KR101221060B1 - Carbon-based aluminium composite and method for fabricating the same which silicon carbide is formed at the interface of compacted or sintered carbon bulk and aluminium - Google Patents
Carbon-based aluminium composite and method for fabricating the same which silicon carbide is formed at the interface of compacted or sintered carbon bulk and aluminium Download PDFInfo
- Publication number
- KR101221060B1 KR101221060B1 KR1020100138651A KR20100138651A KR101221060B1 KR 101221060 B1 KR101221060 B1 KR 101221060B1 KR 1020100138651 A KR1020100138651 A KR 1020100138651A KR 20100138651 A KR20100138651 A KR 20100138651A KR 101221060 B1 KR101221060 B1 KR 101221060B1
- Authority
- KR
- South Korea
- Prior art keywords
- carbon
- aluminum alloy
- aluminum
- composite material
- silicon carbide
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
- C22C21/04—Modified aluminium-silicon alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D18/00—Pressure casting; Vacuum casting
- B22D18/02—Pressure casting making use of mechanical pressure devices, e.g. cast-forging
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/08—Alloys with open or closed pores
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/08—Alloys with open or closed pores
- C22C1/081—Casting porous metals into porous preform skeleton without foaming
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
본 발명에 따른 탄소기반 알루미늄 복합재료는, 규소성분이 1.6~16.0중량% 함유된 알루미늄 합금을 용융시켜 탄소입자나 탄소섬유를 포함하는 탄소성형체 또는 탄소소성체에 합침시킴으로써 표면에 탄화규소가 형성되어 이루어지는 것을 특징으로 한다. 상기 용융 온도는 650~900℃인 것이 바람직하고, 상기 용융 후 40~120 MPa 으로 가압하여 상기 탄소성형체 또는 탄소소성체에 상기 용융된 알루미늄 합금을 함침시키는 것이 바람직하다. 상기 탄소성형체 또는 탄소소성체는 60~95체적%의 충전율을 가지는 것이 바람직하다. 본 발명에 의하면, 메탄가스와 같은 원하지 않는 공해물질이 배출되지 않고 종래와 같은 탄화알루미늄이나 산화알루미늄의 생성도 없으므로 제품으로서 필요한 열팽창율과 함께 열전도 특성을 얻을 수 있게 된다. In the carbon-based aluminum composite material according to the present invention, silicon carbide is formed on the surface by melting an aluminum alloy containing 1.6 to 16.0% by weight of a silicon component and incorporating it into a carbon molded body or carbon plastic body containing carbon particles or carbon fibers. Characterized in that made. The melting temperature is preferably 650 ~ 900 ℃, it is preferable to impregnate the molten aluminum alloy in the carbon molded or carbon plastic body by pressing to 40 ~ 120 MPa after the melting. It is preferable that the carbon molded or carbon fired body has a filling rate of 60 to 95% by volume. According to the present invention, since unwanted pollutants such as methane gas are not discharged and there is no conventional production of aluminum carbide or aluminum oxide, heat conduction characteristics can be obtained together with the thermal expansion rate required as a product.
Description
본 발명은 탄소기반 알루미늄 복합재료 및 그 제조방법에 관한 것으로서, 특히 소정의 공극률을 가지는 탄소성형체(또는 탄소소성체, 이하에서 탄소성형체라 함은 탄소소성체를 포함하는 의미임)의 공극에 알루미늄이 침투되도록 상기 탄소성형체에 알루미늄을 합침시킬 때에 상기 탄소성형체와 상기 알루미늄의 계면에 탄화규소층이 형성되도록 한 탄소기반 알루미늄 복합재료 및 그 제조방법에 관한 것이다.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon-based aluminum composite material and a method for manufacturing the same, and more particularly, to aluminum in a cavity of a carbon molded body having a predetermined porosity (or a carbon plastic body, hereinafter, a carbon molded body includes a carbon plastic body). The present invention relates to a carbon-based aluminum composite material and a method of manufacturing the same, in which a silicon carbide layer is formed at an interface between the carbon molded body and the aluminum when the aluminum is impregnated with the carbon molded product.
전자장치의 고기능화 및 대용량화에 따르는 열 발생의 증가로 열전도성이 좋고 열팽창률이 작은 방열소재가 요구되고 있다.As heat generation increases due to high functional and high capacity electronic devices, heat dissipation materials having good thermal conductivity and low thermal expansion rate are required.
베이스(base) 기판의 재료로 사용되는 알루미늄, 구리, 또는 이들의 합금은 열전도성은 양호하나 열팽창률이 크기 때문에, 베이스 기판 상에 열팽창률이 작은 실리콘 반도체 소자 또는 세라믹스로 이루어지는 전자회로를 구성할 경우 상호 열팽창 차이로 인한 구부러짐이나 또는 벗겨지는 등의 문제점이 발생한다. Aluminum, copper, or an alloy thereof used as a base substrate material has a good thermal conductivity but a high thermal expansion rate. Therefore, when forming an electronic circuit made of a silicon semiconductor device or ceramics having a low thermal expansion rate on the base substrate, Problems such as bending or peeling due to mutual thermal expansion difference occur.
가볍고 열전도성이 우수하며 제품의 요구조건에 맞게 열팽창계수를 맞춤식으로 얻기에 용이하다는 잇점을 갖고 있어서, 탄소입자나 탄소섬유를 포함하는 탄소성형체 또는 탄소소성체에 다양한 금속을 함침시키는 기술이 개발되고 있다. It has the advantage of being lightweight, excellent in thermal conductivity and easy to obtain the coefficient of thermal expansion tailored to the requirements of the product. Therefore, a technology for impregnating various metals in carbon moldings or carbon plastic bodies including carbon particles or carbon fibers has been developed. have.
이러한 일환 중의 하나로 탄소기반 알루미늄 복합소재를 방열소재로서 사용하기 위한 연구가 이루어지고 있다. 그러나 현재 탄소기반 알루미늄 복합소재의 경우 복합화 공정 중에 우리가 원하는 효과를 얻기에 적합하지 않은 탄화알루미늄이 부분적으로 생성되어 문제이다. 이 성분은 열전도율이 낮을 뿐만 아니라 후공정에서는 수분과 결합하여 산화알루미늄과 메탄가스를 생성시켜 또 다른 문제를 만든다. As one of these studies, research has been made to use a carbon-based aluminum composite material as a heat dissipating material. However, the current carbon-based aluminum composite material is a problem due to the partial generation of aluminum carbide during the compounding process is not suitable for achieving the desired effect. Not only does this component have a low thermal conductivity, but it also combines with moisture to produce aluminum oxide and methane gas in later processes, creating another problem.
산화알루미늄은 경도가 높아 가공성이 아주 나쁠 뿐만 아니라 열전도율이 탄소기반 알루미늄 복합소재보다 낮아 제품의 용도에 더욱 부정적인 영향을 미친다. 그리고 메탄가스는 지구의 온실가스로 분류되어 대기환경 측면에서 발생을 축소해 나가야 하는 규제대상 물질이어서 이를 발생시키는 공정은 최대한 퇴출되어야 한다. Aluminum oxide is not only very poor in workability due to its high hardness, but also has a lower thermal conductivity than carbon-based aluminum composites, which has a negative effect on the use of the product. And since methane is classified as a greenhouse gas of the earth, it is a regulated substance that needs to reduce its generation in terms of the atmospheric environment.
대한민국 등록특허 제710398호(2007.04.16)에는 탄소성형체에 알루미늄 또는 알루미늄 합금을 용탕단조에 의해 가압 함침시키는 기술이 게시된 바 있는데, 이러한 경우에 바로 상기의 문제점이 나타난다.
Korean Patent No. 710398 (2007.04.16) discloses a technique for pressurizing and impregnating aluminum or an aluminum alloy in a carbon molded body by forging. In such a case, the above problem appears.
따라서 본 발명이 해결하려는 과제는, 소정의 공극률을 가지는 탄소성형체의 공극에 알루미늄이 침투되도록 탄소성형체에 알루미늄을 합침시킬 때에, 탄소성형체와 알루미늄의 반응에 의하여 탄화알루미늄이 생성되는 것이 방지되도록 탄소성형체와 알루미늄의 계면에 탄화규소층이 형성되도록 함으로써, 상술한 종래의 문제점을 해결할 수 있는 탄소기반 알루미늄 복합재료 및 그 제조방법을 제공하는 데 있다.
Therefore, the problem to be solved by the present invention, carbon impregnated to prevent the formation of aluminum carbide by the reaction of the carbon molding and aluminum when the aluminum is impregnated in the carbon molding so that the aluminum penetrates into the pores of the carbon molding having a predetermined porosity The silicon carbide layer is formed at the interface between the aluminum and the aluminum, to provide a carbon-based aluminum composite material and a method of manufacturing the same, which can solve the above-mentioned conventional problems.
상기 과제를 달성하기 위한 본 발명에 따른 탄소기반 알루미늄 복합재료는, 규소성분이 1.6~16.0중량% 함유된 알루미늄 합금을 용융시키고, 상기 용융된 알루미늄 합금을 60~95체적%의 충전율을 가지는 탄소성형체 또는 탄소소성체에 합침시킴으로써, 상기 탄소성형체 또는 탄소소성체의 공극에 상기 용융된 알루미늄 합금이 침투되어 상기 탄소성형체 또는 탄소소성체와 상기 용융된 알루미늄 합금의 계면에 50~200mm 두께의 탄화규소층이 형성되어 이루어지는 것을 특징으로 한다.
상기 용융 온도는 650~900℃ 인 것이 바람직하다.
상기 용융 후 40~120 MPa 으로 가압하여 상기 탄소성형체 또는 탄소소성체에 상기 용융된 알루미늄 합금을 함침시키는 것이 바람직하다.
상기 용융된 알루미늄 합금을 상기 탄소성형체 또는 탄소소성체에 함침시키기 전에 상기 탄소성형체 또는 탄소소성체를 300~950℃에서 예열하는 것이 바람직하다. Carbon-based aluminum composite material according to the present invention for achieving the above object, a carbon molded body having a silicon component of 1.6 ~ 16.0% by weight of the aluminum alloy, the filling aluminum alloy having a filling rate of 60 to 95% by volume Or by incorporating into the carbon plastic body, the molten aluminum alloy penetrates into the pores of the carbon molded body or the carbon plastic body, and a silicon carbide layer having a thickness of 50 to 200 mm at an interface between the carbon molded body or the carbon plastic body and the molten aluminum alloy. It is characterized by being formed.
It is preferable that the said melting temperature is 650-900 degreeC.
After the melting, it is preferable to impregnate the molten aluminum alloy in the carbon molded body or the carbon plastic body by pressurizing at 40 to 120 MPa.
Before impregnating the molten aluminum alloy into the carbon molded body or the carbon plastic body, the carbon molded body or the carbon plastic body is preferably preheated at 300 to 950 ° C.
삭제delete
삭제delete
상기 과제를 달성하기 위한 본 발명에 따른 탄소기반 알루미늄 복합재료 제조방법은,
60~95체적%의 충전율을 가지는 탄소성형체나 탄소소성체를 불활성가스 분위기에서 300~950℃에서 예열하는 단계; 및
규소성분이 1.6~16.0% 함유된 알루미늄 합금을 650~900℃ 에서 용융한 다음 40~120 MPa의 고압으로 가압하여 상기 예열된 탄소성형체 또는 탄소소성체에 함침시킴으로써, 상기 탄소성형체 또는 탄소소성체의 공극에 상기 용융된 알루미늄 합금이 침투되어 상기 탄소성형체 또는 탄소소성체와 상기 용융된 알루미늄 합금의 계면에 50~200mm 두께의 탄화규소층이 형성되도록 하는 단계; 를 포함하는 것을 특징으로 한다.
Carbon-based aluminum composite material manufacturing method according to the present invention for achieving the above object,
Preheating the carbon molded body or the carbon plastic body having a filling rate of 60 to 95% by volume at 300 to 950 ° C. in an inert gas atmosphere; And
The aluminum alloy containing 1.6-16.0% of the silicon component is melted at 650 to 900 ° C., and then pressurized to a high pressure of 40 to 120 MPa to be impregnated in the preheated carbon molded or carbon fired body. Allowing the molten aluminum alloy to penetrate the pores to form a silicon carbide layer having a thickness of 50 to 200 mm at an interface between the carbon molded body or the carbon plastic body and the molten aluminum alloy; And a control unit.
삭제delete
삭제delete
삭제delete
삭제delete
본 발명에 의하면, 알루미늄에 접하는 탄소성형체의 표면에 탄화규소층이 형성되기 때문에 탄소성형체의 탄소와 알루미늄의 반응에 의해 탄화알루미늄이 생성되는 것이 방지되며, 메탄가스와 산화알루미늄의 생성 또한 획기적으로 감소된다. According to the present invention, since the silicon carbide layer is formed on the surface of the carbon molded body in contact with aluminum, aluminum carbide is prevented from being produced by the reaction of carbon and aluminum in the carbon molded product, and the production of methane gas and aluminum oxide is also drastically reduced. do.
도 1은 본 발명에 따른 탄소기반 알루미늄 복합재료 및 그 제조방법을 설명하기 위한 공정 흐름도;
도 2는 본 발명에 사용되는 용탕단조장치를 설명하기 위한 도면이다. 1 is a process flow diagram illustrating a carbon-based aluminum composite material and a method of manufacturing the same according to the present invention;
2 is a view for explaining the molten metal forging apparatus used in the present invention.
이하에서, 본 발명의 바람직한 실시예를 첨부한 도면들을 참조하여 상세히 설명한다. 아래의 실시예는 본 발명의 내용을 이해하기 위해 제시된 것일 뿐이며 당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상 내에서 많은 변형이 가능할 것이다. 따라서 본 발명의 권리범위가 이러한 실시예에 한정되는 것으로 해석돼서는 안 된다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following embodiments are merely provided to understand the contents of the present invention, and those skilled in the art will be able to make many modifications within the technical scope of the present invention. Therefore, the scope of the present invention should not be construed as being limited to these embodiments.
도 1은 본 발명에 따른 탄소기반 알루미늄 복합재료 및 그 제조방법을 설명하기 위한 공정 흐름도이고, 도 2는 본 발명에 따른 알루미늄 복합재료의 제조에 사용되는 용탕단조장치를 설명하기 위한 도면이다. 1 is a process flow chart for explaining a carbon-based aluminum composite material and a method for manufacturing the same according to the present invention, Figure 2 is a view for explaining a molten metal forging apparatus used in the production of an aluminum composite material according to the present invention.
본 발명에 다른 탄소기반 알루미늄 복합재료는 규소성분이 1.6~16.0중량% 함유된 알루미늄 합금을 650~900℃ 범위의 온도에서 용융한 다음 40~120 MPa의 고압으로 가압하여 용탕단조법으로 탄소성형체에 함침시켜 상기 탄소성형체의 공극에 상기 용융된 알루미늄을 침투시킬 때에, 상기 탄소성형체에 포함되어 있는 탄소와 상기 용융된 알루미늄 합금에 포함되어 있는 실리콘이 반응하여 상기 탄소성형체와 상기 용융된 알루미늄 합금의 계면에 탄화규소가 형성되도록 한 것을 특징으로 한다. 이 때 탄화규소가 형성되는 표면 두께는 50~200mm인 것이 바람직하다.
상기 탄소성형체 대신에 탄소소성체를 사용하여도 무방함은 이미 서두에서 언급하였으며, 상기 탄소성형체(또는 탄소소성체)는 탄소입자나 탄소섬유 등을 포함하여 이루어질 수 있다. The carbon-based aluminum composite material according to the present invention melts an aluminum alloy containing 1.6 to 16.0% by weight of a silicon component at a temperature in the range of 650 to 900 ° C. and then pressurizes it to a carbon molded body by forging with a high pressure of 40 to 120 MPa. When impregnated to infiltrate the molten aluminum into the pores of the carbon molded product, the carbon contained in the carbon molded product and the silicon contained in the molten aluminum alloy react to form an interface between the carbon molded product and the molten aluminum alloy. It is characterized in that the silicon carbide is formed on. At this time, the surface thickness of the silicon carbide is preferably 50 ~ 200mm.
