JP2007317892A - Multilayered inductor - Google Patents

Multilayered inductor Download PDF

Info

Publication number
JP2007317892A
JP2007317892A JP2006145998A JP2006145998A JP2007317892A JP 2007317892 A JP2007317892 A JP 2007317892A JP 2006145998 A JP2006145998 A JP 2006145998A JP 2006145998 A JP2006145998 A JP 2006145998A JP 2007317892 A JP2007317892 A JP 2007317892A
Authority
JP
Japan
Prior art keywords
coil
stacking direction
conductor pattern
multilayer
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006145998A
Other languages
Japanese (ja)
Inventor
Daisuke Matsubayashi
大介 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2006145998A priority Critical patent/JP2007317892A/en
Publication of JP2007317892A publication Critical patent/JP2007317892A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a structure of low profile improved in DC superposition characteristics and reduced in AC loss. <P>SOLUTION: A coil that circulates in spiral while overlapping in stacking direction within an electric insulator is formed by alternately stacking a magnetic layer 22 of an electrically insulated body, and a sequentially connected internal conductor pattern 20. The both ends of the coil are drawn out of the laminate chip outside surface, through a drawing-out conductor pattern 24, and connected to an external electrode. 0.5<SU/SI≤1 and 0.2≤SI/SA are satisfied, where SI is the cross-sectional area of the internal magnetic path vertical to the stacking direction inside the coil, SU is the crosssectional area of the external magnetic path parallel to the stacking direction outside the coil end, and SA is the total cross-sectional area vertical to the stacking direction of the laminate chip. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、積層構造のチップインダクタに関し、更に詳しく述べると、内部導体パターン形状を最適化することにより直流重畳特性を向上させた積層インダクタに関するものである。この積層インダクタは、特にモバイル用途のパワー用インダクタに好適である。   The present invention relates to a chip inductor having a multilayer structure. More specifically, the present invention relates to a multilayer inductor having improved direct current superposition characteristics by optimizing the shape of an internal conductor pattern. This multilayer inductor is particularly suitable for power inductors for mobile applications.

DC−DCコンバータなどの電源回路に使用されるパワー用インダクタは、かつては磁気コアにコイルを巻線する構成が一般的であったが、近年の電源回路部品の小型化、薄型化の要望に沿い、積層構造のチップ部品が開発され実用化されている。積層型のパワー用インダクタはモバイル系の電源に使用されることが多く、小型とはいえDC−DCコンバータの構成部品の中では最も大きな部品である。これまでは1mm程度の高さのチップが多用されていたが、最近、0.8mmあるいは0.5mmというように、更なる低背化の要求が増加しつつある。   In the past, power inductors used in power circuits such as DC-DC converters were generally configured by winding a coil around a magnetic core. However, in recent years, there has been a demand for smaller and thinner power circuit components. Along with this, chip components with a laminated structure have been developed and put into practical use. Multilayer power inductors are often used for mobile power supplies, and are the largest components among DC-DC converter components, albeit small. Up to now, chips with a height of about 1 mm have been frequently used. Recently, however, there is an increasing demand for further reduction in height, such as 0.8 mm or 0.5 mm.

積層型のインダクタは、磁性体からなる電気絶縁体である磁性層と内部導体パターンが交互に積層され前記内部導体パターンを順次接続することで、電気絶縁体中で積層方向に重畳しながら螺旋状に周回するコイルが形成され、該コイルの両端がそれぞれ引出導体パターンを介して積層体チップ外表面に引き出され外部電極に接続される構造である。つまり、磁性体チップ中にコイルが埋設されている状態である。磁性層や内部導体パターンは、例えばスクリーン印刷の技法などを駆使して形成され積層される。このような積層インダクタは、コイルの周囲が磁性体で囲まれているため、磁気漏洩が少なく、比較的少ない巻数で必要なインダクタンスが得られる特徴があり、小型化、薄型化に適している。   Multilayer inductors have a magnetic layer that is an electrical insulator made of a magnetic material and internal conductor patterns that are alternately stacked, and the internal conductor patterns are sequentially connected to form a spiral while overlapping in the stacking direction in the electrical insulator. In this structure, a coil that circulates is formed, and both ends of the coil are led out to the outer surface of the multilayer chip through lead conductor patterns and connected to external electrodes. That is, the coil is embedded in the magnetic chip. The magnetic layer and the internal conductor pattern are formed and stacked by using, for example, a screen printing technique. Such a multilayer inductor is characterized in that since the coil is surrounded by a magnetic material, there is little magnetic leakage, and a necessary inductance can be obtained with a relatively small number of turns, which is suitable for downsizing and thinning.

ところで積層インダクタは、1層当たり1ターン未満(例えば1/2ターンあるいは3/4ターンなど)の内部導体パターンを積層し順次接続することでコイルを形成することが多い(例えば、特許文献1参照)。しかし、このような構成では、印刷回数が増加し、印刷層数が多くなるために、積層体チップを低背化しようとするとコイルの両端外側での磁性体が非常に薄くならざるを得ず、これにより直流重畳特性の劣化(磁性体の磁気飽和による急激なインダクタンスの低下)が引き起こされる。また、層数が増えることで内部導体パターン間を通る磁束が増加し、低DCバアイアス時のインダクタンスの変化を急激にするため交流抵抗が高くなる。このことは、待機電流による損失が大きくなることを意味し、特にモバイル用途では大きな問題となる。   By the way, a multilayer inductor often forms a coil by laminating and sequentially connecting internal conductor patterns of less than one turn per layer (for example, 1/2 turn or 3/4 turn) (for example, see Patent Document 1). ). However, with such a configuration, the number of times of printing increases and the number of printed layers increases, so when trying to reduce the height of the laminated chip, the magnetic material on both outer sides of the coil must be very thin. This causes deterioration of the DC superimposition characteristics (abrupt decrease in inductance due to magnetic saturation of the magnetic material). Further, the increase in the number of layers increases the magnetic flux passing between the internal conductor patterns, and the AC resistance increases because the change in inductance at the time of low DC bias is abrupt. This means that the loss due to the standby current becomes large, which is a big problem particularly in mobile applications.

他方、チップインダクタとしては、1層に多重巻きすること(渦巻き形状)でコイルを形成する形式もある(例えば特許文献2参照)。この構造は、低背化できる利点がある反面、コイル内側の磁性体が少なくなるため、直流重畳特性の劣化が引き起こされ、パワー用インダクタには不向きである。
特公平6−56812号公報 特開2000−114043号公報
On the other hand, as a chip inductor, there is also a form in which a coil is formed by multiple winding (spiral shape) in one layer (see, for example, Patent Document 2). Although this structure has an advantage that the height can be reduced, the magnetic material inside the coil is reduced, so that the direct current superimposition characteristic is deteriorated and is not suitable for a power inductor.
Japanese Patent Publication No. 6-56812 JP 2000-114043 A

本発明が解決しようとする課題は、直流重畳特性の向上と交流損失の低減を図ることができ、しかも低背化が可能な、パワー用インダクタに適した構造を実現することである。   The problem to be solved by the present invention is to realize a structure suitable for a power inductor that can improve DC superposition characteristics and reduce AC loss and can be reduced in height.

本発明は、電気絶縁体である磁性層と内部導体パターンが交互に積層され前記内部導体パターンを順次接続することで、電気絶縁体中で積層方向に重畳しながら螺旋状に周回するコイルが形成され、該コイルの両端がそれぞれ引出導体パターンを介して積層体チップ外表面に引き出され外部電極に接続される構造の積層インダクタにおいて、コイル内側での積層方向に垂直な内部磁路断面積をSI、コイル端部外側での積層方向に平行な外部磁路断面積をSU、積層体チップの積層方向に垂直な全断面積をSAとしたとき、0.5<SU/SI≦1且つ0.2≦SI/SAなる関係を満たすようにしたことを特徴とする積層インダクタである。   In the present invention, magnetic layers that are electrical insulators and internal conductor patterns are alternately stacked, and the internal conductor patterns are sequentially connected to form a coil that spirals around the electrical insulator while overlapping in the stacking direction. In the multilayer inductor having a structure in which both ends of the coil are drawn to the outer surface of the multilayer chip via the lead conductor pattern and connected to the external electrode, the internal magnetic path cross-sectional area perpendicular to the stacking direction inside the coil is represented by SI. , Where SU is the cross-sectional area of the external magnetic path parallel to the laminating direction outside the coil end, and SA is the total cross-sectional area perpendicular to the laminating direction of the multilayer chip, 0.5 <SU / SI ≦ 1 and 0. A multilayer inductor characterized by satisfying a relationship of 2 ≦ SI / SA.

ここで内部導体パターンは、1層当たり1ターン未満としてもよいが、低背化のためには1層当たり1ターン以上で3ターン以下とするのがよい。また、積層体チップを構成している電気絶縁体は、その大部分が磁性体からなり、内部導体パターンの層間すべてに非磁性層を配置するのが好ましい。この積層インダクタは、特にDC−DCコンバータなどの電源回路に使用されるモバイル用途のパワー用インダクタに好適である。   Here, the inner conductor pattern may be less than one turn per layer, but in order to reduce the height, it is preferable that the number of turns is not less than 1 turn and not more than 3 turns per layer. In addition, it is preferable that most of the electrical insulator constituting the multilayer chip is made of a magnetic material, and a nonmagnetic layer is disposed between all layers of the internal conductor pattern. This multilayer inductor is particularly suitable for a power inductor for mobile use used in a power supply circuit such as a DC-DC converter.

本発明に係る積層インダクタは、積層体チップ内部のコイル形状を最適化したことにより、コイル内外の磁路バランスをとり、高バイアス側での直流重畳特性の向上を図ることができる。特に、1層当たりのターン数を1〜3にすると、優れた直流重畳特性を維持しつつ印刷回数の低減と低背化の両方を同時に達成することが可能となる。また、内部導体パターンの層間に非磁性層を配置する構造にすると、内部導体パターンを取り囲む微小磁路ループの発生を防止でき、低バイアス側での交流損失を低減できる。   The multilayer inductor according to the present invention can optimize the DC superposition characteristics on the high bias side by balancing the magnetic path inside and outside the coil by optimizing the coil shape inside the multilayer chip. In particular, when the number of turns per layer is set to 1 to 3, it is possible to simultaneously achieve both a reduction in the number of printing times and a reduction in height while maintaining excellent direct current superposition characteristics. In addition, when the non-magnetic layer is arranged between the inner conductor patterns, it is possible to prevent the occurrence of a minute magnetic circuit loop surrounding the inner conductor pattern and reduce the AC loss on the low bias side.

本発明に係る積層インダクタの一例を図1に示す。図1において、Aは外観を、Bは上面から導体パターンを透視した状態を、Cは縦断面を、それぞれ示している。   An example of the multilayer inductor according to the present invention is shown in FIG. In FIG. 1, A shows an appearance, B shows a state where a conductor pattern is seen through from the upper surface, and C shows a longitudinal section.

この積層インダクタ10は、ほぼ直方体状をなす表面実装型のチップ部品であり、殆ど全てが磁性体からなる材料中にコイルが埋設されており、そのコイル両端がチップ両端部に形成されている外部電極12に電気的に接続されている構造である(図1のA参照)。   This multilayer inductor 10 is a surface-mounted chip component having a substantially rectangular parallelepiped shape, and a coil is embedded in almost all of a magnetic material, and both ends of the coil are formed at both ends of the chip. The structure is electrically connected to the electrode 12 (see A in FIG. 1).

内部のコイル構造は、ほぼ環状の(1層当たり1ターンの)内部導体パターン20と電気絶縁性の磁性層22を、スクリーン印刷法などにより印刷し、交互に積層することにより形成される。内部導体パターン20は、磁性層22による磁性体中で、積層方向に重畳しながら螺旋状に周回するように順次接続されてコイルを形成する。内部導体パターン間の電気的な接続は、周知のビアホールなどを利用して行う。ここでは、内部導体パターンは、図1のBに示すように、直角に屈曲しながら矩形状に巻回されている。コイルの両端は、それぞれ引出導体パターン24を介して積層体チップ外表面の相対向する端面に引き出され、前記外部電極12に接続されることになる。   The internal coil structure is formed by printing a substantially annular inner conductor pattern 20 (one turn per layer) and an electrically insulating magnetic layer 22 by screen printing or the like and alternately laminating them. The internal conductor patterns 20 are sequentially connected to form a coil in a magnetic body by the magnetic layer 22 so as to circulate in a spiral shape while being superimposed in the stacking direction. Electrical connection between the internal conductor patterns is performed using a well-known via hole or the like. Here, as shown in FIG. 1B, the inner conductor pattern is wound in a rectangular shape while being bent at a right angle. Both ends of the coil are respectively drawn out to opposite end faces of the outer surface of the multilayer chip via the lead conductor pattern 24 and connected to the external electrode 12.

本発明に係る積層インダクタでは、コイル内側での積層方向に垂直な内部磁路断面積をSI(=x×y)、コイル端部外側での積層方向に平行な外部磁路断面積をSU(=(x+y)×2×z)、積層体チップの積層方向に垂直な全断面積をSA(=L×W)としたとき、0.5<SU/SI≦1であって、且つ0.2≦SI/SAなる関係を満たすように設計する。ここで、xとyはコイル内側磁路の縦横寸法、zはコイル端から積層体チップ表面までの積層方向長さ、LとWは積層体チップの縦横寸法である。   In the multilayer inductor according to the present invention, the internal magnetic path cross-sectional area perpendicular to the stacking direction inside the coil is SI (= xx), and the external magnetic path cross-sectional area parallel to the stacking direction outside the coil end is SU ( = (X + y) × 2 × z), where SA (= L × W) is the total cross-sectional area perpendicular to the stacking direction of the stacked chips, 0.5 <SU / SI ≦ 1, and 0. It is designed to satisfy the relationship 2 ≦ SI / SA. Here, x and y are vertical and horizontal dimensions of the coil inner magnetic path, z is a length in the stacking direction from the coil end to the surface of the multilayer chip, and L and W are vertical and horizontal dimensions of the multilayer chip.

図2は、その変形例であり、Bは要部の拡大図である。内部導体パターン20の層とそれに対して間隔をおいて重なり合う別の内部導体パターン20の層の間すべてが磁性層ではなく電気絶縁性の非磁性層26になっている。このような非磁性層26は、内部導体パターン20とほぼ同じ環状(四角枠状)であり、該内部導体パターン20よりも若干幅広とするのが好ましい。若干幅広なパターンにすることによって、内部導体パターン20を印刷する際、導体ペーストの流れ込みによる短絡発生を防ぐことができ、且つ磁路断面の減少を可能な限り抑えることができる。なお、内部導体パターン20の層の間すべてを非磁性層26とするのが最も好ましいが、一部のみを非磁性層とする構成でもよい。   FIG. 2 is a modified example thereof, and B is an enlarged view of a main part. Between the layer of the internal conductor pattern 20 and another layer of the internal conductor pattern 20 that overlaps with the space, not the magnetic layer but the electrically insulating nonmagnetic layer 26. Such a nonmagnetic layer 26 has a ring shape (square frame shape) that is substantially the same as the inner conductor pattern 20, and is preferably slightly wider than the inner conductor pattern 20. By making the pattern slightly wider, when the internal conductor pattern 20 is printed, it is possible to prevent the occurrence of a short circuit due to the inflow of the conductor paste, and to suppress the reduction of the magnetic path cross section as much as possible. It is most preferable that the entire portion between the layers of the inner conductor pattern 20 is the nonmagnetic layer 26, but only a part may be a nonmagnetic layer.

本発明に係る積層インダクタの他の例を図3に示す。これは、コイルを形成する内部導体パターンを1層当たりほぼ2ターンとした例である。製法などは、1ターンの場合と同様である。内部導体パターン20と電気絶縁性の磁性層22を、スクリーン印刷法などにより印刷し、交互に積層する。内部導体パターン20は、磁性層22による磁性体中で、積層方向に重畳しながら螺旋状に周回するように接続されてコイルを形成する。内部導体パターン間の電気的な接続は、周知のビアホールなどを利用して行う。コイルの両端は、それぞれ引出導体パターン24を介して積層体チップ外表面の相対向する端面に引き出され、外部電極に接続されることになる。   Another example of the multilayer inductor according to the present invention is shown in FIG. This is an example in which the inner conductor pattern forming the coil has approximately two turns per layer. The manufacturing method is the same as in the case of one turn. The internal conductor pattern 20 and the electrically insulating magnetic layer 22 are printed by a screen printing method or the like and are alternately stacked. The inner conductor pattern 20 is connected in a magnetic body by the magnetic layer 22 so as to circulate spirally while being superimposed in the stacking direction to form a coil. Electrical connection between the internal conductor patterns is performed using a well-known via hole or the like. Both ends of the coil are respectively drawn out to opposite end surfaces of the outer surface of the multilayer chip via the lead conductor pattern 24 and connected to the external electrodes.

この構造の場合も本発明では、前記コイル内側での積層方向に垂直な内部磁路断面積をSI(=x×y)、コイル端部外側での積層方向に平行な外部磁路断面積をSU(=(x+y)×2×z)、積層体チップの積層方向に垂直な全断面積をSA(=L×W)としたとき、0.5<SU/SI≦1であって、且つ0.2≦SI/SAなる関係を満たすように設計する。なお、xとyは最も内側の内部導体パターンで囲まれるコイル内部磁路の縦横寸法である。   Also in the case of this structure, in the present invention, the internal magnetic path cross-sectional area perpendicular to the stacking direction inside the coil is SI (= xx), and the external magnetic path cross-sectional area parallel to the stacking direction is outside the coil end. SU (= (x + y) × 2 × z), where SA (= L × W) is the total cross-sectional area perpendicular to the stacking direction of the stack chip, 0.5 <SU / SI ≦ 1, and It is designed to satisfy the relationship of 0.2 ≦ SI / SA. X and y are the vertical and horizontal dimensions of the coil internal magnetic path surrounded by the innermost internal conductor pattern.

図4は、その変形例を示しており、Bは要部の拡大図である。内部導体パターン20の層とそれに対して間隔をおいて重なり合う別の内部導体パターン20の層の間すべてが磁性層ではなく電気絶縁性の非磁性層26になっている。このような非磁性層26は、2重に巻いた内部導体パターンを丁度覆うような(内部導体パターンによるコイルの最外周縁と最内周縁にほぼ一致する)四角枠状である。   FIG. 4 shows a modification thereof, and B is an enlarged view of a main part. Between the layer of the internal conductor pattern 20 and another layer of the internal conductor pattern 20 that overlaps with the space, not the magnetic layer but the electrically insulating nonmagnetic layer 26. Such a nonmagnetic layer 26 has a rectangular frame shape that just covers the double-wrapped inner conductor pattern (substantially coincides with the outermost and innermost edges of the coil formed by the inner conductor pattern).

内部導体パターンは、1層当たり1ターン未満でもよいが、上記のように1層当たり1ターン以上で3ターン以下とするのがよい。1層当たり1ターン未満の場合には、必要なインダクタンスを実現するために層数が多くなるため、高さ1mm以下の積層インダクタには不利となるし、他方、1層当たり3ターンを超えると、積層体チップの積層方向に垂直な全断面積を大きくできないので、コイル内部の磁路断面積が減少するため直流重畳特性向上の点で不利となるからである。   The inner conductor pattern may be less than one turn per layer, but as described above, it is preferable that the number of turns be not less than 1 turn and not more than 3 turns per layer. If the number of turns is less than 1 turn per layer, the number of layers increases to achieve the required inductance, which is disadvantageous for multilayer inductors with a height of 1 mm or less. On the other hand, if the number of turns exceeds 3 turns, This is because since the total cross-sectional area perpendicular to the stacking direction of the multilayer chip cannot be increased, the cross-sectional area of the magnetic path inside the coil is reduced, which is disadvantageous in terms of improving DC superposition characteristics.

具体的に、外形寸法3.2mm×2.5mm×0.5mmで、4.5ターンのコイルを形成した積層型のパワー用インダクタを例にとって説明する。内部導体パターン1層当たり1ターン未満の場合には、内部導体パターンは最少でも全5層となり、層間は4層となる。内部導体パターン1層当たり2.5ターンにすると、全2層でコイルが形成でき、層間は1層となる。両者において、直流抵抗が同じになるようにするには、後者では内部導体パターンの線幅が半減し、線間スペースを確保する分、印刷厚みで補う必要がある。例えば、前者の印刷厚みを20μm、層間を15μm、後者の印刷厚みを35μm、層間を15μmとした場合、表1に示すような構造上の差が生じる。ここで、後者におけるコイル上下での磁性層の厚みの増大は、そのまま直流重畳特性の向上につながる。   Specifically, a multilayer power inductor having an outer dimension of 3.2 mm × 2.5 mm × 0.5 mm and having a coil of 4.5 turns will be described as an example. When the number of internal conductor patterns is less than one turn, the total number of internal conductor patterns is at least 5 and the number of layers is 4 layers. If the number of turns is 2.5 per internal conductor pattern, a coil can be formed with a total of two layers, with one layer between layers. In order to make the DC resistance the same in both cases, it is necessary to compensate for the printing thickness by the amount that the line width of the internal conductor pattern is reduced by half and the space between the lines is secured in the latter. For example, when the former printing thickness is 20 μm, the interlayer is 15 μm, the latter printing thickness is 35 μm, and the interlayer is 15 μm, the structural differences shown in Table 1 occur. Here, the increase in the thickness of the magnetic layer above and below the coil in the latter directly leads to an improvement in the DC superposition characteristics.

Figure 2007317892
Figure 2007317892

また、図2あるいは図4に示すように、積層体チップの電気絶縁体は、その大部分を磁性体とし、内部導体パターンの層間すべてに非磁性層を配置する構成が好ましい。それによって内部導体パターンを取り囲む微小磁路ループの発生を防止し、交流損失の増加を抑制できるからである。   Further, as shown in FIG. 2 or FIG. 4, it is preferable that the electrical insulator of the multilayer chip is made of a magnetic material and a nonmagnetic layer is disposed between all the layers of the internal conductor pattern. This is because the occurrence of a minute magnetic path loop surrounding the inner conductor pattern can be prevented and an increase in AC loss can be suppressed.

積層体チップの外形寸法を一定にし、その内部に埋設するコイル形状が異なる数種類の試料について直流重畳特性を求めた。以下、その結果について述べる。   The DC superposition characteristics were determined for several types of samples with the same outer dimensions of the multilayer chip and different coil shapes embedded therein. The results will be described below.

(実施例1)
チップ外形寸法を全て2.5mm×2.0mm×0.5mm(L×W×H)とし、コイルの直流抵抗が一定になるように内部導体パターンを形成した。試料の種類は、表2に示す6種類である。試料a〜cは1層1ターン以下(具体的にはコの字型のほぼ3/4ターンのパターンを採用)であり、試料d〜fは1層2ターンの場合である。それぞれコイル内側での積層方向に垂直な内部磁路断面積SI、及びコイル端部外側での積層方向に平行な外部磁路断面積SUを変えている。なお、チップの積層方向のほぼ中央位置に非磁性層を挿入している。
Example 1
The chip outer dimensions were all 2.5 mm × 2.0 mm × 0.5 mm (L × W × H), and the internal conductor pattern was formed so that the DC resistance of the coil was constant. There are six types of samples shown in Table 2. Samples a to c are one turn or less per layer (specifically, a U-shaped pattern of approximately 3/4 turns is adopted), and samples df are cases where one layer is two turns. The internal magnetic path cross-sectional area SI perpendicular to the stacking direction inside the coil and the external magnetic path cross-sectional area SU parallel to the stacking direction outside the coil end are changed. Note that a nonmagnetic layer is inserted at a substantially central position in the stacking direction of the chips.

Figure 2007317892
Figure 2007317892

これらの積層インダクタにおける直流重畳特性を図5に示す。図5のAは、直流バイアスに対するインダクタンスの変化を表している。試料a,b,dは直流重畳特性の劣化が大きく、試料c,fは直流バイアス電流0Aでのインダクタンス(L@0Aで表す)が大幅に低下している。SI/SAに対するL@0Aの関係、及びSU/SIに対するインダクタンス30%減での直流バイアス(L30%減で表す)の関係をプロットしたのが図5のBである。SI/SAが0.2以下になるとL@0Aが急激に低下することが分かる。また、SU/SIが0.5未満ではL30%減が非常に小さくなることも分かる。   FIG. 5 shows the DC superposition characteristics of these multilayer inductors. A in FIG. 5 represents a change in inductance with respect to a DC bias. Samples a, b, and d have a large deterioration in DC superimposition characteristics, and samples c and f have greatly reduced inductance (represented by L @ 0A) at DC bias current 0A. FIG. 5B plots the relationship of L @ 0A to SI / SA and the relationship of DC bias (represented by L30% reduction) with a 30% reduction in inductance to SU / SI. It can be seen that L @ 0A rapidly decreases when SI / SA is 0.2 or less. It can also be seen that when SU / SI is less than 0.5, the L30% reduction is very small.

この結果から、チップ高さが0.5mmというような低背型の場合には、1層1ターン以下では良好な直流重畳特性を発現させることが極めて難しいことが分かる。   From this result, it can be seen that in the case of a low profile type with a chip height of 0.5 mm, it is extremely difficult to develop a good DC superposition characteristic with one turn or less per layer.

(実施例2)
チップ外形寸法を全て2.5mm×2.0mm×1.0mm(L×W×H)とし、コイルの直流抵抗が一定になるように内部導体パターンを形成した。試料の種類は、表3に示す6種類である。試料g〜iは1層1ターン以下(具体的にはコの字型のほぼ3/4ターンのパターンを採用)であり、試料j〜lは1層2ターンの場合である。それぞれコイル内側での積層方向に垂直な内部磁路断面積SI、及びコイル端部外側での積層方向に平行な外部磁路断面積SUを変えている。ここでも、チップの積層方向のほぼ中央位置に非磁性層を挿入している。
(Example 2)
The chip outer dimensions were all 2.5 mm × 2.0 mm × 1.0 mm (L × W × H), and the internal conductor pattern was formed so that the DC resistance of the coil was constant. There are six types of samples shown in Table 3. Samples g to i are 1 turn or less per layer (specifically, a U-shaped pattern of approximately 3/4 turns is adopted), and samples j to l are cases where 1 layer is 2 turns. The internal magnetic path cross-sectional area SI perpendicular to the stacking direction inside the coil and the external magnetic path cross-sectional area SU parallel to the stacking direction outside the coil end are changed. Also here, a nonmagnetic layer is inserted at a substantially central position in the stacking direction of the chips.

Figure 2007317892
Figure 2007317892

これらの積層インダクタにおいては、直流重畳特性を図6に示す。図6のAは、直流バイアスに対するインダクタンスの変化を表している。試料j,k,lは直流バイアス電流0Aでのインダクタンス(L@0Aで表す)が大幅に低下している。SI/SAに対するL@0Aの関係、及びSU/SIに対するインダクタンス30%減での直流バイアス(L30%減で表す)の関係をプロットしたのが図6のBである。SI/SAが0.2以下になるとL@0Aが急激に低下することが分かる。   In these multilayer inductors, DC superposition characteristics are shown in FIG. A in FIG. 6 represents a change in inductance with respect to a DC bias. In the samples j, k, and l, the inductance (represented by L @ 0A) at the DC bias current 0A is greatly reduced. FIG. 6B plots the relationship of L @ 0A to SI / SA and the relationship of DC bias (represented by L30% reduction) with a 30% reduction in inductance to SU / SI. It can be seen that L @ 0A rapidly decreases when SI / SA is 0.2 or less.

チップ高さが1.0mmというように比較的高い場合には、1層1ターン以下でもある程度良好な直流重畳特性を発現させることが可能であることが分かる。しかし、試料g,h(いずれも1層1ターン以下)に比べて試料j(1層2ターン)の方が直流重畳特性は良好である。   When the chip height is relatively high, such as 1.0 mm, it can be seen that good DC superposition characteristics can be exhibited even with one turn or less per layer. However, the direct current superimposition characteristic is better in the sample j (1 layer 2 turns) than in the samples g and h (both 1 layer 1 turn or less).

本発明に係る積層インダクタの一例を示す説明図。Explanatory drawing which shows an example of the multilayer inductor which concerns on this invention. その変形例の縦断面図。The longitudinal cross-sectional view of the modification. 本発明に係る積層インダクタの他の例を示す説明図。Explanatory drawing which shows the other example of the multilayer inductor which concerns on this invention. その変形例の縦断面図。The longitudinal cross-sectional view of the modification. 直流重畳特性の一例を示すグラフ。The graph which shows an example of a direct current superposition characteristic. 直流重畳特性の他の例を示すグラフ。The graph which shows the other example of a direct current | flow superimposition characteristic.

符号の説明Explanation of symbols

10 積層インダクタ
12 外部電極
20 内部導体パターン
22 磁性層
24 引出導体パターン
26 非磁性層
DESCRIPTION OF SYMBOLS 10 Multilayer inductor 12 External electrode 20 Internal conductor pattern 22 Magnetic layer 24 Leader conductor pattern 26 Nonmagnetic layer

Claims (3)

電気絶縁体である磁性層と内部導体パターンが交互に積層され前記内部導体パターンを順次接続することで、電気絶縁体中で積層方向に重畳しながら螺旋状に周回するコイルが形成され、該コイルの両端がそれぞれ引出導体パターンを介して積層体チップ外表面に引き出され外部電極に接続される構造の積層インダクタにおいて、
コイル内側での積層方向に垂直な内部磁路断面積をSI、コイル端部外側での積層方向に平行な外部磁路断面積をSU、積層体チップの積層方向に垂直な全断面積をSAとしたとき、0.5<SU/SI≦1且つ0.2≦SI/SAなる関係を満たすようにしたことを特徴とする積層インダクタ。
A magnetic layer and an internal conductor pattern which are electrical insulators are alternately stacked and the internal conductor patterns are sequentially connected to form a coil that spirals around the electrical insulator in the stacking direction. In the multilayer inductor having a structure in which both ends of each are drawn to the outer surface of the multilayer chip through the lead conductor pattern and connected to the external electrode,
The internal magnetic path cross-sectional area perpendicular to the stacking direction inside the coil is SI, the external magnetic path cross-sectional area parallel to the stacking direction outside the coil end is SU, and the total cross-sectional area perpendicular to the stacking direction of the multilayer chip is SA. The multilayer inductor is characterized in that the relationship of 0.5 <SU / SI ≦ 1 and 0.2 ≦ SI / SA is satisfied.
1層当たり1ターン以上で3ターン以下の内部導体パターンが積層されている請求項1記載の積層インダクタ。   The multilayer inductor according to claim 1, wherein internal conductor patterns of 1 turn or more and 3 turns or less are laminated per layer. 積層体チップを構成している電気絶縁体は、その大部分が磁性体からなり、内部導体パターンの層間に非磁性層が配置されている請求項1又は2記載の積層インダクタ。
3. The multilayer inductor according to claim 1, wherein most of the electrical insulator constituting the multilayer chip is made of a magnetic material, and a nonmagnetic layer is disposed between layers of the internal conductor pattern.
JP2006145998A 2006-05-25 2006-05-25 Multilayered inductor Pending JP2007317892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006145998A JP2007317892A (en) 2006-05-25 2006-05-25 Multilayered inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006145998A JP2007317892A (en) 2006-05-25 2006-05-25 Multilayered inductor

Publications (1)

Publication Number Publication Date
JP2007317892A true JP2007317892A (en) 2007-12-06

Family

ID=38851488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006145998A Pending JP2007317892A (en) 2006-05-25 2006-05-25 Multilayered inductor

Country Status (1)

Country Link
JP (1) JP2007317892A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015035487A (en) * 2013-08-08 2015-02-19 Tdk株式会社 Laminate type coil component
US9406428B2 (en) 2014-02-10 2016-08-02 Murata Manufacturing Co., Ltd. Inductor
JP2017073494A (en) * 2015-10-08 2017-04-13 Tdk株式会社 Layered coil component
KR20170097883A (en) * 2016-02-19 2017-08-29 삼성전기주식회사 Coil component
US10840005B2 (en) 2013-01-25 2020-11-17 Vishay Dale Electronics, Llc Low profile high current composite transformer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230119A (en) * 2000-02-14 2001-08-24 Murata Mfg Co Ltd Laminated inductor
JP2002043129A (en) * 2000-07-24 2002-02-08 Fdk Corp Laminated inductance element
JP2003017327A (en) * 2001-06-29 2003-01-17 Fdk Corp Laminated inductor
JP2004014549A (en) * 2002-06-03 2004-01-15 Fdk Corp Magnetic core multilayer inductor
JP2004343084A (en) * 2003-04-21 2004-12-02 Murata Mfg Co Ltd Electronic component
JP2006032430A (en) * 2004-07-12 2006-02-02 Tdk Corp Coil component
JP2006108383A (en) * 2004-10-05 2006-04-20 Tdk Corp Laminated electronic component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230119A (en) * 2000-02-14 2001-08-24 Murata Mfg Co Ltd Laminated inductor
JP2002043129A (en) * 2000-07-24 2002-02-08 Fdk Corp Laminated inductance element
JP2003017327A (en) * 2001-06-29 2003-01-17 Fdk Corp Laminated inductor
JP2004014549A (en) * 2002-06-03 2004-01-15 Fdk Corp Magnetic core multilayer inductor
JP2004343084A (en) * 2003-04-21 2004-12-02 Murata Mfg Co Ltd Electronic component
JP2006032430A (en) * 2004-07-12 2006-02-02 Tdk Corp Coil component
JP2006108383A (en) * 2004-10-05 2006-04-20 Tdk Corp Laminated electronic component

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10840005B2 (en) 2013-01-25 2020-11-17 Vishay Dale Electronics, Llc Low profile high current composite transformer
JP2015035487A (en) * 2013-08-08 2015-02-19 Tdk株式会社 Laminate type coil component
US9406428B2 (en) 2014-02-10 2016-08-02 Murata Manufacturing Co., Ltd. Inductor
JP2017073494A (en) * 2015-10-08 2017-04-13 Tdk株式会社 Layered coil component
KR20170097883A (en) * 2016-02-19 2017-08-29 삼성전기주식회사 Coil component
KR102642900B1 (en) * 2016-02-19 2024-03-04 삼성전기주식회사 Coil component

Similar Documents

Publication Publication Date Title
JP4873522B2 (en) Multilayer inductor
JP5339398B2 (en) Multilayer inductor
US7605682B2 (en) Magnetic core type laminated inductor
US20180122560A1 (en) Multilayer inductor and method for manufacturing multilayer inductor
CN102292782B (en) Laminated inductor
JP4895193B2 (en) Multilayer inductor
JP3807438B2 (en) Inductance components and electronic equipment using the same
KR101838225B1 (en) Double core planar transformer
US20170194088A1 (en) Isolation Transformer Topology
JP2007317892A (en) Multilayered inductor
JP6233246B2 (en) Multilayer electronic components
KR101838227B1 (en) Common winding wire planar transformer
US9041506B2 (en) Multilayer inductor and method of manufacturing the same
KR102030086B1 (en) Stacked inductor
JP2010062409A (en) Inductor component
JP7553220B2 (en) Coil parts and electronic devices
JP5311462B2 (en) Multi-layer substrate transformer
JP2005116666A (en) Magnetic element
JP4827087B2 (en) Multilayer inductor
JP2012182286A (en) Coil component
JP2010153616A (en) Multilayered inductor
JP2005310980A (en) Inductor and transformer
JP2010153618A (en) Multilayered inductor
JP2007035690A (en) Transformer
JP2013105807A (en) Multilayer inductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

A131 Notification of reasons for refusal

Effective date: 20110810

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111207