JP2004014549A - Magnetic core multilayer inductor - Google Patents

Magnetic core multilayer inductor Download PDF

Info

Publication number
JP2004014549A
JP2004014549A JP2002161492A JP2002161492A JP2004014549A JP 2004014549 A JP2004014549 A JP 2004014549A JP 2002161492 A JP2002161492 A JP 2002161492A JP 2002161492 A JP2002161492 A JP 2002161492A JP 2004014549 A JP2004014549 A JP 2004014549A
Authority
JP
Japan
Prior art keywords
magnetic
coil
conductor pattern
layer
magnetic core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002161492A
Other languages
Japanese (ja)
Other versions
JP4009142B2 (en
Inventor
Fumiaki Nakao
中尾 文昭
Tetsuya Suzuki
鈴木 徹也
Masayuki Inagaki
稲垣 正幸
Mikio Kitaoka
北岡 幹雄
Yasuo Yamashita
山下 康雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2002161492A priority Critical patent/JP4009142B2/en
Publication of JP2004014549A publication Critical patent/JP2004014549A/en
Application granted granted Critical
Publication of JP4009142B2 publication Critical patent/JP4009142B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a wide linear range of magnetic flux density while reducing an inductor in size and thickness for the magnetic core multilayer inductor formed by laminating an electrical insulated magnetic layer and conductor patterns, so that the inductor is preferably used for the inductor with superposed dc like in a DC-DC converter. <P>SOLUTION: In the magnetic core multilayer inductor, the electrical insulated magnetic layer and the conductor patterns are laminated, the conductor patterns are laminated in the layer direction while sandwiching the magnetic layer to form a coil wound in spiral, and the magnetic layer forms a closed magnetic circuit for annularly guiding a magnetic field from the coil, The magnetic circuit balance is obtained for the closed magnetic circuit for guiding a magnetic field from the coil. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は磁心型積層インダクタに関し、たとえば超小形のDC−DCコンバータに利用して好適である。
【0002】
【従来の技術】
DC−DCコンバータなどの電源回路に使用されるトランスやチョークコイルなどの磁心型インダクタは磁性コアにコイルを巻回して構成されるため、半導体集積回路などの電子部品に比べて小形化とくに薄型化が困難であった。そこで、本発明者は、図9に示すような磁心型積層インダクタを検討した。
【0003】
図9は、本発明者が本発明に先立って検討した磁心型積層インダクタの構成を示したものであって、(a)は外観構成、(b)は導体パターンの一部、(c)は(b)のA−A切断面図、(d)は(c)の厚み方向拡大図をそれぞれ示す。磁性コアを有しない非磁心型の積層インダクタは、非磁性電気絶縁層と導体パターンをスクリーン印刷等で積層して形成されるが、図9に示す磁心型積層インダクタ10’は、電気絶縁性磁性体層(軟磁性体層)30と導体パターン20をスクリーン印刷等で積層することにより形成される。導体パターン20は電気絶縁性磁性体層30を挟みながら層方向に重畳して螺旋状に周回するコイルL’を形成する。電気絶縁性磁性体層30は上記コイルL’からの磁界を環状に導く閉磁路を形成する。コイルLの両端は引き出し用導体パターン部21,22を介してインダクタチップの両端に位置する電極端子11,12に接続される。
【0004】
なお、上記磁心型積層インダクタ10’は本発明者が本発明に先立って検討したものであって、本発明では従来技術として扱うが、必ずしも公知の技術ではない。
【0005】
【発明が解決しようとする課題】
しかしながら、上述した技術では次のような問題を生じることが本発明者によりあきらかとされた。すなわち、上述した磁心型積層インダクタ10’は、図10に示すように、電気絶縁性磁性体層30がコイルL’からの磁界を環状に導く閉磁路を形成するが、その閉磁路の実効磁路断面積は一様ではなく、磁路の位置によって大きく異なる。つまり、磁路長方向での磁路断面積のバラツキが大きい。
【0006】
図10は、図9に示した磁心型積層インダクタの断面モデルを示す。同図に示すように、上記閉磁路はa−b−c−dの各部分を経由して周回するが、その閉磁路の実効磁路断面積は、図11に示すように、磁路の位置(a−b−c−d)によって大きく異なる。そして、その磁路断面積が大きくなる部分(aとbの中間およびdとaの中間)と小さくなる部分(bとd)との差が大きい。つまり、磁路アンバランスが大きい。
【0007】
この磁路アンバランスはコイルL’の起磁力に対する磁束密度変化の直線性を劣化させる。すなわち、コイル電流を大きくして起磁力を増加させても、磁路断面積の小さな部分が他の部分よりも先に磁気飽和し、これに伴ってインダクタンス値が急減してしまう。つまり、磁路断面積が最小となる個所(bとd)が閉磁路全体の透磁率を支配する磁路ネックとなる。この磁路ネックでの磁路断面積が小さいと、他の部分で磁路断面積が大きくても、磁束密度の直線変化範囲いわゆる直線領域が狭められてしまう。図10に示した断面モデルでは、磁路がコイルL’の両端付近で屈曲するコーナ付近(bとd)に磁路ネックが形成され、この磁路ネックが上記直線領域を狭める、ということが判明した。
【0008】
DC−DCコンバータなどの電源回路では通常、トランスやチョークコイルなどのインダクタに直流電流を重畳させるが、そのためには上記直線領域をできるだけ広く確保する必要がある。しかし、上述した磁心型積層インダクタ10’ではその直線領域を広く確保することができない。また、上記磁気ネックに磁気的な損失が集中して、これによる発熱が問題となる。このように、上述した磁心型積層インダクタ10’は、DC−DCコンバータなどの電源回路(パワー回路)への使用適性を欠いていた。
【0009】
上述した磁心型積層インダクタ10’において磁束密度変化の直線領域を広げるためには、磁性体層30によって形成される磁性コア部分の体積とくに厚みを十分に大きく確保することが有効であるが、これはインダクタ10’の小形化とくに薄形化に背反する。
【0010】
この発明は以上のような問題を鑑みてなされたもので、その目的は、電気絶縁性磁性体層と導体パターンを積層して形成される磁心型積層インダクタにおいて、インダクタの小形化とくに薄形化を達成しつつ、磁束密度変化の直線領域を広く確保することができ、これにより、たとえば直流重畳されて使用される用途にも適したものとすることができる技術を提供することにある。
【0011】
【課題を解決するための手段】
本発明は次のような手段を提供する。
第1の手段は、電気絶縁性磁性体層と導体パターンが積層されて、上記導体パターンが上記磁性体層を挟みながら層方向に重畳して螺旋状に周回するコイルを形成し、上記磁性体層が上記コイルからの磁界を環状に導く閉磁路を形成する磁心型積層インダクタにおいて、上記コイルの内径をそのコイル両端の開口付近にてテーパ状に拡開させることにより、そのコイルを貫通する閉磁路の磁路断面積を全体的に均等化させたことを特徴とする。
【0012】
上記手段より、電気絶縁性磁性体層と導体パターンを積層して形成される磁心型積層インダクタにおいて、インダクタの小形化とくに薄形化を達成しつつ、磁束密度変化の直線領域を広く確保することができる。これにより、たとえば直流重畳されて使用される用途にも適した薄型の磁心型積層インダクタを得ることができる。
【0013】
上記手段の実施形態としては、コイルの中間巻線部を形成する導体パターンを比較的広い導体幅で相対的に小さな内径を描くようにパターニングする一方、そのコイルの両端巻線部を形成する導体パターンを比較的狭い導体幅により相対的に大きな内径を描くようにパターニングするという構成が好適である。導体パターンは直角に屈曲するパターンにより矩形状のコイルを形成するようにパターンニングするとよい。
【0014】
第2の手段は、電気絶縁性磁性体層と導体パターンが積層されて、上記導体パターンが上記磁性体層を挟みながら層方向に重畳して螺旋状に周回するコイルを形成し、上記磁性体層が上記コイルからの磁界を環状に導く閉磁路を形成する磁心型積層インダクタにおいて、上記磁性体層に磁気ギャップを選択的に介在させることにより、コイルの起磁力が不等分布することにより生じる磁束密度の偏りを均等化させるようにしたことを特徴とする。
この手段によれば、コイル巻数が半端なことによって生じる磁束密度の飽和バラツキを解消することができ、これにより、上記第1の手段と同様、インダクタの小形化とくに薄形化を達成しつつ、磁束密度変化の直線領域を広く確保することができる。インダクタチップの両端に電極端子を配設するためには、コイルの両端から互いに反対方向に導体パターンを引き出す必要があるが、この引き出し用導体パターン部はコイルの巻数を整数でない半端な数にする。この半端な巻数を有するコイルは起磁力が不等分布して閉磁路中の磁束密度に偏りが生じさせるが、上記手段によれば、その磁束密度の偏りを均等化することができる。これにより、自作密度変化の線領域を拡大することができる。上記磁気ギャップは上記磁性体層の一部を相対的に低透磁率の層に置き換えることにより形成することができる。
【0015】
第3の手段は、電気絶縁性磁性体層と導体パターンが積層されて、上記導体パターンが上記磁性体層を挟みながら層方向に重畳して螺旋状に周回するコイルを形成し、上記磁性体層が上記コイルからの磁界を環状に導く閉磁路を形成する磁心型積層インダクタにおいて、次の構成手段(1)〜(4)を有することを特徴とする。
(1)上記磁性体層は、上記コイルの内側にて上記閉磁路の中足部を形成するとともに、そのコイルの外側にて上記閉磁路の外足部を形成する。
(2)上記コイルは、その両端が互いに反対方向に位置する電極端子に引き出し用導体パターン部を介して接続されることにより、導体パターンの重畳数がn(1以上の整数)層となる部分とn+1層となる部分を有する。
(3)上記n+1層の導体パターン部からの磁界が導入される外足部の幅を、上記n層の導体パターン部からの磁界だけが導入される外足部の幅よりも狭くする。
(4)上記(3)によって閉磁路全体の透磁率を均等化されている。
【0016】
この第3の手段も、インダクタの小形化とくに薄形化を達成しつつ、磁束密度変化の直線領域を広く確保することができる。さらに、上記手段では、次のような実施形態が好適である。
すなわち、上記引き出し用導体パターン部からの磁界を導くI字状外足部のパターン面積を、それ以外の部分に形成されるU字状外足部のパターン面積の1/5以下とする。上記コイルの内側に形成される中足部のパターン面積と、そのコイルの外側に形成される外足部のパターン面積をほぼ等しくする。上記中足部の外周長と、上記U字状外足部と導体パターン間の境界長をほぼ同じにする。上記引き出し用導体パターン部の幅をtとし、この引き出し用導体パターン部に沿うI字状外足部の幅をwとし、上記中足部と上記引き出し用導体パターン部間の境界長をkとしたときに、(w+t)≒k/2となるようにする。
【0017】
【発明の実施の形態】
図1は、本発明による磁心型積層インダクタの第1実施例を示す。同図において、(a)はその外観構成例、(b)は導体パターンの一部、(c)は(b)のA−A切断面図、(d)は(c)の厚み方向拡大図をそれぞれ示す。
【0018】
同図に示す磁心型積層インダクタ10は表面実装用のチップ部品として構成されている。この磁心型積層インダクタ10は、電気絶縁性磁性体層(軟磁性体層)30と導体パターン20をスクリーン印刷等で交互に積層することにより形成される。導体パターン20は電気絶縁性磁性体層30を挟みながら層方向に重畳して螺旋状に周回するコイルLを形成する。図示の実施例の場合、導体パターン20は直角に屈曲しながら矩形状のコイルLを形成している。
【0019】
電気絶縁性磁性体層30は上記コイルLからの磁界を環状に導く閉磁路を形成する。コイルLの両端は引き出し用導体パターン部21,22を介してインダクタチップの両端に位置する電極端子11,12に接続される。電極端子11,12はチップの両端に位置対称に配設されている。
【0020】
この実施例の磁心型積層インダクタ10では、図1の(c)および(d)に示すように、コイルLを形成する各層の導体パターン20が層方向に重畳して螺旋状のコイルLを形成するとともに、そのコイルLの内径がそのコイル両端の開口付近にてテーパ状に拡開するように形成されている。このため、同図の(d)に示すように、コイルLの中間巻線部を形成する導体パターン20は比較的広い導体幅で相対的に小さな内径Aを描くようにパターニングされる一方、コイルLの両端巻線部を形成する導体パターン20は比較的狭い導体幅により相対的に大きな内径Bを描くようにパターニングされている。
【0021】
上述した磁心型積層インダクタは、図2に示すように、電気絶縁性磁性体層30がコイルLの内外を周回する環状の閉磁路を形成するが、この閉磁路の断面積(実効磁路断面積)は、コイルLの内径をそのコイル両端の開口付近にてテーパ状に拡開させたことにより、図3に示すように、磁路の位置(a−b−b−c)によるバラツキが小さく、閉磁路全体にわたってほぼ均等な磁路断面積が得られるようになっている。図3において、実線グラフ線は本発明の実施例による磁路断面積状態を示し、波線グラフ線は前述した従来のインダクタ10’の磁路断面積状態を示す。
【0022】
磁路バラツキが小さいければ、閉磁路全体が飽和するまで高透磁率を確保することができ、これにより、インダクタの小形化とくに薄形化を達成しつつ、磁束密度変化の直線領域を広く確保して、たとえばDC−DCコンバータのように直流重畳されて使用される用途にも適した磁心型積層インダクタ10を得ることができる。これとともに、磁気損失が閉磁路全体に分散されるようになるため、損失の集中による発熱の問題も回避することができる。
【0023】
上述した構成に加えて、コイルLの内周側磁路部分(a部分)の磁路断面積と外周側磁路部分(c部分)の磁路断面積も互いに等しくするように構成すれば、上記磁路バランスをさらに均等化させることができる。このためには、図1の(d)において、コイルLの内径が最も小さくなる中間巻線部分(内径がAとなる部分)すなわちコイルL内側の磁路断面積が最小となる位置(内径Aの位置)にて、そのコイルの内側と外側の両磁路断面積が等しくなるようにするとよい。コイルLの巻線パターンは、図示の例では矩形としてあるが、円形またはその他のループ形状でもよい。
【0024】
図4は、上記磁心型積層インダクタ10の磁性体部分をバルク(単体)のE型磁性コアにモデル化して示す。バルクのE型磁性コアは平板部の両端にそれぞれ外足部を有するとともに、その平板部の中央に中足部が立っている形状をなしている。同図において、(a)に示すような方形柱状の中足部を有するE型磁性コアは、本発明では(b)に示すような方形な台形状の中足部を有する磁性コアにモデル化することができる。また、(c)に示すような円柱状の中足部を有するE型磁性コアは、本発明では(d)に示すような円形な台形状の中足部を有するE型磁性コアにモデル化することができる。
【0025】
(a)の磁性コアモデルにおいて、中足部の一辺の長さ(径)をBとし、その中足部が立っている平板部の厚みをtとした場合、その中足部と平板部が連接する環状部分での断面積A1は、A1=4×B×tとなる。中足部と平板部間での磁路バランスをとるためには、その環状連接部分の断面積A1が中足部の断面積A2に等しくなるようにする必要がある。中足部の断面積A2は、A2=B×Bである。これからA1=A2とするためには、t=B/4となるようにtを定める。
【0026】
(b)の磁性コアモデルにおいて磁路バランスをとるためには、中足部の上面積と、その中足部の付け根部分に連接する環状部分での断面積が互いに等しくなるようにすればよい。中足部の上面における一辺の長さをBとし、その中足部の付け根部分における一辺の長さをB’とし、その中足部が立っている平板部の厚みをt’とした場合、中足部の上面積はB×Bで、その中足部と平板部が連接する環状部分での断面積は4×B’×t’となる。中足部と平板部間で磁路バランスをとるためには、両面積(B×B)と(4×B’×t’)が等しくなるようにt’を定めればよい。すなわち、この場合は、t’=(B×B)/(4×B’)となるようにt’を定めればよい。この条件式は、B’を大きくすることで、t’が小さくても磁路バランスをとれることを示す。これにより、t’を小さくして磁性コアを薄型化することができる。
【0027】
(c)の磁性コアモデルでは、中足部の直径をDとし、その中足部が立っている平板部の厚みをtとした場合、その中足部と平板部が連接する環状部分での断面積A1は、A1=π×D×tとなる。また、中足部の断面積A2は、A2=(D/2)×(D/2)×πとなる。この場合、中足部と平板部間で磁路バランスをとるためには、t=D/4となるようにtを定める。
【0028】
(d)の磁性コアモデルでは、中足部の上面における直径をDとし、その中足部の付け根部分における直径をD’とし、その中足部が立っている平板部の厚みをt’とした場合、中足部の上面積はA2=(D/2)×(D/2)×πで、その中足部と平板部が連接する環状部分での断面積はπ×D’×t’となる。この場合、中足部と平板部間で磁路バランスをとるためには、t=(D×D)/(4×D’)となるようにtを定めればよい。この条件式は、(b)の場合と同様、D’を大きくすることで、t’が小さくても磁路バランスをとれることを示す。これにより、t’を小さくして磁性コアを薄型化することができる。
【0029】
図5は本発明による磁心型積層インダクタの第2実施例を示す。表面実装用のチップ部品として構成された積層インダクタでは、基板実装時に面倒な方向判別を行わなくても済むようにするため、チップの両端に電極端子11,12を振り分けた位置対称状態で配設することが望ましい(図1)。このため、図5の(a)に示すように、コイルLの両端はそれぞれ引き出し用導体パターン部21,22を介して互いに反対方向に引き出される。このような端子引き出し構造を形成した場合、コイルLの巻数は単純な整数とはならず、たとえばn×1/4回といったような半端な巻数となる(nは整数)。
【0030】
この場合、同図の(b)に示すように、コイルLを形成する導体パターン20の層数は場所により異なってくる。すなわち、導体パターンがn層重なる部分とn+1層重なる部分が生じる。導体パターン20がn+1層重なる部分が1/4周分あれば、コイル巻数はn+1/4回となる。導体パターン20がn+1層重なる部分とn層重なる部分とでは起磁力が異なる。
【0031】
引き出し用導体パターン部21,22がある側の磁路Aでは、導体パターンが1層余分に重畳してコイルLの巻数が部分的に多くなっているため、コイルLからの受ける起磁力が他の部分の磁路Bよりも大きなる。この起磁力の違いは磁路バランスを低下させて磁束密度変化の直線性を損なう要因になる。仮に、閉磁路全体の磁路断面積が一様であったとしても、起磁力に偏りがあると、その起磁力が大きい部分が先に磁気飽和して前述した磁気ネックと同様の問題を生じさせる。
【0032】
そこで、この実施例では、図5に示すように、起磁力が大きくなる側の磁路Aに磁気ギャップ31を選択的に介在させる。この磁気ギャップ31は、非磁性電気絶縁層(透磁率μ≒1)または相対的に低透磁率の電気絶縁性磁性体層(軟磁性体層)によって形成することができる。具体的には、特定の層に形成される電気絶縁性磁性体層30の一部を低透磁率の層に置き換えることにより形成できる。このような磁気ギャップ31を設けることにより、コイルLの部分的巻数の違いによる起磁力の不等分布を補償して良好な磁気バランスを得ることができる。
【0033】
図6は上記磁気ギャップ31のさらに具体的な実施例を示す。図5に示した磁気ギャップ31は、E型磁性コアの一方の外足部に相当する部分だけに設けていたが、コア全体の磁路バランスをとるためには、図6に示すように、E型磁性コアの一方の外足部と中足部の両方に跨るパターン形状で磁気ギャップ31を設けた方がよい。
【0034】
図7は本発明による磁心型積層インダクタの第3実施例を示す。コイルLの部分的な巻数の違いによる起磁力の不等分布は、同図に示すように、E型磁性コアの一対の外足部に相当する部分の面積比によって補償することができる。すなわち、同図において、引き出し用導体パターン部21,22が形成されることによって導体パターンがn+1層重畳している側(磁路A側)の外足幅t1は、その導体パターンがn層だけ重畳している側(磁路B側)の外足幅t2よりも狭く形成されている。つまり、上記n+1層の導体パターン部からの磁界が導入される外足部の幅t1を、上記n層の導体パターン部からの磁界だけが導入される外足部の幅t2よりも狭くしている。これにより、起磁力の不等分布による磁束密度の位置的な偏りが生じても、その偏りを補償して良好な磁気バランスを得ることができる。
【0035】
図8は導体パターン20と電気絶縁性磁性体層30が共に矩形状に形成される磁心型積層インダクタの寸法関係図を示す。同図において、上記磁路バランスとるためには、各部の寸法を次のようにするとよい。
(1)引き出し用導体パターン部21,22の側に形成されるI字状外足部パターンの面積s22を、それ以外の部分に形成されるU字状外足部パターンの面積s21の1/5以下とする。
(2)コイルLの内側に形成されるある中足部パターンの面積s1と、そのコイルLの外側に形成されるI字状とU字状の外足部の全パターン面積s2(=s21+s22)とをほぼ等しくする。
(3)上記中足部の外周長(2×j+2×k)と、上記U字状外足部と導体パターン間の境界長(2×u+n+2×p)をほぼ同じにする。
(4)引き出し用導体パターン部21,22の幅をtとし、この引き出し用導体パターン部21,22に沿うI字状外足部の幅をwとし、上記引き出し用導体パターン部21,22と中足部間の境界長をkとしたときに、(w+t)≒k/2となるようにする。これにより、中足部での磁路断面積をI字状外足部に有効に伝えて良好な磁路バランスを得ることができる。
【0036】
図8の寸法図において、各部の寸法(x,y,u,t,w,m)は、次式(1)(2)(3)を満足するように定めることで最適化することができる。
2u+n=y  ・・・(1)
t+u+m=x ・・・(2)
(m−2w)(n−2w)=(xy−mn−2wu)・・・(3)
これにより、上記I字状外足部の幅wは、上式(1)(2)(3)を満足するように定めることで最適化することができる。
【0037】
以上、本発明をその代表的な実施例に基づいて説明したが、本発明は上述した以外にも種々の態様が可能である。たとえば、コイルLのパターン形状は円形あるいは角部が円弧状の矩形パターンであってもよい。
【0038】
【発明の効果】
本発明によれば、電気絶縁性磁性体層と導体パターンを積層して形成される磁心型積層インダクタにおいて、インダクタの小形化とくに薄形化を達成しつつ、磁束密度変化の直線領域を広く確保することができ、これにより、たとえば直流重畳されて使用される用途にも適した薄型の磁心型積層インダクタを得ることができる。
【図面の簡単な説明】
【図1】本発明による磁心型積層インダクタの第1実施例を示す図である。
【図2】本発明に係る磁心型積層インダクタの断面状態を示す図である。
【図3】本発明に係る磁心型積層インダクタの磁路断面積状態を示すグラフである。
【図4】磁心型積層インダクタの磁性体部分をバルクのE型磁性コアにモデル化して示す図である。
【図5】本発明による磁心型積層インダクタの第2実施例を示す図である。
【図6】本発明の要部の一つをなす磁気ギャップのさらに具体的な実施例を示す図である。
【図7】本発明による磁心型積層インダクタの第3実施例を示す図である。
【図8】本発明に係る磁心型積層インダクタの寸法関係図である。
【図9】本発明に先立って検討された磁心型積層インダクタの構成を示す図である。
【図10】図9に示した磁心型積層インダクタの断面状態を示す図である。
【図11】図9に示した磁心型積層インダクタの磁路断面積状態を示すグラフである。
【符号の説明】
10 磁心型積層インダクタ(本発明)
10’ 磁心型積層インダクタ(従来)
11,12 電極端子
30 電気絶縁性磁性体層(軟磁性体層)
20 導体パターン
21,22 引き出し用導体パターン部
31 磁気ギャップ
L コイル(本発明)
L’ コイル(従来)
A 磁路
B 磁路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic core type laminated inductor, and is suitably used, for example, for a micro DC-DC converter.
[0002]
[Prior art]
Magnetic core type inductors such as transformers and choke coils used in power supply circuits such as DC-DC converters are constructed by winding coils around magnetic cores, so they are smaller and especially thinner than electronic components such as semiconductor integrated circuits. Was difficult. Thus, the present inventors have studied a magnetic core type multilayer inductor as shown in FIG.
[0003]
FIGS. 9A and 9B show the configuration of a magnetic core type laminated inductor studied by the present inventors prior to the present invention. FIG. 9A shows an external configuration, FIG. 9B shows a part of a conductor pattern, and FIG. (B) is an AA cross-sectional view, and (d) is an enlarged view in the thickness direction of (c). The non-magnetic core type laminated inductor having no magnetic core is formed by laminating a non-magnetic electric insulating layer and a conductor pattern by screen printing or the like. The magnetic core type laminated inductor 10 ′ shown in FIG. It is formed by laminating the body layer (soft magnetic layer) 30 and the conductor pattern 20 by screen printing or the like. The conductor pattern 20 overlaps in the layer direction while sandwiching the electrically insulating magnetic layer 30 to form a coil L 'that spirals around. The electrically insulating magnetic layer 30 forms a closed magnetic path for guiding the magnetic field from the coil L 'in an annular shape. Both ends of the coil L are connected to the electrode terminals 11 and 12 located at both ends of the inductor chip via the conductor patterns 21 and 22 for extraction.
[0004]
The magnetic core type laminated inductor 10 'has been studied by the present inventors prior to the present invention, and is treated as a conventional technique in the present invention, but is not necessarily a known technique.
[0005]
[Problems to be solved by the invention]
However, it has been clarified by the present inventors that the following problems occur in the above-described technology. That is, in the above-described magnetic core type laminated inductor 10 ′, as shown in FIG. 10, the electrically insulating magnetic material layer 30 forms a closed magnetic path for guiding the magnetic field from the coil L ′ in a ring shape. The cross-sectional area of the road is not uniform and greatly varies depending on the position of the magnetic path. That is, there is a large variation in the magnetic path cross-sectional area in the magnetic path length direction.
[0006]
FIG. 10 shows a cross-sectional model of the magnetic core type multilayer inductor shown in FIG. As shown in the figure, the closed magnetic circuit circulates through each part of abcd, and the effective magnetic circuit cross-sectional area of the closed magnetic circuit is, as shown in FIG. It differs greatly depending on the position (abcd). The difference between the portion where the magnetic path cross-sectional area is large (middle of a and b and the middle of d and a) and the small portion (b and d) are large. That is, the magnetic path imbalance is large.
[0007]
This magnetic path imbalance degrades the linearity of the change in magnetic flux density with respect to the magnetomotive force of the coil L '. That is, even if the magnetomotive force is increased by increasing the coil current, a portion having a small magnetic path cross-sectional area is magnetically saturated earlier than other portions, and the inductance value is rapidly reduced accordingly. That is, the locations (b and d) where the magnetic path cross-sectional area is minimum become the magnetic path neck that controls the magnetic permeability of the entire closed magnetic path. If the magnetic path cross-sectional area at the magnetic path neck is small, the linear change range of the magnetic flux density, that is, the linear region, is narrowed even if the magnetic path cross-sectional area is large in other parts. In the cross-sectional model shown in FIG. 10, a magnetic path neck is formed near corners (b and d) where the magnetic path is bent near both ends of the coil L ′, and this magnetic path neck narrows the linear region. found.
[0008]
In a power supply circuit such as a DC-DC converter, a direct current is usually superimposed on an inductor such as a transformer or a choke coil. For this purpose, it is necessary to secure the linear region as wide as possible. However, the above-mentioned magnetic core type laminated inductor 10 'cannot secure a wide linear region. In addition, magnetic loss concentrates on the magnetic neck, thereby causing a problem of heat generation. As described above, the above-described magnetic core type laminated inductor 10 ′ lacked suitability for use in a power supply circuit (power circuit) such as a DC-DC converter.
[0009]
In order to widen the linear region of the change in the magnetic flux density in the above-described magnetic core type laminated inductor 10 ', it is effective to secure a sufficiently large volume, particularly the thickness, of the magnetic core portion formed by the magnetic material layer 30. Is contrary to the downsizing of the inductor 10 ′, especially the downsizing.
[0010]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a magnetic core type laminated inductor formed by laminating an electrically insulating magnetic material layer and a conductor pattern. Accordingly, it is an object of the present invention to provide a technique capable of securing a wide linear region of a change in magnetic flux density while achieving the above, thereby making it suitable for, for example, an application in which DC superposition is used.
[0011]
[Means for Solving the Problems]
The present invention provides the following means.
A first means is to form a coil in which an electrically insulating magnetic material layer and a conductor pattern are laminated, and the conductor pattern overlaps in a layer direction while sandwiching the magnetic material layer and spirals around. In a magnetic core type laminated inductor in which a layer forms a closed magnetic path that guides a magnetic field from the coil in an annular shape, the inner diameter of the coil is expanded in a tapered shape in the vicinity of openings at both ends of the coil, so that the closed magnet penetrates the coil. The magnetic path cross-sectional area of the road is equalized as a whole.
[0012]
According to the above means, in a magnetic core type laminated inductor formed by laminating an electrically insulating magnetic material layer and a conductor pattern, it is possible to secure a wide linear region of a change in magnetic flux density while achieving downsizing, particularly thinning of the inductor. Can be. Thereby, for example, a thin magnetic core type laminated inductor suitable for an application in which DC superposition is used can be obtained.
[0013]
As an embodiment of the above means, a conductor pattern forming an intermediate winding portion of a coil is patterned so as to draw a relatively small inner diameter with a relatively wide conductor width, while a conductor pattern forming both end winding portions of the coil is formed. A configuration in which the pattern is patterned so as to draw a relatively large inner diameter with a relatively narrow conductor width is preferable. The conductor pattern may be patterned so as to form a rectangular coil by a pattern bent at a right angle.
[0014]
The second means forms a coil in which an electrically insulating magnetic material layer and a conductor pattern are laminated, and the conductor pattern overlaps in a layer direction while sandwiching the magnetic material layer and spirals around. In a magnetic core type laminated inductor in which a layer forms a closed magnetic path that guides a magnetic field from the coil in a ring shape, the magnetic gap is selectively interposed in the magnetic layer, so that the magnetomotive force of the coil is unevenly distributed. It is characterized in that the deviation of the magnetic flux density is equalized.