It is already mentioned at the beginning that the carbon plastic body may be used instead of the carbon molded body, and the carbon molded body (or the carbon plastic body) may include carbon particles or carbon fibers.
여기서 탄소성형체나 탄소소성체는 제품이 요구하는 특성에 맞추어서 계산된 최적의 소재를 선택하여 사용한다. 그리고 상기 탄소성형체 또는 탄소소성체는 내부에 기포 등이 포함될 수 있는데, 이러한 기포가 너무 많으면 바람직하지 않으므로 60~95체적%의 충전율을 가지는 것이 바람직하다. 여기서 충전율은 "1-기공율"로 표현될 수도 있다. Here, the carbon molded body or the carbon plastic body is used by selecting the optimum material calculated according to the characteristics required by the product. In addition, the carbon molded body or the carbon plastic body may include bubbles in the interior thereof, but it is preferable that such a bubble is too large, so it is preferable to have a filling rate of 60 to 95% by volume. Here, the filling rate may be expressed as "1-porosity".
제조방법은 다음과 같다. 먼저 흑연화된 탄소입자나 탄소섬유를 포함하는 탄소성형체를 불활성가스 분위기에서 300~950℃에서 예열한 뒤(S10), 여기에 규소성분이 1.6~16.0중량% 함유된 알루미늄 합금을 650~900℃ 범위의 온도로 용융한 다음 40~120 MPa의 고압으로 가압하여 용탕단조법으로 함침시킨다(S20).
그러면, 상기 탄소성형체의 공극에 상기 용융된 알루미늄 합금이 침투되는데, 이 때 상기 탄소성형체를 이루는 탄소와 상기 용융된 알루미늄 합금 내의 실리콘이 반응하여 상기 탄소성형체와 상기 용융된 알루미늄 합금의 계면에 탄화규소층이 형성된다(S30). The manufacturing method is as follows. First, carbon preforms including graphitized carbon particles or carbon fibers are preheated at 300 to 950 ° C. in an inert gas atmosphere (S10), and then aluminum alloys containing 1.6 to 16.0 wt% of silicon are contained at 650 to 900 ° C. After melting to a temperature in the range is pressurized to a high pressure of 40 ~ 120 MPa impregnated with a forging method (S20).
Then, the molten aluminum alloy penetrates into the pores of the carbon molded body, wherein carbon forming the carbon molded body and silicon in the molten aluminum alloy react to form silicon carbide at an interface between the carbon molded body and the molten aluminum alloy. A layer is formed (S30).
도 2는 용탕단조장치를 설명하기 위한 도면으로서, 도 2에 도시된 같이 금형(20) 내에 탄소성형체나 탄소소성체(30)를 장입한 다음에 그 위에 용융된 알루미늄합금(40)을 올려놓고 펀치(10)로 가압함으로써 함침이 이루어진다. FIG. 2 is a view for explaining a molten metal forging apparatus. As shown in FIG. 2, a carbon molding or a carbon
본 발명은 본 출원의 발명자가 경제적이면서 탄소기반 알루미늄 복합소재의 특성을 최대한 살릴 수 있는 첨가성분을 예의 검토한 결과, 규소를 포함하는 알루미늄 합금을 이용하여 함침시의 고열과 압력에 의하여 탄화규소를 형성하도록 하는 것이 최선의 방법이라고 판단하고 이를 시행해 본 결과 예상대로 알루미늄에 접하는 탄소소성체의 표면에 탄화규소가 형성되는 것을 확인하였고 이를 위해서는 알루미늄 합금 내에 적정량, 즉 1.6~16.0중량% 의 규소가 함유되는 것이 바람직하다는 결론을 얻었다. 더욱 바람직하게는 규소성분이 2.5~12.5중량% 함유되는 것이 품질이 안정된 제품을 만드는데 더 좋다. 사용하는 알루미늄 소재에 규소함량이 1.6중량% 이하이면 탄화규소의 형성에 불충분하며, 반대로 규소의 함량이 높게 되면 용융점이 높아지게 되는데 이 때 규소함량이 16.0중량%를 넘게 되면 탄화알루미늄이 형성되어 제품의 목표특성과는 전혀 다른 물질이 만들어지기 때문에 이러한 적정량이 요구되는 것이다. The present invention, as a result of carefully examining the additives that can maximize the properties of the carbon-based aluminum composite material economical and the inventors of the present application, as a result of the high temperature and pressure during impregnation using an aluminum alloy containing silicon Judging from the fact that it is the best way to make it, it was confirmed that silicon carbide is formed on the surface of the carbon plastic body in contact with aluminum as expected, and for this purpose, an appropriate amount of silicon in the aluminum alloy, that is, 1.6 to 16.0 wt% It was concluded that it would be desirable. More preferably, the silicon content of 2.5 to 12.5% by weight is better to make a stable product. If the aluminum content is less than 1.6% by weight, the silicon carbide is insufficient to form silicon carbide. On the contrary, when the silicon content is high, the melting point is increased.In this case, when the silicon content exceeds 16.0% by weight, aluminum carbide is formed. This is required because a material that is completely different from the target properties is produced.
본 발명에 의하면, 메탄가스와 같은 원하지 않는 공해물질이 배출되지 않고 종래와 같은 탄화알루미늄이나 산화알루미늄의 생성도 없으므로 제품으로서 필요한 열팽창율과 함께 열전도 특성을 얻을 수 있게 된다. According to the present invention, since unwanted pollutants such as methane gas are not discharged and there is no conventional production of aluminum carbide or aluminum oxide, heat conduction characteristics can be obtained together with the thermal expansion rate required as a product.
Claims (8)
규소성분이 1.6~16.0% 함유된 알루미늄 합금을 650~900℃ 에서 용융한 다음 40~120 MPa의 고압으로 가압하여 상기 예열된 탄소성형체 또는 탄소소성체에 함침시킴으로써, 상기 탄소성형체 또는 탄소소성체의 공극에 상기 용융된 알루미늄 합금이 침투되어 상기 탄소성형체 또는 탄소소성체와 상기 용융된 알루미늄 합금의 계면에 50~200mm 두께의 탄화규소층이 형성되도록 하는 단계; 를 포함하는 것을 특징으로 하는 탄소기반 알루미늄 복합재료 제조방법. Preheating the carbon molded body or the carbon plastic body having a filling rate of 60 to 95% by volume at 300 to 950 ° C. in an inert gas atmosphere; And
The aluminum alloy containing 1.6-16.0% of the silicon component is melted at 650 to 900 ° C., and then pressurized to a high pressure of 40 to 120 MPa to be impregnated in the preheated carbon molded or carbon fired body. Allowing the molten aluminum alloy to penetrate the pores to form a silicon carbide layer having a thickness of 50 to 200 mm at an interface between the carbon molded body or the carbon plastic body and the molten aluminum alloy; Carbon-based aluminum composite material manufacturing method comprising a.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100138651A KR101221060B1 (en) | 2010-12-30 | 2010-12-30 | Carbon-based aluminium composite and method for fabricating the same which silicon carbide is formed at the interface of compacted or sintered carbon bulk and aluminium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100138651A KR101221060B1 (en) | 2010-12-30 | 2010-12-30 | Carbon-based aluminium composite and method for fabricating the same which silicon carbide is formed at the interface of compacted or sintered carbon bulk and aluminium |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120076889A KR20120076889A (en) | 2012-07-10 |
KR101221060B1 true KR101221060B1 (en) | 2013-01-10 |
Family
ID=46710451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100138651A KR101221060B1 (en) | 2010-12-30 | 2010-12-30 | Carbon-based aluminium composite and method for fabricating the same which silicon carbide is formed at the interface of compacted or sintered carbon bulk and aluminium |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101221060B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108793168A (en) * | 2017-05-04 | 2018-11-13 | 航天特种材料及工艺技术研究所 | A kind of mixed powder, purposes and silicon removing method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101444354B1 (en) * | 2013-01-21 | 2014-09-24 | 주식회사 티앤머티리얼스 | Mold which is useful to pressure-impregnation process |
CN112792321B (en) * | 2021-02-01 | 2022-12-06 | 安徽江宏制动器有限公司 | Production process of brake disc for automobile |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07268509A (en) * | 1994-04-01 | 1995-10-17 | Nippon Steel Corp | Production of sic fiber/aluminum alloy composite material having excellent strength characteristic |
JPH10237566A (en) | 1997-02-24 | 1998-09-08 | Otsuka Chem Co Ltd | Fiber reinforced metallic material and its production |
JPH11256253A (en) * | 1998-03-13 | 1999-09-21 | Furukawa Electric Co Ltd:The | Carbon fiber for composite material and composite material |
KR20010049523A (en) * | 1999-06-11 | 2001-06-15 | 가부시키가이샤 센탄자이료 | Carbon-based metal composite board-shaped material and method for producing the same |
-
2010
- 2010-12-30 KR KR1020100138651A patent/KR101221060B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07268509A (en) * | 1994-04-01 | 1995-10-17 | Nippon Steel Corp | Production of sic fiber/aluminum alloy composite material having excellent strength characteristic |
JPH10237566A (en) | 1997-02-24 | 1998-09-08 | Otsuka Chem Co Ltd | Fiber reinforced metallic material and its production |
JPH11256253A (en) * | 1998-03-13 | 1999-09-21 | Furukawa Electric Co Ltd:The | Carbon fiber for composite material and composite material |
KR20010049523A (en) * | 1999-06-11 | 2001-06-15 | 가부시키가이샤 센탄자이료 | Carbon-based metal composite board-shaped material and method for producing the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108793168A (en) * | 2017-05-04 | 2018-11-13 | 航天特种材料及工艺技术研究所 | A kind of mixed powder, purposes and silicon removing method |
Also Published As
Publication number | Publication date |
---|---|
KR20120076889A (en) | 2012-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108251733A (en) | A kind of preparation method of high heat-conductive diamond/carbon/carbon-copper composite material | |
JP2006001232A (en) | Composite having high heat conduction/low heat expansion and manufacturing process of the same | |
JP3673436B2 (en) | Carbon-based metal composite material and manufacturing method thereof | |
CN106735207B (en) | A kind of preparation method of high-compactness Cu/CuCr gradient composites | |
CN112981164B (en) | Preparation method of diamond reinforced metal matrix composite material with high reliability and high thermal conductivity | |
JP2011510502A (en) | Heat sink and method for manufacturing the heat sink | |
CN107498047A (en) | A kind of tungsten-copper composite material and preparation method thereof | |
KR101221060B1 (en) | Carbon-based aluminium composite and method for fabricating the same which silicon carbide is formed at the interface of compacted or sintered carbon bulk and aluminium | |
JP2005524766A (en) | Method for producing porous titanium material article | |
CN105695783A (en) | Graphene/copper-based composite and preparation method thereof | |
JP2010064954A (en) | Sic/al-based composite material and method for producing the same | |
JP5363418B2 (en) | Method for producing high thermal conductive composite material | |
CN111876625B (en) | AlNMg composite material and preparation method thereof | |
JP2010083715A (en) | Porous body, metal-ceramic composite material, and manufacturing method thereof | |
JP5320132B2 (en) | Porous body, metal-ceramic composite material, and production method thereof | |
JP4260426B2 (en) | heatsink | |
CN109652672B (en) | Anti-perovskite manganese nitrogen compound/aluminum double-communication-structure composite material and preparation method thereof | |
JP5856743B2 (en) | Method for producing metal-ceramic composite material | |
JP2015124124A (en) | PRODUCTION METHOD OF SiC-METAL COMPOSITE MATERIAL BODY | |
JP6132586B2 (en) | Method for producing SiC molded body | |
KR20130077494A (en) | Ceramic composites and method of fabricating the same | |
Ghaderi Hamidi et al. | Reduction of sintering temperature of porous tungsten skeleton used for production of W-Cu composites by ultra high compaction pressure of tungsten powder | |
JP2013533193A (en) | Thermal management composite material | |
KR20220156759A (en) | Porous carbon-based material and method for manufacturing porous carbon-based material | |
JP5181169B2 (en) | Metal composite material and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20151203 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170621 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20171109 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20181101 Year of fee payment: 7 |