JP2004002096A - Carbon fiber-reinforced carbon composite material and its producing process as well as heat sink - Google Patents

Carbon fiber-reinforced carbon composite material and its producing process as well as heat sink Download PDF

Info

Publication number
JP2004002096A
JP2004002096A JP2002158750A JP2002158750A JP2004002096A JP 2004002096 A JP2004002096 A JP 2004002096A JP 2002158750 A JP2002158750 A JP 2002158750A JP 2002158750 A JP2002158750 A JP 2002158750A JP 2004002096 A JP2004002096 A JP 2004002096A
Authority
JP
Japan
Prior art keywords
carbon
felt
composite material
carbon fiber
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002158750A
Other languages
Japanese (ja)
Inventor
Toshiji Hiraoka
平岡 利治
Naoto Ota
太田 直人
Hirotake Shibata
柴田 寛丈
Yasuhisa Ogita
荻田 泰久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2002158750A priority Critical patent/JP2004002096A/en
Publication of JP2004002096A publication Critical patent/JP2004002096A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon fiber-reinforced carbon composite material which has high thermal conductivity and a small anisotropic ratio of the thermal conductivity and is isotropic, and to provide a process for producing the same. <P>SOLUTION: In the carbon fiber-reinforced carbon composite material, pyrolytic carbon is infiltrated into carbonaceous felt. The thermal conductivity of the composite material in any of X (length), Y (width) and Z (height) directions is ≥250 W/(m K), and the value (anisotropic ratio) obtained by dividing the maximum value of the thermal conductivities in the X, Y and Z directions by the minimum value thereof is ≤1.5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、炭素繊維強化炭素複合材料及びその製造方法に関し、さらに詳しくいえば、高熱伝導率を有し、X、Y、Z方向(縦、横、高さ方向)の熱伝導率の異方性が小さな等方性の炭素繊維強化炭素複合材料及びその製造方法に関する。
【0002】
【従来の技術】
炭素繊維強化炭素複合材料(以下、C/Cという。)は炭素繊維と炭素マトリックスからなっており、炭素繊維の配向方向によって熱伝導性や電気伝導性に方向性が生じる。例えば、炭素繊維クロスに熱硬化性樹脂等を含浸し、積層、成形、炭化した板状の2D C/Cについてみると、平面方向は熱伝導性及び電気伝導性は優れるものの、厚さ方向の熱伝導性及び電気伝導性は平面方向に比べてきわめて低く、極めて異方性が強い材料である。
【0003】
現在使用されている高熱伝導率のC/Cは、特に、厚さ方向に高熱伝導性が得られるように設計されている。
【0004】
この種のC/Cとしては、例えば、特開平5−306168号公報に記載されているものがある。このものは、X、Y、Z方向のいずれか一方向の熱伝導率が300W/(m・K)以上であり、これら三方向の各熱伝導率の異方比が7以下であるものである。そして、このものは、5〜30MW/mレベルの高い熱負荷に定常的に曝される部位、例えば核融合プラズマ閉じ込め装置における、ダイバーターやリミター等のプラズマ対向壁、高温・高速のガス流に曝され、高熱伝導性と耐熱衝撃と共に、更に高い材料強度が要求される部位、例えば航空宇宙分野に於けるロケットノズルや耐熱アーマー材等、X線ターゲット材の如く電子線によって局部的に照射、加熱されるが、その熱を放射、伝熱等によって分散し、ターゲット材の破壊を防ぐことが必要な部位等に使用される。
【0005】
ところで、近年、半導体素子のパワーレベルが向上するとともに、半導体素子の小型化が進んでいる。これにともなって、半導体素子の接合部の温度を安全な動作温度範囲まで下げるヒートシンクも小型化が要求されている。また、小型化に伴い、従来のヒートシンクのように一方向への放熱特性に優れたものでなく、全ての方向に同等に放熱できる等方性を有したものも併せて要求されるようになってきている。このため、従来のアルミニウムや銅等の金属製のヒートシンクよりもさらに効率良く放熱できるものが要求されている。
【0006】
【発明が解決しようとする課題】
本発明は高熱伝導率を有し、熱伝導率の異方比が小さく等方性を有するC/C及びその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
前記課題を解決するために、本発明者らは、前述の特開平5−306168号公報に記載されたC/Cについて検討した結果、使用する炭素質フェルトの炭素繊維の配向を調整することによって、熱伝導率の各方向の異方比を1.5以下とすることができることを見出し本発明を完成した。
【0008】
すなわち、本発明のC/Cは、炭素質フェルト内部に、熱分解炭素が浸透されてなり、X、Y、Z方向(縦、横、高さ方向)のいずれか一方向の熱伝導率が250W/(m・K)以上であり、前記X、Y、Z方向(縦、横、高さ方向)の熱伝導率の最大値を最小値で除した値(異方比)が1.5以下であるC/Cを要旨とするものである。また、炭素質フェルトの炭素繊維がX、Y、Z方向に配向調整されているものである。ここで、炭素繊維の配向調整は、種々の方法で行うことが可能であるが、ニードルパンチ処理を行うことによって配向調整を行うことが好ましい。また、炭素繊維のX、Y、Z方向の繊維配向比は、いずれか一方向の配向比が30である時、他の二方向の配向比が35であるものである。また、炭素質フェルトがPAN系フェルト、レーヨン系フェルト、ピッチ系フェルトのいずれかであるものである。
【0009】
また、本発明の高熱伝導C/Cは、前記C/Cに熱間等方圧加圧法(以下、HIPという。)あるいは熔湯鍛造法で高熱伝導の金属材料が含浸されているものである。そして、この金属材料が、黒鉛及び銅との反応による標準生成エンタルピーがそれぞれ1モルあたり−50kJ以下である元素群から選ばれる少なくとも1種の金属材であり、この元素群から選ばれる金属材を1〜7質量%含有し、残部が実質的に銅からなる銅合金であるものである。あるいは、金属材料が、シリコンを10%以上含有したアルミニウム合金であるものである。
【0010】
また、本発明のC/Cは、炭素質フェルトに、前記炭素質フェルト内の炭素繊維の配向が調整されたものを使用し、この炭素質フェルトを化学的気相含浸処理(以下、CVI処理という。)によってかさ密度が1.6g/cm以上になるまで熱分解炭素を浸透した後、黒鉛化処理を行うものである。そして、これに加えて、黒鉛化処理後に、高熱伝導の金属材料をHIPあるいは熔湯鍛造法で含浸することもできる。また、炭素質フェルトがPAN系フェルトである場合は、炭素繊維の配向調整が耐炎繊維の状態で行われるものである。また、炭素質フェルトがレーヨン系フェルトである場合は、炭素繊維の配向調整が焼成前の合成繊維の状態で行われるものである。また、炭素質フェルトがピッチ系フェルトである場合は、炭素繊維の配向調整が弾性係数の低い不融化繊維または、弾性係数の低い焼成繊維の状態で行われるものである。
【0011】
また、本発明は請求項1乃至12のいずれかに記載のフェルトC/Cを用いたヒートシンクを要旨とする。
優れた熱伝導性を有するため、従来の金属製のヒートシンクよりも効率的に放熱することが可能となる。
【0012】
【発明の実施の形態】
以下、本発明のC/Cの実施形態の一例について説明する。
【0013】
本発明において使用される炭素質フェルトとは、炭素単繊維が絡み合って構成される不織物状物体ということができ、繊維を織って形成される織物とは明確に区別される。この炭素質フェルトを構成する炭素繊維としては、PAN系、ピッチ系、レーヨン系炭素繊維を使用することが好ましい。特に、ピッチ系炭素繊維が好ましい。
【0014】
本発明に用いる炭素質フェルトのかさ密度は0.03〜0.3g/cmであることが好ましい。炭素質フェルトのかさ密度が0.03g/cmに達しないと熱分解炭素含浸に要する時間が長くなり、又、炭素繊維の含有率が少なすぎると強化複合材料としての所期の目的が達成できない。また、炭素質フェルトのかさ密度が0.3g/cmより大きいと炭素質フェルトの特徴である等方的な性質が損なわれる。
【0015】
また、この炭素質フェルトを好ましくは高純度化処理し、続いて炭素質フェルト内部に緻密でしかも高純度の熱分解炭素を、嵩密度が1.6g/cm以上、好ましくは1.6〜2.0g/cmとなる様に浸透せしめる。なお、ここで浸透とは、フェルト基材の気孔に含浸する場合、フェルト基材の気孔壁を覆うような場合、さらに含浸と気孔壁を覆うような状態を組合せた場合も包含するものとする。また、高純度とは全灰分量が10ppm以下、さらに好ましくは5ppm以下であることを意味する。なお、高純度化処理は、適宜必要に応じて行うことができ、その高純度化処理方法としては、公知の方法である炭素質フェルトを減圧、高温下にてハロゲン含有ガスに接触せしめ、不純物として含まれる金属類をより蒸気圧の高いハロゲン化物に変えて除去する手段を例示出来るが、これに限定されるものではない。また、この際使用されるハロゲン含有ガスとしては塩素又はフッ素並びにそれ等の化合物のガス等ハロゲン含有ガスを例示でき、具体的には二フッ化エタン、フッ素ガス等が挙げられる。また、高純度化処理を行う場合は、炭素質フェルトの高純度化はできるだけ内部まで高純度化することが好ましく、このため、熱分解炭素を浸透せしめる前に予め行うのが効果的である。即ち、炭素質フェルト内部まで高純度化を進める為には、ハロゲン化合物が内部まで進入し、且つハロゲン化され気化した不純物がフェルト外部にまで排除されなければ効果は少ない。この為には工程の順序としては、通気性を有する炭素質フェルトを予め高純度化した後に熱分解炭素の浸透(所謂CVI処理)を施すことが好ましい。
【0016】
なお、かさ密度が1.7g/cmに達しない場合は強度が若干弱くなる傾向があり、C/Cとして十分な強度が得られない。しかし、熱分解炭素自体の理論密度は約2.26g/cmであり、しかも炭素繊維を有するため、原理上この数値以上には大きくは出来ず、製品中には僅かな細孔空間等も存在するので、現実に得られるC/Cのかさ密度は2.05〜2.10g/cm程度が上限となる。この程度まで熱分解炭素を浸透、析出させるには非常に析出効率も低下し、反応時間も長くなり経済的にも不利となる。これ等を総合勘案してC/Cのかさ密度は1.6〜2.0g/cm付近に止めることが好ましい範囲である。
【0017】
本発明において熱分解炭素を浸透せしめる方法自体は、例えば「炭素材料入門」(炭素材料学会、昭和47年11月発行)等の文献に記されている通り、従来公知の方法で良い。その一般的実施態様を記すと、炭素発生材料、例えば、炭素数1〜8、特に炭素数3の炭化水素ガスもしくは炭化水素化合物を熱分解させ、基材上に熱分解炭素を析出浸透させたものである。これに対して濃度調節用として炭化水素濃度(通常希釈ガスとしてHガスを用いる)は3〜30%好ましくは5〜15%とし、全圧を100Torr、好ましくは50Torr以下の条件で操作することが好ましい。
【0018】
含浸方法としては、従来の等温法、温度勾配法、圧力勾配法等があり、更に最近の方法としては時間の短縮化及び緻密化を目的としたパルス法が使用出来る。
【0019】
本発明において、熱分解炭素を浸透させる条件等は何等重要ではなく、上記所定の要件を有する熱分解炭素が炭素質フェルト内深層部に浸透析出される限り、各種の方法がいずれも使用出来るが、その一つの態様として、CVI処理を例示すると下記の通りである。
【0020】
熱分解炭素のCVI処理において、処理温度は1300℃以下、圧力は100Torr(13.3kPa)以下、好ましくは50Torr(6.6kPa)以下であることが好ましい。1300℃より高くなると熱分解炭素が基材表面にのみ析出しやすくなり、基材フェルトの表面近傍を熱分解炭素膜で閉気孔を形成してしまうので、もはや含浸できなくなる傾向がある。また100Torr(13.3kPa)より大きい場合、ガス拡散が悪くなり、十分に基材フェルトの内部にまで原料ガスが到達しにくくなり、やはり表面に閉気孔を形成してしまう傾向がある。
【0021】
また、炭素質フェルトの炭素繊維の配向調整は、各種方法を適宜選択することができる。中でも、ニードルパンチ処理が工業的に生産性が高く、配向調整を行いやすいので好ましい。
【0022】
炭素質フェルト内部の炭素繊維の配向調整は、炭素繊維の種類によって、炭素繊維の状態に合わせて行うことが好ましい。例えば、炭素繊維が、PAN系である場合は、空気中200〜300℃で耐炎化処理し安定化した耐炎繊維の状態で行われることが好ましい。また、炭素繊維がレーヨン系である場合は、焼成前の合成繊維の状態で行われることが好ましい。また、炭素繊維がピッチ系フェルトである場合は、弾性係数の低い不融化繊維または焼成繊維の状態で行われることが好ましい。
【0023】
また、炭素繊維の配向調整の際、炭素質フェルトの炭素繊維の少なくとも三方向の一方向の密度が0.03〜0.3g/cm及び配向性が三次元のX方向、Y方向、Z方向(X+Y+Z=100とする)の比で、いずれか一方向の配向比が30であるときに、他の二方向の配向比がそれぞれ35となるように調整することが好ましい。この際、熱分解炭素の含浸量を60〜85体積%とすることにより、上記一方向の熱伝導率が著しく向上し、250W/(m・K)以上、好ましくは300W/(m・K)以上、さらに好ましくは350W/(m・K)以上とすることができる。このように、X、Y、Z方向の炭素繊維の繊維配向比を配向調整することによって、各方向の熱伝導率の異方比が1.5以下のC/Cとすることができる。
【0024】
上述した構成のC/Cは、以下のようにして製造される。
【0025】
まず、ニードルパンチ処理によって、炭素質フェルト内部の炭素繊維の配向調整を行う。このとき、炭素繊維の繊維配向比X:Y:Zが35:35:30となるように調整することが好ましい。なお、ニードルパンチ処理を行う時期は、前述したように、炭素質フェルトを形成する炭素繊維の種類によって適宜選択するようにする。ついで、CVI処理によって嵩密度が1.7g/cm以上になるまで、熱分解炭素を浸透させる。これによって、十分な強度を有するC/Cを得ることができるようになる。このように、本実施形態に係るC/Cは、基本的には炭素質フェルトを高純度化し、次いで該フェルト内部に熱分解炭素を浸透せしめて形成される。その後、好ましくは2500℃以上、特に好ましくは2800℃以上、さらに好ましくは3000℃以上の高温で黒鉛化する。熱分解炭素は特に易黒鉛化性の材料であるため熱処理による熱伝導率の向上は非常に顕著である。
【0026】
このようにすることによって、本発明に係るC/Cは、従来のC/Cに比較して高熱伝導率を有するとともに、各方向の熱伝導率の異方比が1.5以下であるので均一に放熱することができる。
【0027】
さらに、前述のように、熱分解炭素を浸透し、黒鉛化処理を行った後に、高熱伝導の金属材料をHIPあるいは熔湯鍛造法で含浸することで、熱伝導率をさらに向上させることも可能である。
【0028】
含浸させる高熱伝導の金属材料としては、黒鉛及び銅との反応による標準生成エンタルピーがそれぞれ1モルあたり−50kJ以下である元素群から選ばれる少なくとも1種の金属材料であり、この元素群から選ばれる金属材料を1〜7質量%含有し、残部が実質的に銅からなる銅合金であるであることが好ましい。一般に、銅は黒鉛に対して濡れ性が悪く、銅を含浸した場合は、気孔壁に十分に密着せずに微視的に含浸むらを生じるため、熱伝導率の向上が得られない。ところが、黒鉛及び銅との反応による標準生成エンタルピーがそれぞれ1モルあたり−50kJ以下である元素群から選ばれる金属材を銅に1〜7質量%含有させることで、銅と黒鉛との濡れ性が改善され、銅がC/C中に均等に含浸されて、熱伝導率が向上する。
【0029】
ここで、黒鉛及び銅との反応による標準生成エンタルピーがそれぞれ1モルあたり−50kJ以下である元素群から選ばれる金属材としては、例えば、スカンジウム、イットリウム、ジルコニウム、ランタン、ハフニウム等が例示できる。
【0030】
また、含浸させる高熱伝導の金属材料としては、シリコンを10%以上含有したアルミニウム合金を使用することもできる。シリコンを10%以上含浸させることで、アルミニウム合金の融点が低下し、アルミニウム合金を含浸する際に炭化アルミニウムを形成することがなく、アルミニウム合金を含浸した後であっても、空気中で保管することが可能となる。
【0031】
以上のように、炭素質フェルトの炭素繊維の配向を調整し、熱伝導率の各方向の異方比を1.5以下、好ましくは1.2以下とすることで半導体基板用のヒートシンクとして、従来のアルミニウムや銅等で構成されていたヒートシンクに比して、効率良く半導体基板の熱を放熱することが可能なヒートシンクとすることができる。さらに、高熱伝導の金属材料を含浸させたC/C材を使用することで、熱伝導特性がより向上したヒートシンクとすることができ、しかも熱伝導率を低下させることなく他の金属材料(例えば銅)に伝導させることが可能となる。
【0032】
半導体用に使用するヒートシンクの模式図を図1に示す。図1中、1は金のワイヤー、2はシリコンチップ、3は本発明に係る等方性のフェルトC/Cからなるヒートシンク、4は半田バンプであり、等方性のフェルトC/Cからなるヒートシンク3を使用することにより、均一にしかも素早く熱を下方に放熱することが可能となる。
【0033】
【実施例】
以下、実施例により、本発明をより具体的に説明する。
【0034】
(実施例1)
マット状の炭素質フェルト内部の炭素繊維をX、Y、Z方向の繊維配向比がそれぞれ35:35:30に配向調整された、嵩密度が0.15g/cmのPAN系フェルト、レーヨン系フェルト、ピッチ系フェルトの3種類の炭素質フェルトを準備した。これら各炭素質フェルトを嵩密度が1.6g/cm以上となるように、CVI処理によって熱分解炭素を浸透せしめる。CVI処理の条件としては、温度1100℃、全圧20Torr(2.7kPa)、Cガス6l(リットル)/min、Hガス70l/minで浸透処理後、2800℃で黒鉛化処理を行った。各炭素質フェルトから形成されたC/Cの特性を表1に示す。なお、熱伝導率の測定は、直径10mm、厚さ2mmの円柱形状のサンプルを用い、レーザーフラッシュ法(真空理工(株)製の熱伝導率測定装置)で測定した。
【0035】
【表1】

Figure 2004002096
【0036】
(実施例2)
実施例1で製作したピッチ系炭素繊維フェルトを用いたフェルトC/C(かさ密度1.81g/cm)を耐圧容器に収納し、1150℃で溶融した7重量%のジルコニウムを添加した銅を窒素ガスにて12MPaの圧力で1時間加圧含浸して銅含浸C/Cを得た。得られた銅含浸フェルトC/Cの熱伝導率を表2に示す。
【0037】
(実施例3)
実施例1で製作したピッチ系炭素繊維フェルトを用いたフェルトC/C(かさ密度1.81g/cm)を耐圧容器に収納し、650℃で溶融した12シリコン含有アルミニウム合金を窒素ガスにて12MPaの圧力で1時間加圧含浸して銅含浸C/Cを得た。得られたアルミニウム合金含浸フェルトC/Cの熱伝導率を表2に示す。
【0038】
【表2】
Figure 2004002096
【0039】
(比較例)
マット状の炭素質フェルト内部の炭素繊維をX、Y、Z方向の繊維配向比がそれぞれ40:40:20に配向調整された、嵩密度が0.15g/cmのPAN系フェルト、レーヨン系フェルト、ピッチ系フェルトの3種類の炭素質フェルトを準備した。これ以外は、実施例1と同様な方法でC/Cを作製し、各特性を調べた。各特性を表3にまとめて示す。
【0040】
【表3】
Figure 2004002096
【0041】
表1及び表2よりわかるように、炭素繊維を配向調整した炭素質フェルトを使用することで、いずれかの方向の熱伝導率を300W/(m・K)以上、各方向の熱伝導率の異方比を1.5以下とすることが可能であることがわかる。
【0042】
(実施例4)
表1中の実施例1のピッチ系炭素繊維フェルトを用いて作製したフェルトC/C、実施例2で製作した銅合金含浸ピッチ系フェルトC/C、実施例3で製作したアルミニウム合金含浸ピッチ系フェルトC/C、比較例に係るピッチ系フェルトC/Cを加工して図1に示すような半導体用ヒートシンク(放熱基板)に組みこんで熱放散性を調査した。その結果、実施例1乃至3で作製したヒートシンクは比較例で作製したヒートシンクに比べて放熱性に優れるものであった。
【0043】
【発明の効果】
本発明は、以上のように構成されており、炭素繊維フェルトの配向方向を制御することによって高熱伝導率を有するとともに、熱伝導率の異方比が1.5以下の等方性のフェルトC/Cが得られる。したがって、放熱性が均一になり半導体素子用のヒートシンクとしても使用することが可能となる。
【図面の簡単な説明】
【図1】本発明に係るフェルトC/Cをヒートシンクに組み込んだときの模式図である。
【符号の説明】
1 金ワイヤー
2 シリコンチップ
3 ヒートシンク
4 半田パンプ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a carbon fiber reinforced carbon composite material and a method for producing the same, and more specifically, has a high thermal conductivity and anisotropic thermal conductivity in X, Y, and Z directions (vertical, horizontal, and height directions). TECHNICAL FIELD The present invention relates to an isotropic carbon fiber reinforced carbon composite material having small properties and a method for producing the same.
[0002]
[Prior art]
A carbon fiber reinforced carbon composite material (hereinafter, referred to as C / C) is composed of carbon fibers and a carbon matrix, and the heat conductivity and the electric conductivity are directional depending on the orientation direction of the carbon fibers. For example, when looking at a plate-like 2D C / C in which a carbon fiber cloth is impregnated with a thermosetting resin or the like, laminated, formed, and carbonized, the planar direction has excellent heat conductivity and electric conductivity, but the thickness direction is excellent. It is a material having extremely low thermal conductivity and electrical conductivity as compared with the planar direction and extremely strong anisotropy.
[0003]
Currently used high thermal conductivity C / Cs are designed so as to obtain high thermal conductivity in the thickness direction.
[0004]
As this kind of C / C, for example, there is a C / C described in JP-A-5-306168. This has a thermal conductivity of 300 W / (m · K) or more in any one of the X, Y, and Z directions, and an anisotropic ratio of each of the three directions of thermal conductivity of 7 or less. is there. And this is a part which is constantly exposed to a high thermal load of 5 to 30 MW / m 2 , for example, a plasma facing wall such as a diverter or a limiter in a fusion plasma confinement device, a high temperature / high speed gas flow. Exposure to high thermal conductivity and thermal shock as well as local irradiation by electron beams such as X-ray target materials such as rocket nozzles and heat-resistant armor materials in the aerospace field, such as rocket nozzles and heat-resistant armor materials The target material is heated, but the heat is dispersed by radiation, heat transfer, and the like, and is used in a portion where it is necessary to prevent the target material from being broken.
[0005]
By the way, in recent years, the power level of a semiconductor device has been improved and the size of the semiconductor device has been reduced. Accordingly, a heat sink for lowering the temperature of the junction of the semiconductor element to a safe operating temperature range is also required to be downsized. In addition, with the miniaturization, not only heat sinks with excellent heat dissipation characteristics in one direction like conventional heat sinks, but also heat sinks with isotropy that can equally radiate heat in all directions are required. Is coming. For this reason, there is a demand for a heat sink that can dissipate heat more efficiently than a conventional heat sink made of metal such as aluminum or copper.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a C / C having a high thermal conductivity, a small anisotropic ratio of the thermal conductivity and a small isotropic property, and a method for producing the same.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present inventors have studied C / C described in the above-mentioned Japanese Patent Application Laid-Open No. 5-306168. As a result, by adjusting the carbon fiber orientation of the carbonaceous felt to be used. The present inventors have found that the anisotropy ratio of the thermal conductivity in each direction can be set to 1.5 or less, and completed the present invention.
[0008]
That is, in the C / C of the present invention, the pyrolytic carbon is infiltrated into the carbonaceous felt, and the thermal conductivity in any one of the X, Y, and Z directions (vertical, horizontal, and height directions) is increased. 250 W / (m · K) or more, and the value (anisotropic ratio) obtained by dividing the maximum value of the thermal conductivity in the X, Y, and Z directions (vertical, horizontal, height directions) by the minimum value is 1.5. The following is a summary of C / C. The carbon fibers of the carbonaceous felt are oriented in the X, Y, and Z directions. Here, the orientation of the carbon fiber can be adjusted by various methods, but it is preferable to adjust the orientation by performing a needle punching process. Further, the carbon fiber orientation ratio in the X, Y, and Z directions is such that the orientation ratio in any one direction is 30 and the orientation ratio in the other two directions is 35. Further, the carbonaceous felt is any one of PAN-based felt, rayon-based felt, and pitch-based felt.
[0009]
The high thermal conductivity C / C of the present invention is obtained by impregnating the C / C with a metal material having high thermal conductivity by a hot isostatic pressing method (hereinafter, referred to as HIP) or a molten forging method. . The metal material is at least one metal material selected from an element group whose standard enthalpy of formation by reaction with graphite and copper is -50 kJ or less per mole, and the metal material selected from the element group is It is a copper alloy containing 1 to 7% by mass and the balance substantially consisting of copper. Alternatively, the metal material is an aluminum alloy containing 10% or more of silicon.
[0010]
In the C / C of the present invention, a carbonaceous felt in which the orientation of carbon fibers in the carbonaceous felt is adjusted is used, and the carbonaceous felt is subjected to a chemical vapor impregnation treatment (hereinafter, CVI treatment). ), A pyrolysis carbon is infiltrated until the bulk density becomes 1.6 g / cm 3 or more, and then a graphitization treatment is performed. In addition, after the graphitization treatment, a metal material having high thermal conductivity can be impregnated by HIP or molten forging. When the carbonaceous felt is a PAN-based felt, the orientation of the carbon fibers is adjusted in the state of the flame-resistant fibers. When the carbonaceous felt is a rayon-based felt, the orientation of the carbon fibers is adjusted in the state of the synthetic fibers before firing. When the carbonaceous felt is a pitch-based felt, the orientation of the carbon fibers is adjusted in the state of infusible fibers having a low elastic coefficient or fired fibers having a low elastic coefficient.
[0011]
Further, the present invention provides a heat sink using the felt C / C according to any one of claims 1 to 12.
Because of having excellent thermal conductivity, heat can be radiated more efficiently than a conventional metal heat sink.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an example of a C / C embodiment of the present invention will be described.
[0013]
The carbonaceous felt used in the present invention can be said to be a nonwoven-like object constituted by entangled carbon single fibers, and is clearly distinguished from a woven fabric formed by weaving fibers. As the carbon fibers constituting the carbonaceous felt, it is preferable to use PAN-based, pitch-based, and rayon-based carbon fibers. In particular, pitch-based carbon fibers are preferred.
[0014]
It is preferred bulk density of the carbonaceous felt for use in the present invention is 0.03 to 0.3 g / cm 3. If the bulk density of the carbonaceous felt does not reach 0.03 g / cm 3 , the time required for impregnating the pyrolytic carbon becomes long, and if the content of carbon fiber is too small, the intended purpose as a reinforced composite material is achieved. Can not. On the other hand, if the bulk density of the carbonaceous felt is greater than 0.3 g / cm 3 , the characteristic isotropic property of the carbonaceous felt is impaired.
[0015]
Further, this carbonaceous felt is preferably subjected to a high-purification treatment, and then dense and high-purity pyrolytic carbon is placed inside the carbonaceous felt at a bulk density of 1.6 g / cm 3 or more, preferably 1.6 to 1,000 g / cm 3 or more. Infiltrate to 2.0 g / cm 3 . In this case, the infiltration includes the case where the pores of the felt base material are impregnated, the case where the pore walls of the felt base material are covered, and the case where the impregnation and the state of covering the pore walls are combined. . High purity means that the total ash content is 10 ppm or less, more preferably 5 ppm or less. The high-purification treatment can be performed as needed, and as the high-purification treatment method, a carbonaceous felt, which is a known method, is brought into contact with a halogen-containing gas under reduced pressure and high temperature to remove impurities. Means for removing the metals contained as a metal halide by changing it to a halide having a higher vapor pressure can be exemplified, but the invention is not limited thereto. Further, as the halogen-containing gas used at this time, a halogen-containing gas such as chlorine or fluorine and a gas of a compound thereof can be exemplified, and specific examples thereof include ethane difluoride and fluorine gas. In the case of performing a high-purity treatment, it is preferable to purify the carbonaceous felt as much as possible inside, and therefore, it is effective to perform the purification before infiltrating the pyrolytic carbon. That is, in order to promote the purification to the inside of the carbonaceous felt, the effect is small unless the halogen compound enters the inside and the halogenated and vaporized impurities are not removed to the outside of the felt. For this purpose, the order of the steps is preferably to purify the carbonaceous felt having air permeability in advance and then to infiltrate pyrolytic carbon (so-called CVI treatment).
[0016]
When the bulk density does not reach 1.7 g / cm 3 , the strength tends to be slightly weak, and a sufficient strength as C / C cannot be obtained. However, the theoretical density of pyrolytic carbon itself is about 2.26 g / cm 3 , and since it has carbon fibers, it cannot be larger than this value in principle. Since it is present, the upper limit of the actually obtained bulk density of C / C is about 2.05 to 2.10 g / cm 3 . To infiltrate and deposit pyrolytic carbon to this extent, the deposition efficiency is greatly reduced, the reaction time is lengthened, and it is economically disadvantageous. Taking these factors into consideration, it is preferable that the bulk density of C / C be kept at around 1.6 to 2.0 g / cm 3 .
[0017]
In the present invention, the method of infiltrating the pyrolytic carbon itself may be a conventionally known method as described in a document such as "Introduction to Carbon Materials" (published by the Society of Carbon Materials, November 1972). To describe the general embodiment, a carbon generating material, for example, a hydrocarbon gas or hydrocarbon compound having 1 to 8 carbon atoms, particularly 3 carbon atoms, was pyrolyzed, and pyrolytic carbon was deposited and infiltrated on a substrate. Things. This (using H 2 gas as a normal dilution gas) hydrocarbon concentration as a concentration adjusted for is 3 to 30%, preferably 5 to 15%, 100 Torr total pressure, it preferably is operated under the following conditions 50Torr Is preferred.
[0018]
As the impregnation method, there are a conventional isothermal method, a temperature gradient method, a pressure gradient method, and the like. As a more recent method, a pulse method for shortening time and densifying can be used.
[0019]
In the present invention, the conditions for infiltrating the pyrolytic carbon are not important at all, and any of various methods can be used as long as the pyrolytic carbon having the above-mentioned predetermined requirements is permeated and precipitated in the deep part inside the carbonaceous felt. An example of the CVI processing as one aspect thereof is as follows.
[0020]
In the CVI treatment of pyrolytic carbon, the treatment temperature is preferably 1300 ° C. or less, and the pressure is preferably 100 Torr (13.3 kPa) or less, and more preferably 50 Torr (6.6 kPa) or less. If the temperature is higher than 1300 ° C., pyrolytic carbon tends to precipitate only on the surface of the base material, and closed pores are formed in the vicinity of the surface of the base material felt by the pyrolytic carbon film. If the pressure is higher than 100 Torr (13.3 kPa), the gas diffusion becomes worse, the raw material gas hardly reaches the inside of the base material felt, and there is also a tendency that closed pores are formed on the surface.
[0021]
Various methods can be appropriately selected for adjusting the orientation of the carbon fibers of the carbonaceous felt. Among them, the needle punching treatment is preferable because of high industrial productivity and easy alignment adjustment.
[0022]
It is preferable to adjust the orientation of the carbon fibers inside the carbonaceous felt in accordance with the state of the carbon fibers depending on the type of the carbon fibers. For example, when the carbon fiber is a PAN-based fiber, it is preferable to perform the treatment in a state of a flame-resistant fiber stabilized by performing a flame-resistant treatment at 200 to 300 ° C. in air. When the carbon fibers are rayon-based, it is preferable that the heating is performed in a state of synthetic fibers before firing. When the carbon fiber is a pitch-based felt, it is preferably performed in a state of infusible fiber or calcined fiber having a low elastic coefficient.
[0023]
In addition, at the time of adjusting the orientation of the carbon fiber, the density of the carbon fiber of the carbonaceous felt in at least three directions is 0.03 to 0.3 g / cm 3, and the orientation is three-dimensional in the X, Y, and Z directions. In the ratio of the directions (X + Y + Z = 100), it is preferable to adjust the orientation ratio in one direction to 30 and the orientation ratio in the other two directions to 35. At this time, by setting the impregnation amount of the pyrolytic carbon to 60 to 85% by volume, the thermal conductivity in the above one direction is remarkably improved, and is 250 W / (m · K) or more, preferably 300 W / (m · K). As described above, it is more preferably 350 W / (m · K) or more. As described above, by adjusting the fiber orientation ratio of the carbon fibers in the X, Y, and Z directions, the anisotropic ratio of the thermal conductivity in each direction can be set to C / C of 1.5 or less.
[0024]
The C / C having the above configuration is manufactured as follows.
[0025]
First, the orientation of the carbon fibers inside the carbonaceous felt is adjusted by needle punching. At this time, it is preferable to adjust the fiber orientation ratio X: Y: Z of the carbon fiber to be 35:35:30. As described above, the timing of performing the needle punching process is appropriately selected depending on the type of carbon fiber forming the carbonaceous felt. Then, pyrolytic carbon is infiltrated until the bulk density becomes 1.7 g / cm 3 or more by CVI treatment. Thereby, C / C having sufficient strength can be obtained. As described above, the C / C according to the present embodiment is basically formed by purifying the carbonaceous felt and then infiltrating the felt with pyrolytic carbon. Thereafter, it is graphitized at a high temperature of preferably 2500 ° C. or higher, particularly preferably 2800 ° C. or higher, more preferably 3000 ° C. or higher. Since pyrolytic carbon is a particularly graphitizable material, the improvement in thermal conductivity by heat treatment is very remarkable.
[0026]
By doing so, the C / C according to the present invention has a high thermal conductivity as compared with the conventional C / C, and the anisotropic ratio of the thermal conductivity in each direction is 1.5 or less. Heat can be radiated uniformly.
[0027]
Furthermore, as described above, the thermal conductivity can be further improved by infiltrating the pyrolytic carbon and performing the graphitization treatment, and then impregnating the metal material having high thermal conductivity by HIP or molten forging. It is.
[0028]
The high thermal conductive metal material to be impregnated is at least one metal material selected from an element group whose standard enthalpy of formation by reaction with graphite and copper is -50 kJ or less per mole, and is selected from this element group. Preferably, it is a copper alloy containing 1 to 7% by mass of a metal material and the balance substantially consisting of copper. In general, copper has poor wettability to graphite, and when impregnated with copper, it does not adhere sufficiently to the pore walls and causes microscopic unevenness of impregnation, so that an improvement in thermal conductivity cannot be obtained. However, by containing 1 to 7% by mass of a metal material selected from an element group whose standard enthalpy of formation by reaction with graphite and copper is -50 kJ or less per mol, the wettability between copper and graphite is reduced. Improved, copper is evenly impregnated in C / C and thermal conductivity is improved.
[0029]
Here, examples of the metal material selected from the group of elements having a standard enthalpy of formation by reaction with graphite and copper of -50 kJ or less per mol include, for example, scandium, yttrium, zirconium, lanthanum, hafnium and the like.
[0030]
Further, as the high thermal conductive metal material to be impregnated, an aluminum alloy containing 10% or more of silicon can be used. By impregnating silicon by 10% or more, the melting point of the aluminum alloy is lowered, so that aluminum carbide is not formed when impregnating the aluminum alloy. Even when the aluminum alloy is impregnated, it is stored in the air. It becomes possible.
[0031]
As described above, the orientation of the carbon fibers of the carbonaceous felt is adjusted, and the anisotropy ratio in each direction of the thermal conductivity is set to 1.5 or less, preferably 1.2 or less, to serve as a heat sink for a semiconductor substrate. Compared with a conventional heat sink made of aluminum, copper, or the like, a heat sink that can efficiently dissipate heat of the semiconductor substrate can be provided. Furthermore, by using a C / C material impregnated with a metal material having high thermal conductivity, a heat sink having more improved thermal conductivity characteristics can be obtained, and other metal materials (for example, Copper).
[0032]
FIG. 1 is a schematic view of a heat sink used for a semiconductor. In FIG. 1, 1 is a gold wire, 2 is a silicon chip, 3 is a heat sink made of isotropic felt C / C according to the present invention, and 4 is a solder bump made of isotropic felt C / C. By using the heat sink 3, heat can be uniformly and quickly radiated downward.
[0033]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0034]
(Example 1)
PAN-based felt and rayon-based carbon fibers having a bulk density of 0.15 g / cm 3 in which the carbon fibers inside the mat-like carbonaceous felt are oriented at a fiber orientation ratio of 35:35:30 in the X, Y, and Z directions, respectively. Three types of carbonaceous felts, felt and pitch-based felt, were prepared. Each of these carbonaceous felts is infiltrated with pyrolytic carbon by CVI treatment so that the bulk density becomes 1.6 g / cm 3 or more. The conditions of the CVI treatment are as follows: temperature 1100 ° C., total pressure 20 Torr (2.7 kPa), C 3 H 8 gas 6 l (liter) / min, H 2 gas 70 l / min, and then graphitization treatment at 2800 ° C. went. Table 1 shows the properties of C / C formed from each carbonaceous felt. The thermal conductivity was measured by a laser flash method (a thermal conductivity measuring device manufactured by Vacuum Riko Co., Ltd.) using a cylindrical sample having a diameter of 10 mm and a thickness of 2 mm.
[0035]
[Table 1]
Figure 2004002096
[0036]
(Example 2)
Felt C / C (bulk density: 1.81 g / cm 3 ) using the pitch-based carbon fiber felt manufactured in Example 1 was housed in a pressure-resistant container, and molten at 1150 ° C. with 7% by weight of zirconium-added copper. It was impregnated with nitrogen gas at a pressure of 12 MPa for 1 hour to obtain copper impregnated C / C. Table 2 shows the thermal conductivity of the obtained copper-impregnated felt C / C.
[0037]
(Example 3)
Felt C / C (bulk density: 1.81 g / cm 3 ) using the pitch-based carbon fiber felt manufactured in Example 1 was housed in a pressure-resistant container, and a 12 silicon-containing aluminum alloy melted at 650 ° C. with nitrogen gas. Pressure impregnation was performed at a pressure of 12 MPa for 1 hour to obtain copper impregnated C / C. Table 2 shows the thermal conductivity of the obtained aluminum alloy impregnated felt C / C.
[0038]
[Table 2]
Figure 2004002096
[0039]
(Comparative example)
PAN-based felt and rayon-based carbon fibers having a bulk density of 0.15 g / cm 3 in which the carbon fibers inside the mat-like carbonaceous felt are oriented at a fiber orientation ratio of 40:40:20 in the X, Y, and Z directions, respectively. Three types of carbonaceous felts, felt and pitch-based felt, were prepared. Except for this, C / C was produced in the same manner as in Example 1, and each characteristic was examined. Table 3 summarizes the characteristics.
[0040]
[Table 3]
Figure 2004002096
[0041]
As can be seen from Tables 1 and 2, by using a carbonaceous felt in which carbon fibers are orientation-adjusted, the thermal conductivity in any direction is 300 W / (m · K) or more, and the thermal conductivity in each direction is It is understood that the anisotropic ratio can be set to 1.5 or less.
[0042]
(Example 4)
Felt C / C manufactured using the pitch-based carbon fiber felt of Example 1 in Table 1, copper alloy impregnated pitch system manufactured in Example 2, and aluminum alloy impregnated pitch system manufactured in Example 3 The felt C / C and the pitch-based felt C / C according to the comparative example were processed and assembled into a semiconductor heat sink (radiation substrate) as shown in FIG. 1 to investigate heat dissipation. As a result, the heat sinks manufactured in Examples 1 to 3 were more excellent in heat dissipation than the heat sinks manufactured in Comparative Examples.
[0043]
【The invention's effect】
The present invention is configured as described above, has high thermal conductivity by controlling the orientation direction of carbon fiber felt, and has anisotropic felt C having an anisotropic ratio of thermal conductivity of 1.5 or less. / C is obtained. Therefore, the heat dissipation becomes uniform, and it can be used as a heat sink for a semiconductor element.
[Brief description of the drawings]
FIG. 1 is a schematic diagram when a felt C / C according to the present invention is incorporated in a heat sink.
[Explanation of symbols]
1 Gold wire 2 Silicon chip 3 Heat sink 4 Solder pump

Claims (13)

炭素質フェルト内部に、熱分解炭素が浸透されてなり、X、Y、Z方向(縦、横、高さ方向)のいずれか一方向の熱伝導率が250W/(m・K)以上であり、前記X、Y、Z方向(縦、横、高さ方向)の熱伝導率の最大値を最小値で除した値(異方比)が1.5以下である炭素繊維強化炭素複合材料。Pyrolytic carbon is infiltrated into the carbonaceous felt, and the thermal conductivity in one of the X, Y, and Z directions (vertical, horizontal, and height directions) is 250 W / (m · K) or more. A carbon fiber reinforced carbon composite material having a value (anisotropy ratio) obtained by dividing a maximum value of the thermal conductivity in the X, Y, and Z directions (vertical, horizontal, and height directions) by a minimum value is 1.5 or less. 前記炭素質フェルトの炭素繊維がX、Y、Z方向に配向調整されている請求項1に記載の炭素繊維強化炭素複合材料。The carbon fiber reinforced carbon composite material according to claim 1, wherein the carbon fibers of the carbonaceous felt are oriented in X, Y, and Z directions. 前記炭素繊維のX、Y、Z方向の繊維配向比は、いずれか一方向の配向比が30である時、他の二方向の配向比が35である請求項1又は2に記載の炭素繊維強化炭素複合材料。3. The carbon fiber according to claim 1, wherein the fiber orientation ratio in the X, Y, and Z directions of the carbon fiber is 30 when the orientation ratio in one direction is 30 and 35 in the other two directions. 4. Reinforced carbon composite. 前記炭素質フェルトがPAN系フェルト、レーヨン系フェルト、ピッチ系フェルトのいずれかである請求項1乃至3のいずれかに記載の炭素繊維強化炭素複合材料。The carbon fiber reinforced carbon composite material according to any one of claims 1 to 3, wherein the carbonaceous felt is one of a PAN-based felt, a rayon-based felt, and a pitch-based felt. 前記炭素繊維強化炭素複合材料に、高熱伝導の金属材料が含浸されている請求項1乃至4のいずれかに記載の炭素繊維強化炭素複合材料。The carbon fiber reinforced carbon composite material according to any one of claims 1 to 4, wherein the carbon fiber reinforced carbon composite material is impregnated with a metal material having high thermal conductivity. 前記金属材料が、黒鉛及び銅との反応による標準生成エンタルピーがそれぞれ1モルあたり−50kJ以下である元素群から選ばれる少なくとも1種の金属材料であり、この元素群から選ばれる金属材料を1〜7質量%含有し、残部が実質的に銅からなる銅合金である請求項5に記載の炭素繊維強化炭素複合材料。The metal material is at least one metal material selected from an element group whose standard enthalpy of formation by reaction with graphite and copper is -50 kJ or less per mole, and the metal material selected from the element group is 1 to The carbon fiber reinforced carbon composite material according to claim 5, which is a copper alloy containing 7% by mass and a balance substantially consisting of copper. 前記金属材料が、シリコンを10%以上含有したアルミニウム合金である請求項5に記載の炭素繊維強化炭素複合材料。The carbon fiber reinforced carbon composite material according to claim 5, wherein the metal material is an aluminum alloy containing 10% or more of silicon. 炭素質フェルトに、前記炭素質フェルト内の炭素繊維の配向が調整されたものを使用し、この炭素質フェルトをCVI処理によって嵩密度が1.6g/cm以上になるまで熱分解炭素を浸透した後、黒鉛化処理を行う炭素繊維強化炭素複合材料の製造方法。A carbonaceous felt in which the orientation of carbon fibers in the carbonaceous felt is adjusted is used. The carbonaceous felt is infiltrated with pyrolytic carbon by CVI treatment until the bulk density becomes 1.6 g / cm 3 or more. And then performing a graphitization treatment. 前記熱分解炭素を浸透し、黒鉛化処理を行った後に、さらに、高熱伝導の金属材料をHIPあるいは熔湯鍛造法で含浸する請求項8に記載の炭素繊維強化炭素複合材料の製造方法。9. The method for producing a carbon fiber reinforced carbon composite material according to claim 8, wherein a metal material having high thermal conductivity is further impregnated by HIP or molten forging after the pyrolytic carbon is infiltrated and graphitized. 前記炭素質フェルトがPAN系フェルトであり、炭素繊維の配向調整が耐炎繊維の状態で行われる請求項8又は9に記載の炭素繊維強化炭素複合材料の製造方法。The method for producing a carbon fiber reinforced carbon composite material according to claim 8 or 9, wherein the carbonaceous felt is a PAN-based felt, and the orientation of the carbon fibers is adjusted in a flame-resistant fiber state. 前記炭素質フェルトがレーヨン系フェルトであり、炭素繊維の配向調整が焼成前の合成繊維の状態で行われる請求項8又は9に記載の炭素繊維強化炭素複合材料の製造方法。The method for producing a carbon fiber reinforced carbon composite material according to claim 8 or 9, wherein the carbonaceous felt is a rayon-based felt, and the alignment of carbon fibers is adjusted in a state of synthetic fibers before firing. 前記炭素質フェルトがメソフェーズピッチ系フェルトであり、炭素繊維の配向調整が弾性係数の低い不融化処理された繊維または焼成繊維の状態で行われる請求項8又は9に記載の炭素繊維強化炭素複合材料の製造方法。The carbon fiber reinforced carbon composite material according to claim 8 or 9, wherein the carbonaceous felt is a mesophase pitch-based felt, and the orientation of the carbon fiber is adjusted in a state of an infusibilized fiber or a fired fiber having a low elastic coefficient. Manufacturing method. 請求項1乃至7のいずれかに記載の炭素繊維強化炭素複合材料を用いたヒートシンク。A heat sink using the carbon fiber reinforced carbon composite material according to claim 1.
JP2002158750A 2002-05-31 2002-05-31 Carbon fiber-reinforced carbon composite material and its producing process as well as heat sink Pending JP2004002096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002158750A JP2004002096A (en) 2002-05-31 2002-05-31 Carbon fiber-reinforced carbon composite material and its producing process as well as heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002158750A JP2004002096A (en) 2002-05-31 2002-05-31 Carbon fiber-reinforced carbon composite material and its producing process as well as heat sink

Publications (1)

Publication Number Publication Date
JP2004002096A true JP2004002096A (en) 2004-01-08

Family

ID=30428827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002158750A Pending JP2004002096A (en) 2002-05-31 2002-05-31 Carbon fiber-reinforced carbon composite material and its producing process as well as heat sink

Country Status (1)

Country Link
JP (1) JP2004002096A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127938A (en) * 2004-10-29 2006-05-18 Fuji Heavy Ind Ltd Package structure of storage capacitor cell
JP2007217256A (en) * 2006-02-20 2007-08-30 Ihi Aerospace Co Ltd Aluminum-impregnated three-dimensional c/c composite and method for producing the same
WO2009128215A1 (en) * 2008-04-14 2009-10-22 東洋炭素株式会社 Carbon fiber carbon composite molded body, carbon fiber-reinforced carbon composite material and manufacturing method thereof
JP2010029919A (en) * 2008-07-30 2010-02-12 Denki Kagaku Kogyo Kk Aluminum-graphite composite, circuit board using it, and manufacturing method therefor
CN104446589A (en) * 2014-12-24 2015-03-25 中南大学 Method for preparing whisker modified carbon/carbon composite material
WO2015159709A1 (en) * 2014-04-15 2015-10-22 東洋炭素株式会社 Graphite-copper composite electrode material and electrode for electrical discharge machining using said material
CN114164557A (en) * 2021-12-30 2022-03-11 湖南东映特碳沥青材料有限公司 Carbon fiber hard felt and preparation method thereof
CN115418197A (en) * 2022-08-31 2022-12-02 湖南大学 Preparation method of phase-change energy storage material
CN115448745A (en) * 2022-09-21 2022-12-09 亚太中碳(山西)新材料科技有限公司 Preparation method of oriented heat-conducting and electric-conducting graphite carbon film and oriented heat-conducting carbon piece

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127938A (en) * 2004-10-29 2006-05-18 Fuji Heavy Ind Ltd Package structure of storage capacitor cell
JP2007217256A (en) * 2006-02-20 2007-08-30 Ihi Aerospace Co Ltd Aluminum-impregnated three-dimensional c/c composite and method for producing the same
WO2009128215A1 (en) * 2008-04-14 2009-10-22 東洋炭素株式会社 Carbon fiber carbon composite molded body, carbon fiber-reinforced carbon composite material and manufacturing method thereof
JP2009256117A (en) * 2008-04-14 2009-11-05 Toyo Tanso Kk Carbon fiber carbon composite molded body, carbon fiber-reinforced carbon composite material and its manufacturing method
CN102007090A (en) * 2008-04-14 2011-04-06 东洋炭素株式会社 Carbon fiber carbon composite molded body, carbon fiber-reinforced carbon composite material and manufacturing method thereof
JP2010029919A (en) * 2008-07-30 2010-02-12 Denki Kagaku Kogyo Kk Aluminum-graphite composite, circuit board using it, and manufacturing method therefor
CN106163985A (en) * 2014-04-15 2016-11-23 东洋炭素株式会社 Graphite-copper combination electrode material and the electro-discharge machining electrode using this material
US10357838B2 (en) 2014-04-15 2019-07-23 Toyo Tanso Co., Ltd. Graphite-copper composite electrode material and electrical discharge machining electrode using the material
JP2015212005A (en) * 2014-04-15 2015-11-26 東洋炭素株式会社 Graphite-copper composite electrode material, and electrode for electrical discharge processing using the same
KR102466171B1 (en) * 2014-04-15 2022-11-14 토요 탄소 가부시키가이샤 Graphite-copper composite electrode material and electrode for electrical discharge machining using said material
WO2015159709A1 (en) * 2014-04-15 2015-10-22 東洋炭素株式会社 Graphite-copper composite electrode material and electrode for electrical discharge machining using said material
KR20160143828A (en) * 2014-04-15 2016-12-14 토요 탄소 가부시키가이샤 Graphite-copper composite electrode material and electrode for electrical discharge machining using said material
CN106163985B (en) * 2014-04-15 2019-05-28 东洋炭素株式会社 Graphite-copper combination electrode material and electro-discharge machining electrode using the material
CN104446589A (en) * 2014-12-24 2015-03-25 中南大学 Method for preparing whisker modified carbon/carbon composite material
CN104446589B (en) * 2014-12-24 2016-05-18 中南大学 A kind of preparation method of whisker modified carbon/carbon compound material
CN114164557A (en) * 2021-12-30 2022-03-11 湖南东映特碳沥青材料有限公司 Carbon fiber hard felt and preparation method thereof
CN114164557B (en) * 2021-12-30 2023-07-25 湖南东映特碳沥青材料有限公司 Carbon fiber hard felt and preparation method thereof
CN115418197A (en) * 2022-08-31 2022-12-02 湖南大学 Preparation method of phase-change energy storage material
CN115448745A (en) * 2022-09-21 2022-12-09 亚太中碳(山西)新材料科技有限公司 Preparation method of oriented heat-conducting and electric-conducting graphite carbon film and oriented heat-conducting carbon piece
CN115448745B (en) * 2022-09-21 2023-04-25 亚太中碳(山西)新材料科技有限公司 Preparation method of directional heat-conducting and electric-conducting graphite carbon film and directional heat-conducting carbon piece

Similar Documents

Publication Publication Date Title
JP5352893B2 (en) Carbon fiber carbon composite molded body, carbon fiber reinforced carbon composite material, and method for producing the same
EP0816537B1 (en) Ceramic composite material and porous ceramic material
Cao et al. High-temperature behavior and degradation mechanism of SiC fibers annealed in Ar and N 2 atmospheres
JPWO2008078679A1 (en) Graphite material and manufacturing method thereof
JP2004002096A (en) Carbon fiber-reinforced carbon composite material and its producing process as well as heat sink
JP4514846B2 (en) High purity carbon fiber reinforced carbon composite material and method for producing the same
CN115094514A (en) Composite material crucible and preparation method thereof
JP6914098B2 (en) Method for manufacturing SiC / SiC composite material
JP3327637B2 (en) Functionally graded composite material of copper and carbon and method for producing the same
CN113896558A (en) High-performance thermal dredging composite material and preparation method thereof
Yuan et al. Microstructure and thermal stability of low-oxygen SiC fibers prepared by an economical chemical vapor curing method
KR20150024657A (en) Thermal interface material comprising ceramic composite fiber and manufacturing method thereof
KR101031689B1 (en) High-purity carbon fiber-reinforced carbon composite for semiconductor manufacturing apparatus and method for producing the same
Gottlieb et al. Continuous fiber-reinforced ceramic matrix composites
US20200031722A1 (en) Method for producing silicon-carbide-based composite
JP4307798B2 (en) Heat dissipation material
JP3219314B2 (en) Method for producing boron carbide-based carbon material
JP4291419B2 (en) Method for producing silicon carbide-reinforced carbon fiber reinforced carbon composite material
JPH05306168A (en) Carbon fiber reinforced carbon composite material and its production
JP2001289226A (en) Screw made of carbon fiber reinforced carbon composite material
JPH05306180A (en) Production of carbon fiber reinforced carbon-inorganic compound composite material
Zhang et al. Effect of Bi-B-Si-Zn-Al glass additive on the properties of low-temperature sintered silicon carbide ceramics
JP3574583B2 (en) Heat radiating material and method of manufacturing the same
JP4964913B2 (en) Carbon fiber reinforced carbon composite material
JP5188085B2 (en) Aluminum nitride corrosion-resistant member and semiconductor manufacturing apparatus member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081028

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081121