According to this means, it is possible to eliminate the variation in the saturation of the magnetic flux density caused by the odd number of turns of the coil, thereby achieving the miniaturization of the inductor, especially the thinning, as in the first means. A wide linear region of magnetic flux density change can be secured. In order to arrange electrode terminals at both ends of the inductor chip, it is necessary to draw conductor patterns in opposite directions from both ends of the coil, but this drawing conductor pattern portion makes the number of turns of the coil a non-integer odd number . In the coil having the odd number of turns, the magnetomotive force is unequally distributed and the magnetic flux density in the closed magnetic circuit is biased. According to the above-described means, the magnetic flux density bias can be equalized. Thereby, the line region of the self-made density change can be enlarged. The magnetic gap can be formed by replacing a part of the magnetic layer with a layer having a relatively low magnetic permeability.
[0015]
The third means is to form a coil in which an electrically insulating magnetic material layer and a conductor pattern are laminated, and the conductor pattern overlaps in a layer direction while sandwiching the magnetic material layer and spirals around. A magnetic core type laminated inductor in which a layer forms a closed magnetic path that guides a magnetic field from the coil in a ring shape is characterized by having the following constituent means (1) to (4).
(1) The magnetic material layer forms a middle leg of the closed magnetic path inside the coil and forms an outer leg of the closed magnetic path outside the coil.
(2) A portion where the number of superposed conductor patterns becomes n (an integer of 1 or more) layers by connecting the both ends of the coil to the electrode terminals located in opposite directions via the lead conductor pattern portion. And an n + 1 layer.
(3) The width of the outer leg portion into which the magnetic field from the n + 1 layer conductor pattern portion is introduced is made smaller than the width of the outer leg portion into which only the magnetic field from the n layer conductor pattern portion is introduced.
(4) The magnetic permeability of the entire closed magnetic circuit is equalized by the above (3).
[0016]
This third means can also secure a wide linear region of the change in magnetic flux density while achieving downsizing of the inductor, particularly downsizing. Further, in the above-mentioned means, the following embodiment is preferable.
In other words, the pattern area of the I-shaped outer foot that guides the magnetic field from the lead-out conductor pattern section is set to not more than 1/5 of the pattern area of the U-shaped outer foot formed in other portions. The pattern area of the middle foot portion formed inside the coil is substantially equal to the pattern area of the outer foot portion formed outside the coil. The outer peripheral length of the middle foot portion is substantially equal to the boundary length between the U-shaped outer foot portion and the conductor pattern. The width of the lead-out conductor pattern portion is t, the width of the I-shaped outer foot portion along the lead-out conductor pattern portion is w, and the boundary length between the middle foot portion and the lead-out conductor pattern portion is k. Then, (w + t) ≒ k / 2.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a first embodiment of a magnetic core type laminated inductor according to the present invention. In the same figure, (a) is an example of the appearance configuration, (b) is a part of the conductor pattern, (c) is a sectional view taken along the line AA of (b), and (d) is an enlarged view in the thickness direction of (c). Are respectively shown.
[0018]
The magnetic core type laminated inductor 10 shown in FIG. 1 is configured as a chip component for surface mounting. The magnetic core type laminated inductor 10 is formed by alternately laminating an electrically insulating magnetic material layer (soft magnetic material layer) 30 and a conductor pattern 20 by screen printing or the like. The conductor pattern 20 forms a coil L that spirals and overlaps in the layer direction while sandwiching the electrically insulating magnetic layer 30. In the illustrated embodiment, the conductor pattern 20 forms a rectangular coil L while bending at a right angle.
[0019]
The electrically insulating magnetic layer 30 forms a closed magnetic path for guiding the magnetic field from the coil L in an annular shape. Both ends of the coil L are connected to the electrode terminals 11 and 12 located at both ends of the inductor chip via the conductor patterns 21 and 22 for extraction. The electrode terminals 11 and 12 are disposed symmetrically at both ends of the chip.
[0020]
In the magnetic core type laminated inductor 10 of this embodiment, as shown in FIGS. 1C and 1D, the conductor pattern 20 of each layer forming the coil L overlaps in the layer direction to form a spiral coil L. The coil L is formed so that the inner diameter of the coil L expands in a tapered shape near the openings at both ends of the coil. Therefore, as shown in FIG. 3D, the conductor pattern 20 forming the intermediate winding portion of the coil L is patterned so as to draw a relatively small inner diameter A with a relatively wide conductor width, while The conductor pattern 20 forming the winding portion at both ends of L is patterned so as to draw a relatively large inner diameter B by a relatively narrow conductor width.
[0021]
In the above-described magnetic core type laminated inductor, as shown in FIG. 2, the electrically insulating magnetic material layer 30 forms an annular closed magnetic path that goes around the inside and outside of the coil L. As shown in FIG. 3, the area of the coil L varies with the magnetic path position (ab-b-c) by expanding the inner diameter of the coil L in a tapered shape near the openings at both ends of the coil. A small and substantially uniform magnetic path cross-sectional area is obtained over the entire closed magnetic path. In FIG. 3, the solid line indicates the state of the magnetic path cross-sectional area according to the embodiment of the present invention, and the dashed line indicates the state of the magnetic path cross-sectional area of the above-described conventional inductor 10 '.
[0022]
If the variation in the magnetic path is small, high magnetic permeability can be ensured until the entire closed magnetic circuit is saturated, which allows the inductor to be reduced in size and especially thinner, while securing a wide linear region of magnetic flux density change. As a result, it is possible to obtain the magnetic core type laminated inductor 10 which is also suitable for applications in which DC is superimposed and used, such as a DC-DC converter. At the same time, the magnetic loss is distributed throughout the closed magnetic circuit, so that the problem of heat generation due to concentration of the loss can be avoided.
[0023]
In addition to the configuration described above, if the magnetic path cross-sectional area of the inner peripheral magnetic path portion (part a) and the magnetic path cross-sectional area of the outer peripheral magnetic path part (part c) of the coil L are made equal to each other, The magnetic path balance can be further equalized. For this purpose, in FIG. 1 (d), the intermediate winding portion where the inner diameter of the coil L is the smallest (the portion where the inner diameter is A), that is, the position where the magnetic path cross-sectional area inside the coil L is the smallest (the inner diameter A ), The inner and outer magnetic path cross-sectional areas of the coil should be equal. The winding pattern of the coil L is rectangular in the illustrated example, but may be circular or another loop shape.
[0024]
FIG. 4 shows the magnetic portion of the magnetic core type laminated inductor 10 modeled as a bulk (single) E-type magnetic core. The bulk E-shaped magnetic core has outer legs at both ends of the flat plate, and has a shape in which the middle foot stands at the center of the flat plate. In the figure, an E-shaped magnetic core having a square pillar-shaped middle foot as shown in FIG. 2A is modeled as a magnetic core having a square trapezoidal middle foot as shown in FIG. can do. Further, the E-shaped magnetic core having a cylindrical middle foot as shown in FIG. 3C is modeled as an E-shaped magnetic core having a circular trapezoidal middle foot as shown in FIG. can do.
[0025]
In the magnetic core model of (a), when the length (diameter) of one side of the midfoot portion is B and the thickness of the flat plate portion on which the midfoot portion stands is t, the midfoot portion and the flat plate portion are The cross-sectional area A1 at the connected annular portion is A1 = 4 × B × t. In order to balance the magnetic path between the middle foot portion and the flat plate portion, it is necessary to make the cross-sectional area A1 of the annular connection portion equal to the cross-sectional area A2 of the middle foot portion. The cross-sectional area A2 of the midfoot is A2 = B × B. In order to set A1 = A2 from now on, t is determined so that t = B / 4.
[0026]
In order to balance the magnetic path in the magnetic core model of (b), the upper area of the middle foot and the cross-sectional area of the annular portion connected to the base of the middle foot may be equal to each other. . When the length of one side on the upper surface of the middle foot is B, the length of one side at the base of the middle foot is B ', and the thickness of the flat plate on which the middle foot stands is t', The upper area of the middle foot portion is B × B, and the cross-sectional area of the annular portion where the middle foot portion and the flat plate portion are connected is 4 × B ′ × t ′. In order to balance the magnetic path between the middle foot portion and the flat plate portion, t ′ may be determined so that both areas (B × B) are equal to (4 × B ′ × t ′). That is, in this case, t ′ may be determined so that t ′ = (B × B) / (4 × B ′). This conditional expression indicates that by increasing B ′, the magnetic path can be balanced even if t ′ is small. Thereby, t ′ can be reduced and the magnetic core can be reduced in thickness.
[0027]
In the magnetic core model of (c), when the diameter of the midfoot portion is D and the thickness of the flat plate portion on which the midfoot portion stands is t, the thickness of the annular portion where the midfoot portion and the flat plate portion are connected to each other is represented. The cross-sectional area A1 is A1 = π × D × t. Further, the cross-sectional area A2 of the middle foot portion is A2 = (D / 2) × (D / 2) × π. In this case, in order to balance the magnetic path between the middle foot portion and the flat plate portion, t is determined so that t = D / 4.
[0028]
In the magnetic core model of (d), the diameter at the upper surface of the middle foot is D, the diameter at the base of the middle foot is D ', and the thickness of the flat plate on which the middle foot stands is t'. In this case, the upper area of the middle foot portion is A2 = (D / 2) × (D / 2) × π, and the cross-sectional area of the annular portion where the middle foot portion and the flat plate portion are connected is π × D ′ × t '. In this case, in order to balance the magnetic path between the middle foot portion and the flat plate portion, t may be determined so that t = (D × D) / (4 × D ′). This conditional expression shows that, as in the case of (b), by increasing D ′, the magnetic path balance can be achieved even when t ′ is small. Thereby, t ′ can be reduced and the magnetic core can be reduced in thickness.
[0029]
FIG. 5 shows a second embodiment of the magnetic core type laminated inductor according to the present invention. In a multilayer inductor configured as a chip component for surface mounting, the electrode terminals 11 and 12 are disposed at both ends of the chip in a position symmetrical state so that troublesome direction determination is not required when mounting the substrate. It is desirable (FIG. 1). Therefore, as shown in FIG. 5A, both ends of the coil L are drawn out in opposite directions via the lead-out conductor pattern portions 21 and 22, respectively. When such a terminal lead-out structure is formed, the number of turns of the coil L is not a simple integer, but an odd number of turns such as n × 1 / (n is an integer).
[0030]
In this case, the number of layers of the conductor pattern 20 forming the coil L differs depending on the location as shown in FIG. That is, a portion where the conductor pattern overlaps n layers and a portion where n + 1 layers overlap are generated. If the portion where the conductor pattern 20 overlaps n + 1 layers corresponds to 1/4 turn, the number of coil turns is n + 1/4. The magnetomotive force differs between a portion where the conductor pattern 20 overlaps the n + 1 layer and a portion where the conductor pattern 20 overlaps the n layer.
[0031]
In the magnetic path A on the side where the lead-out conductor pattern portions 21 and 22 are located, the conductor pattern is superimposed by one extra layer and the number of turns of the coil L is partially increased. Is larger than the magnetic path B of the portion. This difference in the magnetomotive force causes a reduction in the magnetic path balance, thus impairing the linearity of the magnetic flux density change. Even if the magnetic path cross-sectional area of the entire closed magnetic path is uniform, if there is a bias in the magnetomotive force, the portion with a large magnetomotive force will be magnetically saturated first, causing the same problem as the magnetic neck described above. Let it.
[0032]
Therefore, in this embodiment, as shown in FIG. 5, the magnetic gap 31 is selectively interposed in the magnetic path A on the side where the magnetomotive force increases. This magnetic gap 31 can be formed by a nonmagnetic electric insulating layer (magnetic permeability μ ≒ 1) or an electrically insulating magnetic layer (soft magnetic layer) having a relatively low magnetic permeability. Specifically, it can be formed by replacing a part of the electrically insulating magnetic layer 30 formed in a specific layer with a layer having a low magnetic permeability. By providing such a magnetic gap 31, it is possible to compensate for unequal distribution of magnetomotive force due to a difference in the number of partial turns of the coil L, and to obtain a good magnetic balance.
[0033]
FIG. 6 shows a more specific embodiment of the magnetic gap 31. Although the magnetic gap 31 shown in FIG. 5 is provided only in a portion corresponding to one outer leg of the E-shaped magnetic core, in order to balance the magnetic path of the entire core, as shown in FIG. It is better to provide the magnetic gap 31 in a pattern shape that straddles both the outer leg and the middle leg of the E-shaped magnetic core.
[0034]
FIG. 7 shows a third embodiment of the magnetic core type laminated inductor according to the present invention. The uneven distribution of the magnetomotive force due to the partial difference in the number of turns of the coil L can be compensated by the area ratio of the portion corresponding to the pair of outer legs of the E-shaped magnetic core as shown in FIG. That is, in FIG. 3, the outer leg width t1 on the side (magnetic path A side) on which the conductor patterns are overlapped by n + 1 layers due to the formation of the lead-out conductor pattern portions 21 and 22 is only n layers. It is formed narrower than the outer leg width t2 on the overlapping side (magnetic path B side). That is, the width t1 of the outer leg portion into which the magnetic field from the n + 1 layer conductor pattern portion is introduced is made smaller than the width t2 of the outer leg portion into which only the magnetic field from the n layer conductor pattern portion is introduced. I have. Thereby, even if a positional deviation of the magnetic flux density occurs due to the uneven distribution of the magnetomotive force, the deviation can be compensated to obtain a good magnetic balance.
[0035]
FIG. 8 is a dimensional relationship diagram of a magnetic core type laminated inductor in which the conductor pattern 20 and the electrically insulating magnetic layer 30 are both formed in a rectangular shape. In the figure, in order to achieve the above-mentioned magnetic path balance, the dimensions of each part may be set as follows.
(1) The area s22 of the I-shaped outer leg pattern formed on the side of the lead-out conductor pattern portions 21 and 22 is 1/1 of the area s21 of the U-shaped outer leg pattern formed on the other portions. 5 or less.
(2) The area s1 of a certain midfoot pattern formed inside the coil L, and the total pattern area s2 of the I-shaped and U-shaped outer feet formed outside the coil L (= s21 + s22) And are approximately equal.
(3) The outer peripheral length (2 × j + 2 × k) of the middle foot portion is substantially equal to the boundary length (2 × u + n + 2 × p) between the U-shaped outer foot portion and the conductor pattern.
(4) The width of the lead-out conductor pattern portions 21 and 22 is denoted by t, the width of the I-shaped outer foot portion along the lead-out conductor pattern portions 21 and 22 is denoted by w, and (W + t) ≒ k / 2, where k is the boundary length between the midfoot portions. As a result, the magnetic path cross-sectional area at the middle foot can be effectively transmitted to the I-shaped outer foot, and a good magnetic path balance can be obtained.
[0036]
In the dimension diagram of FIG. 8, the dimensions (x, y, u, t, w, m) of each part can be optimized by determining so as to satisfy the following expressions (1), (2), and (3). .
2u + n = y (1)
t + u + m = x (2)
(M−2w) (n−2w) = (xy−mn−2wu) (3)
Thereby, the width w of the I-shaped outer leg can be optimized by determining so as to satisfy the above equations (1), (2), and (3).
[0037]
As described above, the present invention has been described based on the typical embodiments. However, the present invention can have various aspects other than those described above. For example, the pattern shape of the coil L may be a circular pattern or a rectangular pattern having a circular arc at the corner.
[0038]
【The invention's effect】
According to the present invention, in a magnetic core type laminated inductor formed by laminating an electrically insulating magnetic material layer and a conductor pattern, a linear region of a change in magnetic flux density is secured widely while achieving downsizing, particularly thinning, of the inductor. Thereby, for example, a thin magnetic core type laminated inductor suitable for an application in which DC superposition is used can be obtained.
[Brief description of the drawings]
FIG. 1 is a view showing a first embodiment of a magnetic core type laminated inductor according to the present invention.
FIG. 2 is a diagram showing a cross-sectional state of a magnetic core type laminated inductor according to the present invention.
FIG. 3 is a graph showing a magnetic path cross-sectional area state of the magnetic core type laminated inductor according to the present invention.
FIG. 4 is a diagram showing a magnetic portion of a magnetic core type laminated inductor modeled on a bulk E-type magnetic core;
FIG. 5 is a view showing a second embodiment of the magnetic core type laminated inductor according to the present invention.
FIG. 6 is a diagram showing a more specific embodiment of a magnetic gap forming one of the main parts of the present invention.
FIG. 7 is a view showing a third embodiment of the magnetic core type laminated inductor according to the present invention.
FIG. 8 is a dimensional relation diagram of the magnetic core type laminated inductor according to the present invention.
FIG. 9 is a diagram showing a configuration of a magnetic core type laminated inductor studied prior to the present invention.
10 is a diagram showing a cross-sectional state of the magnetic core type laminated inductor shown in FIG.
11 is a graph showing a state of a magnetic path cross-sectional area of the magnetic core type multilayer inductor shown in FIG. 9;
[Explanation of symbols]
10 Magnetic core type laminated inductor (the present invention)
10 'core type multilayer inductor (conventional)
11, 12 electrode terminals 30 electrically insulating magnetic layer (soft magnetic layer)
20 Conductor Patterns 21, 22 Leader Conductor Pattern Part 31 Magnetic Gap L Coil (The Present Invention)
L 'coil (conventional)
A Magnetic path B Magnetic path

Claims (11)

電気絶縁性磁性体層と導体パターンが積層されて、上記導体パターンが上記磁性体層を挟みながら層方向に重畳して螺旋状に周回するコイルを形成し、上記磁性体層が上記コイルからの磁界を環状に導く閉磁路を形成する磁心型積層インダクタにおいて、上記コイルの内径をそのコイル両端の開口付近にてテーパ状に拡開させることにより、そのコイルを貫通する閉磁路の磁路断面積を全体的に均等化させたことを特徴とする磁心型積層インダクタ。An electrically insulating magnetic material layer and a conductor pattern are laminated, and the conductor pattern overlaps in a layer direction while sandwiching the magnetic material layer to form a coil that helically circulates. In a magnetic core type laminated inductor that forms a closed magnetic circuit that guides a magnetic field in an annular shape, the inner diameter of the coil is expanded in a tapered shape near the openings at both ends of the coil, so that the magnetic path cross-sectional area of the closed magnetic circuit penetrating the coil A magnetic core type multilayer inductor characterized by equalizing as a whole. 請求項1において、前記コイルの中間巻線部を形成する導体パターンは比較的広い導体幅で相対的に小さな内径を描くようにパターニングされる一方、前記コイルの両端巻線部を形成する導体パターンは比較的狭い導体幅により相対的に大きな内径を描くようにパターニングされていることを特徴とする磁心型積層インダクタ。2. The conductor pattern according to claim 1, wherein a conductor pattern forming an intermediate winding portion of the coil is patterned so as to draw a relatively small inner diameter with a relatively wide conductor width, while forming a winding portion at both ends of the coil. Is a magnetic core type multilayer inductor characterized by being patterned so as to draw a relatively large inner diameter by a relatively narrow conductor width. 請求項1または2において、前記導体パターンは直角に屈曲するパターンにより矩形状のコイルを形成していることを特徴とする磁心型積層インダクタ。3. The magnetic core type multilayer inductor according to claim 1, wherein the conductor pattern forms a rectangular coil by a pattern bent at a right angle. 電気絶縁性磁性体層と導体パターンが積層されて、上記導体パターンが上記磁性体層を挟みながら層方向に重畳して螺旋状に周回するコイルを形成し、上記磁性体層が上記コイルからの磁界を環状に導く閉磁路を形成する磁心型積層インダクタにおいて、上記磁性体層に磁気ギャップを選択的に介在させることにより、コイルの起磁力が不等分布することにより生じる磁束密度の偏りを均等化させるようにしたことを特徴とする磁心型積層インダクタ。An electrically insulating magnetic material layer and a conductor pattern are laminated, and the conductor pattern overlaps in a layer direction while sandwiching the magnetic material layer to form a coil that helically circulates. In a magnetic core type laminated inductor that forms a closed magnetic path that guides a magnetic field in a ring shape, a magnetic gap is selectively interposed in the magnetic material layer to evenly distribute the magnetic flux density caused by uneven distribution of the magnetomotive force of the coil. A magnetic core type multilayer inductor characterized in that it is made into a core. 請求項4において、前記磁気ギャップは、前記磁性体層の一部を相対的に低透磁率の層で置き換えることにより形成されていることを特徴とする磁心型積層インダクタ。5. The magnetic core type inductor according to claim 4, wherein the magnetic gap is formed by replacing a part of the magnetic layer with a layer having a relatively low magnetic permeability. 請求項4または5において、前記コイルは、その両端が互いに反対方向に位置する電極端子に引き出し用導体パターン部を介して接続されることにより、整数でない半端な巻数を有することを特徴とする磁心型積層インダクタ。6. The magnetic core according to claim 4, wherein the coil has a non-integer odd number of turns by connecting both ends of the coil to electrode terminals located in opposite directions through a lead conductor pattern portion. Type multilayer inductor. 電気絶縁性磁性体層と導体パターンが積層されて、上記導体パターンが上記磁性体層を挟みながら層方向に重畳して螺旋状に周回するコイルを形成し、上記磁性体層が上記コイルからの磁界を環状に導く閉磁路を形成する磁心型積層インダクタにおいて、次の構成手段(1)〜(4)を有することを特徴とする磁心型積層インダクタ。
(1)上記磁性体層は、上記コイルの内側にて上記閉磁路の中足部を形成するとともに、そのコイルの外側にて上記閉磁路の外足部を形成する。
(2)上記コイルは、その両端が互いに反対方向に位置する電極端子に引き出し用導体パターン部を介して接続されることにより、導体パターンの重畳数がn(1以上の整数)層となる部分とn+1層となる部分を有する。
(3)上記n+1層の導体パターン部からの磁界が導入される外足部の幅を、上記n層の導体パターン部からの磁界だけが導入される外足部の幅よりも狭くする。
(4)上記(3)によって閉磁路全体の透磁率を均等化されている。
An electrically insulating magnetic layer and a conductor pattern are laminated, and the conductor pattern overlaps in a layer direction while sandwiching the magnetic layer to form a coil that spirals around, and the magnetic layer is formed from the coil. A magnetic core type laminated inductor which forms a closed magnetic path for guiding a magnetic field in an annular shape, comprising the following constituent means (1) to (4).
(1) The magnetic layer forms a middle leg of the closed magnetic path inside the coil and forms an outer leg of the closed magnetic path outside the coil.
(2) A portion in which the number of superposed conductor patterns is n (an integer of 1 or more) layers by connecting the both ends of the coil to electrode terminals located in opposite directions via a lead conductor pattern portion. And an n + 1 layer.
(3) The width of the outer leg portion into which the magnetic field from the n + 1 layer conductor pattern portion is introduced is made smaller than the width of the outer leg portion into which only the magnetic field from the n layer conductor pattern portion is introduced.
(4) The magnetic permeability of the entire closed magnetic circuit is equalized by the above (3).
請求項7において、前記引き出し用導体パターン部からの磁界を導くI字状外足部のパターン面積を、それ以外の部分に形成されるU字状外足部のパターン面積の1/5以下としたことを特徴とする磁心型積層インダクタ。8. The pattern area of the I-shaped outer foot portion for guiding a magnetic field from the lead conductor pattern portion according to claim 7, wherein the pattern area of the U-shaped outer foot portion formed in other portions is equal to or less than 1/5. A magnetic core type multilayer inductor characterized by the following. 請求項7または8において、前記コイルの内側に形成される中足部のパターン面積と、そのコイルの外側に形成される外足部のパターン面積をほぼ等しくしたことを特徴とする磁心型積層インダクタ。9. The magnetic core type laminated inductor according to claim 7, wherein a pattern area of a middle foot portion formed inside the coil and a pattern area of an outer foot portion formed outside the coil are substantially equal. . 請求項9において、前記中足部の外周長と、前記U字状外足部と導体パターン間の境界長をほぼ同じにしたことを特徴とする磁心型積層インダクタ。10. The magnetic core type laminated inductor according to claim 9, wherein an outer peripheral length of the middle foot portion and a boundary length between the U-shaped outer foot portion and the conductor pattern are substantially the same. 請求項7〜10のいずれかにおいて、前記引き出し用導体パターン部の幅をtとし、この引き出し用導体パターン部に沿うI字状外足部の幅をwとし、前記中足部と前記引き出し用導体パターン部間の境界長をkとしたときに、(w+t)≒k/2となるようにしたことを特徴とする磁心型積層インダクタ。The width | variety of the said conductor pattern part for a drawer in any one of Claims 7-10, set to t, the width | variety of the I-shaped outer leg | foot part along this conductor pattern part for a extract | drawing is set to w, and the said middle foot part and the said drawer A magnetic core type laminated inductor, wherein (w + t) ≒ k / 2, where k is a boundary length between conductor pattern portions.
JP2002161492A 2002-06-03 2002-06-03 Magnetic core type multilayer inductor Expired - Fee Related JP4009142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002161492A JP4009142B2 (en) 2002-06-03 2002-06-03 Magnetic core type multilayer inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002161492A JP4009142B2 (en) 2002-06-03 2002-06-03 Magnetic core type multilayer inductor

Publications (2)

Publication Number Publication Date
JP2004014549A true JP2004014549A (en) 2004-01-15
JP4009142B2 JP4009142B2 (en) 2007-11-14

Family

ID=30430537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002161492A Expired - Fee Related JP4009142B2 (en) 2002-06-03 2002-06-03 Magnetic core type multilayer inductor

Country Status (1)

Country Link
JP (1) JP4009142B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294602A (en) * 2004-03-31 2005-10-20 Sumida Corporation Inductance element
JP2007157983A (en) * 2005-12-05 2007-06-21 Taiyo Yuden Co Ltd Multilayer inductor
JP2007317892A (en) * 2006-05-25 2007-12-06 Fdk Corp Multilayered inductor
JP2007324554A (en) * 2006-06-01 2007-12-13 Taiyo Yuden Co Ltd Laminated inductor
JP2008166502A (en) * 2006-12-28 2008-07-17 Denso Corp Reactor
JP2010225839A (en) * 2009-03-24 2010-10-07 Denso Corp Reactor
JP2014045165A (en) * 2012-08-28 2014-03-13 Samsung Electro-Mechanics Co Ltd Multi-layered chip electronic component
JP2015149458A (en) * 2014-02-10 2015-08-20 株式会社村田製作所 inductor
US9412509B2 (en) 2014-06-24 2016-08-09 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component having conductive patterns and board having the same
JP2018056524A (en) * 2016-09-30 2018-04-05 Tdk株式会社 Coil component
US20190115134A1 (en) * 2017-10-18 2019-04-18 Samsung Electro-Mechanics Co., Ltd. Inductor
JP2021136336A (en) * 2020-02-27 2021-09-13 Tdk株式会社 Laminated coil component

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294602A (en) * 2004-03-31 2005-10-20 Sumida Corporation Inductance element
JP2007157983A (en) * 2005-12-05 2007-06-21 Taiyo Yuden Co Ltd Multilayer inductor
JP2007317892A (en) * 2006-05-25 2007-12-06 Fdk Corp Multilayered inductor
JP2007324554A (en) * 2006-06-01 2007-12-13 Taiyo Yuden Co Ltd Laminated inductor
JP2008166502A (en) * 2006-12-28 2008-07-17 Denso Corp Reactor
JP2010225839A (en) * 2009-03-24 2010-10-07 Denso Corp Reactor
US9536647B2 (en) 2012-08-28 2017-01-03 Samsung Electro-Mechanics Co., Ltd. Multi-layered chip electronic component
JP2014045165A (en) * 2012-08-28 2014-03-13 Samsung Electro-Mechanics Co Ltd Multi-layered chip electronic component
JP2015149458A (en) * 2014-02-10 2015-08-20 株式会社村田製作所 inductor
US9412509B2 (en) 2014-06-24 2016-08-09 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component having conductive patterns and board having the same
JP2018056524A (en) * 2016-09-30 2018-04-05 Tdk株式会社 Coil component
US20190115134A1 (en) * 2017-10-18 2019-04-18 Samsung Electro-Mechanics Co., Ltd. Inductor
KR20190043248A (en) * 2017-10-18 2019-04-26 삼성전기주식회사 Inductor
CN109686541A (en) * 2017-10-18 2019-04-26 三星电机株式会社 Inductor
KR101994759B1 (en) * 2017-10-18 2019-07-01 삼성전기주식회사 Inductor
US10923262B2 (en) 2017-10-18 2021-02-16 Samsung Electro-Mechanics Co., Ltd. Inductor
CN109686541B (en) * 2017-10-18 2022-07-05 三星电机株式会社 Inductor
JP2021136336A (en) * 2020-02-27 2021-09-13 Tdk株式会社 Laminated coil component

Also Published As

Publication number Publication date
JP4009142B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
US7605682B2 (en) Magnetic core type laminated inductor
JP4685128B2 (en) Inductor
JP5339398B2 (en) Multilayer inductor
KR101285646B1 (en) Multilayer inductor
US20080224809A1 (en) Magnetic integration structure
JPH05299270A (en) Electromagnetic device and electromagnetic core structure
JP4009142B2 (en) Magnetic core type multilayer inductor
JP3614816B2 (en) Magnetic element and power source using the same
JP4873534B2 (en) Inductor
JP2008085004A (en) Loosely-coupled transformer and switching power supply
JP2009059995A (en) Composite magnetic components
JP2007128984A (en) Magnetic part
JP2008078177A (en) Inductor
US9041506B2 (en) Multilayer inductor and method of manufacturing the same
JP2009038297A (en) Semiconductor device
JP2016051873A (en) Core structure, choke coil for interleave and transformer
JP2007317892A (en) Multilayered inductor
JP2007035690A (en) Transformer
JP2008187166A (en) Spiral-shaped closed magnetic core, and integrated micro-inductor comprising the closed magnetic core
JP2000269035A (en) Planar magnetic element
JP2021019104A (en) Reactor device
JP2007281379A (en) Laminated inductor
RU2716282C1 (en) Thin-film toroidal core with shape anisotropy, inductance coil and transformer, containing thereof
JP7451469B2 (en) coupled inductor
JP4328502B2 (en) Reactor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070423

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4009142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees