, it is widely used in aerospace / space equipment, construction / civil engineering materials, sports / leisure equipment, etc. by utilizing this characteristic.
  • the latter pitch-based carbon fibers exhibit their characteristics when subjected to graphitization, which is a high-temperature heat treatment, and exhibit the performance of graphite crystals.
  • graphite crystal although the crystal itself is small and not a single crystal, it has a network structure as a microcrystal, and thus exhibits remarkable anisotropy.
  • this graphitized pitch-based carbon fiber has higher electrical and thermal conductivity than carbon fiber derived from chain polymer, has excellent mechanical properties, and has a relatively low thermal expansion coefficient. Has characteristics.
  • a heat dissipation material with excellent thermal conductivity such as silver or copper.
  • heating elements represented by lasers and light-emitting diodes have a problem that obstructs the application of silver and copper. That is, a material for housing or mounting a laser or a light emitting diode is required to have a coefficient of thermal expansion that is substantially the same as the material of the laser element or the light emitting element. If this condition is not satisfied, significant stress will occur between the materials, and it will be inevitable that damage will occur due to deterioration or strain.
  • the thermal conductivity of copper is as high as about 40 OW / m-K.
  • Netsu ⁇ Choritsu copper is 1. 7 X 10- 5 ZK, typical S i Netsu ⁇ Choritsu 3 X 10- 6 ZK (thermal conductivity of about 168 W / m ⁇ of a semiconductor substrate material ⁇ ) and InP thermal conductivity 4.5 X 10 ⁇ K (thermal conductivity around 10 OW / m * K) and Ga As thermal expansion coefficient 5.9 X 10— 6 ZK (thermal expansion coefficient 46W7m ⁇ It is remarkably high compared with i).
  • the thermal conductivity of Si, InP, and GaAs is relatively low, and is not necessarily sufficient as a heat sink.
  • Patent Document 1 JP-A-9- 64254
  • the thermal conductivity of the composite material is at most 203W Zm ⁇ K is not enough as a heat dissipation member for semiconductor devices.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 11-61292 discloses a composite containing carbon fibers in a copper matrix and having a metal element such as titanium at the interface between copper and carbon fibers. Has been. However, the thermal conductivity of the composite material is at most about 270 WZ ⁇ ⁇ ⁇ , which is not sufficient for use as a heat dissipation member of a semiconductor device.
  • Patent Document 3 Japanese Patent Laid-Open No. 7-90725 discloses a pitch-based carbon fiber mill. Although this document does not describe the graphitization degree of pitch-based carbon fibers, the graphitization is performed at 2650 ° C. in the examples, so there is room for further improvement of the graphitization degree.
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2006-2240 discloses a composite containing carbon fiber and metal having a length of 300 / m or more. Although this composite has improved in-plane thermal conductivity, the heat conduction in the thickness direction is insufficient for the formation of a carbon fiber network, resulting in insufficient heat transfer.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 9-64254
  • Patent Document 2 Japanese Patent Laid-Open No. 11-61292
  • Patent Document 3 JP-A-7-90725
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2006-2240
  • metals such as titanium are compounded with pitch-based graphitized carbon fibers to improve thermal conductivity and to suppress thermal expansion.
  • An object of the present invention is to provide a composite material having excellent thermal conductivity.
  • An object of the present invention is to provide a composite material suitable for a heat dissipation member.
  • An object of the present invention is to provide a composite material having a thermal expansion coefficient close to Si, InP, and GaAs (thermal expansion coefficients 3 to 6 ⁇ 10 ”VK), which are typical semiconductor substrate materials.
  • An object of the present invention is to provide a composite material having excellent mechanical properties, and to provide a method for producing the composite material.
  • a pitch-type carbon fiber graphitized at a high temperature has a size exceeding several tens of nm. It is characterized by using pitch-based graphitized carbon fiber having a crystal size and high thermal conductivity.
  • the present invention is characterized in that the content of graphitized carbon fiber, which has better thermal conductivity than the matrix metal, is increased, and the thermal conductivity of the composite material is improved.
  • the composite material of the present invention is characterized by having a thermal expansion property comparable to that of a semiconductor substrate material.
  • the present invention includes pitch-based graphitized carbon fiber (component A) and matrix metal (component B) having an average fiber diameter of 0.1 to 30 / im and a true density of 2.0 to 2.5 g / cc.
  • component A pitch-based graphitized carbon fiber
  • component B matrix metal
  • it is a composite material with a volume ratio (AZB) between the A component and the B component of 20/80 to 90/10.
  • the present invention also provides: (1) Pitch-based graphitized carbon fiber (component A) having an average fiber diameter of 0.1 to 30 xm and a true density of 2.0 to 2.5 gZcc and a matrix metal ( B component),
  • the present invention also provides a non-woven fabric or random mat mainly composed of pitch-based graphitized carbon fibers (component A) having an average fiber diameter of 0.1 to 30 m and a true density of 2.0 to 2.5 g / cc. It includes a method for producing a composite material comprising a step of heating in the presence of a metal (component B) and compressing as necessary, and melting the component B and impregnating it into a void of a nonwoven fabric or random pine cake.
  • a metal component B
  • the pitch-based graphitized carbon fiber (component A) used in the present invention occupies the main part of the composite material as a filler or a core material.
  • the thermal conductivity of the component A in the fiber axis direction is preferably 400 to 70 OWZm ⁇ K. More preferably, it is 500 to 70 OW / ⁇ ⁇ K.
  • the carbon fiber has a high graphitization rate and a large crystallite size. This is due to the fact that the heat conduction in carbon fibers is mainly borne by phonon conduction.
  • the graphitization rate is the content of graphite crystals in the carbon fiber.
  • the blackening rate is reflected in the true density of the carbon fiber. Therefore, the true density of the soot component is 2, 0 to 2.5 gZc c, preferably 2.1 to 2.5 g / c c, and more preferably 2.2 to 2.5 gZc c.
  • the crystallite size (Lc) in the c-axis direction of the A component graphite crystal (hexagonal network surface) is preferably 20 to: L 00 nm, more preferably 30 to 100 nm, and still more preferably 40 to 100 nm.
  • the ab axis direction crystallite size (La) of the A component graphite crystal (hexagonal network surface) is preferably 30 to 200 nm, more preferably 60 to 200 nm, and still more preferably 80 to 200 nm. These crystallite sizes can be obtained by the X-ray diffraction method, and can be obtained by using the Gakushin method as an analysis method and using diffraction lines from the (002) plane and (110) plane of the graphite crystal. .
  • Such a carbon fiber having a high graphitization rate and a large crystallite size is preferably obtained by graphitizing at 2,300 to 3,500 ° C, more preferably 2,800 to 3,200 ° C. it can.
  • the average fiber length is preferably 20 to 200 m, more preferably 20 to 100 im, still more preferably 20 to 60 m. is there.
  • the average fiber length is preferably 200 to 240,000 m, more preferably 500 to 240,000 / zm. .
  • the average fiber diameter (D1) of the component A is preferably 1 to 30 m, more preferably 3 to 20 / m, and further preferably 5 to 15 zm.
  • the average fiber diameter (D 1) is observed with an optical microscope. When the average fiber diameter is larger than 30, the adjacent fibers tend to be fused in the infusibilization process. When the average fiber diameter is less than 1 zm, the surface area per weight of the carbon fiber is increased, and the fiber surface is substantially increased. Even if it is flat, it has irregularities on the surface In some cases, the moldability may be reduced as in the case of fibers.
  • the percentage of the fiber diameter dispersion (S 1) which is the dispersion of the fiber diameter with respect to the average fiber diameter (D 1) observed with an optical microscope, is preferably in the range of 5 to 18%. More preferably, it is in the range of 5 to 15%.
  • the aspect ratio of the component A is preferably 2 to 8, 0 0 0.
  • the component A has a structure in which the graph end sheet is closed by observing the shape of the fiber end face with a transmission electron microscope.
  • the end face of the filler is closed as a graph sheet, generation of extra functional groups and localization of electrons due to shape do not occur, so the concentration of impurities such as water can be reduced. .
  • the graph end ⁇ is closed.
  • the end of the graph end sheet itself constituting the carbon fiber is not exposed at the end of the carbon fiber, the graph eye layer is bent in a substantially U shape, and the bent portion is It is the state exposed to the carbon fiber edge part.
  • the component A preferably has a substantially flat observation surface with a scanning electron microscope.
  • substantially flat means that the surface does not have intense irregularities like a fibril structure. If there are severe irregularities on the surface of the carbon fiber, the surface area during kneading with the matrix resin It is desirable that the surface irregularity be as small as possible because it causes an increase in viscosity due to an increase in viscosity and lowers moldability.
  • Carbon fiber (component A) can be contained in the composite material as a short fiber filler.
  • the component A can be contained in the composite material as a carbon fiber aggregate such as a nonwoven fabric or a random mat.
  • the component A can contain a mixture of short fiber filler and carbon fiber aggregate in the composite material. That is, the component A is preferably in the form of at least one selected from short fibers, non-woven fabrics and random mats.
  • the non-woven fabric of carbon fiber can be produced, for example, by paper making short carbon fiber fibers together with an appropriate binder.
  • carbon fibers (component A) are arranged in a uniform thickness, and a polyvinyl alcohol aqueous solution is sprayed to create a cloth with a predetermined basis weight, which is rolled using a roller press.
  • a non-woven fabric having an apparent thickness of 0.05 to 0.2 mm can be obtained.
  • Polyvinyl alcohol is a non-woven paste that bonds carbon fibers together, and further converges carbon fibers, and is carbonized when molded into a composite material.
  • a carbon fiber random mat can be produced through a process of infusibilization, firing, and graphitization based on a web of an original yarn mat spun by the melt-pro method.
  • a woven fabric using carbon fiber long fibers can also be used as a core material of a composite material.
  • long-fiber woven fabrics require large equipment for production, and the production process of fabrics using long fibers is somewhat complicated, so compared to non-woven fabrics and random pine-like carbon fiber aggregates. And there are some inferior parts in terms of productivity of carbon fiber aggregates.
  • the average fiber diameter of the carbon fibers of the long fibers used is in the range of about 5 to 30 m.
  • the thermal regularity or anisotropy is applied to the composite material to be created by using the spatial regularity or anisotropy of the fiber arrangement in the assembly.
  • Anisotropy of thermal expansion coefficient can be expressed.
  • the short fiber filler may be used in combination mainly from the viewpoint of increasing the thermal conductivity of the portion that becomes the void. It is preferably carried out and is suitable for improving the thermal conductivity of the composite material or adjusting the thermal expansion rate.
  • the component A can be produced by spinning a raw material pitch by a known melt spinning method or melt blowing method, and then infusibilizing, firing, milling, sieving, and graphitization.
  • the graph sheet as described above is closed, and the Z or scanning electron microscope observation surface is substantially flat.
  • the A component can be preferably obtained by performing graphitization after milling. be able to.
  • the method for producing carbon fiber by the melt blow method is as follows. (pitch)
  • a cyclic hydrocarbon having a condensed heterocyclic ring that is, a pitch-based raw material
  • a pitch-based raw material is preferable instead of a raw material such as PAN and rayon.
  • pitch-based materials include condensed polycyclic hydrocarbon compounds such as naphthalene and phenanthrene, and condensed heterocyclic compounds such as petroleum pitch and coal pitch.
  • condensed polycyclic hydrocarbon compounds such as naphthenol and phenanthrene are preferred.
  • an optically anisotropic pitch that is, mesophase pitch is particularly preferable.
  • mesophase pitch may be used singly or in appropriate combination of two or more, but using mesophase pitch alone can increase the graphitization rate in the graphitization treatment, and as a result The heat conductivity of carbon fiber can be improved, which is preferable.
  • the pitch of the raw material pitch (preferably the saddle point is in the range of 230 to 340 ° C.
  • the softening point can be determined by the Meller method. If the softening point is lower than 230 ° C, the fiber is infusible. If the temperature is higher than 340 ° C, the pitch tends to be thermally decomposed during the spinning process, which tends to make spinning difficult. Under certain conditions, gas components are generated, bubbles are generated inside the spun fiber, leading to strength deterioration, and yarn breakage is likely to occur.
  • a spinning nozzle having a nozzle hole length / hole diameter ratio smaller than 3 is preferably used, and more preferably about 1.5.
  • the nozzle temperature during spinning there are no particular restrictions on the nozzle temperature during spinning, and there is no problem as long as the temperature can maintain a stable spinning state.
  • the spinning state is stabilized, that is, the pitch viscosity during spinning is 0.1 to 20 Pa ⁇ S, preferably 8 to 16 Pa ⁇ S, more preferably 10 to 14 P. a ⁇ S temperature is acceptable.
  • Fibers spun out from the nozzle holes are shortened by blowing gas at a linear velocity of 100 to 10,000 m per minute heated to 100 to 370 ° C in the vicinity of the thinning point Is done.
  • Air, nitrogen, argon, etc. can be used as the gas to be blown, but air is preferable from the viewpoint of cost performance.
  • the fibers are collected on a wire mesh belt, become a continuous mat, and are further cross-wrapped to form a web with a predetermined basis weight (weight per unit area).
  • the web made of pitch fibers thus obtained has a three-dimensional randomness due to the entanglement of the fibers (in the present invention, this shape is defined as a random pine or random pine shape).
  • a random mat made of this pitch fiber is infusible, fired, and graphitized is a pitch-based graphitized carbon fiber aggregate of random pine as referred to in the present invention.
  • This web can be infusibilized by known methods. This infusibilization temperature is 2200 to 300 ° C.
  • Infusibilization is achieved by applying heat treatment for a certain period of time at a temperature of 200 to 300 ° C using air or a mixed gas in which ozone, nitrogen dioxide, nitrogen, oxygen, iodine or bromine is added to air. Is done. Considering safety and convenience, it is desirable to carry out in air.
  • the infusible pitch fiber is then fired in a temperature range of 700 to 900 ° C. in a vacuum or in an inert gas such as nitrogen, argon or krypton. Usually, firing is performed at low pressure using nitrogen with low cost.
  • Infusible / fired pitch fiber webs are further shortened and milled and sieved to achieve the desired fiber length.
  • a pulverizer or cutting machine such as a Victory mill, a jet mill, or a high-speed rotary mill is used.
  • the average fiber length of the fibers produced by milling is controlled by adjusting the number of rotations of blades, the angle of the blade, etc., and can be classified by the combination of the coarseness of the sieve through a sieve. (Graphitization)
  • the carbon fiber after milling and sieving is heated to 2,300 to 3,500 and graphitized to obtain the final carbon fiber.
  • Graphitization is preferably performed in a non-oxidizing atmosphere in an Atchison furnace or the like.
  • Carbon fiber can also be produced by a melt spinning method. However, in terms of the productivity and quality of carbon fibers (surface properties, appearance, etc.), the Mel-Pro spinning method is superior.
  • the carbon fiber having a fine fiber diameter can be produced, for example, by the method described in International Publication No. 0 4/0 3 1 4 61 pamphlet.
  • a composite fiber is prepared by a blend spinning method (or a composite spinning method) using a carbon material as a core material and an olefin-based material as a matrix material, and the matrix material is dissolved and removed as a post-treatment.
  • a method for producing fine carbon fibers having a fiber diameter of about 0.1 to 1 m This method can also be suitably used.
  • the fiber diameter of the carbon fiber (component A) preferably used in the present invention is in the range of about 0.1 to 30 xm.
  • the component A is preferably surface-treated as necessary.
  • Surface treatment is performed by coating resin, inorganic substance, metal oxide, metal, and their fine particles on the surface of carbon fiber, surface activation by introduction of hydrophilic functional groups and metal elements, and introduction of hydrophobic groups.
  • the main purpose is surface deactivation and surface roughness control by etching.
  • Specific surface treatment methods include various coating treatments (dipping coating, spray coating, electrodeposition coating, various plating, plasma C VD, etc.), ozone treatment, ozone water treatment, plasma treatment, corona treatment. , Ion implantation treatment, electrolytic oxidation treatment, acid / alkali and other chemical solution treatment.
  • the A component is preferably subjected to a surface treatment, and then the resin component is preferably from 0.01 to 10 parts by weight, more preferably 0.1 by weight, based on 100 parts by weight of the A component. Up to 2.5 parts by weight may be added.
  • resin components include epoxy compounds, aromatic polyamide compounds, saturated polyesters, unsaturated polyesters, vinyl acetate, water, Lucol and glycol can be used alone or in a mixture thereof.
  • Such surface treatment may be an effective means when trying to improve the dispersibility of the A component. However, since excessive adhesion results in thermal resistance, it can be implemented according to the required physical properties. '(Matrix metal: B component)
  • Matrix metal is gold, silver, copper, aluminum, magnesium, beryllium, tungsten, gallium, hafnium, titanium, silicon, alloys between these metals, alloys with these metals as main components It is preferable that the carbonaceous material is at least one selected from the group consisting of these carbonitrides, these nitrides, and these carbonitrides.
  • soot component is preferably a material selected from the group consisting of copper and copper-based alloys, carbides, nitrides, and carbonitrides.
  • the soot component is preferably a material selected from the group consisting of titanium and alloys containing titanium as a main component, carbide, nitride, and carbonitride.
  • the soot component can be used in the form of fine particles or metal foil.
  • Various kinds of fine particles are commercially available, and various compositions, purity, particle sizes, etc. can be obtained.
  • the average particle size of the fine particles is preferably 150 m or less, more preferably 10 Om or less, and even more preferably 50 xm or less.
  • average particle size 3 to: particles of L 0 im and particles of average particle size 30 to 50 m in a ratio of 50/500 to 10 Z 9 0 in the volume ratio of the former Z and the latter can be used.
  • metal foils There are various commercially available metal foils. The desired one can also be obtained by the following method. For example, copper powder (particle size 3-4 xm) is washed with alcohol, taken out on filter paper, dried with a vacuum dryer, and 2% by weight paraffin wax is added to the metal powder before press molding.
  • the volume ratio (AZB) between component A and component B is 20/80 to 90Z10, preferably 30Z70 to 70Z30.
  • a / B is less than 20Z80, improvement of thermal conductivity and reduction of thermal expansion coefficient are often insufficient.
  • it exceeds 90/10 the composite material becomes brittle and often has insufficient strength.
  • the thermal conductivity of the composite material of the present invention is at least 30 WZm'K or more, preferably 60 WZm'K or more, more preferably 12 OW / m ⁇ K or more, more preferably 24 OWZm ⁇ K or more, most preferably 36 OW. / m ⁇ K or more.
  • the thermal expansion coefficient (room temperature ⁇ 600 ° C) is at least 15X10- 6 ZK below, preferred properly is 13 X 10 one e / K or less, more preferably 10 X 10- ⁇ ⁇ less, more favorable Mashiku is 8 X 10 It is not more than 16 mm, most preferably not more than 6 ⁇ 10 ⁇ 6 mm.
  • the filling rate is preferably at least 90%, more preferably 93% or more, and still more preferably 95%. % Or more, most preferably 97% or more.
  • the composite material of the present invention comprises: (1) pitch-based graphitized carbon fiber (component A) having a mean fiber diameter of 0.1 to 30 / zm and a true density of 2.0 to 2.5 gZcc (component A) and matri Process of mixing metal (metal component B) (mixing process),
  • the mixing of the short fiber A component and the fine particle B component can be carried out using a mixing device such as a stirrer or a bead mill, or a kneading device.
  • a mixing device such as a stirrer or a bead mill, or a kneading device.
  • organic thickener examples include paraffin wax and polyvinyl alcohol adhesive. These organic substances are preferably hydrocarbons that can be graphitized in the final treatment.
  • the compression molding can be performed by a press molding method or a cast molding method using hydraulic pressure, hydrostatic pressure, or the like at room temperature or under heating.
  • the compression molding is preferably performed in a vacuum or in an inert atmosphere such as nitrogen.
  • Compression molding is a process for producing an integrally molded body.
  • This step is a step of heating the molded product and deforming or melting the B component so as to impregnate the voids of the molded product, and it is preferably performed while further compressing at a high pressure as necessary.
  • An example of a three-dimensional isotropic compression device is an HIP device.
  • This step is a step of integrating and densifying the A component and the B component.
  • the heating process be performed in a vacuum or in an inert atmosphere such as nitrogen.
  • the composite material of the present invention comprises a nonwoven fabric or a random mat mainly composed of pitch-based graphitized carbon fibers (component A) having an average fiber diameter of 0.1 to 30 m and a true density of 2.0 to 2.5 g Zcc.
  • fiber aggregates such as nonwoven fabric and random mat and metal particles
  • component B it is preferable to use matrix metal fine particles or metal foil. Further, a nonwoven fabric or a random mat pre-coated with metal particles (component B) can also be used. In addition, it is possible to preferably carry out the presence of the A component in the short fiber form together with the B component in the laminate.
  • the heating temperature is around the melting point of the B component.
  • the B component is copper
  • the composite material of the present invention may contain other components in addition to the carbon fiber (component A) and the matrix metal (component B).
  • these include, in addition to the resin binder described above, graphite fine particles, expanded graphite, flake graphite, PAN-based carbon fibers, and carbon materials such as woven fabrics and nonwoven fabrics made of the carbon fibers.
  • the composite material of the present invention can be used as a high-performance heat dissipation material in various applications. For example, cutting, cutting, and polishing are preferably performed to form a thin piece, a small piece, or a part. For example, it is processed according to the shape of the heat sink.
  • the composite material of the present invention can be made of various physical properties that are isotropic or anisotropic. That is, it is isotropic when pitch-based graphitized fibers are randomly arranged in the composite material, and anisotropic when carbon fibers are arranged with orientation regularity. .
  • a method of giving anisotropy in the direction to the arrangement and the compressive force at the time of forming a molded body is preferable.
  • a method using a fiber assembly such as a nonwoven fabric or a random mat is preferable for imparting a large anisotropy.
  • short fiber carbon fibers In order to create a composite material having isotropic physical properties, it is preferable to use short fiber carbon fibers. It is preferable to use a fiber having a short fiber length, and a short fiber having an average fiber length of 50 im or less is particularly preferably used.
  • the composite material of the present invention is preferably subjected to processing such as joining, lamination, assembly, and assembly processing to form a heat radiating member having a predetermined shape and dimension.
  • a heat radiating plate is suitably obtained. be able to.
  • the laminate is appropriately cut in the direction of the press.
  • a planar sheet with the thickness direction is cut out.
  • a cutting sheet having such a plane can be preferably used as a heat dissipating material having a high thermal conductivity in the thickness direction.
  • graphitized fiber has high thermal conductivity in the fiber axis direction, and the thermal conductivity is relatively low in the direction perpendicular to this axis, so that a small amount of graphitized fiber functions well with anisotropy.
  • the pitch-based carbon fiber that had undergone graphitization was photographed at 10 fields of view under an optical microscope at 400 magnifications, the dimensions were determined from the magnified photographic images, and the average value of 60 fibers was calculated.
  • the average fiber length is the number average fiber length and is a graphitized pitch-based carbon short fiber filler. 2,000 were measured with a length measuring device under an optical microscope (10 fields, 200 at a time), and the average value was obtained. The magnification was appropriately adjusted according to the fiber length.
  • the crystal size in the thickness direction (c-axis direction) of the hexagonal mesh plane is obtained using diffraction lines from the (00 2) plane, and the crystal size in the growth direction of the hexagonal mesh plane (ab axis) is (1 10) Determined using diffraction lines from the surface.
  • the method was determined according to the Gakushin Law.
  • the resistivity of the graphitized fiber prepared under the same conditions other than the pulverization process was measured, and the following formula (1) showing the relationship between the thermal conductivity and the electrical resistivity disclosed in JP-A-1-1117143 From 1).
  • C is the thermal conductivity (WZm ⁇ K) of the graphitized fiber
  • ER is the electrical resistivity / ⁇ of the same fiber.
  • the specific gravity was measured using the Archimedes method
  • the specific heat was measured using the DSC method
  • the thermal diffusivity was measured using the laser-flash method at room temperature.
  • Pitch made of condensed polycyclic hydrocarbon compound was used as the main raw material.
  • the optical anisotropy ratio was 100%, and the softening point was 283 ° C.
  • carbon fiber with an average fiber diameter of 15 / m is drawn by blowing hot air from the slits at a linear velocity of 5,000 m / min and pulling the molten pitch.
  • the spun carbon fiber is collected on a belt to form a mat, and the basis weight is 320 g by cross wrapping. A random mat of Zm 2 was used.
  • This random mat was infusibilized by raising the temperature from 175 ° C to 280 ° C in air at an average rate of 7 ° CZ.
  • the infusible random mat was fired at 800 ° C in a nitrogen atmosphere, then milled and sieved to fibers with an average fiber length of 500 m (carbon fiber A) and fibers with an average fiber length of 50 m (carbon fiber B). Divided.
  • carbon fiber A and carbon fiber B were each graphitized by heat treatment at 3,000 ° C in an electric furnace in a non-oxidizing atmosphere.
  • the average fiber diameter was 9.7 m.
  • the percentage of the fiber diameter dispersion to the average fiber diameter was 14%.
  • the true density was 2.18 g Ze e.
  • carbon fibers A and B obtained at a magnification of 1 million were observed and magnified on a photograph at 4 million times. It was confirmed that the graphene sheet was closed at the end faces of carbon fibers A and B.
  • the crystallite size in the c-axis direction of the graphite crystals of carbon fibers A and B determined by X-ray diffraction was 33 nm.
  • the crystallite size in the ab axis direction was 57 nm.
  • the single yarn was extracted from the graphitized web, which was produced in the same process up to firing and was not milled, and heat treated at 3,000 ° C in an electric furnace with a non-oxidizing atmosphere.
  • the resistance was measured, it was 2.2 ⁇ ⁇ ⁇ ⁇ .
  • the thermal conductivity obtained using the following equation (1) was 53 OW / m ⁇ K.
  • a pitch made of a condensed polycyclic hydrocarbon compound was used as a main raw material.
  • Optical anisotropy percentage was 100%, the softening point was 283 D C.
  • Uses spinneret with a diameter of 0.2 mm Then, heated air was ejected from the slits at a linear velocity of 6,000 m / min, and the molten pitch was pulled to produce carbon fibers with an average fiber diameter of 11 m.
  • the spun carbon fibers were collected on a belt to form a mat, and then a random mat composed of carbon fibers having a basis weight of 280 g / m 2 by cross-wrapping.
  • This random mat was infusibilized by raising the temperature from 175 ° C to 280 ° C at an average heating rate of 7 ° C / min.
  • the infusible random mat was fired at 800 ° C in a nitrogen atmosphere and then milled into fibers with an average fiber length of 30 O m (carbon fiber C) and fibers with an average fiber length of 30 m (carbon fiber D). Sieving was performed.
  • carbon fiber C and carbon fiber D were each graphitized by heat treatment at 3,000 ° C in an electric furnace in a non-oxidizing atmosphere.
  • the average fiber diameter of carbon fibers C and D was 8.1 m.
  • the true density was 2.21 g / c c. It was observed at a magnification of 1 million with a transmission electron microscope, and magnified on a photograph at 4 million times.
  • the end faces of carbon fibers C and D were closed with darafen sheets.
  • the surfaces of carbon fibers C and D observed with a scanning electron microscope at a magnification of 4,000 times were smooth with no large irregularities.
  • the crystallite size of carbon fibers C and D in the c-axis direction of graphite crystals determined by X-ray diffraction was 41 nm.
  • the crystallite size in the ab axis direction was 68 nm.
  • a single yarn is extracted from a carbon fiber web that has been manufactured in the same process up to firing, and has not been milled, and heat treated at 3,000 ° C in an electric furnace with a non-oxidizing atmosphere.
  • the measured value was 2.0 ⁇ ⁇ m.
  • the thermal conductivity in the fiber axis direction determined using the above formula (1) was 580 W / m ⁇ K.
  • Table 1 shows the characteristics of carbon fibers A and B obtained in Experimental Example 1 and carbon fibers C and D obtained in Experimental Example 2. table 1
  • Example 1 The random mat created in Experimental Example 1 was heated in air from 170 ° C to 310 ° C at an average heating rate of 5 ° CZ for infusibility, then fired at 700 ° C, and then further The graphitized random mat was obtained by calcination and graphitization at 3,000 ° C. The values of thermal conductivity, specific gravity and the like were the same as those of the carbon fiber of Example 1.
  • Example 1 The random mat created in Experimental Example 1 was heated in air from 170 ° C to 310 ° C at an average heating rate of 5 ° CZ for infusibility, then fired at 700 ° C, and then further The graphitized random mat was obtained by calcination and graphitization at 3,000 ° C. The values of thermal conductivity, specific gravity and the like were the same as those of the carbon fiber of Example 1.
  • Example 1 The values of thermal conductivity, specific gravity and the like were the same as those of the carbon fiber of Example 1.
  • thermal conductivity and thermal expansion coefficient of a direction is 38 OW / m ⁇ K, 1 1 X 10- 6 ⁇ , in ⁇ direction 33 OW / m ⁇ K, and a 11X 10- 6 ⁇ .
  • the non-woven fabric created in Experimental Example 3 and a 0.2 mm thick copper foil were alternately laminated 50 times. Thereafter, compression molding was performed under vacuum at a temperature range of 50 MPa, 900 to 1,050 ° C. to obtain a composite molded body composed of carbon fiber and copper.
  • Example 1 without using carbon fiber, copper powder having an average particle size of about 40 im (manufactured by High Purity Chemical Research Laboratory) 40 parts by volume, copper powder having an average particle size of about 5 m (manufactured by High Purity Chemical Research Laboratory) After 20 parts by volume were uniformly mixed using a bead mill, it was placed in a 5 Omm diameter container, and compression molding was performed in a temperature range of 50 MPa and 900 to 1,050 ° C. under vacuum to obtain a molded body.
  • this compact was subjected to isotropic pressure compression under heating using a HIP device manufactured by Kobe Steel, and further densification treatment was performed. As a result, the filling rate was improved to 99%. Den electrical and thermal expansion ratio was 38 OWZm ⁇ K, 17X 10 one 6 / kappa.
  • thermal conductivity and thermal expansion coefficient of a direction is 12 OWZm ⁇ K, 6 X 1 ⁇ - 6 Bruno ⁇ , 8 OW / m ⁇ K at ⁇ direction became 6X 10_ 6 Bruno kappa.
  • Example 5 without using carbon fiber, titanium powder having an average particle size of about 40 m (manufactured by Kojundo Chemical Laboratories) was placed in a 5 Omm diameter container, and 50 MPa, 1, 500-1 Compression molding was performed in the temperature range of 650 ° C to obtain a molded body.
  • the filling rate was 98%, and the thermal conductivity and the thermal expansion coefficient were 2 OWZm ⁇ K, 8 X 10 16 . In this compact, there are almost no differences in the physical properties between the heel direction and the B direction.
  • the composite material of the present invention has excellent heat conductivity and high heat dissipation performance. Since the composite material of the present invention has a thermal expansion coefficient value close to Si, InP, and GaAs, which are typical semiconductor substrate materials, for example, when laminated directly on these semiconductor substrate materials. However, there are advantages such as less generation of thermal stress.
  • the composite material of the present invention is lightweight and excellent in mechanical properties. According to the production method of the present invention, the composite material can be produced.
  • the composite material of the present invention is subjected to processing such as alignment, lamination, and arrangement, and the alignment angle of the black portion, the direction of the film layer state, etc. are adjusted, and the thermal conductivity, thermal expansion coefficient, etc. It is possible to have a realistic anisotropy.
  • the amount of heat transfer and thermal expansion can be adjusted according to the purpose so that excess or deficiency does not occur in relation to peripheral devices.
  • the composite material of the present invention can be used as a heat sink for electronic components by utilizing its high thermal conductivity.
  • high thermal conductivity can be obtained by increasing the amount of graphitized fiber filler
  • automobiles that require heat resistance in electronic components are also used in industrial power modules that require large currents.
  • It can be suitably used for connectors and the like.
  • it can be used for heat sinks, semiconductor package components, heat sinks, heat spreaders, die pads, printed wiring boards, cooling fan components, housings, and the like.
  • It can also be used as a heat exchanger component and can be used as a heat pipe.

Abstract

Disclosed is a composite material having excellent thermal conductivity and high heat dissipation performance. The composite material has a thermal expansion coefficient close to those of Si, InP and GaAs as typical semiconductor substrate materials, and when such semiconductor substrate materials are directly arranged on the composite material, there is generated only little thermal stress. Specifically disclosed is a composite material containing a pitch-based graphitized carbon fiber (component A) having an average fiber diameter of 0.1-30 μm and a true density of 2.0-2.5 g/cc and a matrix metal (component B). In this composite material, the volume ratio between the component A and the component B (A/B) is from 20/80 to 90/10.

Description

複合材料およびその製造方法 技術分野  Composite material and manufacturing method thereof Technical Field
本発明は、 ピッチ系炭素繊維およびマトリックス金属を含有する複合材料およ びその製造方法に関する。 本発明は、 半導体基板、 集積回路基板等の放熱部材に 適した複合材料に関する。 さらに詳しくは、 機械的強度、 熱伝導性および導電性 明  The present invention relates to a composite material containing pitch-based carbon fibers and a matrix metal, and a method for producing the same. The present invention relates to a composite material suitable for a heat dissipation member such as a semiconductor substrate or an integrated circuit substrate. For more details, see Mechanical Strength, Thermal Conductivity and Conductivity.
に優れ、 低い熱膨張率を有する複合材料に関する。 書 And a composite material having a low coefficient of thermal expansion. book
背景技術 Background art
高性能の炭素繊維は鎖状高分子であるセルローズ、 ポリビニルアルコール、 ポ リアクリロニトリル (P AN) 等を原料とする繊維形状の鎖状高分子に由来する 炭素繊維と、 環状炭化水素からなる石油 ·石炭等のピッチ類を原料とするピッチ 系炭素繊維に分類できる。  High-performance carbon fibers are carbon fibers derived from fiber-like chain polymers made from chain polymers such as cellulose, polyvinyl alcohol, polyacrylonitrile (PAN), etc., and petroleum consisting of cyclic hydrocarbons. It can be classified into pitch-based carbon fibers made from pitches such as coal.
前者の鎖状高分子由来の炭素繊維は、 炭化処理を施すのみで強靭な繊維として 禾 IJ用でき、 殊に P AN系炭素繊維は強度 ·弾性率が通常の合成高分子に比較して 著しく高い性能を有する故に、 この特性を活かして、 航空 ·宇宙機材用途、 建 築 ·土木資材用途、 スポーツ ·レジャー用具などに広く用いられている。  The former carbon fiber derived from a chain polymer can be used for IJ as a tough fiber by simply carbonizing. Especially, PAN-based carbon fiber has significantly higher strength and elastic modulus than ordinary synthetic polymers. Because of its high performance, it is widely used in aerospace / space equipment, construction / civil engineering materials, sports / leisure equipment, etc. by utilizing this characteristic.
これに対し、 後者のピッチ系炭素繊維は、 高温度の熱処理である黒鉛化処理を 経た際に、 その特性が発揮され、 黒鉛結晶の性能が発現する。 黒鉛結晶としては、 その結晶自体は小さく、 単結晶ではないものの、 微結晶として網面構造を有する ことから、 顕著な異方性を呈する。 そして、 この黒鉛化ピッチ系炭素繊維は鎖状 高分子に由来する炭素繊維よりも電気伝導率、 熱伝導率が高く、 機械的特性も優 れているうえに、 熱膨張率が比較的低いという特徴を有する。  On the other hand, the latter pitch-based carbon fibers exhibit their characteristics when subjected to graphitization, which is a high-temperature heat treatment, and exhibit the performance of graphite crystals. As a graphite crystal, although the crystal itself is small and not a single crystal, it has a network structure as a microcrystal, and thus exhibits remarkable anisotropy. And this graphitized pitch-based carbon fiber has higher electrical and thermal conductivity than carbon fiber derived from chain polymer, has excellent mechanical properties, and has a relatively low thermal expansion coefficient. Has characteristics.
従って、 この黒鉛化ピッチ系炭素繊維は金属の如き他の材料と複合化すること により、 高い熱伝導率を維持できるうえに、 熱膨張率が低い得性をも付与できる 可能性が高い。 ところで、 近年、 電子計算機における CPUの発熱や集積回路のジュール熱に よる発熱が問題になっている。 加えて、 レーザーや発光ダイオードの発熱の問題 も浮上している。 Therefore, by combining this graphitized pitch-based carbon fiber with another material such as a metal, it is highly possible that not only high thermal conductivity can be maintained but also a low thermal expansion coefficient can be obtained. By the way, in recent years, heat generation of CPUs in electronic computers and Joule heat of integrated circuits have become problems. In addition, the problem of heat generation of lasers and light emitting diodes has also emerged.
熱を効率的な伝達経路により処理するには、 一般に、 銀や銅の如き熱伝導性に 優れた放熱材料を使用すればよい。 しかし、 レーザーや発光ダイオードで代表さ れる発熱体には、 銀 ·銅等の適用を妨げる問題がある。 即ち、 レーザーや発光ダ ィォードを収納し、 或いは載置するパッケージ等の材料にはレーザ一素子や発光 素子の材料と熱膨張率がほぼ一致する要件が求められる。 この条件が満たされな いと、 材料間に著しいストレスが生じ、 劣化や歪による破損のようなことの発生 が避けられない。  To process heat with an efficient transfer path, it is generally necessary to use a heat dissipation material with excellent thermal conductivity, such as silver or copper. However, heating elements represented by lasers and light-emitting diodes have a problem that obstructs the application of silver and copper. That is, a material for housing or mounting a laser or a light emitting diode is required to have a coefficient of thermal expansion that is substantially the same as the material of the laser element or the light emitting element. If this condition is not satisfied, significant stress will occur between the materials, and it will be inevitable that damage will occur due to deterioration or strain.
即ち、 銅の熱伝導率は約 40 OW/m- Kと高い値を示す。 しかし、 銅の熱膨 張率は 1. 7 X 10— 5ZKであり、 代表的な半導体基板材料である S iの熱膨 張率 3 X 10— 6ZK (熱伝導率約 168W/m · Κ) や I nPの熱伝導率 4. 5 X 10 K (熱伝導率約 10 OW/m* K前後) や Ga Asの熱膨張率 5. 9 X 10— 6ZK (熱膨張率 46W7m · Κ) と比較して著しく高い。 また、 S i、 I n P、 GaAsの熱伝導率は相対的に低い値でありヒートシンクとしては 必ずしも十分な性能ではない。 In other words, the thermal conductivity of copper is as high as about 40 OW / m-K. However, Netsu膨Choritsu copper is 1. 7 X 10- 5 ZK, typical S i Netsu膨Choritsu 3 X 10- 6 ZK (thermal conductivity of about 168 W / m · of a semiconductor substrate material Κ) and InP thermal conductivity 4.5 X 10 K (thermal conductivity around 10 OW / m * K) and Ga As thermal expansion coefficient 5.9 X 10— 6 ZK (thermal expansion coefficient 46W7m · It is remarkably high compared with i). In addition, the thermal conductivity of Si, InP, and GaAs is relatively low, and is not necessarily sufficient as a heat sink.
従って、 そのまま半導体用のヒートシンクに銅を部材とすることは適わない。 而して、 この対策として、 熱膨張率の低いタングステン、 モリブデンなどの金属 との合金化を図ってきた。 しかしながら、 タングステン、 モリブデンを銅と合金 化すると熱伝導率が低減するという別の問題点が浮上する。 ■  Therefore, it is not suitable to use copper as a member for the heat sink for semiconductors as it is. Therefore, as a countermeasure, we have attempted alloying with metals such as tungsten and molybdenum, which have a low coefficient of thermal expansion. However, when tungsten or molybdenum is alloyed with copper, another problem arises that the thermal conductivity is reduced. ■
これら課題を解決すべく、 炭素微粒子、 炭素繊維等の炭素材料を金属材料と複 合することが提案されている。  In order to solve these problems, it has been proposed to combine carbon materials such as carbon fine particles and carbon fibers with metal materials.
例えば特許文献 1 (特開平 9— 64254号公報) には、 長さ 40 / m以下の 炭素繊維と金属成分材料とを含み、 熱膨張率は 5 X 10一6〜 10 X 10_6/K の金属複合材料が開示されている。 しかし、 ここで用いられる炭素繊維の詳細に 関しては殆ど開示が無く、 高い性能を実現するために好ましい材料についての検 討がなされているとは言い難い。 よって、 該複合材料の熱伝導率は高々 203W Zm · K程度で、 半導体装置の放熱部材として十分ではない。 For example, Patent Document 1 (JP-A-9- 64254), comprise the following carbon fiber length 40 / m and a metal component material, the thermal expansion coefficient of 5 X 10 one 6 ~ 10 X 10_ 6 / K A metal composite material is disclosed. However, there is almost no disclosure regarding the details of the carbon fiber used here, and it is difficult to say that a material preferred for achieving high performance has been studied. Therefore, the thermal conductivity of the composite material is at most 203W Zm · K is not enough as a heat dissipation member for semiconductor devices.
また特許文献 2 (特開平 11— 61292号公報) には、 銅マトリクス中に炭 素繊維を含有する複合体であって、 銅と炭素繊維の界面にチタン等金属元素を有 する複合体が開示されている。 しかし、 該複合材料の熱伝導率は高々 270WZ πι· Κ程度で、 半導体装置の放熱部材に用いるには十分ではない。  Patent Document 2 (Japanese Patent Application Laid-Open No. 11-61292) discloses a composite containing carbon fibers in a copper matrix and having a metal element such as titanium at the interface between copper and carbon fibers. Has been. However, the thermal conductivity of the composite material is at most about 270 WZ πι · Κ, which is not sufficient for use as a heat dissipation member of a semiconductor device.
また特許文献 3 (特開平 7— 90725号公報) には、 ピッチ系炭素繊維ミル ドが開示されている。 この文献には、 ピッチ系炭素繊維の黒鉛化度についての記 載はないが、 実施例では 2650°Cで黒鉛化を行なっていることから、 黒鉛化度 をさらに向上させる余地がある。  Patent Document 3 (Japanese Patent Laid-Open No. 7-90725) discloses a pitch-based carbon fiber mill. Although this document does not describe the graphitization degree of pitch-based carbon fibers, the graphitization is performed at 2650 ° C. in the examples, so there is room for further improvement of the graphitization degree.
また特許文献 4 (特開 2006— 2240号公報) には、 300 / m以上の長 さを有する炭素繊維および金属を含有する複合体が開示されている。 この複合体 は、 面内の熱伝導率は向上しているものの、 厚さ方向の熱伝導は、 炭素繊維のネ ットワーク形成が充分にできないことから、 熱伝達が不充分である。  Patent Document 4 (Japanese Unexamined Patent Application Publication No. 2006-2240) discloses a composite containing carbon fiber and metal having a length of 300 / m or more. Although this composite has improved in-plane thermal conductivity, the heat conduction in the thickness direction is insufficient for the formation of a carbon fiber network, resulting in insufficient heat transfer.
(特許文献 1 ) 特開平 9一 64254号公報  (Patent Document 1) Japanese Unexamined Patent Publication No. 9-64254
(特許文献 2) 特開平 11一 61292号公報  (Patent Document 2) Japanese Patent Laid-Open No. 11-61292
(特許文献 3) 特開平 7— 90725号公報  (Patent Document 3) JP-A-7-90725
(特許文献 4) 特開 2006— 2240号公報  (Patent Document 4) Japanese Unexamined Patent Publication No. 2006-2240
また半導体以外にも、 チタン等の金属をピッチ系黒鉛化炭素繊維と複合化して、 熱伝導率を向上させ、 熱膨張率の抑制が可能になることが知られている。  In addition to semiconductors, it is known that metals such as titanium are compounded with pitch-based graphitized carbon fibers to improve thermal conductivity and to suppress thermal expansion.
.  .
発明の開示 Disclosure of the invention
本発明の目的は、 優れた熱伝導率を有する複合材料を提供することにある。 本 発明の目的は、 放熱部材に好適な複合材料を提供することにある。 本発明の目的 は、 代表的な半導体基板材料である S i、 I nP、 GaAs (熱膨張率 3〜6 X 10"VK) に近い熱膨張率を有する複合材料を提供することにある。 本発 明の目的は、 機械特性に優れた複合材料を提供することにある。 さらに、 本発明 は、 該複合材料の製造方法を提供することにある。  An object of the present invention is to provide a composite material having excellent thermal conductivity. An object of the present invention is to provide a composite material suitable for a heat dissipation member. An object of the present invention is to provide a composite material having a thermal expansion coefficient close to Si, InP, and GaAs (thermal expansion coefficients 3 to 6 × 10 ”VK), which are typical semiconductor substrate materials. An object of the present invention is to provide a composite material having excellent mechanical properties, and to provide a method for producing the composite material.
本発明は、 ピッチ系炭素繊維を高温で黒鉛化した数十 nmを超える大きさの結 晶サイズを有し、 高い熱伝導性を有するピッチ系黒鉛化炭素繊維を用いることを 特徴とする。 また本発明は、 マトリックス金属よりも熱伝導性に優れる黒鉛化炭 素繊維の含有率を高め、 複合材料の熱伝導性を向上させたことを特徴とする。 さ らに本発明の複合材料は、 半導体基板材料と同程度の熱膨張性を有することを特 徵とする。 In the present invention, a pitch-type carbon fiber graphitized at a high temperature has a size exceeding several tens of nm. It is characterized by using pitch-based graphitized carbon fiber having a crystal size and high thermal conductivity. In addition, the present invention is characterized in that the content of graphitized carbon fiber, which has better thermal conductivity than the matrix metal, is increased, and the thermal conductivity of the composite material is improved. Furthermore, the composite material of the present invention is characterized by having a thermal expansion property comparable to that of a semiconductor substrate material.
即ち、 本発明は、 平均繊維径 0. l〜30 /im、 真密度 2. 0〜2. 5 g/c cのピッチ系黒鉛化炭素繊維 (A成分) およびマトリックス金属 (B成分) を含 有し、 A成分と B成分との体積比 (AZB) が 20/80〜90/10の複合材 料である。  That is, the present invention includes pitch-based graphitized carbon fiber (component A) and matrix metal (component B) having an average fiber diameter of 0.1 to 30 / im and a true density of 2.0 to 2.5 g / cc. However, it is a composite material with a volume ratio (AZB) between the A component and the B component of 20/80 to 90/10.
また本発明は、 (1) 短繊維の形態の平均繊維径 0. l〜30 xm、 真密度 2. 0〜2. 5 gZc cのピッチ系黒鉛化炭素繊維 (A成分) およびマトリックス金 属 (B成分) を混合する工程、  The present invention also provides: (1) Pitch-based graphitized carbon fiber (component A) having an average fiber diameter of 0.1 to 30 xm and a true density of 2.0 to 2.5 gZcc and a matrix metal ( B component),
(2) 得られた混合物を圧縮成形して成形体を得る工程、 および  (2) a step of compression-molding the obtained mixture to obtain a molded body, and
(3) 成形体を加熱し、 B成分を成形体の空隙に含浸せしめる工程、  (3) heating the molded body and impregnating the B component into the voids of the molded body,
を含む複合材料の製造方法である。 The manufacturing method of the composite material containing this.
また本発明は、 平均繊維径 0. l〜30 m、 真密度 2. 0〜2. 5 g/c c のピッチ系黒鉛化炭素繊維 (A成分) から主として成る不織布またはランダムマ ットを、 マトリックス金属 (B成分) の存在下で加熱し、 必要に応じて圧縮を施 しながら、 B成分を熔融して不織布またはランダムマツ卜の空隙に含浸せしめる 工程を含む複合材料の製造方法を包含する。 発明を実施するための最良の形態  The present invention also provides a non-woven fabric or random mat mainly composed of pitch-based graphitized carbon fibers (component A) having an average fiber diameter of 0.1 to 30 m and a true density of 2.0 to 2.5 g / cc. It includes a method for producing a composite material comprising a step of heating in the presence of a metal (component B) and compressing as necessary, and melting the component B and impregnating it into a void of a nonwoven fabric or random pine cake. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 本発明の実施の形態について詳しく説明する。  Next, embodiments of the present invention will be described in detail.
〈複合材料〉  <Composite material>
(ピッチ系黒鉛化炭素繊維)  (Pitch graphitized carbon fiber)
本発明に用いるピッチ系黒鉛化炭素繊維 (A成分) は、 フイラ一もしくは芯材 として複合材料の要部を占める。  The pitch-based graphitized carbon fiber (component A) used in the present invention occupies the main part of the composite material as a filler or a core material.
A成分の繊維軸方向の熱伝導率は、 好ましくは 400〜70 OWZm · K、 よ り好ましくは 500〜 70 OW/πι· Kである。 このような高い熱伝導率を炭素 繊維に発現させるには、 炭素繊維の黒鉛化率が高く、 結晶子のサイズが大きいこ とが好ましい。 これは炭素繊維における熱伝導が主にフォノンの伝導によって担 われていることに起因する。 The thermal conductivity of the component A in the fiber axis direction is preferably 400 to 70 OWZm · K. More preferably, it is 500 to 70 OW / πι · K. In order for carbon fiber to exhibit such a high thermal conductivity, it is preferable that the carbon fiber has a high graphitization rate and a large crystallite size. This is due to the fact that the heat conduction in carbon fibers is mainly borne by phonon conduction.
黒鉛化率は、 炭素繊維中の黒鉛結晶の含有率である。 黒铂化率は、 炭素繊維の 真密度に反映される。 従って、 Α成分の真密度は 2, 0〜2. 5 gZc c、 好ま しくは 2. 1〜2. 5 g/c c、 より好ましくは 2. 2〜2. 5 gZc cである。  The graphitization rate is the content of graphite crystals in the carbon fiber. The blackening rate is reflected in the true density of the carbon fiber. Therefore, the true density of the soot component is 2, 0 to 2.5 gZc c, preferably 2.1 to 2.5 g / c c, and more preferably 2.2 to 2.5 gZc c.
A成分の黒鉛結晶 (六角網面) の c軸方向の結晶子サイズ (Lc) は、 好まし くは 20〜: L 00nm、 より好ましくは 30〜 100 nm、 更に好ましくは 40 〜100nmである。 A成分の黒鉛結晶 (六角網面) の a b軸方向の結晶子サイ ズ (L a) は、 好ましくは 30〜200 nm、 より好ましくは 60〜200 nm、 更に好ましくは 80〜 200n mである。 これらの結晶子サイズは、 X線回折法 で求めることができ、 解析手法としては学振法を用い、 黒鉛結晶の (002) 面、 (110) 面からの回折線を用いて求めることができる。  The crystallite size (Lc) in the c-axis direction of the A component graphite crystal (hexagonal network surface) is preferably 20 to: L 00 nm, more preferably 30 to 100 nm, and still more preferably 40 to 100 nm. The ab axis direction crystallite size (La) of the A component graphite crystal (hexagonal network surface) is preferably 30 to 200 nm, more preferably 60 to 200 nm, and still more preferably 80 to 200 nm. These crystallite sizes can be obtained by the X-ray diffraction method, and can be obtained by using the Gakushin method as an analysis method and using diffraction lines from the (002) plane and (110) plane of the graphite crystal. .
このような黒鉛化率が高く結晶子サイズの大きい炭素繊維は、 好ましくは 2, 300〜3, 500°C、 より好ましくは 2, 800〜3, 200°Cで黒鉛化する ことにより得ることができる。  Such a carbon fiber having a high graphitization rate and a large crystallite size is preferably obtained by graphitizing at 2,300 to 3,500 ° C, more preferably 2,800 to 3,200 ° C. it can.
A成分はフィラ一として用いる場合には、 金属マトリックスへの分散性の観点 から、 平均繊維長は、 好ましくは 20〜200 m、 より好ましくは 20〜 10 0 im、 更に好ましくは 20〜60 mである。  When the component A is used as a filler, from the viewpoint of dispersibility in the metal matrix, the average fiber length is preferably 20 to 200 m, more preferably 20 to 100 im, still more preferably 20 to 60 m. is there.
一方、 A成分を芯材として用いる場合、 即ち不織布やランダムマットの形状で 用いる場合には、 平均繊維長は、 好ましくは 200〜240, 000 m, より 好ましくは 500〜240, 000 /zmである。  On the other hand, when the component A is used as a core material, that is, when used in the form of a nonwoven fabric or a random mat, the average fiber length is preferably 200 to 240,000 m, more preferably 500 to 240,000 / zm. .
A成分の平均繊維径 (D1) は、 好ましくは l〜30 m、 より好ましくは 3 〜20 /m、 さらに好ましくは 5~15 zmである。 平均繊維径 (D 1 ) は、 光 学顕微鏡で観測する。 平均繊維径が 30 より大きい場合は、 不融化工程で近 接する繊維同士の融着が起きやすく、 1 zm未満の場合は、 炭素繊維の重量当た りの表面積が増大し、 繊維表面が実質的に平坦であっても、 表面に凹凸を有する 繊維と同様に成形性を低下させる場合がある。 また、 光学顕微鏡で観測した平均 繊維径 (D 1 ) に対する繊維径の分散である繊維径分散 (S 1 ) の百分率は 5〜 1 8 %の範囲が好ましい。 より好ましくは 5〜1 5 %の範囲である。 The average fiber diameter (D1) of the component A is preferably 1 to 30 m, more preferably 3 to 20 / m, and further preferably 5 to 15 zm. The average fiber diameter (D 1) is observed with an optical microscope. When the average fiber diameter is larger than 30, the adjacent fibers tend to be fused in the infusibilization process. When the average fiber diameter is less than 1 zm, the surface area per weight of the carbon fiber is increased, and the fiber surface is substantially increased. Even if it is flat, it has irregularities on the surface In some cases, the moldability may be reduced as in the case of fibers. The percentage of the fiber diameter dispersion (S 1), which is the dispersion of the fiber diameter with respect to the average fiber diameter (D 1) observed with an optical microscope, is preferably in the range of 5 to 18%. More preferably, it is in the range of 5 to 15%.
尚、 A成分のアスペクト比については、 好ましくは 2〜 8,. 0 0 0である。  The aspect ratio of the component A is preferably 2 to 8, 0 0 0.
A成分は、 透過型電子顕微鏡で繊維端面の形状を観察して、 グラフエンシート が閉じた構造になっていることが好ましい。 フィラーの端面がグラフエンシート として閉じている場合には、 余分な官能基の発生や、 形状に起因する電子の局在 化が起こらないので、 水のような不純物の濃度を低減することができる。  It is preferable that the component A has a structure in which the graph end sheet is closed by observing the shape of the fiber end face with a transmission electron microscope. When the end face of the filler is closed as a graph sheet, generation of extra functional groups and localization of electrons due to shape do not occur, so the concentration of impurities such as water can be reduced. .
グラフエンシー卜が閉じているとは、 炭素繊維を構成するグラフエンシートそ のものの端部が炭素繊維端部に露出することなく、 グラフアイト層が略 U字上に 湾曲し、 湾曲部分が炭素繊維端部に露出している状態である。  The graph end 卜 is closed. The end of the graph end sheet itself constituting the carbon fiber is not exposed at the end of the carbon fiber, the graph eye layer is bent in a substantially U shape, and the bent portion is It is the state exposed to the carbon fiber edge part.
また、 A成分は、 走査型電子顕微鏡での観察表面が実質的に平坦であることが 好ましい。 ここで、 実質的に平坦であるとは、 フィブリル構造のような激しい凹 凸を表面に有しないことを云い、 炭素繊維の表面に激しい凹凸が存在する場合に は、 マトリクス樹脂との混練に際して表面積の増大に伴う粘度の増大を惹起し、 成形性を低下させることから、 表面凹凸はできるだけ小さい状態力望ましい。  The component A preferably has a substantially flat observation surface with a scanning electron microscope. Here, “substantially flat” means that the surface does not have intense irregularities like a fibril structure. If there are severe irregularities on the surface of the carbon fiber, the surface area during kneading with the matrix resin It is desirable that the surface irregularity be as small as possible because it causes an increase in viscosity due to an increase in viscosity and lowers moldability.
(A成分の形態)  (Form of component A)
炭素繊維 (A成分) は、 複合材料の中に短繊維状のフイラ一として含有させる ことができる。 また A成分は、 複合材料の中に不織布、 ランダムマット等の炭素 繊維集合体として含有させることができる。 さらに、 A成分は、 複合材料の中に 短繊維状のフィラーと炭素繊維集合体との混合物を含有させることができる。 即 ち A成分は、 短繊維、 不織布およびランダムマットから選ばれる少なくとも一種 の形態であること力好ましい。  Carbon fiber (component A) can be contained in the composite material as a short fiber filler. In addition, the component A can be contained in the composite material as a carbon fiber aggregate such as a nonwoven fabric or a random mat. Furthermore, the component A can contain a mixture of short fiber filler and carbon fiber aggregate in the composite material. That is, the component A is preferably in the form of at least one selected from short fibers, non-woven fabrics and random mats.
(不織布)  (Nonwoven fabric)
炭素繊維の不織布は、 例えば、 炭素繊維の短繊維を適切なバインダーとともに 抄紙することにより製造することができる。  The non-woven fabric of carbon fiber can be produced, for example, by paper making short carbon fiber fibers together with an appropriate binder.
即ち、 炭素繊維 (A成分) を均一の厚みに配列し、 ポリビニルアルコール水溶 液を噴霧し、 所定の目付の布を作成し、 この布を、 ローラー加圧機を用いて圧延 し 0 . 0 5〜0 . 2 mmの見かけ厚さの不織布を得ることができる。 ポリビエル アルコールは不織布の糊剤であって炭素繊維同士を接着し、 さらに、 炭素繊維を 収束する収束剤となり、 しかも複合材料に成形したとき炭化される。 That is, carbon fibers (component A) are arranged in a uniform thickness, and a polyvinyl alcohol aqueous solution is sprayed to create a cloth with a predetermined basis weight, which is rolled using a roller press. A non-woven fabric having an apparent thickness of 0.05 to 0.2 mm can be obtained. Polyvinyl alcohol is a non-woven paste that bonds carbon fibers together, and further converges carbon fibers, and is carbonized when molded into a composite material.
(ランダムマツ卜)  (Random pine cake)
炭素繊維のランダムマットは、 メルトプロ一法により紡糸された原糸マットの ウェブを基に、 不融化、 焼成、 黒鉛化の工程を経て、 製造することができる。 尚、 炭素繊維の長繊維を用いた織布も、 複合材料の芯材として利用することが できる。 ただ、 長繊維の織布は、 製造に大きな装置が必要なこと、 長繊維を用い た織物の製造工程が多少煩雑であること等から、 不織布やランダムマツ卜状の炭 素繊維集合体に比べると、 炭素繊維集合体の生産性の観点で若干劣る部分がある。 織布状の炭素繊維集合体を作成する場合、 その取り扱い性の観点から、 用いる長 繊維の炭素繊維の平均繊維径はおよそ 5〜3 0 mの範囲にあること力 子ましい。 不織布、 ランダムマットもしくは織布等の炭素繊維集合体を用いた場合には、 該集合体内の繊維配列の空間的規則性もしくは異方性を用いて、 作成する複合材 料に、 熱伝導率や熱膨張率の異方性を発現させることができる。  A carbon fiber random mat can be produced through a process of infusibilization, firing, and graphitization based on a web of an original yarn mat spun by the melt-pro method. In addition, a woven fabric using carbon fiber long fibers can also be used as a core material of a composite material. However, long-fiber woven fabrics require large equipment for production, and the production process of fabrics using long fibers is somewhat complicated, so compared to non-woven fabrics and random pine-like carbon fiber aggregates. And there are some inferior parts in terms of productivity of carbon fiber aggregates. When creating a woven carbon fiber aggregate, the average fiber diameter of the carbon fibers of the long fibers used is in the range of about 5 to 30 m. When a carbon fiber assembly such as a nonwoven fabric, a random mat, or a woven fabric is used, the thermal regularity or anisotropy is applied to the composite material to be created by using the spatial regularity or anisotropy of the fiber arrangement in the assembly. Anisotropy of thermal expansion coefficient can be expressed.
ただし短繊維状のフィラーを用いた場合においても、 複合材料の成形時等にお ける力学圧縮過程等を通じ、 ある程度の配向性を有させることはできる。  However, even when a short fiber filler is used, a certain degree of orientation can be obtained through a mechanical compression process or the like during molding of the composite material.
尚、 不織布、 ランダムマットもしくは織布等の炭素繊維集合体を用いた場合に は、 主にその空隙となる部分の熱伝導性を高める観点から、 前記の短繊維状フィ ラーを併用することも好ましく行われ複合材料の熱伝導率の向上、 もしくは熱膨 張率の調整等に好適である。  In the case of using a carbon fiber aggregate such as a nonwoven fabric, a random mat, or a woven fabric, the short fiber filler may be used in combination mainly from the viewpoint of increasing the thermal conductivity of the portion that becomes the void. It is preferably carried out and is suitable for improving the thermal conductivity of the composite material or adjusting the thermal expansion rate.
(A成分の製造)  (Manufacture of component A)
A成分は、 原料ピッチを、 公知の溶融紡糸法もしくはメルトブロー法により紡 糸し、 その後、 不融化、 焼成、 ミリング、 篩い分け、 黒鉛化により製造すること ができる。 上述のようなグラフエンシートが閉じている、 および Zまたは走査型 電子顕微鏡での観察表面が実質的に平坦である A成分は、 ミリングを行った後に 黒鉛化処理を実施することによって、 好ましく得ることができる。  The component A can be produced by spinning a raw material pitch by a known melt spinning method or melt blowing method, and then infusibilizing, firing, milling, sieving, and graphitization. The graph sheet as described above is closed, and the Z or scanning electron microscope observation surface is substantially flat. The A component can be preferably obtained by performing graphitization after milling. be able to.
メルトブロー法による炭素繊維の製造方法は以下の通りである。 (ピッチ) The method for producing carbon fiber by the melt blow method is as follows. (pitch)
黒鉛化率が高い炭素繊維材料を得るには、 PAN、 レイヨン等の原料ではなく、 縮合され複素環を有する環状炭化水素、 即ちピッチ系の原料が好ましい。 このよ うなピッチ系の原料としては、 例えば、 ナフタレンやフエナン卜レンといった縮 合多環炭化水素化合物、 石油系ピッチゃ石炭系ピッチといつた縮合複素環化合物 等が挙げられる。 なかんずくナフ夕レンやフエナントレンの如き縮合多環炭化水 素化合物が好ましい。  In order to obtain a carbon fiber material having a high graphitization rate, a cyclic hydrocarbon having a condensed heterocyclic ring, that is, a pitch-based raw material, is preferable instead of a raw material such as PAN and rayon. Examples of such pitch-based materials include condensed polycyclic hydrocarbon compounds such as naphthalene and phenanthrene, and condensed heterocyclic compounds such as petroleum pitch and coal pitch. In particular, condensed polycyclic hydrocarbon compounds such as naphthenol and phenanthrene are preferred.
それらの中でも特に光学的異方性ピッチ、 即ちメソフェーズピツチが好ましい。 これらは、 1種を単独で用いても、 2種以上を適宜組み合わせて用いてもよいが、 メソフェーズピッチを単独で用いることが黒鉛化処理において黒鉛化率を高める ことができるため、 結果的に炭素繊維の熱伝導性を向上でき好ましい。  Among these, an optically anisotropic pitch, that is, mesophase pitch is particularly preferable. These may be used singly or in appropriate combination of two or more, but using mesophase pitch alone can increase the graphitization rate in the graphitization treatment, and as a result The heat conductivity of carbon fiber can be improved, which is preferable.
原料ピッチの軟^ (匕点は 230〜340°Cの範囲のものが好ましい。 軟化点はメ 卜ラー法により求めることができる。 軟化点が 230°Cより低いと、 不融化の際 に繊維同士の融着ゃ大きな熱収縮が発生する。 また、 340°Cより高いものでは、 紡糸工程において、 ピッチの熱分解が生じ紡糸成形が困難になる傾向がある。 さ らに、 高温度の紡糸条件では、 ガス成分が発生し、 紡出繊維内部に気泡が発生し 強度劣化を招くほか断糸も起き易い。  The pitch of the raw material pitch (preferably the saddle point is in the range of 230 to 340 ° C. The softening point can be determined by the Meller method. If the softening point is lower than 230 ° C, the fiber is infusible. If the temperature is higher than 340 ° C, the pitch tends to be thermally decomposed during the spinning process, which tends to make spinning difficult. Under certain conditions, gas components are generated, bubbles are generated inside the spun fiber, leading to strength deterioration, and yarn breakage is likely to occur.
(紡糸)  (Spinning)
—溶融した原料ピッチを紡糸ノズルから押し出す工程である。 紡糸ノズルは、 ノ ズル孔の長さと孔径の比が 3よりも小さいもの力好ましく用いられ、 さらに好ま しくは 1. 5程度のものが用いられる。  —This is the process of extruding the melted raw material pitch from the spinning nozzle. A spinning nozzle having a nozzle hole length / hole diameter ratio smaller than 3 is preferably used, and more preferably about 1.5.
紡糸時のノズルの温度についても特に制約はなく、 安定した紡糸状態が維持で きる温度であれば問題がない。 原料ピッチの粘度が適切な範囲であれば、 紡糸状 態が安定する、 即ち、 紡糸時のピッチ粘度が 0. l〜20Pa · S、 好ましくは 8〜16Pa . Sに、 さらに好ましくは 10〜14P a · Sなる温度であればよ い。  There are no particular restrictions on the nozzle temperature during spinning, and there is no problem as long as the temperature can maintain a stable spinning state. When the viscosity of the raw material pitch is in an appropriate range, the spinning state is stabilized, that is, the pitch viscosity during spinning is 0.1 to 20 Pa · S, preferably 8 to 16 Pa · S, more preferably 10 to 14 P. a · S temperature is acceptable.
ノズル孔から出糸された繊維は、 100〜370°Cに加温された毎分 100〜 10, 000mの線速度のガスを細化点近傍に吹き付けることによって短繊維化 される。 吹き付けるガスとしては空気、 窒素、 アルゴン等々を用いることができ るが、 コストパフォーマンスの点から空気が望ましい。 Fibers spun out from the nozzle holes are shortened by blowing gas at a linear velocity of 100 to 10,000 m per minute heated to 100 to 370 ° C in the vicinity of the thinning point Is done. Air, nitrogen, argon, etc. can be used as the gas to be blown, but air is preferable from the viewpoint of cost performance.
繊維は、 金網ベルト上に捕集され、 連続的なマット状になり、 さらにクロスラ ップされることで所定の目付 (単位面積あたりの重量) のウェブとなる。  The fibers are collected on a wire mesh belt, become a continuous mat, and are further cross-wrapped to form a web with a predetermined basis weight (weight per unit area).
このようにして得られたピッチ繊維よりなるウェブは、 繊維同士が交絡するこ とで 3次元的なランダム性を有している (本発明においては、 この形状をランダ ムマツ卜またはランダムマツト状と記載することがあり、 このピッチ繊維からな るランダムマットを不融化、 焼成、 黒鉛化したものが本発明でいうランダムマツ 卜のピッチ系黒鉛化炭素繊維集合体である)。 このゥェブは公知の方法で不融化 できる。 この不融化温度は 2 0 0〜3 0 0 °Cである。  The web made of pitch fibers thus obtained has a three-dimensional randomness due to the entanglement of the fibers (in the present invention, this shape is defined as a random pine or random pine shape). A random mat made of this pitch fiber is infusible, fired, and graphitized is a pitch-based graphitized carbon fiber aggregate of random pine as referred to in the present invention. This web can be infusibilized by known methods. This infusibilization temperature is 2200 to 300 ° C.
(不融化)  (Infusibilization)
不融化は、 空気またはオゾン、 二酸化窒素、 窒素、 酸素、 ヨウ素若しくは臭素 を空気に添加した混合ガスを用いて 2 0 0〜3 0 0 °Cの温度において一定時間の 熱処理を付与することで達成される。 安全性、 利便性を考慮すると空気中で実施 することが望ましい。  Infusibilization is achieved by applying heat treatment for a certain period of time at a temperature of 200 to 300 ° C using air or a mixed gas in which ozone, nitrogen dioxide, nitrogen, oxygen, iodine or bromine is added to air. Is done. Considering safety and convenience, it is desirable to carry out in air.
(焼成)  (Baking)
不融化したピッチ繊維は、 次いで真空中または窒素、 アルゴン、 クリプトン等 の不活性ガス中において、 7 0 0〜9 0 0 °Cの温度範囲で焼成される。 通常、 焼 成は常圧において、 コス卜の安い窒素を用いて実施される。  The infusible pitch fiber is then fired in a temperature range of 700 to 900 ° C. in a vacuum or in an inert gas such as nitrogen, argon or krypton. Usually, firing is performed at low pressure using nitrogen with low cost.
(ミリング、 篩分け)  (Milling, sieving)
不融化 ·焼成されたピッチ繊維よりなるウェブは、 さらに短繊維化を進め、 所 定の繊維長にするために、 ミリング、 篩分けを実施する。 ミリングには、 ビクト リーミル、 ジェットミル、 高速回転ミル等の粉砕機または切断機等が使用される。 ミリングを効率よく行うためには、 ブレードを取付けた口一夕を高速に回転させ ることにより、 繊維軸に対して直角方向に繊維を寸断する方法が適切である。 ミリングによって生じる繊維の平均繊維長は、 ロー夕の回転数、 ブレードの角 度等を調整することにより制御され、 さらに篩を通し、 篩の目の粗さの組み合わ せにより分級できる。 (黒鉛化) Infusible / fired pitch fiber webs are further shortened and milled and sieved to achieve the desired fiber length. For milling, a pulverizer or cutting machine such as a Victory mill, a jet mill, or a high-speed rotary mill is used. In order to perform milling efficiently, it is appropriate to cut the fiber in a direction perpendicular to the fiber axis by rotating the mouth attached with the blade at high speed. The average fiber length of the fibers produced by milling is controlled by adjusting the number of rotations of blades, the angle of the blade, etc., and can be classified by the combination of the coarseness of the sieve through a sieve. (Graphitization)
ミリング処理、 篩分けを終えた炭素繊維を 2 , 3 0 0〜3 , 5 0 0でに加熱し て黒鉛化し、 最終的な炭素繊維とする。 黒鉛化は、 アチソン炉等にて非酸化性雰 囲気下で行うことが好ましい。  The carbon fiber after milling and sieving is heated to 2,300 to 3,500 and graphitized to obtain the final carbon fiber. Graphitization is preferably performed in a non-oxidizing atmosphere in an Atchison furnace or the like.
また炭素繊維は、 溶融紡糸法により製造することもできる。 ただし炭素繊維の 生産性や品質 (表面性、 外観等) においてはメル卜プロ一紡糸法がより優れてい る。  Carbon fiber can also be produced by a melt spinning method. However, in terms of the productivity and quality of carbon fibers (surface properties, appearance, etc.), the Mel-Pro spinning method is superior.
また、 繊維径が微細な炭素繊維は、 例えば、 国際公開第 0 4/ 0 3 1 4 6 1号 パンフレット等に記載の方法で製造することができる。 この方法は、 芯材として 炭素材料、 マトリクス材としてォレフィン系材料等を用いたブレンド紡糸法 (も しくはコンジユゲート紡糸法) により複合繊維を作成し、 後処理としてマトリク ス材を溶解除去することにより、 最終的に 0. 1〜1 m前後の繊維径を有する 微細な炭素繊維を製造する方法である。 この方法も好適に用いることができる。 これらのことを総合して、 本発明で好ましく用いられる炭素繊維 (A成分) の 繊維径としては、 およそ 0 . 1〜3 0 xmの範囲である。  The carbon fiber having a fine fiber diameter can be produced, for example, by the method described in International Publication No. 0 4/0 3 1 4 61 pamphlet. In this method, a composite fiber is prepared by a blend spinning method (or a composite spinning method) using a carbon material as a core material and an olefin-based material as a matrix material, and the matrix material is dissolved and removed as a post-treatment. Finally, it is a method for producing fine carbon fibers having a fiber diameter of about 0.1 to 1 m. This method can also be suitably used. Overall, the fiber diameter of the carbon fiber (component A) preferably used in the present invention is in the range of about 0.1 to 30 xm.
(表面処理)  (surface treatment)
A成分は、 必要に応じて表面処理することが好ましい。 表面処理は、 炭素繊維 表面への樹脂、 無機物、 金属酸化物、 金属、 およびそれらの微粒子等のコーティ ング、 親水性官能基や金属元素等の導入による表面活性化、 疎水性基の導入によ る表面不活性化、 エッチングによる表面粗度のコントロール等を主な目的とする。 表面処理の具体的手法としては、 各種コーティング処理 (浸せきコーティング、 噴霧コ一ティング、 電着コ一ティング、 各種メツキ、 プラズマ C VD等)、 ォゾ ン処理、 オゾン水処理、 プラズマ処理、 コロナ処理、 イオン打ち込み処理、 電解 酸化処理、 酸 ·アルカリその他の薬液処理等力挙げられる。  The component A is preferably surface-treated as necessary. Surface treatment is performed by coating resin, inorganic substance, metal oxide, metal, and their fine particles on the surface of carbon fiber, surface activation by introduction of hydrophilic functional groups and metal elements, and introduction of hydrophobic groups. The main purpose is surface deactivation and surface roughness control by etching. Specific surface treatment methods include various coating treatments (dipping coating, spray coating, electrodeposition coating, various plating, plasma C VD, etc.), ozone treatment, ozone water treatment, plasma treatment, corona treatment. , Ion implantation treatment, electrolytic oxidation treatment, acid / alkali and other chemical solution treatment.
A成分には、 必要に応じて表面処理を施した後、 A成分 1 0 0重量部を基準と して、 樹脂成分を好ましくは 0 . 0 1〜1 0重量部、 より好ましくは 0 . 1〜2 . 5重量部添着させてもよい。 樹脂成分としては例えばエポキシ化合物、 芳香族ポ リアミド化合物、 飽和ポリエステル、 不飽和ポリエステル、 酢酸ビニル、 水、 ァ ルコール、 グリコールを単独またはこれらの混合物で用いることができる。 この ような表面処理は、 A成分の分散性の向上を試みるとき等に有効な手段となる場 合がある。 ただ、 過剰の添着は、 熱抵抗となるため、 必要とされる物性に応じて これを実施することができる。 ' (マトリックス金属: B成分) The A component is preferably subjected to a surface treatment, and then the resin component is preferably from 0.01 to 10 parts by weight, more preferably 0.1 by weight, based on 100 parts by weight of the A component. Up to 2.5 parts by weight may be added. Examples of resin components include epoxy compounds, aromatic polyamide compounds, saturated polyesters, unsaturated polyesters, vinyl acetate, water, Lucol and glycol can be used alone or in a mixture thereof. Such surface treatment may be an effective means when trying to improve the dispersibility of the A component. However, since excessive adhesion results in thermal resistance, it can be implemented according to the required physical properties. '(Matrix metal: B component)
マトリックス金属 (B成分) は、 金、 銀、 銅、 アルミニウム、 マグネシウム、 ベリリウム、 タングステン、 ガリウム、 ハフニウム、 チタン、 珪素、 これら金属 間の合金、 これら金属を主成分とする、 他種金属との合金、 これらの炭^ ί匕物、 こ れらの窒化物およびこれらの炭窒化物からなる群より選ばれる少なくとも一種で あることが好ましい。  Matrix metal (component B) is gold, silver, copper, aluminum, magnesium, beryllium, tungsten, gallium, hafnium, titanium, silicon, alloys between these metals, alloys with these metals as main components It is preferable that the carbonaceous material is at least one selected from the group consisting of these carbonitrides, these nitrides, and these carbonitrides.
また Β成分は、 銅、 および銅を主成分とする合金、 炭化物、 窒化物、 炭窒化物 からなる群から選ばれる材料であることが好ましい。  Further, the soot component is preferably a material selected from the group consisting of copper and copper-based alloys, carbides, nitrides, and carbonitrides.
また Β成分は、 チタン、 およびチタンを主成分とする合金、 炭化物、 窒化物、 炭窒化物からなる群から選ばれる材料であることが好ましい。  The soot component is preferably a material selected from the group consisting of titanium and alloys containing titanium as a main component, carbide, nitride, and carbonitride.
Β成分は微粒子や金属箔の形態で用いることができる。 微粒子は、 各種のもの が巿販されており、 種々の組成、 純度、 粒径等のものを入手することができる。 微粒子の平均粒径は、 1 5 0 m以下である事が好ましく、 より好ましくは 1 0 O m以下、 更に好ましくは 5 0 xm以下である。  The soot component can be used in the form of fine particles or metal foil. Various kinds of fine particles are commercially available, and various compositions, purity, particle sizes, etc. can be obtained. The average particle size of the fine particles is preferably 150 m or less, more preferably 10 Om or less, and even more preferably 50 xm or less.
炭素繊維と金属微粒子を混合する際 (混合工程) の充填密度を高める観点で、 必要に応じて、 粒径カ湘異なる 2種もしくはそれ以上を混合しても良い。 例えば、 平均粒径 3〜: L 0 imの粒子と、 平均粒径 3 0〜5 0 mの粒子とを、 前者 Z後 者の体積比で 5 0 / 5 0〜1 0 Z 9 0の割合の混合物を用いることができる。 金属箔は、 各種市販のものもある力 以下の方法でも目的のものを得ることが できる。 例えば銅粉 (粒径 3〜4 xm) をアルコールにて洗浄し、 濾紙の上に取 り出した後、 真空乾燥機により乾燥し、 プレス成形前に 2重量%のパラフィンヮ ツクスを金属粉に添加し、 1 0 O mmx 1 0 0 mm角の正方形の金型に移し、 プレス機を用いて 2〜1 0トン/ c m2に加圧する等の粉末冶金処理により、 平 板状の銅箔力得られる。 A成分と B成分との体積比 (AZB) は、 20/80〜90Z10、 好ましく は 30Z70〜70Z30である。 A/Bが 20Z80より少ないと、 熱伝導性 の向上や熱膨張率の低減が不十分となる場合が多い。 一方、 90/10を超える と複合材料が脆くなり、 強度不十分になる場合が多い。 From the viewpoint of increasing the packing density when mixing carbon fibers and metal fine particles (mixing step), two or more types having different particle sizes may be mixed as necessary. For example, average particle size 3 to: particles of L 0 im and particles of average particle size 30 to 50 m in a ratio of 50/500 to 10 Z 9 0 in the volume ratio of the former Z and the latter Can be used. There are various commercially available metal foils. The desired one can also be obtained by the following method. For example, copper powder (particle size 3-4 xm) is washed with alcohol, taken out on filter paper, dried with a vacuum dryer, and 2% by weight paraffin wax is added to the metal powder before press molding. Then, transfer to a square mold of 100 mm square and 100 mm square, and obtain a flat copper foil force by powder metallurgy treatment such as pressurizing to 2 to 10 tons / cm 2 using a press machine. It is done. The volume ratio (AZB) between component A and component B is 20/80 to 90Z10, preferably 30Z70 to 70Z30. When A / B is less than 20Z80, improvement of thermal conductivity and reduction of thermal expansion coefficient are often insufficient. On the other hand, when it exceeds 90/10, the composite material becomes brittle and often has insufficient strength.
(複合材料の物性)  (Physical properties of composite materials)
本発明の複合材料の熱伝導率は、 少なくとも 30WZm'K以上、 好ましくは 60WZm'K以上、 より好ましくは 12 OW/m · K以上、 更に好ましくは 2 4 OWZm · K以上、 最も好ましくは 36 OW/m · K以上である。  The thermal conductivity of the composite material of the present invention is at least 30 WZm'K or more, preferably 60 WZm'K or more, more preferably 12 OW / m · K or more, more preferably 24 OWZm · K or more, most preferably 36 OW. / m · K or more.
また熱膨張率 (室温〜 600°C) は少なくとも 15X10— 6ZK以下、 好ま しくは 13 X 10一 e/K以下、 より好ましくは 10 X 10— ΘΖΚ以下、 更に好 ましくは 8 X 10一6 ΖΚ以下、 最も好ましくは 6 X 10— 6ΖΚ以下である。 また複合材料の充填率については、 ピッチ系黒鉛化炭素繊維の真密度と金属材 料の真密度とを用いて求めることができる。 即ち混合率に応じて空隙が全くない 理論密度と、 実測密度の値から、 充填率 =見かけ密度 Ζ理論密度 X 1 00 (%) としてパーセント表示できる。 The thermal expansion coefficient (room temperature ~ 600 ° C) is at least 15X10- 6 ZK below, preferred properly is 13 X 10 one e / K or less, more preferably 10 X 10- Θ ΖΚ less, more favorable Mashiku is 8 X 10 It is not more than 16 mm, most preferably not more than 6 × 10−6 mm. The filling rate of the composite material can be obtained by using the true density of the pitch-based graphitized carbon fiber and the true density of the metal material. In other words, from the theoretical density with no voids according to the mixing ratio and the value of the measured density, the percentage can be expressed as filling rate = apparent density Ζtheoretical density X 1 00 (%).
熱伝導を高めることを主目的にする場合 (意図的に多孔性材料を作成する場合 を除き)、 充填率は少なくとも 90 %以上であることが好ましく、 より好ましく は 93%以上、 更に好ましくは 95%以上、 最も好ましくは 97%以上である。 〈複合材料の製造方法 Α〉  When the main purpose is to increase heat conduction (except when a porous material is intentionally made), the filling rate is preferably at least 90%, more preferably 93% or more, and still more preferably 95%. % Or more, most preferably 97% or more. <Production method for composite materials 材料>
本発明の複合材料は、 (1) 短繊維の形態の平均繊維径 0. l〜30/zm、 真 密度 2. 0〜2. 5 gZc cのピッチ系黒鉛化炭素繊維 (A成分) およびマトリ ックス金属 (B成分) を混合する工程 (混合工程)、  The composite material of the present invention comprises: (1) pitch-based graphitized carbon fiber (component A) having a mean fiber diameter of 0.1 to 30 / zm and a true density of 2.0 to 2.5 gZcc (component A) and matri Process of mixing metal (metal component B) (mixing process),
(2) 得られた混合物を圧縮成形して成形体を得る工程 (圧縮成形工程)、 およ び  (2) compression molding the resulting mixture to obtain a molded body (compression molding process), and
(3) 成形体を加熱し、 B成分を成形体の空隙に含浸せしめる工程 (含浸工程) により製造することができる。 ここで圧縮成形工程と含浸工程は、 ほぼ同時に行 うことも可能である。  (3) It can be produced by a process (impregnation process) in which the compact is heated and the B component is impregnated into the voids of the compact. Here, the compression molding step and the impregnation step can be performed almost simultaneously.
(混合工程) 短繊維形態の A成分と微粒子形態の B成分との混合に際しては、 撹拌機、 ビー ズミル等の混合装置、 混練装置等を用いて行うことができる。 (Mixing process) The mixing of the short fiber A component and the fine particle B component can be carried out using a mixing device such as a stirrer or a bead mill, or a kneading device.
またこと前に両成分を用いた造粒を施すことも可能であり、 この場合には有機 物増粘剤を用いて造粒することが出来る。 有機物増粘剤としてはパラフィンヮッ クス、 ポリビニルアルコール接着剤が挙げられる。 これら有機物は最終処理にお いて黒鉛化できる炭化水素系のものが好ましく用いられる。  It is also possible to perform granulation using both components before this, and in this case, granulation can be performed using an organic thickener. Examples of organic thickeners include paraffin wax and polyvinyl alcohol adhesive. These organic substances are preferably hydrocarbons that can be graphitized in the final treatment.
(圧縮成形工程)  (Compression molding process)
圧縮成形は、 室温下もしくは加熱下で油圧、 静水圧その他を用いたプレス成形 法や注型成形法等により行うことができる。 B成分の溶融浸透性を高め、 炭素繊 維の酸化を防ぐため、 圧縮成形は、 真空下もしくは窒素等の不活性雰囲気下にて 行うことが好ましい。 圧縮成形は、 一体成形体を製造する工程である。  The compression molding can be performed by a press molding method or a cast molding method using hydraulic pressure, hydrostatic pressure, or the like at room temperature or under heating. In order to increase the melt permeability of the B component and prevent the carbon fiber from being oxidized, the compression molding is preferably performed in a vacuum or in an inert atmosphere such as nitrogen. Compression molding is a process for producing an integrally molded body.
(含浸工程)  (Impregnation process)
この工程は、 成形物を加熱し、 B成分を変形若しくは熔融して成形物の空隙に 含浸せしめる工程であり、 必要に応じて、 更に高圧の圧縮を施しながら行うこと が好ましい。 用途によっては、 3次元等方性の圧縮を施すことも好ましい。 尚、 3次元等方性の圧縮装置としては H I P装置等が挙げられる。 この工程は、 A成 分と B成分とを一体化かつ緻密化する工程である。  This step is a step of heating the molded product and deforming or melting the B component so as to impregnate the voids of the molded product, and it is preferably performed while further compressing at a high pressure as necessary. Depending on the application, it is also preferable to apply three-dimensional isotropic compression. An example of a three-dimensional isotropic compression device is an HIP device. This step is a step of integrating and densifying the A component and the B component.
尚、 炭素繊維 (A成分) とマトリックス金属 (B成分) とを含有する成形物を 加熱する工程では、 金属の融点の僅かに低温度側で金属原子または金属化合物分 子の拡散が起こり、 表面および表面近傍の原子の移動、 拡散が生じることがよく 知られており、 これによつて、 双方の材料の密着性、 濡れ性が改善される場合が あり、 製造条件として好ましく利用できる。  In the process of heating a molded product containing carbon fiber (component A) and matrix metal (component B), diffusion of metal atoms or metal compound molecules occurs slightly on the low temperature side of the melting point of the metal. It is well known that the movement and diffusion of atoms in the vicinity of the surface occur, and this may improve the adhesion and wettability of both materials, and can be preferably used as production conditions.
B成分の溶融浸透性を高め、 炭素繊維の酸化を防ぐため、 加熱工程は、 真空下 もしくは窒素等の不活性雰囲気下にて行うこと力 子ましい。  In order to increase the melt permeability of component B and prevent oxidation of the carbon fiber, it is recommended that the heating process be performed in a vacuum or in an inert atmosphere such as nitrogen.
〈複合材料の製造方法 B〉  <Production method B for composite materials>
本発明の複合材料は、 平均繊維径 0 . 1〜 3 0 m、 真密度 2. 0〜 2 . 5 g Z c cのピッチ系黒鉛化炭素繊維 (A成分) から主として成る不織布またはラン ダムマットを、 マトリックス金属 (B成分) の存在下で加熱し、 必要に応じて圧 縮を施しながら、 B成分を熔融して不織布またはランダムマツトの空隙に含浸せ しめる工程により、 製造することができる。 The composite material of the present invention comprises a nonwoven fabric or a random mat mainly composed of pitch-based graphitized carbon fibers (component A) having an average fiber diameter of 0.1 to 30 m and a true density of 2.0 to 2.5 g Zcc. Heat in the presence of matrix metal (component B) and pressure as required While shrinking, the B component can be melted and impregnated into a non-woven fabric or random mat void.
尚、 本方法では例えば、 不織布、 ランダムマット等の繊維集合体と金属粒子 In this method, for example, fiber aggregates such as nonwoven fabric and random mat and metal particles
(B成分) とを交互に積み重ねた積層物を先に準備した上で、 これを加熱し、 必 要に応じ圧縮を施しながら、 一体化する工程を取ることも可能である。 B成分と しては、 マトリクス金属の微粒子もしくは金属箔等を用いること力 S好ましい。 また、 金属粒子 (B成分) を予め塗した不織布またはランダムマットを用いる こともできる。 また積層物には、 B成分と共に短繊維形態の A成分を存在させる ことも好ましく行うことができる。 It is also possible to prepare a laminate in which (B component) is alternately stacked, heat it, and compress it as necessary for integration. As the component B, it is preferable to use matrix metal fine particles or metal foil. Further, a nonwoven fabric or a random mat pre-coated with metal particles (component B) can also be used. In addition, it is possible to preferably carry out the presence of the A component in the short fiber form together with the B component in the laminate.
(加熱)  (Heating)
加熱温度は、 B成分の融点近傍の温度で行う。 例えば B成分が銅の場合には、 銅の融点 (約 1 0 8 0 °C) 近傍の温度に加熱し、 銅の変形性もしくは浸透性を高 めること力 S好ましい。  The heating temperature is around the melting point of the B component. For example, when the B component is copper, it is preferable to heat to a temperature close to the melting point of copper (about 100 ° C.) to increase the deformability or permeability of copper.
(他の成分)  (Other ingredients)
また本発明の複合材料は、 炭素繊維 (A成分) およびマトリックス金属 (B成 分) に加え、 他の成分を含有させることもできる。 これらの例としては、 前述の 樹脂バインダーのほか、 黒鉛微粒子、 膨張黒鉛、 燐片状黒鉛、 P AN系炭素繊維 および該炭素繊維による織物、 不織布等の炭素材料等が好ましく例示される。 〈放熱材〉  Further, the composite material of the present invention may contain other components in addition to the carbon fiber (component A) and the matrix metal (component B). Examples of these include, in addition to the resin binder described above, graphite fine particles, expanded graphite, flake graphite, PAN-based carbon fibers, and carbon materials such as woven fabrics and nonwoven fabrics made of the carbon fibers. <Heat dissipation material>
本発明の複合材料は各種用途において高性能な放熱材としての利用が可能であ る。 例えば切断、 切削、 研磨を施して、 薄片、 小片または部品の形態に加工処理 することも好ましく行われる。 たとえば、 ヒートシンクの形状に合わせて加工す るものである。  The composite material of the present invention can be used as a high-performance heat dissipation material in various applications. For example, cutting, cutting, and polishing are preferably performed to form a thin piece, a small piece, or a part. For example, it is processed according to the shape of the heat sink.
本発明の複合材料は、 諸物性が等方性もしくは異方性のものを作り分けること が可能である。 即ち複合材料内でピッチ系黒鉛化繊維がランダム配置された場合 には等方性に、 炭素繊維に配向規則性を有した状態で配置された場合には異方性 になる。 .  The composite material of the present invention can be made of various physical properties that are isotropic or anisotropic. That is, it is isotropic when pitch-based graphitized fibers are randomly arranged in the composite material, and anisotropic when carbon fibers are arranged with orientation regularity. .
物性の異方性のある複合材料を作成するには、 例えば仕込み段階での炭素繊維 の配置や成形体作成時の圧縮力に方向の異方性を与える方法が好ましい。 特に不 織布、 ランダムマツト等の繊維集合体を用いる方法は大きな異方性の付与に好ま しい。 To create composite materials with anisotropic physical properties, for example, carbon fiber at the preparation stage A method of giving anisotropy in the direction to the arrangement and the compressive force at the time of forming a molded body is preferable. In particular, a method using a fiber assembly such as a nonwoven fabric or a random mat is preferable for imparting a large anisotropy.
物性が等方性の複合材料を作成するには、 短繊維状の炭素繊維を用いることが 好ましい。 繊維長が短い繊維を用いる方が好ましく、 平均繊維長が 5 0 i m以下 の短繊維が特に好ましく用いられる。  In order to create a composite material having isotropic physical properties, it is preferable to use short fiber carbon fibers. It is preferable to use a fiber having a short fiber length, and a short fiber having an average fiber length of 50 im or less is particularly preferably used.
また本発明の複合材料は、 接合、 積層、 組込、 組立処理等の加工を施して、 所 定の形状寸法を備えた放熱部材にすることも好ましく行われ、 例えば放熱板等を 好適に得ることができる。  In addition, the composite material of the present invention is preferably subjected to processing such as joining, lamination, assembly, and assembly processing to form a heat radiating member having a predetermined shape and dimension. For example, a heat radiating plate is suitably obtained. be able to.
また金属粒子を粉体成形した金属箔と黒鉛化繊維の不織布薄層とを交互に積層 して、 相当量の厚みを備えた場合、 この集積物をプレスの方向に適宜細かく断裁 すると、 積層面を厚み方向とする平面状シートが切り出される。 このような平面 を持つ断裁シ一トは特に厚み方向に高い熱伝導率を備える放熱材として好ましく 利用できる。  If the metal foil powder-molded metal foil and the non-woven thin layer of graphitized fiber are alternately laminated and provided with a considerable amount of thickness, the laminate is appropriately cut in the direction of the press. A planar sheet with the thickness direction is cut out. A cutting sheet having such a plane can be preferably used as a heat dissipating material having a high thermal conductivity in the thickness direction.
このように黒鉛化繊維では繊維軸方向における熱伝導率が高く、 この軸と垂直 な方向では熱伝導率は相対的に低くなるため、 少量の黒鉛化繊維を異方性がよく 機能するように配置するためには積層された上記の成形体積層物を積層面とほぼ 垂直方向に断裁して、 積層方向が厚み方向となるような放熱板を製作するとよい。 このような切り出しの操作を施すことも有効なものである。 実施例  In this way, graphitized fiber has high thermal conductivity in the fiber axis direction, and the thermal conductivity is relatively low in the direction perpendicular to this axis, so that a small amount of graphitized fiber functions well with anisotropy. In order to arrange the heat sink, it is preferable to cut the stacked molded body laminates in a direction substantially perpendicular to the lamination surface to produce a heat radiating plate in which the lamination direction is the thickness direction. It is also effective to perform such a cutting operation. Example
以下に実施例を示すが、 本発明はこれらに制限されるものではない。 実施例中 の物性は、 以下の方法で測定した  Examples are shown below, but the present invention is not limited thereto. The physical properties in the examples were measured by the following methods.
( 1 ) 炭素繊維の平均繊維径  (1) Average fiber diameter of carbon fiber
黒鉛化を経たピッチ系炭素繊維を光学顕微鏡下 4 0 0倍において 1 0視野写真 撮影し拡大写真像から寸法を求め 6 0本の平均値より算出した。  The pitch-based carbon fiber that had undergone graphitization was photographed at 10 fields of view under an optical microscope at 400 magnifications, the dimensions were determined from the magnified photographic images, and the average value of 60 fibers was calculated.
( 2 ) 炭素繊維の平均繊維長  (2) Average fiber length of carbon fiber
平均繊維長は個数平均繊維長であり、 黒鉛化を経たピッチ系炭素短繊維フィラ —を光学顕微鏡下で測長器で 2, 000本測定 (10視野、 200本ずつ測定) し、 その平均値から求めた。 倍率は繊維長に応じて適宜調整した。 The average fiber length is the number average fiber length and is a graphitized pitch-based carbon short fiber filler. 2,000 were measured with a length measuring device under an optical microscope (10 fields, 200 at a time), and the average value was obtained. The magnification was appropriately adjusted according to the fiber length.
(3) 炭素繊維の真密度  (3) True density of carbon fiber
比重法を用いて求めた。  It calculated | required using the specific gravity method.
(4) 炭素繊維の結晶サイズ  (4) Carbon fiber crystal size
X線回折にて求め、 六角網面の厚み方向 (c軸方向) の結晶サイズは (00 2) 面からの回折線を用いて求め、 六角網面の成長方向 (ab軸) の結晶サイズ は (1 10) 面からの回折線を用いて求めた。 また求め方は学振法に準拠して実 施した。  Calculated by X-ray diffraction, the crystal size in the thickness direction (c-axis direction) of the hexagonal mesh plane is obtained using diffraction lines from the (00 2) plane, and the crystal size in the growth direction of the hexagonal mesh plane (ab axis) is (1 10) Determined using diffraction lines from the surface. In addition, the method was determined according to the Gakushin Law.
(5) 炭素繊維の熱伝導率  (5) Thermal conductivity of carbon fiber
粉砕工程以外を同じ条件で作製した黒鉛化処理後の繊維の抵抗率を測定し、 特 開平 1 1一 117143号公報に開示されている熱伝導率と電気比抵抗との関係 を表す下記式 (1) より求めた。  The resistivity of the graphitized fiber prepared under the same conditions other than the pulverization process was measured, and the following formula (1) showing the relationship between the thermal conductivity and the electrical resistivity disclosed in JP-A-1-1117143 From 1).
C=l 272. 4/ER-49. 4 (1)  C = l 272. 4 / ER-49. 4 (1)
ここで、 Cは黒鉛化後の繊維の熱伝導率 (WZm · K)、 ERは同じ繊維の電 気比抵抗/ Ωπιを表す。  Here, C is the thermal conductivity (WZm · K) of the graphitized fiber, and ER is the electrical resistivity / Ωπι of the same fiber.
(6) 成形体の熱伝導率  (6) Thermal conductivity of the compact
下記 (2) 式を用いて算出した。  Calculated using the following formula (2).
熱伝導率 =比重 X比熱 X熱拡散率 ( 2 )  Thermal conductivity = specific gravity X specific heat X thermal diffusivity (2)
ここで比重はアルキメデス法、 比熱は DSC法、 熱拡散率はレーザ一フラッシ ュ法を用いて室温で測定した値を用いた。  Here, the specific gravity was measured using the Archimedes method, the specific heat was measured using the DSC method, and the thermal diffusivity was measured using the laser-flash method at room temperature.
実験例 1 黒鉛化炭素繊維の製造 Experimental Example 1 Production of graphitized carbon fiber
(紡糸)  (Spinning)
縮合多環炭化水素化合物よりなるピツチを主原料とした。 光学的異方性割合は 100 %、 軟化点が 283°Cであった。 直径 0. 2 mmの孔径の紡糸口金を使用 し、 スリツ卜から加熱空気を毎分 5, 000mの線速度で噴出させて、 溶融ピッ チを牽引して平均繊維径が 15 / mの炭素繊維を紡糸した。 紡出された炭素繊維 をベルト上に捕集してマットとし、 さらにクロスラッピングにより目付 320 g Zm2のランダムマットとした。 Pitch made of condensed polycyclic hydrocarbon compound was used as the main raw material. The optical anisotropy ratio was 100%, and the softening point was 283 ° C. Using a spinneret with a diameter of 0.2 mm in diameter, carbon fiber with an average fiber diameter of 15 / m is drawn by blowing hot air from the slits at a linear velocity of 5,000 m / min and pulling the molten pitch. Was spun. The spun carbon fiber is collected on a belt to form a mat, and the basis weight is 320 g by cross wrapping. A random mat of Zm 2 was used.
(不融化、 焼成、 黒鉛化)  (Infusibilization, firing, graphitization)
このランダムマツトを空気中で 175°Cから 280°Cまで平均昇温速度 7°CZ 分で昇温して不融化を行った。 不融化したランダムマットを窒素雰囲気中 80 0°Cで焼成した後、 ミリングし、 平均繊維長が 500 mの繊維 (炭素繊維 A) と平均繊維長が 50 mの繊維 (炭素繊維 B) に篩い分けを行った。  This random mat was infusibilized by raising the temperature from 175 ° C to 280 ° C in air at an average rate of 7 ° CZ. The infusible random mat was fired at 800 ° C in a nitrogen atmosphere, then milled and sieved to fibers with an average fiber length of 500 m (carbon fiber A) and fibers with an average fiber length of 50 m (carbon fiber B). Divided.
その後、 炭素繊維 Aおよび炭素繊維 Bをそれぞれ、 非酸化性雰囲気とした電気 炉にて 3, 000°Cで熱処理して黒鉛化した。 平均繊維径は 9. 7 mであった。 繊維径分散の平均繊維径に対する百分率は 14%であった。 真密度は 2. 18 g Ze eであった。  Thereafter, carbon fiber A and carbon fiber B were each graphitized by heat treatment at 3,000 ° C in an electric furnace in a non-oxidizing atmosphere. The average fiber diameter was 9.7 m. The percentage of the fiber diameter dispersion to the average fiber diameter was 14%. The true density was 2.18 g Ze e.
透過型電子顕微鏡を用い、 100万倍の倍率で得られた炭素繊維 Aおよび Bを 観察し、 400万倍に写真上で拡大した。 炭素繊維 Aおよび Bの端面はグラフェ ンシートが閉じていることを確認した。 また、 走査型電子顕微鏡で 4, 000倍 の倍率で観察した炭素繊維 Aおよび Bの表面には、 大きな凹凸はなく、 平滑であ つた。  Using a transmission electron microscope, carbon fibers A and B obtained at a magnification of 1 million were observed and magnified on a photograph at 4 million times. It was confirmed that the graphene sheet was closed at the end faces of carbon fibers A and B. The surfaces of carbon fibers A and B, which were observed with a scanning electron microscope at a magnification of 4,000 times, had no large irregularities and were smooth.
炭素繊維 Aおよび Bの、 X線回折法によって求めた黒鉛結晶の c軸方向の結晶 子サイズは 33n mであつた。 また a b軸方向の結晶子サイズは 57n mであつ た。  The crystallite size in the c-axis direction of the graphite crystals of carbon fibers A and B determined by X-ray diffraction was 33 nm. The crystallite size in the ab axis direction was 57 nm.
また焼成までを同じ工程で作製し、 ミリングを実施しなかったウェブを、 非酸 化性雰囲気とした電気炉にて 3, 000°Cで熱処理した黒鉛化ウェブより、 単糸 を抜き取り、 電気比抵抗を測定したところ、 2. 2 ^Ω · πιであった。 下記式 (1) を用いて求めた熱伝導度は 53 OW/m · Kであった。  In addition, the single yarn was extracted from the graphitized web, which was produced in the same process up to firing and was not milled, and heat treated at 3,000 ° C in an electric furnace with a non-oxidizing atmosphere. When the resistance was measured, it was 2.2 ^ Ω · πι. The thermal conductivity obtained using the following equation (1) was 53 OW / m · K.
C= 1272. 4 ER-49. 4 (1)  C = 1272. 4 ER-49. 4 (1)
(ERは電気比抵抗を示し、 ここでの単位は/ χΩ *mである)  (ER is the electrical resistivity, and the unit here is / χΩ * m)
実験例 2 黒鉛化炭素繊維の製造 Experimental Example 2 Production of graphitized carbon fiber
(紡糸)  (Spinning)
縮合多環炭化水素化合物よりなるピッチを主原料とした。 光学的異方性割合は 100%、 軟化点が 283DCであった。 直径 0. 2 mmの孔径の紡糸口金を使用 し、 スリットから加熱空気を毎分 6, 000mの線速度で噴出させて、 溶融ピッ チを牽引して平均繊維径が 11 mの炭素繊維を作製した。 紡出された炭素繊維 をベルト上に捕集してマットとし、 さらにクロスラッピングで目付 280 g/m 2の炭素繊維からなるランダムマットとした。 A pitch made of a condensed polycyclic hydrocarbon compound was used as a main raw material. Optical anisotropy percentage was 100%, the softening point was 283 D C. Uses spinneret with a diameter of 0.2 mm Then, heated air was ejected from the slits at a linear velocity of 6,000 m / min, and the molten pitch was pulled to produce carbon fibers with an average fiber diameter of 11 m. The spun carbon fibers were collected on a belt to form a mat, and then a random mat composed of carbon fibers having a basis weight of 280 g / m 2 by cross-wrapping.
(不融化、 焼成、 黒鉛化)  (Infusibilization, firing, graphitization)
このランダムマツトを空気中で 175°Cから 280°Cまで平均昇温速度 7°C/ 分で昇温して不融化を行った。 不融化したランダムマットを窒素雰囲気中 80 0°Cで焼成した後、 ミリングし、 平均繊維長が 30 O mの繊維 (炭素繊維 C) と平均繊維長が 30 mの繊維 (炭素繊維 D) に篩い分けを行った。  This random mat was infusibilized by raising the temperature from 175 ° C to 280 ° C at an average heating rate of 7 ° C / min. The infusible random mat was fired at 800 ° C in a nitrogen atmosphere and then milled into fibers with an average fiber length of 30 O m (carbon fiber C) and fibers with an average fiber length of 30 m (carbon fiber D). Sieving was performed.
その後、 炭素繊維 Cおよび炭素繊維 Dをそれぞれ、 非酸化性雰囲気とした電気 炉にて 3, 000°Cで熱処理することで黒鉛化した。 炭素繊維 Cおよび Dの平均 繊維径は 8. 1 mであった。 真密度は、 2. 21 g/c cであった。 透過型電 子顕微鏡で 100万倍の倍率で観察し、 400万倍に写真上で拡大した。 炭素繊 維 Cおよび Dの端面はダラフェンシートが閉じていた。 また、 走查型電子顕微鏡 で 4, 000倍の倍率で観察した炭素繊維 Cおよび Dの表面には大きな凹凸はな く平滑であった。  Thereafter, carbon fiber C and carbon fiber D were each graphitized by heat treatment at 3,000 ° C in an electric furnace in a non-oxidizing atmosphere. The average fiber diameter of carbon fibers C and D was 8.1 m. The true density was 2.21 g / c c. It was observed at a magnification of 1 million with a transmission electron microscope, and magnified on a photograph at 4 million times. The end faces of carbon fibers C and D were closed with darafen sheets. In addition, the surfaces of carbon fibers C and D observed with a scanning electron microscope at a magnification of 4,000 times were smooth with no large irregularities.
炭素繊維 Cおよび Dの、 X線回折法によって求めた黒鉛結晶の c軸方向の結晶 子サイズは 41 nmであった。 また a b軸方向の結晶子サイズは 68 nmであつ た。  The crystallite size of carbon fibers C and D in the c-axis direction of graphite crystals determined by X-ray diffraction was 41 nm. The crystallite size in the ab axis direction was 68 nm.
焼成までを同じ工程で作製し、 ミリングを実施しなかったウェブを、 非酸化性 雰囲気とした電気炉にて 3, 000°Cで熱処理した炭素繊維ウェブより、 単糸を 抜き取り、 電気比抵抗を測定したところ、 2. 0 Ω · mであった。 前記式 ( 1 ) を用いて求めた繊維軸方向の熱伝導度は 580 W/m · Kであつた。 実験例 1で得られた炭素繊維 Aおよび B、 実験例 2で得られた炭素繊維 Cおよ び Dの特性を表 1に示す。 表 1 A single yarn is extracted from a carbon fiber web that has been manufactured in the same process up to firing, and has not been milled, and heat treated at 3,000 ° C in an electric furnace with a non-oxidizing atmosphere. The measured value was 2.0 Ω · m. The thermal conductivity in the fiber axis direction determined using the above formula (1) was 580 W / m · K. Table 1 shows the characteristics of carbon fibers A and B obtained in Experimental Example 1 and carbon fibers C and D obtained in Experimental Example 2. table 1
Figure imgf000020_0001
実験例 3 不織布の製造
Figure imgf000020_0001
Example 3 Fabrication of nonwoven fabric
実験例 1で作成した炭素繊維 A 50体積部、 実験例 2で得た炭素繊維 C 40体 積部、 およびバインダーとして平均繊維長 5mmの PV A繊維 (商品名ビニロ ン) 10体積部を混合した後に、 30°Cの水浴を用いて抄紙を行った後、 窒素雰 囲気下 1, 500°Cで仮焼成後、 3, 000°Cで本焼成して、 黒鉛化炭素繊維に よる不織布を得た。 得られた不織布中の炭素含有率は 99重量%、 厚みは 0. 3 mm、 充填率は 3 5体積%であつた。  50 parts by volume of carbon fiber A prepared in Experimental Example 1, 40 parts by volume of carbon fiber C obtained in Experimental Example 2, and 10 parts by volume of PV A fiber (trade name vinylon) with an average fiber length of 5 mm as a binder were mixed. Later, after making paper using a 30 ° C water bath, after calcining at 1,500 ° C under a nitrogen atmosphere and then firing at 3,000 ° C, a nonwoven fabric made of graphitized carbon fiber was obtained. It was. The obtained nonwoven fabric had a carbon content of 99% by weight, a thickness of 0.3 mm, and a filling rate of 35% by volume.
実験例 4 黒鉛化ランダムマットの製造 Experimental Example 4 Production of graphitized random mat
実験例 1で作成したランダムマッ卜を空気中で 170 °Cから 310 °Cまで平均 昇温速度 5 °CZ分で昇温して不融化を行い、 ついで 700°Cで焼成した後、 さら にそのまま 3, 000°Cで焼成、 黒鉛化することにより黒鉛化ランダムマットを 得た。 熱伝導率、 比重等の値については実施例 1の炭素繊維の値と同等であった。 実施例 1  The random mat created in Experimental Example 1 was heated in air from 170 ° C to 310 ° C at an average heating rate of 5 ° CZ for infusibility, then fired at 700 ° C, and then further The graphitized random mat was obtained by calcination and graphitization at 3,000 ° C. The values of thermal conductivity, specific gravity and the like were the same as those of the carbon fiber of Example 1. Example 1
実験例 1で作成した炭素繊維 Bにオゾン水処理を施した。 即ち E R Cテクノロ ジ一社製オゾン水処理装置を用い、 高オゾン濃度で循環させたオゾン水中で 30 分間炭素繊維の表面処理を行い、 炭素繊維表面を親水化した。 親水化は ESCA を用いた表面官能基分析での C = 0基の濃度ァップのデ一夕より確認した。  The carbon fiber B prepared in Experimental Example 1 was treated with ozone water. That is, using an ozone water treatment device manufactured by ERC Technology, carbon fiber surface treatment was performed for 30 minutes in ozone water circulated at a high ozone concentration to make the carbon fiber surface hydrophilic. Hydrophilicity was confirmed from the concentration of C = 0 group in the surface functional group analysis using ESCA.
この表面親水化した炭素繊維 Bを 50体積部、 平均粒径約 40 imの銅粉 (高 純度化学研究所製) 33. 3体積部、 平均粒径約 5 mの銅粉 (高純度化学研究 所製) 16. 7体積部をビーズミルを用いて均一混合した後に、 5 Omm径の容 器に入れ、 真空下、 50 MP a、 900〜1, 050 °Cの温度範囲で圧縮成形を 行い、 炭素繊維と銅からなる複合成形体を得た。 50 parts by volume of this surface-hydrophilized carbon fiber B, copper powder with an average particle size of about 40 im (manufactured by High Purity Chemical Laboratory) 33. 3 parts by volume of copper powder with an average particle size of about 5 m (high purity chemical research) 16. After mixing 7 parts by volume with a bead mill, 5 Omm diameter The mixture was put into a container and subjected to compression molding in a vacuum at a temperature of 50 MPa and 900 to 1,050 ° C. to obtain a composite molded body composed of carbon fiber and copper.
比重計算による充填率は 96%であり、 プレス方向に垂直な方向 (A方向) の 熱伝導率および熱膨張率は 35 OWXm · K、 10 X 10"VK, プレス方向 (B方向) では 28 OWZm · K、 11 X 10— 6ΖΚであった。 Filling rate by specific gravity calculation is 96%, thermal conductivity and thermal expansion coefficient in the direction perpendicular to the press direction (A direction) are 35 OWXm · K, 10 X 10 "VK, press direction (B direction) is 28 OWZm · K, was 11 X 10- 6 ΖΚ.
更にこの成形体に対し、 神戸製鋼社製の HI Ρ装置を用いて、 加熱下、 等方圧 圧縮を行い、 更なる緻密化処理を行った所、 充填率は 99%と向上し、 先の A方 向の熱伝導率および熱膨張率は 39 OWZm · K、 10X 10— 6ΖΚ:、 Β方向 では 31 OW/m · K、 10 X 10一6 ΖΚとなった。 Furthermore, when this compact was subjected to isotropic pressure compression with heating using a HI Ρ device manufactured by Kobe Steel, and further densified, the filling rate improved to 99%. thermal conductivity and thermal expansion coefficient of a direction became 39 OWZm · K, 10X 10- 6 ΖΚ :, in Β direction 31 OW / m · K, 10 X 10 one 6 ΖΚ.
実施例 2 Example 2
実験例 2で作成した炭素繊維 Dにオゾン水処理を施した。 即ち E R Cテクノロ ジ一社製オゾン水処理装置を用い、 高オゾン濃度で循環させたオゾン水中で 30 分間炭素繊維の表面処理を行い、 炭素繊維表面を親水化した。 親水化は ESCA を用いた表面官能基分析での C = Ο基の濃度ァップのデータより確認した。 この表面親水化した炭素繊維 Dを 50体積部、 平均粒径約 40 imの銅粉 (高 純度化学研究所製) 33. 3体積部、 平均粒径約 5 mの銅粉 (高純度化学研究 所製) 16. 7体積部をピーズミルを用いて均一混合した後に、 5 Omm径の容 器に入れ、 真空下、 50MP a、 900〜1, 050 °Cの温度範囲で圧縮成形を 行い、 炭素繊維と銅からなる複合成形体を得た。  The carbon fiber D prepared in Experimental Example 2 was treated with ozone water. That is, using an ozone water treatment device manufactured by ERC Technology, carbon fiber surface treatment was performed for 30 minutes in ozone water circulated at a high ozone concentration to make the carbon fiber surface hydrophilic. Hydrophilization was confirmed from the concentration-up data of C = Ο group in the surface functional group analysis using ESCA. 50 parts by volume of this carbon fiber D with hydrophilic surface, copper powder with an average particle size of about 40 im (manufactured by High Purity Chemical Laboratory) 33. 16. After uniformly mixing 7 parts by volume using a peas mill, place them in a 5 Omm diameter container and perform compression molding under vacuum at a temperature of 50 MPa and 900 to 1050 ° C. A composite molded body made of fiber and copper was obtained.
比重計算による充填率は 9 5%であり、 プレス方向に垂直な方向 (A方向) の 熱伝導率および熱膨張率は 36 OW/m · K、 11 X 10— 6/Κ、 プレス方向 (Β方向) では 30 OW/m' Κ、 12 X 10— 6/Κであった。 Filling rate by the specific gravity calculation is 95%, the thermal conductivity and thermal expansion coefficient in the direction perpendicular to the pressing direction (A direction) is 36 OW / m · K, 11 X 10- 6 / Κ, the pressing direction (beta in direction) 30 OW / m 'Κ, was 12 X 10- 6 / Κ.
更にこの成形体に対し、 神戸製鋼社製の HI Ρ装置を用いて、 加熱下、 等方圧 圧縮を行い、 更なる緻密化処理を行った所、 充填率は 99%と向上し、 先の A方 向の熱伝導率および熱膨張率は 38 OW/m · K、 1 1 X 10— 6ΖΚ、 Β方向 では 33 OW/m · K、 11X 10— 6ΖΚとなった。 Furthermore, when this compact was subjected to isotropic pressure compression with heating using a HI Ρ device manufactured by Kobe Steel, and further densified, the filling rate improved to 99%. thermal conductivity and thermal expansion coefficient of a direction is 38 OW / m · K, 1 1 X 10- 6 ΖΚ, in Β direction 33 OW / m · K, and a 11X 10- 6 ΖΚ.
実施例 3 Example 3
実験例 3で作成した不織布と、 厚み 0. 2 mmの銅箔を交互に 50回積層した 後に、 真空下、 50 MP a、 900〜1, 050 °Cの温度範囲で圧縮成形を行い、 炭素繊維と銅からなる複合成形体を得た。 The non-woven fabric created in Experimental Example 3 and a 0.2 mm thick copper foil were alternately laminated 50 times. Thereafter, compression molding was performed under vacuum at a temperature range of 50 MPa, 900 to 1,050 ° C. to obtain a composite molded body composed of carbon fiber and copper.
比重計算による充填率は 97%であり、 プレス方向に垂直な方向 (A方向) の 熱伝導率および熱膨張率は 39 OWZm · K、 10X 10— 6 Κ、 プレス方向 (Β方向) では 29 OWZm · Κ:、 12 X 10— 6ノ Kであった。 Filling rate by the specific gravity calculation is 97%, the thermal conductivity and thermal expansion coefficient in the direction perpendicular to the pressing direction (A direction) is 39 OWZm · K, 10X 10- 6 Κ, the pressing direction (beta direction) at 29 OWZm was · Κ :, 12 X 10- 6 Roh K.
実施例 4 Example 4
実験例 4で作成したランダムマットと、 厚み 0. 3mmの銅箔を交互に 30回 積層した後に、 真空下、 50MPa、 900-1, 050 の温度範囲で圧縮成 形を行い、 炭素繊維と銅からなる複合成形体を得た。  After alternately stacking the random mat created in Experimental Example 4 and a 0.3 mm thick copper foil 30 times, compression molding was performed in a temperature range of 50 MPa, 900-1, 050 under vacuum, and carbon fiber and copper A composite molded body was obtained.
比重計算による充填率は 97%であり、 プレス方向に垂直な方向 (A方向) の 熱伝導率および熱膨張率は 38 OW/m · K、 12 X 10— 6/Κ、 プレス方向Filling rate by the specific gravity calculation is 97%, the thermal conductivity and thermal expansion coefficient in the direction perpendicular to the pressing direction (A direction) is 38 OW / m · K, 12 X 10- 6 / Κ, the pressing direction
(Β方向) では 31 OWZm · K、 13 X 10— 6ΖΚであった。 It was (beta direction) at 31 OWZm · K, 13 X 10- 6 ΖΚ.
比較例 1 Comparative Example 1
実施例 1において、 炭素繊維を用いず、 平均粒径約 40 imの銅粉 (高純度化 学研究所製) 40体積部、 平均粒径約 5 mに銅粉 (高純度化学研究所製) 20 体積部をビーズミルを用いて均一混合した後に、 5 Omm径の容器に入れ、 真空 下、 50MP a、 900〜1, 050 °Cの温度範囲で圧縮成形を行い、 成形体を 得た。  In Example 1, without using carbon fiber, copper powder having an average particle size of about 40 im (manufactured by High Purity Chemical Research Laboratory) 40 parts by volume, copper powder having an average particle size of about 5 m (manufactured by High Purity Chemical Research Laboratory) After 20 parts by volume were uniformly mixed using a bead mill, it was placed in a 5 Omm diameter container, and compression molding was performed in a temperature range of 50 MPa and 900 to 1,050 ° C. under vacuum to obtain a molded body.
充填率は 98 %となり、 熱伝導率と熱膨張率は 370 WZm · K、 1 7 X 1 0— 6ΖΚであった。 尚、 本成形体では Α方向、 B方向の物性の相違は殆ど観ら れなかった。 Filling factor becomes 98%, the thermal conductivity and the thermal expansion rate was 370 WZm · K, 1 7 X 1 0- 6 ΖΚ. In this molded product, there was almost no difference in physical properties between the heel direction and the B direction.
また更にこの成形体に対し、 神戸製鋼社製の HI P装置を用いて、 加熱下、 等 方圧圧縮を行い、 更なる緻密化処理を行った所、 充填率は 99%と向上し、 熱伝 導率と熱膨張率は 38 OWZm · K、 17X 10一6/ Κとなった。 Furthermore, this compact was subjected to isotropic pressure compression under heating using a HIP device manufactured by Kobe Steel, and further densification treatment was performed. As a result, the filling rate was improved to 99%. Den electrical and thermal expansion ratio was 38 OWZm · K, 17X 10 one 6 / kappa.
即ち実施例 1〜4の成形体と比較例 1の成形体とを比較すると、 熱伝導率の値 はほぼ同等であるが、 熱膨張率の値は実施例 1〜4の成形体が有意に小さく、 半 導体基板やセラミック材料との熱膨張率のマッチング性に優れていた。  That is, when comparing the molded body of Examples 1 to 4 and the molded body of Comparative Example 1, the thermal conductivity values are almost the same, but the thermal expansion values of the molded bodies of Examples 1 to 4 are significantly higher. Small and excellent in thermal expansion coefficient matching with semiconductor substrates and ceramic materials.
実施例 5 実験例 2で作成した炭素繊維 Dにオゾン水処理を施した。 即ち E R Cテクノロ ジ一社製オゾン水処理装置を用い、 高オゾン濃度で循環させたオゾン水中で 30 分間炭素繊維の表面処理を行い、 炭素繊維表面を親水化した。 親水化は ESCA を用いた表面官能基分析での C =〇基の濃度ァップのデ一夕より確認した。 Example 5 The carbon fiber D prepared in Experimental Example 2 was treated with ozone water. That is, using an ozone water treatment device manufactured by ERC Technology Co., Ltd., carbon fiber surface treatment was performed for 30 minutes in ozone water circulated at a high ozone concentration to make the carbon fiber surface hydrophilic. The hydrophilization was confirmed from the concentration of C = O group in the surface functional group analysis using ESCA.
この表面親水化した炭素繊維 Dを 60体積部、 平均粒径約 40 mのチタン粉 (高純度化学研究所製) 40体積部、 をビーズミルを用いて均一混合した後に、 50mm径の容器に入れ、 真空下、 50MPa、 1, 500〜1, 650°Cの温 度範囲で圧縮成形を行い、 炭素繊維とチタンからなる複合成形体を得た。  60 parts by volume of this surface-hydrophilized carbon fiber D and 40 parts by volume of titanium powder (manufactured by High Purity Chemical Laboratories) with an average particle size of about 40 m are mixed uniformly using a bead mill, and then placed in a 50 mm diameter container. Under vacuum, compression molding was performed at a temperature range of 50 MPa, 1,500 to 1,650 ° C. to obtain a composite molded body made of carbon fiber and titanium.
比重計算による充填率は 97%であり、 プレス方向に垂直な方向 (A方向) の 熱伝導率および熱膨張率は 1 1 OWZm · :、 6 X 10— 6/K:、 プレス方向 (Β方向) では 7 OW/m · K、 7 X 10— δΖΚであった。 Filling rate by the specific gravity calculation is 97%, the thermal conductivity and thermal expansion coefficient in the direction perpendicular to the pressing direction (A direction) 1 1 OWZm ·:, 6 X 10- 6 / K :, pressing direction (beta direction ) 7 OW / m · K, 7 X 10— δ ΖΚ.
更にこの成形体に対し、 神戸製鋼社製の HI Ρ装置を用いて、 加熱下、 等方圧 圧縮を行い、 更なる緻密化処理を行った所、 充填率は 99%と向上し、 先の A方 向の熱伝導率および熱膨張率は 12 OWZm · K、 6 X 1 Ο—6ノ Κ、 Β方向で は 8 OW/m · K、 6X 10_6ノ Κとなった。 Furthermore, when this compact was subjected to isotropic pressure compression with heating using a HI Ρ device manufactured by Kobe Steel, and further densified, the filling rate improved to 99%. thermal conductivity and thermal expansion coefficient of a direction is 12 OWZm · K, 6 X 1 Ο- 6 Bruno Κ, 8 OW / m · K at Β direction became 6X 10_ 6 Bruno kappa.
比較例 2 Comparative Example 2
実施例 5において、 炭素繊維を用いず、 平均粒径約 40 mのチタン粉 (高純 度化学研究所製) を 5 Omm径の容器に入れ、 真空下、 50MP a、 1, 500 〜1, 650°Cの温度範囲で圧縮成形を行い、 成形体を得た。  In Example 5, without using carbon fiber, titanium powder having an average particle size of about 40 m (manufactured by Kojundo Chemical Laboratories) was placed in a 5 Omm diameter container, and 50 MPa, 1, 500-1 Compression molding was performed in the temperature range of 650 ° C to obtain a molded body.
充填率は 98 %となり、 熱伝導率と熱膨張率は 2 OWZm · K、 8 X 10一6 ΖΚであった。 尚、 本成形体では Α方向、 B方向の物性の相違は殆ど観られなか つ 7こ。 The filling rate was 98%, and the thermal conductivity and the thermal expansion coefficient were 2 OWZm · K, 8 X 10 16 . In this compact, there are almost no differences in the physical properties between the heel direction and the B direction.
また更にこの成形体に対し、 神戸製鋼社製の HI P装置を用いて、 加熱下、 等 方圧圧縮を行い、 更なる緻密化処理を行った所、 充填率は 99%と向上したが、 熱伝導率と熱膨張率は 2 OW/m* K、 8 X 10— 6ΖΚと殆ど変わらなかった。 即ち実施例 5の成形体は比較例 2の成形体と比較すると、 熱伝導率が著しく向 上しており、 放熱性に優れていた。 また熱膨張率は実施例 5の成形体が有意に小 さく、 半導体基板やセラミック材料の熱膨張率とのマッチング性に優れていた。 発明の効果 Furthermore, when this compact was subjected to isotropic pressure compression with heating using a HIP apparatus manufactured by Kobe Steel, and further densified, the filling rate improved to 99%. thermal conductivity and thermal expansion coefficient were almost the same as 2 OW / m * K, 8 X 10- 6 ΖΚ. That is, the molded product of Example 5 had a significantly improved thermal conductivity and excellent heat dissipation compared with the molded product of Comparative Example 2. Further, the thermal expansion coefficient of the molded body of Example 5 was significantly small, and the matching with the thermal expansion coefficient of the semiconductor substrate or the ceramic material was excellent. The invention's effect
本発明の複合材料は、 優れた熱伝導率を有し、 高い放熱性能を有する。 本発明 の複合材料は、 代表的な半導体基板材料である S i、 I n P、 G a A sに近い熱 膨張率の値を有する為、 例えば、 これら半導体基板材料上に直接積層した場合で も、 熱応力発生が少ない等の利点がある。 本発明の複合材料は、 軽量で機械特性 に優れる。 本発明の製造方法によれば、 該複合材料を製造することができる。 本発明の複合材料は、 整列化、 積層化、 配列化の如き加工処理を施し、 黒 部 分の整列角度、 籍層状態の方向性などを調節し、 熱伝導率、 熱膨張率等に関して 空間的異方性を実現有すること力 S可能になる。 また放熱板として用いた場合、 熱 伝達量や熱膨張量が周辺機器との関係において過不足が起きないように目的に応 じて調整することができる 産業上の利用可能性  The composite material of the present invention has excellent heat conductivity and high heat dissipation performance. Since the composite material of the present invention has a thermal expansion coefficient value close to Si, InP, and GaAs, which are typical semiconductor substrate materials, for example, when laminated directly on these semiconductor substrate materials. However, there are advantages such as less generation of thermal stress. The composite material of the present invention is lightweight and excellent in mechanical properties. According to the production method of the present invention, the composite material can be produced. The composite material of the present invention is subjected to processing such as alignment, lamination, and arrangement, and the alignment angle of the black portion, the direction of the film layer state, etc. are adjusted, and the thermal conductivity, thermal expansion coefficient, etc. It is possible to have a realistic anisotropy. In addition, when used as a heat sink, the amount of heat transfer and thermal expansion can be adjusted according to the purpose so that excess or deficiency does not occur in relation to peripheral devices.
本発明の複合材料は、 その熱伝導率の高さを利用することで、 電子部品用放熱 板として用いることができる。 また、 黒鉛化繊維フイラ一の添加量を多くするこ とで、 高い熱伝導度が得られるため、 電子部品においても、 耐熱性が要求される 自動車ゃ大電流を必要とする産業用パワーモジュールのコネクタ等に好適に用い ることができる。 具体的には、 放熱板、 半導体パッケージ用部品、 ヒートシンク、 ヒートスプレッダ一、 ダイパッド、 プリント配線基板、 冷却ファン用部品、 筐体 等に用いることができる。 また、 熱交換器の部品として用いることもでき、 ヒー トパイプに用いることができる。 さらに、 炭素繊維フイラ一の電波遮蔽性を利用 し、 特に GH z帯の電波遮蔽用部材として好適に用いること力 S出来る。  The composite material of the present invention can be used as a heat sink for electronic components by utilizing its high thermal conductivity. In addition, since high thermal conductivity can be obtained by increasing the amount of graphitized fiber filler, automobiles that require heat resistance in electronic components are also used in industrial power modules that require large currents. It can be suitably used for connectors and the like. Specifically, it can be used for heat sinks, semiconductor package components, heat sinks, heat spreaders, die pads, printed wiring boards, cooling fan components, housings, and the like. It can also be used as a heat exchanger component and can be used as a heat pipe. Furthermore, it is possible to use the radio wave shielding property of a carbon fiber filler, and particularly to use it suitably as a radio wave shielding member in the GH z band.

Claims

請 求 の 範 囲 The scope of the claims
1. 平均繊維径 0. l〜30 m、 真密度 2. 0〜2. 5 g/c cのピッチ系 黒鉛化炭素繊維 (A成分) およびマトリックス金属 (B成分) を含有し、 A成分 と B成分との体積比 (AZB) が 20/80〜 90/10である複合材料。 1. Contains pitch-based graphitized carbon fiber (component A) and matrix metal (component B) with an average fiber diameter of 0.1 to 30 m and true density of 2.0 to 2.5 g / cc. A composite material with a volume ratio (AZB) to the component of 20/80 to 90/10.
2. A成分の c軸方向の結晶子サイズ (L c ) ifi 20〜 100 nmである請 求項 1記載の複合材料。 2. The crystallite size of the A component in the c-axis direction (L c) ifi The composite material according to claim 1, which is 20 to 100 nm.
3. A成分の a b軸方向の結晶子サイズ (La) 力 30〜200 nmである 請求項 1に記載の複合材料。 3. The composite material according to claim 1, wherein the crystallite size (La) force of the A component in the ab axis direction is 30 to 200 nm.
4. A成分の平均繊維長が、 20〜200 mである請求項 1に記載の複合材 料。 4. The composite material according to claim 1, wherein the average fiber length of the component A is 20 to 200 m.
5. A成分のァスぺクト比が、 2〜 8000である請求項 1に記載の複合材料。 5. The composite material according to claim 1, wherein the aspect ratio of the A component is 2 to 8000.
6. A成分は、 2, 800〜3, 200°Cで黒鉛化処理したピッチ系黒鉛化炭 素繊維である請求項 1に記載の複合材料。 6. The composite material according to claim 1, wherein component A is pitch-based graphitized carbon fiber graphitized at 2,800 to 3,200 ° C.
7. A成分の熱伝導率は、 400〜 700 W/m · Kである請求項 1に記載の 複合材料。 7. The composite material according to claim 1, wherein the thermal conductivity of the component A is 400 to 700 W / m · K.
8. A成分は、 短繊維、 不織布およびランダムマットから選ばれる少なくとも —種の形態である請求項 1に記載の複合材料。 8. The composite material according to claim 1, wherein the component A is in at least one form selected from short fibers, non-woven fabrics, and random mats.
9. A成分は、 短繊維の形態である請求項 8に記載の複合材料。 9. The composite material according to claim 8, wherein the component A is in the form of a short fiber.
10. A成分は、 不織布またはランダムマットの形態である請求項 8に記載の 複合材料。 10. The composite material according to claim 8, wherein the component A is in the form of a nonwoven fabric or a random mat.
11. A成分は、 短繊維と、 不織布またはランダムマットとの混合物の形態で ある請求項 8に記載の複合材料。 11. The composite material according to claim 8, wherein the component A is in the form of a mixture of short fibers and a nonwoven fabric or a random mat.
12. B成分は、 金、 銀、 銅、 アルミニウム、 マグネシウム、 ベリリウム、 夕 ングステン、 ガリウム、 ハフニウム、 チタン、 珪素、 これら金属間の合金、 これ ら金属を主成分とする、 他種金属との合金、 これらの炭化物、 これらの窒化物お よびこれらの炭窒ィ匕物からなる群より選ばれる少なくとも一種である請求項 1に 記載の複合材料。 12. B component is gold, silver, copper, aluminum, magnesium, beryllium, evening tungsten, gallium, hafnium, titanium, silicon, alloys between these metals, alloys with these metals as main components 2. The composite material according to claim 1, which is at least one selected from the group consisting of these carbides, these nitrides, and these carbonitrides.
13. B成分は、 銅、 および銅を主成分とする合金、 炭化物、 窒化物、 炭窒化 物からなる群から選ばれる材料である請求項 12に記載の複合材料。 13. The composite material according to claim 12, wherein the B component is a material selected from the group consisting of copper and copper-based alloys, carbides, nitrides, and carbonitrides.
14. B成分は、 チタン、 およびチタンを主成分とする合金、 炭化物、 窒化物、 炭窒化物からなる群から選ばれる材料である請求項 12に記載の複合材料。 14. The composite material according to claim 12, wherein the B component is a material selected from the group consisting of titanium and titanium-based alloys, carbides, nitrides, and carbonitrides.
15. 請求項 1に記載の複合材料からなる放熱部材。 15. A heat dissipating member comprising the composite material according to claim 1.
16. (1) 短繊維の形態の平均繊維径 0. 1〜30 m、 真密度 2. 0〜2.16. (1) Average fiber diameter in the form of short fibers 0.1 to 30 m, true density 2.0 to 2.
5 g/c cのピッチ系黒鉛化炭素繊維 (A成分) およびマトリックス金属 (B成 分) を混合する工程、 A step of mixing 5 g / c c of pitch-based graphitized carbon fiber (component A) and matrix metal (component B);
(2) 得られた混合物を圧縮成形して成形体を得る工程、 および  (2) a step of compression-molding the obtained mixture to obtain a molded body, and
(3) 成形体を加熱し、 B成分を成形体の空隙に含浸せしめる工程、  (3) heating the molded body and impregnating the B component into the voids of the molded body,
を含む複合材料の製造方法。 The manufacturing method of the composite material containing this.
17. 平均繊維径 0. 1〜30 m、 真密度 2. 0〜2. 5 g/c cのピッチ 系黒鉛化炭素繊維 (A成分) 力、ら主として成る不織布またはランダムマットを、 マトリックス金属 (B成分) の存在下で加熱し、 必要に応じて圧縮を施しながら、 B成分を熔融して不織布またはランダムマットの空隙に含浸せしめる工程を含む 複合材料の製造方法。 17. Average fiber diameter 0.1 to 30 m, true density 2.0 to 2.5 g / cc pitch Graphitized carbon fiber (component A) Strength, mainly non-woven fabric or random mat is heated in the presence of matrix metal (component B), and compressed as necessary to melt the component B to create a non-woven fabric or random mat A method for producing a composite material comprising a step of impregnating a void of a random mat.
PCT/JP2007/071278 2006-10-26 2007-10-25 Composite material and method for producing the same WO2008050906A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006291031A JP2010034089A (en) 2006-10-26 2006-10-26 Metal-carbon composite material, and heat dissipating member made of the composite material
JP2006-291031 2006-10-26

Publications (1)

Publication Number Publication Date
WO2008050906A1 true WO2008050906A1 (en) 2008-05-02

Family

ID=39324684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071278 WO2008050906A1 (en) 2006-10-26 2007-10-25 Composite material and method for producing the same

Country Status (3)

Country Link
JP (1) JP2010034089A (en)
TW (1) TW200837202A (en)
WO (1) WO2008050906A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110579951A (en) * 2018-06-07 2019-12-17 佳能株式会社 Fixing member and thermal fixing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6307395B2 (en) * 2014-09-16 2018-04-04 日本グラファイトファイバー株式会社 Heat dissipation sheet
US20220228819A1 (en) * 2020-03-17 2022-07-21 Yamaichi Special Steel Co., Ltd. Heat exchanger member, heat exchanger, and cooling system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196342A (en) * 1986-02-20 1987-08-29 Mitsubishi Chem Ind Ltd Manufacture of carbon-fiber preform for composite material
JPH1129830A (en) * 1997-07-11 1999-02-02 Agency Of Ind Science & Technol Fiber reinforced composite using controlled fiber with fine structure
JPH11172579A (en) * 1997-12-05 1999-06-29 Osaka Gas Co Ltd Carbon fiber non-woven fabric
JP2005082876A (en) * 2003-09-11 2005-03-31 Sakai Ovex Co Ltd Carbon fiber reinforced aluminum based composite material
JP2006002240A (en) * 2004-06-21 2006-01-05 Hitachi Metals Ltd High thermal conduction-low thermal expansion composite body and its production method
WO2006088065A1 (en) * 2005-02-16 2006-08-24 Hitachi Metals, Ltd. Heat dissipating member and method for manufacture thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196342A (en) * 1986-02-20 1987-08-29 Mitsubishi Chem Ind Ltd Manufacture of carbon-fiber preform for composite material
JPH1129830A (en) * 1997-07-11 1999-02-02 Agency Of Ind Science & Technol Fiber reinforced composite using controlled fiber with fine structure
JPH11172579A (en) * 1997-12-05 1999-06-29 Osaka Gas Co Ltd Carbon fiber non-woven fabric
JP2005082876A (en) * 2003-09-11 2005-03-31 Sakai Ovex Co Ltd Carbon fiber reinforced aluminum based composite material
JP2006002240A (en) * 2004-06-21 2006-01-05 Hitachi Metals Ltd High thermal conduction-low thermal expansion composite body and its production method
WO2006088065A1 (en) * 2005-02-16 2006-08-24 Hitachi Metals, Ltd. Heat dissipating member and method for manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110579951A (en) * 2018-06-07 2019-12-17 佳能株式会社 Fixing member and thermal fixing device
CN110579951B (en) * 2018-06-07 2022-05-03 佳能株式会社 Fixing member and thermal fixing device

Also Published As

Publication number Publication date
TW200837202A (en) 2008-09-16
JP2010034089A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP4538502B2 (en) Pitch-based carbon fiber, mat, and resin molded body containing them
JP4950994B2 (en) Thermally conductive adhesive
EP1956110B1 (en) Metal-based composite material containing both micro-sized carbon fiber and nano-sized carbon fiber
JP4441768B2 (en) Metal-graphite composite material having high thermal conductivity and method for producing the same
DE60110180T2 (en) Thermally conductive polymer film
JP4711165B2 (en) High thermal conductivity / low thermal expansion composite and method for producing the same
EP2289861A1 (en) Carbon fiber carbon composite molded body, carbon fiber-reinforced carbon composite material and manufacturing method thereof
WO2006112516A1 (en) Carbon fiber composite sheet, use of the same as heat transferring article, and sheet for pitch-based carbon fiber mat for use therein
TWI448378B (en) Method for manufacturing c/c composite material molded body
CN111978732A (en) Thermal interface material with three-dimensional heat conduction network structure
JP2008049607A (en) Heat-conductive laminate with bonded thin film of electrical insulation
JP2008208316A (en) Carbon fiber composite material
JP2008208316A5 (en)
JP2002097372A (en) Heat-conductive polymer composition and heat-conductive molding
JP2009108424A (en) Thermally conductive filler and molded product using the same
JP2008189867A (en) Composite material of carbon fiber-reinforced thermoplastic resin
JP4538607B2 (en) High thermal conductivity of SiC / SiC composites using carbon nanotubes or nanofibers
JP2009215404A (en) Sheet-shaped thermally conductive molded product
JP5015490B2 (en) Thermally conductive filler and composite molded body using the same
WO2008050906A1 (en) Composite material and method for producing the same
KR20210015240A (en) Method for preparing graphite sheet
JP2009108425A (en) Carbon fiber and composite material using the same
JP2008308543A (en) Carbon fiber composite sheet and its manufacturing method
JP2008189866A (en) Heat radiation material comprising carbon fiber-reinforced thermosetting resin
JP4971958B2 (en) Sheet-like thermally conductive molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP